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ABSTRACT
Dyslexia was first proposed in 1877, but this century-old problem
still troubles many people today [1]. Dyslexia is marked by difficulty
in reading despite having normal or superior conditions in their
environment and intellectual ability, is curable using multi-sensory
learning, which involves providing audio stimulus, sometimes gen-
erated from expressive text-to-speech. However, such generated
audio lacks rhythmic features, marked by inadequate insertion
of pauses. In response to such technological difficulty, this paper
proposes RhySpeech, which models rhythm using feed-forward
transformer neural networks and an LRV (Latent Rhythm Vec-
tor). The LRV receives input from the pitch, energy, and duration
features encoded using a Transformers network along with the
numeric encoding of the previous 16 phonemes, which together
build a strong sense of context for the pause prediction. This LRV
is trained to generate adequate lengths and positions of pa uses,
allowing the synthesized audio to have more accurate pausing
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1 INTRODUCTION
Human speech consists of sentences, units of speech representing
relatively complete and independent meaning; which can be broken
down into words, which have their definition, and humans tend
to pause between words. By definition, a text-to-speech process is
a digital process that takes text as input, then, through multiple
steps, converts the text into sound waves (which resemble human
speech) which are outputted. Sometimes, the term ”end-to-end” is
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added as a modifier to emphasize that the system is responsible for
the entire process of text-to-speech.

Modern end-to-end text-to-speech systems consist of three steps
(which text goes through to become audio) as shown in figure:
text analysis, acoustic modeling, and the vocoder, which will be
explained below in figure 1.

Text analysis involves converting input text (to-be-read) into a
format that the acoustic model can accept as input. Usually, this
step involves the conversion of numbers and symbols, which exists
in some texts such as textbooks and science books, into their word
form (which is what words will be spoken if a person is to read
that number or symbol out loud). However, the spelling of a word
doesn’t carry a one-to-one relationship about how the word should
be pronounced. For example, the ”h” grapheme in ”hill” is pro-
nounced with the ”h” sound, but the same ”h” grapheme in ”honor”
is not pronounced. To solve this issue, a grapheme-to-phoneme
(G2P) conversion is carried out. Either a G2P dictionary or a G2P
conversion model is used for the process.

The acoustic model is the part of text-to-speech that converts
phonemes to acoustic features, or indicators of how text is to be
pronounced, complete with details such as volume and sound fre-
quency. Variance encoders, which are popular approaches to captur-
ing key features of pronouncing phonemes, are situated in this step.
Variance encoders operate by extracting a specific feature of audio
from the training set that varies with the phoneme involved (such
as the volume of speech which can be extracted from the amplitude
of the sound wave) and training the feature of the sound wave in
association to the corresponding phoneme. Variance encoders are
usually trained using machine learning, where their parameters
will adjust according to training data. An alternative approach to
modeling core characteristics of audio is GAN, which is short for
generative adversarial networks. A GAN involves a generator try-
ing to generate audio as close to a human voice as possible, while
the discriminator tries to tell apart the generator’s artificial audio
from a real human’s speech. Through training, the generator and
discriminator both improve in abilities, thus generating increasingly
realistic speech audio.

The vocoder is the final part of text-to-speech that converts
acoustic features to sound waves, what humans perceive as speech.
Modern vocoders tend to use neural networks as the approach to
speech synthesis.

Recent studies on text-to-speech can be divided into autore-
gressive and non-autoregressive approaches. In the autoregressive
approach, speech generation models utilize computational results
and byproducts as a basis for future computation, therefore requir-
ing the model to construct the final speech audio linearly, from
the start to the end of the text for which the speech needs to be
generated. The inability to perform generative computations in
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Figure 1: A pipeline adumbrating the general text-to-speech process.

Figure 2: Variations in the process from text to speech [2].
Note that the pathway from the red to blue boxes is the
phoneme encoding process, from the blue to the yellow boxes
is the acoustic model, and from the blue to the purple box is
the vocoder. The research follows a pathway labeled 1, 2, and
3 (from text to phonemes, to meet spectrogram, and finally
to audio).

parallel impairs its processing speed, which is a significant letdown
for text-to-speech applications where responses must be generated
in very short times. In an attempt to reduce the computation time,
the non-autoregressive approach does not rely on previous compu-
tations to make future computations, instead using other methods
to ensure the quality of the generated speech, allowing parallel con-
struction of speech audio, thus decreasing the generative latency of
speech. The high potential speeds that non-autoregressive models
process makes it the center of attention for researchers, believing
that the non-autoregressive approaches have large potential for
development. Due to the advantage of fast processing speeds, this
research also uses the non-autoregressive approach.

Also, approaches to the text-to-speech task can be classified
according to intermediate steps of speech synthesis. As shown in
Figure 2, each approach selectively passes through steps of acoustic
and linguistic feature analysis. This research follows a pathway
from text to phonemes, mel spectrogram, and finally to audio.

Upon the problem of speech synthesis systems having inade-
quate rhythmic prediction capabilities under a small model size, this
research proposes RhySpeech, a non-auto-regressive text-to-speech
system based on Fastspeech2. RhySpeech specially features a pause
predictor based on the transformer architecture of the audio’s pitch
and energy values. The training of the system is enhanced by RP-
Sigmoid, a trainable activation function. The contributions of this
research can be summarized as two main points:

1. Pause prediction via transformer architecture’s input
2. RPSigmoid, a randomly initialized and parametric activation

function based on the sigmoidal curve in figure 2.

2 METHOD
The overall process for text-to-speech in this research will be intro-
duced in the section. Figure 3 shows the process of the inference
stage when text is converted to speech, and Figure 4 shows the
process of training.

2.1 Input Text Processing
The processing of inputted text involves breaking it down into
individual phonemes. For this research, this is done using cmu-
dict, which creates a long dictionary of words and their respective
phoneme sequence, which is an ordered set of smallest units of
distinct sound. Each phoneme sequence is described with a space
inserted between each phoneme, and the vowels are marked with
numbers to indicate the amount of stress that should be applied
to them: 0 means there should be no stress applied, 1 means there
should be primary (strongest) stress applied, and 2 means there
should be secondary (next-strongest) stress applied. Note that the
phonemes words are broken up into can be spelled differently from
the original word since different spellings can have the same sound
in English, thus making them all belong to the same phoneme. The
same word, if labeled with 1 and 2 beside them, can be pronounced
differently, such as presents primary stress is on the first ”e” if the
word is a noun, and on the second ”e” if the word is a verb.

The processing of inputted text involves breaking it down into
individual phonemes. For this research, this is done using cmu-
dict, which creates a long dictionary of words and their respective
phoneme sequence, which is an ordered set of smallest units of
distinct sound. Each phoneme sequence is described with a space
inserted between each phoneme, and the vowels are marked with
numbers to indicate the amount of stress that should be applied
to them: 0 means there should be no stress applied, 1 means there
should be primary (strongest) stress applied, and 2 means there
should be secondary (next-strongest) stress applied. Note that the
phonemes words are broken up into can be spelled differently from
the original word since different spellings can have the same sound
in English, thus making them all belong to the same phoneme. The
same word, if labeled with 1 and 2 beside them, can be pronounced
differently, such as presents primary stress is on the first ‘e’ if the
word is a noun, and on the second ‘e’ if the word is a verb.

Next, the phonemes are encoded into vectors for ease of storage
because the storage of character sequences as characteristics of
words is memory intensive and unable to be handled by neural
networks, which only accept numerical inputs.

The last step of the preprocessing of data is to reduce the dimen-
sionality of the vector. Aiming to use the available computational
resource wisely, the vectors are run through an encoder algorithm,
outputting more space-efficient vectors.
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Figure 3: This diagram shows how the audio samples are preprocessed to obtain the features which are used as the ground
truth by the acoustic model. Corresponding phonemes are also inputted to assist with the process of ground-truth-extraction.

Table 1: A selection ofwords from cmudict. Thewords are bro-
ken up into phoneme sequences. Screenshot from cmudict,
extracted from https://raw.githubusercontent.com/ cmus-
phinx/cmudict/master/cmudict.dict

Word (grapheme) Phoneme (individual sounds that
make up the word)

Ablate AH2 B L EY1 T
Ablation AH2 B L EY1 SH AH0 N
Ablaze AH0 B L EY1 Z

Able-Bodied EY1 B AH0 L B AA1 D IY0 D
Abled EY1 B AH0 L D
Abler EY1 B AH0 L ER0

Abler(2) EY B L ER0

2.2 Audio Preprocessing
The audio preprocessing stage obtains the ground truth values
for the later acoustic model by preparing and extracting useful
information from the speech recording, which are the attributes
of pitch, duration, and energy, along with the mel spectrogram. A
diagram for the audio preprocessing process is included in Figure
5.

The inputted audio recorded from an English speaker is fed into
the system as .wav files, where the sound wave is saved as floating
point numbers, indicating the height of the wave at that instant.

To accommodate readers with color vision differences, figures
should still be usable when printed in grayscale. Refer to elements of
the figure with non-color terms, for example “indicated as squares”
instead of “indicated in blue”. Use different patterns in bar charts,
different line patterns in graphs, and different shapes in plots to
distinguish groups of elements and reinforce color differences.

2.2.1 Montreal Forced Aligner. The audio waveform along with the
corresponding phonemes (produced by the input text processing)
are passed into theMontreal Forced Aligner (MFA) [3], whichmarks
the duration of each phoneme by referring to the audio waveform.

The MFA is an open-source model pretrained on the Speech
dataset (with approximately 1000 hours of English speech). Pre-
training follows a regime of 40 iterations of monophonic training,
which by considering phonemes one at a time in alignment, then
35 iterations of triphone training, which considers one phoneme
before and after the to-be-aligned phoneme. The monophonic train-
ing phrase aims to offer the model general alignment capabilities,
and the triphone training fine-tunes the model by requiring it to

consider the context. Realignment is performed on 20 (out of 40)
iterations during monophonic training and 15 (out of 35) during
triphone training, allowing the model to improve upon itself.

On a closer scale, the MFA model is trained with the acous-
tic feature of mel-frequency cepstral coefficients (MFCCs), which
represent the intensity of different meet frequencies (frequencies
with equal perceptual distance to humans, which puts it roughly
on a log scale). The MFCCs are then put through Cepstral Mean
and Variance Normalization (CMVN) to obtain a zero-median and
unit-standard-deviation distribution to improve robustness.

2.2.2 Feature Extraction. The audio information is also passed
along with the textgrid into the feature extraction, which finds
certain characteristics of the audio inputted.

The first component of the extraction process is the mel spectro-
gram constructor. A mel spectrogram is an image that can represent
the features of the audio. Its x-axis denotes the time of the audio,
its y-axis is the log of the human-perceive frequency, and the color
of a given pixel is rendered based on the intensity of that specific
frequency at that specific timing.

To perform this construction, Short-Term Fourier Transform
(STFT) is first applied to the audio recordings. The transformation
process involves breaking the audio recording into short frames
of around 20 to 50 milliseconds. The process only works through
these short frames because human speech, on such a small scale, is
relatively regular and predictable. Short-Term Fourier Transform
utilizes this regularity to break the complex sound wave in each
frame into compositions of sinusoidal waves at varying frequencies
and varying amplitudes (intensities). Algebraically, this is repre-
sented as:

𝑓 𝑘 =
1
2𝜋

∫ 𝑑𝑥 𝑓 (𝑥) 𝑒−𝑖𝑘𝑥

where f is the result for x’s Fourier Transform and k is the wavenum-
ber.

To tackle the human pitch-determining inaccuracy, where hu-
mans typically perceive sounds higher than 1000 Hz lower than
their actual pitch, a mel spectrogram adjusts for this hearing sub-
jectivity, making it reflect what humans actually perceive.

The pitch is computed using the dio tool from Pyworld, which
receives the .wav audio file as input and output the fundamental
frequency (the loudest pitch at a specific time, which is the one that
listeners hear and interpret) of audio at a specific time.

The energy is computed alongside the mel spectrogramwhen the
Short-Term Fourier Transform represents the audio in an instant as
differing intensities of differing frequencies. The energy captures
this intensity.
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Figure 4: This diagram shows the extraction process used to create the ground truth predictions from the textgrid and the audio.

Figure 5: This diagram shows the acoustic model and its components used in this research

The duration, along with the usage of pauses in human speech,
is extracted from the textgrid. Since the textgrid holds the start and
end time of each phoneme and silence, such time values can directly
be used as the duration and pause values. Specifically, if the timings
on the textgrid correspond to an uttered phoneme, that timing
length is labeled to the duration of the corresponding phoneme; if
the timings correspond to silence, that timing length is labeled to
the pause after the phoneme before it. If there is no silence after
a phoneme, the pause information for that phoneme is labeled as
0. The last phoneme’s pausing is also labeled as 0 since there is no
need to save silence after the last phoneme because that silence
doesn’t improve audio quality but increases the file size in figure 5.

2.2.3 Statistical Computation. The values for pitch and energy are
standardized using the StandardScalar() of scikit-learn [4]. First,
the mean and standard deviation (measuring how spread-out the
data is, relative to the center of it) are computed using built-in
functions of the StandardScalar. Note that the standard deviation
can be computed using the equation.

𝜎 =

√︄∑ (xi − 𝜇)2

N
where 𝜎 represents the standard deviation of the data, xi is the ith
value in the data, 𝜇 is the mean of the data, and N is the number of
elements in the data.

Then, the values of pitch and energy are transformed (using
specific operations while not distorting the relative data) into a
normal distribution: a median of 0, and a standard deviation of 1.
This is achieved through a formula of

𝑧 =
𝑥 − 𝑢
𝑠

where z is the output of the standard scalar, x is the input, u is the
mean, and s is the standard deviation. This allows for pitch and
energy to be compared ”equally”, so that the influence of the exact
value of pitch and energy, confounding variables, are removed.

Additionally, the minimum and maximum values for pitch and
energy are computed. This would serve the purpose of establishing
bounds in later stages of the research in functions such as rendering
mel spectrograms.

2.3 Acoustic Model
Aiming to introduce abilities of expression and naturalness to the
generated audio, this research project holds the ability for the audio-
generation system to learn duration, energy, and pitch by building
on Fastspeech 2; and additionally allowing the system to learn the
rhythm. The framework for the acoustic model is shown in Figure
5
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Figure 6: This diagram shows the structure of the transformer
neural network

2.3.1 Transformer Architecture. The acoustic model uses a Trans-
former neural network architecture [5], as shown in Figure 6. The
usage of a Transformer network allows the acoustic model to pre-
dict of features in multiple levels of focus, helping the vocoder
access more detailed and accurate information about the acoustic
features of the audio to be generated.

The Transformer structure includes an encoder, a variance adap-
tor (the name comes from its ability to learn the differing nuances
in speech audio), and a decoder. The encoder is responsible for
converting information into vector form useful for the future. The
variance adaptor learns the variance present in speech. The decoder
converts information from the encoded vectors back into normal
values

Note that there could be multiple layers of encoder and decoder
components to increase the model’s capabilities. This means multi-
ple degrees of content can be reframed into vectors, allowing the
variance adaptor to receive better quality information.

The encoder and decoder share a similar architecture, which is
the Transformer architecture, as shown in Figure 6.

To start with, the vectors entering the Transformer neural net-
work are embedded, or converted, into vectors. This is because
neural networks can only deal with groups of numbers (namely,
vectors).

Afterward, positional encoding allows each element in the group
of data to have a unique real number to indicate its position in the
dataset. This allows for position to be effectively represented and
considered in later steps, which is useful for time-dependent data
analysis. The positional encoding process uses the formula of

𝑃𝐸 ∥ 𝑚𝑜𝑑2 (𝑛) = 0 : sin
(

𝑛

1000
𝑛
𝑑

)

𝑃𝐸 ∥ 𝑚𝑜𝑑2 (𝑛) = 1 : cos
(
𝑛 − 1

1000
𝑛−1
𝑑

)
where PE represents the result of positional encoding, n is the index
of the to-be-positionally-encoded data, and d is the dimensions in
the vector.

Such a method of positional encoding brings the benefit of not
belittling other encoded data (if using the index to encode, the index
might get much larger than other non-positional-encoding values,
therefore making the model only focus on positional encoding val-
ues). This method also attributes similar weighting to the position
regardless of data vector size, so that the difference of one element
apart sets the positional encoding values to a similar difference.

Afterward, a multi-head attention operation is applied to the val-
ues passed along, regardless of coming from the ”input” or ”output”
channel. Attention networks, in general, have the formula of

𝑦 = 𝑠𝑜 𝑓 𝑡 max

(
𝑄𝐾𝑇√︁
𝑑𝑘

𝑉

)
where y is the output of the attention network, Q, K, and V are
vectors from the data, and dk is the number of dimensions of the
data vector K . The division by 𝑑̂𝑘 prevents dimensionality from
changing the variance in the data, removing dimensionality as a
confounding variable in the analysis. In multi-head attention, Q,K,V
come from different places.

For the ”output” channel, values undergo a masking process
before this multi-head attention process. Iterating through the data,
for every element, those elements later than it will be hidden (or
masked), so that during the later attention mechanism, any later
elements cannot be referenced (which is the case in real-world ap-
plications since results generated earlier do not know what results
will be generated later).

After the multi-head attention, the original value of the posi-
tional encoding is combined with the result of the multi-head at-
tention to allow the positional information to be retained in the
data. Then, batch normalization (represented as ”normalization” in
the diagram) is performed to put the data into a zero-mean, unit-
standard-deviation state, which enhances stability in the neural
network.

For the ”input” channel, the value then passes through a feed-
forward fully-connected neural network, and that is added to results
before the fully-connected network, and finally normalized. This
result represents the encoding from the ”input” channel. Such a
process can be performed multiple times, and the number of times
it is repeated is equal to the number of encoder layers.

The result (of one or more repeats) is received by the ”output”
channel and joined at a multi-head attention block from the previ-
ous data in the ”output” channel. Again, the adding of values and
batch normalization is performed, then another fully connected neu-
ral network, another adding and batch normalization is performed.
Such a process starting from the masked multi-head attention to the
adding and batch normalization is performed for some repetitions,
as represented by the layers of the decoder.

Finally, the result of the ”output” channel is computed over a
single fully-connected layer of a neural network, and softmax is
applied to it. Softmax is an activation function that ensures the sum
of all neuron outputs in the softmax layer of the neural network
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adds up to one. In other words, this output of one is split up between
different neurons based on the size of their input to the softmax
function. Since probabilities add up to one, softmax makes an ef-
fective activation function when predicting output probabilities,
which is the result to be outputted.

2.3.2 Rhythm Prediction. The main innovative point of this re-
search is its ability to effectively guide the acoustic model to gener-
ate rhythmic speech. The embedding of pitch and energy is passed
to the rhythm predictor, along with the 16 letters prior to the
phoneme to predict pausing for better context (if the phoneme
doesn’t have 16 letters before it, -1 is used as a placeholder), to check
whether the previous embedding is suggestive of appropriate paus-
ing in the given context, and if not, such error is back-propagated
on the loss function. Through training, the acoustic model will
eventually generate audio with appropriate pausing.

This step is done after the pitch and energy prediction because
pausing length is highly dependent on what the text is trying to
express, which can be modelled to some extent by the pitch and
energy predictors. This step is done before the duration prediction
because the embedding of duration changes the dimensionality
of the embedding vector, which wouldn’t match the phoneme-by-
phoneme requirement for the pause predictor.

2.3.3 Variance Predictor. The variance predictor receives a latent
vector, which is passed through conv1d (one-dimensional convo-
luted neural network), RPSigmoid, layer normalization [6], dropout
layer [7], conv1d, RPSigmoid, layer normalization, and dropout
layer in this order and setup is used. Note that RPSigmoid is a new
and trainable activation function. RPSigmoid takes the formula of

𝑦 =
𝑎𝑏𝑥

(1 + 𝑏 |𝑥 |𝑐 )
1
𝑐

+ 𝑑𝑥

where a,b,c,d are trainable parameters randomized at the start of
the training process.

The usage of convolutional neural networks ensures a low count
of parameters while achieving decent quality in synthesized audio.
The usage of layer normalization brings the benefits of training
stability and faster convergence by ensuring different layers treat
data that is approximately within the same magnitude. The usage
of a dropout layer prevents the model from overfitting by changing
some neurons’ output to zero, introducing variation, and forcing
the model to learn the patterns despite such perturbations (instead
of just memorizing the correspondences of the previous layer’s
output and the correct answer).

There are two types of math equations: the numbered display
math equation and the un-numbered display math equation. Below
are examples of both.

2.4 Vocoder
The acoustic model can directly output the mel spectrogram, but
multi-sensory learning requires the use of audio instead of mel
spectrogram to stimulate dyslexic learners. To facilitate the trans-
formation from mel spectrograms to audible waveforms, a vocoder
is used. This research uses the HiFi-GAN (short for High-Fidelity
Generative Adversarial Network) vocoder [8], the current state-of-
art approach. HiFi-GAN is a pretrained model, pretrained using one
generator rebuilding audio from mel spectrograms and two types

of discriminators operating on multi-period and multi-scale bases.
Each multi-period discriminators only accepts input from certain
discrete time points (multiples of a certain prime number), thus hav-
ing each discriminator focus on different parts of the audio.There
are three individual multi-scale discriminators, each focusing on a
different scale: the original data, data that has undergone 2x pooling,
and data that has undergone 4x pooling. The usage of multi-scale
discriminators introduces the ability to distinguish continuity to
the discriminator group since the multi-period discriminators each
look at discrete data points.

The HiFi-GAN model is pretrained on LJSpeech, which contains
around 24 hours of a single English speaker. HiFi-GAN is built to
improve using three losses: GAN (as performed by the aforemen-
tioned discriminators), mel-spectrogram (which reconstructs the
mel-spectrogram from the produced audio), and feature-matching
(a comparison between the generated and ground truth audio sam-
ples). The weighting of these losses in the final training process is
1 to 2 to 45 respectively.

3 EXPERIMENTAL SETUP
The experiment to verify the effectiveness of the aforementioned
method will be described below. First, the usage of the dataset will
be described, which is followed by how the aforementioned method
is carried out, and finally a summary of how the quality of the
text-to-speech process in this research is evaluated.

3.1 Dataset
This experiment tests the model using the LJSpeech dataset. This
dataset consists of around 24 hours of speech performed by one
female English speaker. The speech consists of the reading of seven
non-fiction books therefore the tone is more informative and less
dramatic. The 24 hours of speech is broken up into 13100 audio
clips, each within 10 seconds of length. This dataset is around 2.6
GB large.

This dataset is selected because it is one of the most commonly-
used datasets in text-to-speech modeling. Moreover, the reason-
able size of the dataset (if compared to other datasets such as Lib-
riSpeech) makes it a viable option since the computational capacity
is limited.

3.2 Training on the Dataset
A NVIDIA Tesla T4 GPU equipped with 15 GB of memory was used
for this experiment. The proposed method uses a batch size of 16
along with an epsilon of 10 −9, an optimizer of Adam, betas of 0.9
and 0.8, 2000 steps for warm-up, and trained for a total of 10,000
steps.

3.3 Evaluating the System
For this text-to-speech system, which features high expressiveness
in pausing, the following evaluative metrics will be used.

Mean Opinion Scale (MOS): the subjective evaluation of listeners
upon the quality of the model- synthesized audio. Twelve listeners
(six female and six male) with fluent English capabilities are asked
to listen to the generated audio. Each listener is asked to give a score
of 1 (the worst, where the audio is unintelligible) to 5 (the audio
sounds perfect) to each piece of audio they hear. To ensure fairness,
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Figure 7: The comparison between the ground truth and the predicted values for pitch, energy, duration, and pause features on
unseen data.

each listener will listen to audio generated from both Fastspeech2
(the baseline) and RhySpeech without knowing the audio-model
correspondences (unbiased judgment).

Pause Prediction Effectiveness Statistics: accuracy (the fraction
of all entities that are judged correctly), precision (the fraction of
those judged positive (paused) that are supposed to be positive),
recall (the fraction of those that should be positive (paused) that
are judged positive), and F1 values that reflect the effectiveness of
the prediction of pausing.

Loss-by-Epoch: this is specifically a comparison to showwhether
the activation function (its purpose is to aid faster convergence) is
effective in helping the model converge.

Model Parameter Count: this is a metric used in reference with
the MOS (quality of prediction) to determine whether the acous-
tic model of this research is deployable, which would require a
comparatively small parameter count.

4 RESULTS
After introducing the methods of this research, results will be given
to justify the validity of the aforementioned design. The results
section will begin by presenting the general outputs of this study.
Afterward, changes in synthesized vocal quality after the addition
of the pause predictor will be presented. Finally, the usage of the
RPSigmoid activation function will be justified.

4.1 General Results
The RhySpeech model was able to achieve a MOS value of 3.87,
which means that the audio quality is decent. To offer a context of
comparison, the MOS value of the baseline is only 3.73, as shown in

Table 3: The comparison of parameter count (fewer means
requires less storage space, therefore is better) between the
baseline (Fastspeech2) and RhySpeech.

Model Name Parameter Count

Fastspeech2 (baseline) RhySpeech 43.8M
41.4M

Table 2. At first glance, it is already evident of RhySpeech’s superior
audio quality.

To visualize the high quality of generated audio, line graphs
demonstrating values of vocal characteristics (pitch, energy, du-
ration, and pause) will be presented for the ground truth and the
generated results of RhySpeech in Figure 7. Note that RhySpeech
has not trained on these pieces of audio in advance.

The similarity between the ground truth and the generation of
RhySpeech shows that RhySpeech is strong at modeling speech
characteristics even in unseen scenarios as shown in Figure 7.

Since the scenario requires a relatively lightweight model for
implementation, the parameter count is also presented in Table
3. From the smaller model size of RhySpeech, it is shown that
RhySpeech is comparatively small, and therefore more usable in
resource-restricted scenarios.

4.2 Pause Predictor Results
To prove that pausing has been effectively captured using the
pause predictor, statistical comparisons between the baseline (Fast-
speech2) and RhySpeech regarding whether a pause has been pre-
dicted will be made in Table 4. The comparison is done based on

335



CACML 2023, March 17–19, 2023, Shanghai, China Yixuan Lin

Table 4: The statistical quantities that reflect the effectiveness of Fastspeech2 and RhySpeech at predicting the existence of
pausing when no punctuation information is available. Note that Fastspeech2 is unable to predict pausing when not given
punctuation so no pausing has been predicted, leading to the presence of NaN values. The accuracy for RhySpeech is lower
than Fastspeech2 due to the sparseness of pausing (less than 7 percent of the data used to generate the statistics are supposed
to be where pausing is present.

Quantity Baseline (Fastspeech2) RhySpeech (proposed method)

Accuracy 0.957 0.948
Precision NaN 0.679
Recall 0 0.430
F1 NaN 0.527

Figure 8: The loss-per-epoch curves for various parts of the text-to-speech system and the total loss comparing ReLU and
RPSigmoid

the LJSpeech validation set (which neither model has been trained
on before).

4.3 RPSigmoid Results
To justify RPSigmoid’s effectiveness as an activation function in this
model, its effects of convergence are compared with the state-of-art
activation function in text-to-speech fields: ReLU. In Figure 8.

4.4 Discussion
In conjunction with the successes in this research, there are also
potential directions to research into in the future. Firstly, an effort
can be made to enhance stability of the quality of generated audio,
ensuring that when this text-to-speech system is deployed, people

with dyslexia can enjoy a reliable auditory stimulus. Additionally,
an approach of taking pausing into the embedding could be at-
tempted, in order to make the pausing prediction directly impact
the audio, creating even more natural rhythmic patterns in synthe-
sized speech. Lastly, a user-friendly system can be developed on
top of the theoretical basis introduced in this paper, allowing for
dyslexic people to access auditory stimulus more conveniently

5 CONCLUSION
This paper proposes a component to model rhythmic information
in the human speech by predicting pausing under the Transformer
architecture based on pitch and energy embedding. The pausing
prediction generates a loss which is used to improve the acoustic
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model to produce more accurate pausing patterns. To achieve desir-
able results under a smaller parameter count, this pause predictor is
coupled with RPSigmoid (Randomized and Parameterized Sigmoid)
as its activation function. Such a method has resulted in an increase
in MOS and pausing recall compared to Fastspeech2, while enjoying
the convenience of less parameters than Fastspeech 2.
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