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Tutorial Agenda

 Introduction: Evolutionary Image Analysis and Signal
Processing

 Part I: A basic pathway to GP-based Deep Learning

 Part II: Evolutionary Neural Architecture Search for
IASP and Pattern Recognition

 Part III：Evolutionary Deep Learning based on
Genetic Programming for IASP and PR

 Summary
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Introduction:
Evolutionary Image Analysis

and Signal Processing
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Computer Vision

 The “art” of making computers see (and understand what
they see)

 Computer vision vs image processing

 Sub-topics:
• Image acquisition

• Image enhancement

• Image segmentation

• 3D-information recovery/feature extraction

• Image understanding
• Object tracking
• Edge detection
• Segmentation
• Motion detection
• Object/digit recognition
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Computer and Human Vision

HUMAN

Perception

Selective information 
extraction

Grouping by ‘similarity’

Extraction of spatial 
relationships

Object recognition and 
semantic interpretation

COMPUTER

Image acquisition

Feature enhancement 
(signal/image processing)

Segmentation

3D-information Recovery

Image Understanding
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LOW-LEVEL VISION

HIGH-LEVEL VISION

Application Taxonomy

 EC techniques
• GA, GP, ES, EP, PSO, DE, LCS, EMO, EDA, etc.

 EC as an optimization tool
• Optimisation of parameters of specific solutions  (using GA,

ES, PSO…)
Related with a well-defined task or for a whole system 

• Generation of solutions from scratch (GP, …)
Performance optimization based on specific objective functions
It is difficult to choose a model with reasonable assumptions

 EC as THE solution (or a relevant part of it)
• Interactive qualitative comparisons between solutions
• Generation of emergent collective solutions

Achievement of higher-level and complex tasks from collective 
use of trivial, local, hard-wired behaviours: generation of full 
EC-based solutions, NOT just parameter optimization tasks

7

Part I: A Basic Pathway to 
GP-based “Deep” Learning

8
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 Develop functionalities that can substitute (deep) neural
networks’ layers

 Using the higher representation power of symbolic
function representation to synthesize more compact (and
possibly interpretable) functions

 Evaluate what can be obtained by using the simplest and
most direct possible approach, as close as possible to

one function = one GP tree

Goals and constraints

9

Deep Learning for Images
Typical Convolutional Neural Network structure

Feature Extraction Classification

X       Y=fe(X)       Z=c(Y)
Input  Embedding layer Classifier

Input

10

Deep Learning
using GP

Feature Extraction Classification

X       Y=fe(X)       Z=c(Y)

Input

X       Y=fe(X)       Z=c(Y)
Input  Embedding layer Classifier
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Observations:

 Y = fe(X) is a vector of features; therefore, fe(X) may be
either a multi-output tree or a set of traditional GP trees.
Its input may be a whole image (pattern) or it may be seen
as a filter or a set of non-linear kernels, applicable to a
small region, to be convolved with the input image.

 Z = c(Y) may be either a single output or, as happens in
neural networks, a set of N binary classifiers or, possibly,
a softmax layer, where N is the number of possible
classes.

GP-based “Deep” Learning

12
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Let’s make the simplest assumption: single-output GP trees
composed of simple functions

and focus on the embedding layer:

 If we have real numbers as outputs, an M-dimensional
embedding could be obtained:

 by evolving M trees in parallel

 by sequentially (iteratively) evolving single trees

GP-based “Deep” Learning

13

Regarding the classifier:

One may set the classifier type and use a wrapper method
to evolve an optimal embedding for that specific
classifier...

… but one may also consider a co-evolutionary wrapper
where both the embedding and the classifier are
“concurrently” evolved by two GP populations (termed P1
and P2, respectively)

 Cooperative coevolution

 Competitive co-evolution (GAN ?)

GP-based “Deep” Learning
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Real input data and traditional GP (input data type same as
output data type)

 The dimension of the embedding must be much larger
than 1!

Binary input data and traditional GP

 A 64-bit embedding may be enough to generate
discriminative features

GP-based “Deep” Learning
Real vs Binary input data

15

Inputs: Unsigned long (32 or 64 bit words) that encode
arrays of binary inputs. The bit string may encode
consecutive samples of a temporal sequence, a row or a
window within a binary image, etc.

Function set: bitwise logical operators + circular shifts

A whole block of data is affected by a single bit-wise
Boolean operation (SIMD paradigm).

Output: a 32/64 bit string, that may represent 32/64 possible
outputs of a binary classifier.

So, 32/64 (non-independent) solutions are evaluated for
each individual.

SUB-MACHINE CODE GENETIC PROGRAMMING 
(Poli, Langdon 1998)

16
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Real-world dataset collected by Società Autostrade SpA
at highway toll booths

 11034 binary patterns representing the ten digits from
0 to 9

6024 in the training set
5010 in the test set (exactly 501 per class)

 Size: 13x8 pixels  strings of 104 binary features

SmcGP example: Character Recognition

ROW 1

ROW 2

ROW 13

ROW 1 ROW 2 ROW 13

8 pixels 8 pixels 8 pixels…

104 pixels 17

New architecture: SmcGP + Embedding 
(a tiny step towards Deep GP)

word
32/64-bit word

Best-fitness bit

32/64-bit word

Input data embedding

GP-evolved input  
transformation

GP-evolved digit i
classifier
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Generate a random initial embedding (P1Best) 

Repeat
1. Compute the training set transformed by P1best
2. (P2 evolution) Evolve the classifier
3. P2best  best classifier

4. (P1 evolution) Evolve the input data transformation using P2best as a classifier
5. P1best  best transformation

Until the termination condition is reached

INPUT DATA EMBEDDING

RAW DATASET

Co-evolutionary algorithm

TRANSFORMED 
DATASET

19

Evolution of an embedding/classifier pair for one digit:

 Population: 1000

Max number of generations: 1000
(20 generations for each GP x 25 iterations)

 Termination condition/overfitting control: 40
consecutive generations without fitness
improvement on the validation set  (if selected)

 5 runs

 Evolution parameters same as in the original paper

 Training set: 4218 patterns (almost balanced)

 Validation set: 1806 patterns (almost balanced)

 Test set: 5010 patterns (501 per digit)

Parameters

20
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Original SmcGP implementation

Original SmcGP + overfitting control (validation set)

 SmcGP + Embedding

 SmcGP + Embedding + overfitting control

The method has been implemented in Python using 
DEAP (Distributed Evolutionary Algorithms in Python)

Configurations

21

Results (best highlighted in yellow)

Standalone Classifier Mean

St. Dev.

Best

Worst

Embedding Mean

St. Dev.

Best

Worst

Embedding   +                    Mean

Overfitting  Control St. Dev.

Best

Worst

Standalone  Classifier    Mean

+ Overfitting  Control St. Dev.

Best

Worst

99.58

99.76

99.20

99.84

99.49

99.89

99.60

99.65

99.67

99.67

99.6799.49

99.6099.67

99.31

How can we move further on?

 Similar ideas could be applied to more traditional GP trees
with continuous inputs and outputs: a single embedding
would not suffice, though.

Possible solutions:

 Incremental evolution of embeddings: first embedding
as shown, subsequent embeddings added and
optimized with respect to the classifier AND the
embedding elements previously computed.

GP-based autoencoders

 Use of convolutional layers where GP play the role of
non-linear convolutional kernels/functions, multiple
trees, multiple layers, etc.

23

Magnani, G., Mordonini, M., Cagnoni S. Hybrid GP/PSO Representation of 1-D 
Signals in an Autoencoder Fashion (Proc. WIVACE 2023, Springer CCIS, vol. 1977, 2024)

GP-based parametric symbolic regression actually 
generates autoencoders for function/signal families sharing 
a common parametric model:

• Each function/signal instance Ii is encoded into the
parameters Pi (ENCODER)

• Plugging the parameters Pi into the model reconstructs
the original instance Ii    (DECODER)

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

24
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GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

Consider a set of 1D functions (e.g., time series) resulting 
from deforming, shifting, scaling, etc… a basic function that 
can be expressed as a single parametric model.

A very familiar case: a set of Gaussians having different 
mean, standard deviation and amplitude, i.e.,

{ Ki G(x,mi,si), i = 1..N }

where ki ≡ (Ki, mi, si) are constants and G a Gaussian kernel

Infinite possible Gaussians share the same equation and 
parameters, whose values characterize their shape and 
position.

25

One could think of adapting GP such that it finds A SINGLE 
symbolic representation for the whole family of functions, 
i.e., what is called a basis function, having a few free
parameters, setting whose values one could obtain a good
approximation of any function in the data set.

This means we want to find fGP such that

fGP(x, k1, k2, .. kn)) ≈ K G(x,m,s)

NB In the most ideal case (a noiseless signal), a general 
model could be evolved as the GP-based symbolic 
regression of a single instance from the function family

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

26

This way, we can represent each function in our data set only 
by the values {ki} of the free parameters.

Thus, the parameters that, given the model, solve the 
regression problem for a function in the family:
 represent an embedding for that function
 Permit recovering the function starting from the GP encoding

This is exactly what autoencoders do!

 Could GP hybridized with GA, PSO, or any other handy
parameter optimizer (gradient descent?) be the solution?

 Could we apply it to any set of functions, having as a
secondary goal to minimize the embedding size?

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

27

• GP is good at performing symbolic regression

• PSO is good and fast at parameter fitting (and VERY GPU-
friendly!)

We can consider a hybrid autoencoder-like approach in which 

• GP finds the function family expression and

• PSO fits the free parameters to represent/reconstruct each
specific function

• The code can be easily and effectively optimized for GPUs

GP2SO implementation

28
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fGP(x, k1, k2, … kn)) ≈ K G(x,m,s) = f(x,m,s)

This means:

• The terminal set T includes the independent variable x
and the free parameters

• The fitness of a tree representing a possible fGP is
computed by an external optimizer (PSO) that finds the
values of k1, k2, …, kN minimizing the target function

Fitness =   d ( fGP, f )

that can be expressed, for instance, as the total squared 
error over a sampling of f

GP2SO implementation

29

GP2SO: Preliminary results

Using the sampling of three Gaussians as input, and adding 
to the terminal set 6 free parameters, k1, ..., k6, that underwent 
PSO, we evolved the following model: 

fGP (x, k) = k1

k2 + k3 (x-k4)2 + k5 (x-k4)4 + k6 (x-k4)8

TEST RESULTS

Generating the sampling of 300 Gaussians Gi (200 samples 
each, with x in [-10, 10]) and reconstructing (representing) 
such functions as the optimal vector ki computed by PSO, we 
obtained approximations with a total squared error TSE 
always < 0.13, with  TSE < 0.001 for 95.34% of the instances)

30

The embedding is optimal with respect to signal 
reconstruction. 

• Is it also good for classification?

• Can we use this approach for feature
extraction/construction?

We plotted the parameter sets obtained for the 300 
Gaussians on the (m,s) coloring the dots according 
to the first T-sne component (Red channel) and the 
second T-sne component (Blue channel) of each 
Gaussian.

Analysis of the parameter space

31

Near points have similar colors, i.e., they are 
similarly embedded

Clustering of Gaussians

(x,y) Coordinates 

X = Mean

Y = St. Dev.

Color 

R: 1st T-sne coordinate

B: 2nd T-sne coordinate

NB All values normalized 
between 0 and 1

32
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R, G, B: real ECG
M,B,C: corresponding 
reconstructed ECG

Both training and test 
ECG signals are 
reconstructed well.

Is this result equally 
good for 
classification?

A real-world example: embedding of ECG signals

Same model, different parameters for each signal
33

Unfortunately NOT!

(x,y) Coordinates 

X = 1st T-sne
coordinate

Y = 2nd T-sne
coordinate

Color 

R: class A

B: class B

A real-world example: embedding of ECG signals

34

With more extended function sets and more complex trees 
(including, for instance, periodic functions) some problems 
with parameter redundancy (existence of several parameter 
sets mapping the same function) may occur.

Remedy:
add a regularization term W_R (sum of the parameters’ 
absolute values) and a size penalty W_S to the fitness 
function measuring the reconstruction error:

Fitness’  =   Fitness +  W_S * size + W_R * Si abs(ki)

Possible problems: Redundancy

35

Representations optimal for reconstruction may not be as 
good for classification (e.g., PCA).
• Often true in medicine when signal anomalies’ energy is

much smaller than the total signal energy.

Possible remedies:
• Different, more scale-independent distance measures as

fitness (e.g., cosine similarity)
• In classification problems, adding statistics about the

residuals of the reconstruction, followed by further feature
selection to identify the most relevant components.

Possible problems: Reconstruction-oriented 
representation

36
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GP2SO is not intrinsically efficient, requiring an entire PSO 
run for each GP fitness case evaluation during training, and 
another for encoding each new unseen data instance during 
inference 

Remedy:
PSO search is both fast and easy to implement on GPUs with 
speed-ups easily reaching two orders of magnitude over a 
single-thread implementation

Possible problems: Computational Efficiency

37

GP2SO can obtain latent representations of complex data.

Pros and cons:

+ Possibility of learning from very few examples:
very appealing for problems like medical diagnosis, etc., in
which only few data are available.

- The need to run PSO for each pattern to be learned or
transformed is computationally heavy

- Some problems (by now…) with classification.

Conclusions (GP2SO)

38
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Part II: Evolutionary Neural 
Architecture Search for IASP 
and Pattern Recognition

40
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Introduction
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Deep LearningMachine Learning

A technique by which a 
computer can learn from 
data, without using a 
complex set of different 
rules. 

A technique to perform 
machine learning 
inspired by our brain’s 
own network of neurons.

Artificial Intelligence

Mimicking the Intelligence 
or behavioural pattern of 
humans or any other 
living entity.

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s 2017’s now

Introduction
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Object Detection Alpha Star Automatic Drive

A
P
L
I
C
A
T
I
O
N

F
I
E
L
D

SPEECH

• Automatic Speech 
Recognition

• Voice Assistant 
(Siri)

SPEECH

• Automatic Speech 
Recognition

• Voice Assistant 
(Siri)

VISION

• Image Recognition
• Automatic Drive
• Face Recognition

VISION

• Image Recognition
• Automatic Drive
• Face Recognition

NATURE LANGUAGE 
PROCESSING

• Text Analysis
• Text Translation
• Chatting Robot

NATURE LANGUAGE 
PROCESSING

• Text Analysis
• Text Translation
• Chatting Robot

Introduction
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…

DepthConcat

Conv 1×1Conv 1×1Conv 1×1

Conv 1×1 Conv 5×5 Conv 3×3

MP 3×3

DepthConcat

AP 5×5

Conv 1×1

…

…

DepthConcat

Conv 1×1Conv 1×1Conv 1×1

Conv 1×1 Conv 5×5 Conv 3×3

MP 3×3

DepthConcat

…

GoogleNetGoogleNet

Conv 7×7

Conv 3×3

Conv 3×3

Pool 2×2

Conv 3×3

…

Conv 3×3

Conv 3×3

…ResNetResNet TransformerTransformer

Input

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Input

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

… …
…MobileNetMobileNet

3×3 Depthwise Conv

BN

ReLU

1×1 Conv

BN

ReLU

…

3×3 Depthwise Conv

BN

ReLU

1×1 Conv

BN

ReLU

…
…

2012
• AlexNet
• NIN
• VGG
• GoogleNet
• …

2015

• Highway Networks
• ResNet
• DenseNet
• Dual Path Network
• …

2017

• MobileNet(V1-V3)
• CondenseNet
• ShuffleNet(V1,V2)
• GhostNet
• EfficientNet
• …

2022

• Synthesizer
• Transformer-XL
• Longformer
• Reformer
• Axial 

Transformer
• …

Introduction
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 NAS algorithms can be broadly classified into three different categories based on 
optimizer methods:
– Reinforcement Learning-based NAS
– Gradient-based NAS 
– Evolutionary Computation-based NAS (ENAS)

Concept diagram of NAS

NAS can be modeled by an optimization problem

𝒜: the search space of the neural architectures
ℒ(·): measures the performance of the architecture A

 Neural Architecture Search (NAS) aims to automatically design high-performance
deep neural network architecture without relying on expert experience.

1241



Introduction
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 Evolutionary
Computation-based
NAS(ENAS)

VS

 Reinforcement Learning-based
NAS
– Often find the ill-conditioned 

architectures
– Not completely automatic
– Usually requires much 

computational resources 

 Gradient based NAS
– Often find the ill-conditioned 

architectures
– Not completely automatic
– Often require to construct a 

supernet in advance, which also 
highly requires expertise

– Insensitiveness to the local
minima

– No requirement to gradient 
information

Introduction
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History
 before1999: Evolutionary artificial neural networks (EANN)

• Search for both the neural architectures and the optimal weight
values

• Apply to small-scale neuron networks

 2000-2016: Neuroevolution
• Search for both the neural architectures and the optimal weight

values
• Apply to median-scale neuron networks

 2017-now: ENAS
• Focus mainly on searching for the architectures of deep neural

networks
• Mainly convolutional neural networks

Background

47

The flowchart of a common ENAS algorithm.

 Key issues in each step

Population Initialization:
• Encoding space
• Encoding strategy

Population Updating:
• Evolutionary operators
• Selection strategy

Fitness Evaluation:
• Acceleration method

Background

48

ENAS

CNN DBN AE RNN

The categories of ENAS from neural network perspective

1242



Convolutional Neural Network 

49

 The definition of Convolutional Neural Network (CNN)
– Convolutional Neural Network (CNN) is a class of Feedforward Neural

Networks (FNN) with convolutional computation and deep structure.
– Research on convolutional neural networks started in the 1980s and 1990s, 

with time-delay networks and LeNet-5 being the first convolutional neural 
networks to appear [1].

[1] LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The handbook of brain theory and 
neural networks, 1995, 3361(10): 1995.

The application of CNNs

Convolutional Neural Network 

50

Typical representative works of Convolutional Neural
Networks

ResNet 2015

LeNet-5 1998 AlexNet 2012

Deep Belief Network 

51

The definition of Deep Belief Network (DBN)
A DBN is a generative model which comprises of many layers of hidden units 
and is  made  up  by  stacking  multiple  Restricted Boltzmann Machines(RBMs).
The belief neural network proposed by Neil in 1992 is different from the 
conventional FFNN. Hinton (2007) describes DBNN as "a probabilistic 
generative model consisting of multiple layers of random latent variables."

The application of DBNs

Deep Belief Network 

52

 The components of Deep Belief Network (DBN)
• The components of the DBN are Restricted Boltzmann

Machines (RBM). 
• The process of training a DBN is performed layer by layer.

1243



Auto-Encoder
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 The definition of Auto-Encoder (AE)
– Autoencoder (AE) is a class of Artificial Neural Networks (ANNs) used in 

semi-supervised and unsupervised learning.
– In 1994, Hinton and Richard S. Zemel constructed the first self-encoder-

based generative model by proposing the "Minimum Description Length 
principle (MDL)".

The application of AEs

Auto-Encoder

54

 The components of Auto-Encoder (AE)
– An AE is typically composed of two symmetrical components: the encoder

and the decoder.
– Common encoding parameters: number of hidden layers, neurons per layer.

Auto-Encoder

55

 Typical representative works of Auto-Encoder (AE)

Sparse Autoencoder 
2011

Denoising Autoencoder 2008 Variational Autoencoders 2016

Encoding Space and Initial Space

56

The relationship between encoding space, 
search space and initial space.

Initial space ⊆ Search space = Encoding space

• Encoding space means that where
the potential deep neural network
architecture will be searched, it is
also called as “search space”

• Initial space means that where
the first generation of population
will be created

Encoding Space
(Search Space) Initial Space

1244



Encoding Space and Initial Space
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 Taxonomy on encoding space

 Taxonomy on initial space

 According to the common 
constraints:
• Fixed depth
• Rich initialization
• Partial fixed structure
• Relatively few constraints

 According to the basic units they 
adopt:
• Layer-based
• Block-based
• Cell-based
• Topology-based

• The trivial space contains only a few primitive layers and can evolve to
a competitive architecture.

• For a random space, all the individuals in the initial population are 
randomly generated in the limited space, and it has been adopted by 
many methods.

• The well-designed space contains the state-of-the-art architectures. In 
this way, a promising architecture can be obtained, whereas it can 
hardly evolve to other novel architectures.

Encoding Space

58

The encoding space defines which architectures 
can be represented in principle. 
 Direct design: 

Pros. Encompass all network 
architectures
Cons. Be exponential and time-
consuming 
Application: Applied to unfamiliar 
scenarios

 Combining prior knowledge:
Pros. Effectively reduce the search 
space
Cons. Limits the network to learn 
structures
Application: Applied to familiar 
scenarios

The relationship between encoding space, 
search space and initial space.

Encoding Space
(Search Space)

Initial Space

Encoding Space

59

The initial space is often a subspace of the 
encoding space and determines what kind
of individuals may appear in the initial 
population. 

 Direct initialization: 
Pros. No relevant experience required
Cons. Novel structures can be discovered
Application: Applied to unfamiliar scenarios

 Combining prior knowledge:
Pros. Contains the state-of-the-art architectures
Cons. Novel structures can not be discovered
Application: Applied to familiar scenarios

The relationship between encoding space,
search space and initial space.

Encoding Space
(Search Space)

Initial Space

Basic Units of Encoding Space

60

Layer-based
Focus on the 

parameters in the 
layer (e.g. the filters)

Block-based
Focus on the 

parameters of 
specific block (e.g. 
amount in ResNet

Block)

Cell-based
The architecture is 

built by stacking the 
same cells

Topology-based
Concerned about 

the operations 
between nodes

Conv1

Conv2

Conv3

Input

Output

ResNet BlockConv Layer

Input

Filters

Output

Skeleton and Cell

Input

Cell 1

Cell 2

Cell n

Output

…

1

4

2

3

Input

Topology Selection

1

2

3

Output
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Basic Units of Encoding Space

61

The layer-based encoding space denotes that the basic units in the 
encoding space are the primitive layers, such as convolution layers 
and fully-connected layers.

• Pros: Lead to a huge search space, since it tries to encode so much 
information in the search space. 

• Cons: Take more time to search for a promising individual because there are 
more possibilities to construct a well-performed DNN from the primitive 
layers

Convolution layer Fully-connected layer

Basic Units of Encoding Space
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The block-based encoding space is developed, where various layers 
of different types are combined as the blocks to serve as the basic 
unit of the encoding space. 

• Pros: Have promising performance and often require fewer parameters to 
build the architecture. 

• Cons: Still need to learn some parameters for each layer, which is time 
consuming.

ResBlock DenseBlock

Basic Units of Encoding Space
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The cell-based encoding space is similar to the block-based one, 
and it can be regarded as a special case of the block-based space 
where all the blocks are the same. 

• Pros: Greatly reduce the size of the encoding space. All the basic units in the 
encoding space are the same and parameters in terms of constructing the 
promising DNN is much fewer. 

• Cons: No theoretical basis for that the cell-based space can help to obtain a
good architecture.

AmoebaNet-A architecture the micro and macro cell 

Basic Units of Encoding Space
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The topology-based space does not consider the parameters or the 
structure of each unit (layer or block), yet they are only concerned 
about the connections between units.

• Pros: Obtain a highly accurate and efficient neural network architecture and 
greatly reduce the search time and overhead

• Cons: Limitations on the representation of the neural network architecture

An overview of DARTS
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The constraints on the encoding space are important, 
because the constraints represent the human intervention 
which restricts the encoding space and lighten the burden 
of evolutionary process.
• Fixed depth

– A strong All the individuals in the population have the same
depth.

– constraint and largely reduces the encoding space.

• Rich initialization
– A strong constraint with a lot of manual experience.
– The initialized architectures are manually designed, which goes 

against the original intention of NAS.

• Partial structure fixed
– The architecture is partially settled.

Constraints on Encoding Space
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• Fixed depth
Keep the length of the chromosome
unchanged,  thus all the individuals in
the population have the same depth.
• Advantages:
Conveniently employ the genetic 
operators of EC methods.
• Disadvantages:
Largely reduce the size of encoding 
space.

An example of fixed depth constraint [1].

[1] A. Singh, S. Saha, R. Sarkhel, M. Kundu, M. Nasipuri, and N. Das, “A genetic algorithm based kernel-size selection
approach for a multi-column convolutional neural network,” 2019, arXiv:1912.12405. [Online]. Available: 
http://arxiv.org/abs/1912.12405

Constraints on Encoding Space
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• Rich initialization
The well-designed encoding space, which

usually requires a lot of expertise.
• Advantages:
Might achieve good performance on 
specific problems.
• Disadvantages:
It often require the algorithm designers 
have strong expertise of deep neural 
networks, and the designers may clear 
know the rough architecture for solving 
the problem at hand. 

An example of encoding space with rich 
initialization constraint [1].

[1] F. M. Johner and J. Wassner, “Efficient evolutionary architecture search for CNN optimization on GTSRB,” in Proc. 
18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2019, pp. 56–61.

Constraints on Encoding Space
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• Partial structure fixed
The architecture is partially settled.
• Advantages:
Allow algorithm designers to bring
some of their expert knowledge
into the Encoding.
• Disadvantages:
Partially  reduce the size of 
encoding space.

An example of encoding space where partial 
structure are fixed[1].

[1] Y. Bi, B. Xue, and M. Zhang, “An evolutionary deep learning approach using genetic programming with convolution
operators for image classification,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 3197–3204.
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The encoding strategy can be divided into two categories according 
to whether the length of an individual changes or not during the 
evolutionary process: 
• Fixed-length encoding strategy

– It is easy to take the use of standard evolutionary operations.
– The maximal depth is limited in advance.
– The maximal length is determined by experts because the optimal depth 

is unknown.

• Variable-length encoding strategy
– It can contain more details of the architecture with more freedom of

expression.
– The neural architecture with the optimal depth which is unknown can be 

searched.
– The evolutionary operators may be not suitable for this kind of encoding 

strategy and need to be redesigned.

Encoding Strategy
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Fixed-length encoding strategy

Generate individuals of fixed encoded length at 
initialization, and the individual lengths remain 
unchanged during the evolutionary process.

Advantage
• Facilitates the use of standard crossover

and mutation operations
• Reduce search space size

Disadvantage
• Difficult to precisely predefine the optimal

depth of the DNN
• Require rich domain knowledge from both

encoding and DNN

0 0000

1 0001

2 0002

13 1101

14 1110

15 1111

candidate layer

C convolution P pooling F fully connection

conv 3×3

conv 5×5

conv 1×1

number binary code

mean_ 2×2

max_ 2×2

FC

… … … …

3×3 3×3
max
_2×

2
1×1 FC FCnetwork

binary 
string 0001 0001 1110 0000 1111 1111- - - - -

1 1 14 0 15 15

An illustrative example of fixed-length 
encoding strategy.

fixed length=6 ?

Encoding Strategy
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Variable-length encoding strategy

The coding length of individuals may change 
continuously during evolutionary process, so 
that its corresponding the network is not 
limited to a specific depth.

Advantage
• The optimal length of DNN can be

obtained by searching 
• Contain more details of the architecture

with more freedom of expression

Disadvantage
• Redesign evolutionary operators which 

may not suitable for this kind of encoding
strategy 

C C ⊕

skip connection unit

P

pooling unit

candidate unit parameter code

in : input spatial size out : output spatial size r : random number

in :   32, 64, 128, 240…
out : 32, 64, 128, 240…

mean :   𝒓 ∈ (0, 0.5]
max :     𝒓 ∈ (0.5, 1)

in - out
e.g. 32 - 64

r
e.g. 0.2

network 1
32 64 ⊕meaninput 128 240 ⊕128 64 ⊕ output

32 - 64 128 - 240 128 - 640.3

32 128 ⊕ maxinput

0.4

64 64 ⊕mean 128 240 ⊕
output32 - 128 64 - 640.8 128 - 240

network 2
code 1   32 - 64 - 0.3 - 128 - 240 - 128 - 64

code 2   32 - 128 - 0.8 - 64 - 64 - 0.4 - 128 - 240
An illustrative example of variable-

length encoding strategy[1].
[1] Sun, Yanan, et al. "Automatically designing CNN architectures using the genetic algorithm for image
classification." IEEE transactions on cybernetics 50.9 (2020): 3840-3853.

Encoding Strategy
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Most of the neural architectures can 
be represented as directed graphs, 
which are made up of different basic 
units and the connections between 
the units.  
The encoding for an architecture can 
be divided into two aspects: 
• Configurations of basic units

– Layers
– Blocks
– Cells

• Connections
– Linear structure
– Non-linear structure

An illustrative example of a neural network 
represented as a directed graph.

Basic units

Connections

0

1

2 3

4

Input

Output
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• Linear structure: the basic
units are stacked one by one
to build up the skeleton of
the architecture.
• Its widespread use in ENAS

stems from its simplicity.

• Non-linear structure: there
are skip-connections or loop-
connections in the
architecture.
• Adjacent matrix is the most 

popular way to represent the 
connections.

Binary string：
1-00-111

Adjacent matrix: 
0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 0

Convolution layer    Pooling layer 

Fully connected layer

An illustrative example of linear structure[1].

An illustrative example of non-linear structure[2].

[1] Sun, Yanan, et al. "Evolving deep convolutional neural networks for image classification." IEEE Transactions on Evolutionary
Computation 24.2 (2019): 394-407.
[2] Xie, Lingxi, and Alan Yuille. "Genetic CNN." Proceedings of the IEEE international conference on computer vision. 2017.

Population Updating - EAs
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Mate Selection

Evolutionary Operations

Fitness Evaluation

Environmental Selection

The flow chart of EAs in Population 
Updating.

• Mate Selection: the individuals with better fitness 
are selected by a selection algorithm to be the 
parents to produce offspring.

• Fitness Evaluation: A fitness function is performed 
on the new generated individuals to compute their
fitness.

• Evolutionary Operations: the evolutionary 
operations, such mutation and crossover, are 
performed on the selected parents to produce new 
individuals.

• Environment Selection: A selection strategy is 
utilized like environment selection which chooses 
individuals based on their fitness to make up the 
next population.

Population Updating - EAs
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 mate selection and environmental
selection
• Elitism

• Roulette

• Discard the worst or the oldest

• Tournament selection

• Others

Mate Selection

Evolutionary Operations

Fitness Evaluation

Environmental Selection

The selection strategy is  used in 
mate selection and environmental 

selection.

Selection strategy: 

Population Updating - EAs
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• Elitism: the simplest strategy that
keeps the individuals with higher
fitness.
• It can cause a loss of diversity in the

population, which may lead the 
population falling into local optima.

• Discard the worst or the oldest:
discarding the worst is similar to
elitism, which removes the
individuals with poor fitness
values from the population.
• Discards the oldest is also called 

aging evolution, which can explore 
the search space more, instead of 
zooming in on good models too 
early.

Population Offspring 

Individual with 
the best fitness

Directly 
preserve to the 
offspring

An illustrative example of Elitism.

Population Offspring 

Individual with 
the worst fitness

An illustrative example of Discard the worst.

Discard
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• Roulette: gives every individual a
probability according to its fitness
among the population to survive
(or be discarded), regardless it is
the best or not.
• The individuals with better fitness 

have a higher probability to be 
selected, and the individuals with 
low fitness also have a chance of 
being selected.

• Tournament selection: selects
the best one from an equally
likely sampling of individuals.
• The worst individual never survives, 

while the best individual wins all 
tournaments in which it participates

Population Offspring 

An illustrative example of Tournament selection.

Individuals in the 
population

Candidates 
selected for a 
tournament

Winner passed 
on to the next 
generation

Population

An illustrative example of Roulette.

Population Updating - EAs
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 Single objective
Only consider one indicator of neural architecture such as the performance

value
(e.g. only searching for the architecture with the highest classification 

accuracy)
Problems:

 Cannot find an architecture that can achieve the best in all objectives, some
compromise architectures are need.

Accuracy:99%
Need more 
computational resources

Accuracy:80%
Need less
computational resources

Which to choose?

Population Updating - EAs
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 Multi-objective
Performance of the neural network and the number of parameters are 

considered simultaneously

Solutions:
 converting it into a single objective optimization problem with weighting factors 
(i.e. the weighted summation method)

 directly address it through some famous multi-objective optimization algorithms

- NSGA-II
- NSGA-III
- MOEA/D

Population Updating - EAs
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Mutation and Crossover operators are two of the 
most commonly used evolutionary operations in EAs.

Mutation 
Type

Add UnitAdd Unit

Delete UnitDelete Unit

Modify UnitModify Unit

Random strategy Random strategy 

Guided strategy Guided strategy 

Variable mutation 
probability

Variable mutation 
probability
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Crossover
• The crossover operation is 

inspired by the crossover 
phenomenon of chromosomes in 
biology. The chromosomes of two 
parents cross and exchange equal 
segments between non sister 
chromatids in the genetic process 
to generate two new 
chromosomes. At the same time, 
the probability of chromosomes 
crossover is generally high.

Common crossover operator
• Cluster crossover
• internal crossover

Homologous 
chromosomes

Chromosome
s crossover

Chromosomes crossover.

Recombinant 
chromosomes

Parent 1

Crossover operator.

Child 1

Child 2Parent 2

Population Updating - EAs
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Cluster crossover: One or more cross points are randomly 
generated in the coding strings of two parent individuals, and then 
gene exchange is conducted at the control position of two individuals.

An example of cluster crossover [1].

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3
amount, in, out
8, 64, 256

3 type=1
amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

amount, in, out, 
k3, 128, 28, 12

1 type=2

mean pooling

2 type=3
amount, in, out
9, 28, 256

3 type=1
amount, in, out
6, 256, 128

4 type=1

max pooling

5 type=3
amount, in, out, 
k5, 128, 256, 40

6 type=2

parent 1

parent 2

recombine

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3
amount, in, out
6, 64, 128

3 type=1

max pooling

4 type=3
amount, in, out, 
k5, 128, 256, 40

5 type=2

amount, in, out, 
k3, 128, 28, 12

1 type=2

mean pooling

2 type=3
amount, in, out
9, 28, 256

3 type=1
amount, in, out
8, 256, 256

4 type=1
amount, in, out
5, 256, 80

5 type=1

mean pooling

6 type=3

child 1

child 2

[1] Sun, Yanan, et al. "Completely automated CNN architecture design based on blocks." IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 4, pp. 1242-1254, 2020.
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Detail  of basic unit
• number: the position of unit in network

• type: different types of unit

• parameters: parameter configuration

for each unit

• 1: ResNet Block unit
• 2: DenseNet Block unit
• 3: Pooling layer unit

An example of RB.

conv 1 conv 2 conv 3input output⊕

⊕ add

conv 1 conv 2 conv 3input outputconv 4

An example of DB including four convolutional layers.

ResNet Block unit

• amount: the number of RBs 
• in: input spatial size
• out: output spatial size

Pooling layer unit

• one PU consisting of a
single pooling layer

• pooling layer types: max/
mean pooling

DenseNet Block unit

• amount: the number of DBs
• in: input spatial size
• out: output spatial size
• k: growth rate of spatial

size per layer

Population Updating - EAs
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Internal crossover: Each type of unit is collected from the 
individual and stacked in the order of the individual. Align the units of 
same type in two individuals, pair the units at the same and perform 
the crossover operation. Then restore the unit lists to generate two 
new individuals.

An example of internal crossover [1].

C1 P1 C2 C3 P2 F1 F2 F3parent 1

C2

C3

C1

convolution 
unit list

P2

P1

pooling
unit list

F2

F3

F1

fully connection
unit list

C1 P1 C2 P2 P3 F1 F2 F3 F4parent 2

C2

C1

convolution 
unit list

P2

P1

pooling
unit list

P3

F2

F3

F1

fully connection
unit list

F4

unit collection unit alignment

C2

C3

C1convolution 
unit list C2

C1
crossover

crossover

P2

P1pooling
unit list P2

P1

P3

crossover

crossover

fully 
connection
unit list

F2

F3

F1

F2

F3

F1

F4

crossover

crossover

crossover

unit restore

C1 C2 P1 P2 F1 F2 F3

child 1 C1 P1 C2 C3 P2 F1 F2 F3

child 2 C1 P1 C2 P2 P3 F1 F2 F3 F4

C1 C2 P1 P2 F1 F2 F3

[1] Sun, Yanan, et al. "Evolving deep convolutional neural networks for image classification." IEEE transactions on
evolutionary computation 24.2 (2017): 394-406.
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Mutation
The mutation operation of genetic algorithm is 
inspired by chromosomes  variation. 
⁻ Mutation operations may perform on each 

position of the units from one individual.
Mutation can be defined as small random 
adjustments in chromosomes to obtain new 
solutions.
Common mutation strategy 
• Random strategy
• Gaussian strategy
• RNN based strategy

Advantage
• Make EAs have global random

search ability
• Maintain population diversity

Chromosomes variation.

Mutation operator.

Deletion

Duplication

Inversion

Random
Strategy

Population Updating - EAs
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Random strategy
A mutation position is randomly 
selected in the current individual, 
and one particular mutation 
operation is selected from the 
mutation list with a identical 
probability.

Common mutation 

operations
• Add (add a unit with random

parameter settings)
• Delete (remove the unit at 

the selected position)
• Modify (randomly changing 

the parameter values of the 
unit at the selected position)

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out, 
k4, 64, 128, 12 

3 type=2

amount, in, out
8, 128, 256

4 type=1

amount, in, out
5, 256, 80

5 type=1

mean pooling

6 type=3

Add

A example of add operator [1].

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
8, 64, 256

3 type=1

amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

mutation position

type=2type=1 type=3
candidate 
units

𝑝 =
1

3
𝑝 =

1

3
𝑝 =

1

3

[1] Sun, Yanan, et al. "Completely automated CNN architecture design based on blocks." IEEE transactions on neural
networks and learning systems 31.4 (2019): 1242-1254.
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A example of delete operator [1].

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
5, 64, 80

3 type=1

mean pooling

4 type=3

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
8, 64, 256

3 type=1

amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

mutation position

Delete

A example of modify operator [1].

amount, in, out, 
k5, 128, 128, 20

1 type=2

max pooling

2 type=3
amount, in, out, 

k
5, 128, 128, 12 

3 type=2

amount, in, out
5, 128, 80

4 type=1

mean pooling

5 type=3

Modify

amount, in, out, 
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
8, 64, 256

3 type=1

amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

mutation position

parameter
settings

type 1, 2, 3 amount 5, 6, 7… in, out 32, 64, 128… …

[1] Sun, Yanan, et al. "Completely automated CNN architecture design based on blocks." IEEE transactions on neural
networks and learning systems 31.4 (2019): 1242-1254.

Efficient Evaluation 
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[1] Ying, Chris, et al. "Nas-bench-101: Towards reproducible neural architecture search." International Conference on Machine
Learning. PMLR, 2019.
[2] Real, Esteban, et al. "Large-scale evolution of image classifiers." International Conference on Machine Learning. PMLR, 2017.
[3] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." Proceedings of the aaai conference on
artificial intelligence. Vol. 33. No. 01. 2019.

 It will take about 32 minutes to train a neural network
to convergence on the TPU v2 accelerator which is the
ultra high-performance hardware[1], not to mention
training hundreds or thousands of neural networks in
ENAS.

 Examples:
• Large-scale Evo algorithm[2] use 250 GPUs for 11

days.
• AmoebaNet[3] which takes the use of 450 GPUs for 7

days.
Such computational resources are not available 

for everyone interested in NAS.
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 Due to the evaluation is the most time-consuming stage,
the strategies to improve the efficiency of evaluation will
be discussed.

 Five of the most common methods to shorten the time:
‒ Weight inheritance
‒ Early stopping policy
‒ Reduced training set
‒ Population memory
‒ Performance predictor

Weight Inheritance

90

• The evolutionary operators usually
do not completely disrupt the
architecture of an individual.  →
Some parts of the new generated
individual are the same with
previous individuals.

• The ultimate weight inheritance
let the new individual completely
inherit the knowledge its parent
learned and training such an
individual to convergence will save
a lot of time.

Inherit

An example of weight inheritance.

1

2

3

Input

Output

1

2

3

4

Input

Output

Individual in 
current population

New generated 
individual

Early Stopping Policy
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• The simplest way is to set a fixed relatively small number
of training epochs.

• Disadvantages: The early stopping policy can lead to
inaccurate estimation about individual performance
(especially the large and complicated architecture).

An example of inaccurate estimation about individual performance using early stopping policy.

Reduced Training Set

92

• Using a subset of that data has similar properties to a
large dataset can also shorten the time effectively.

• The smaller dataset can be regarded as the proxy for the
large one, e.g. CIFAR-10 and ImageNet.

CIFAR-10, 10 classes ImageNet, 1000 classes

CIFAR-10 and ImageNet.
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• The population memory is a unique acceleration method of
ENAS.

• It works by reusing the corresponding architectural
information that has previously appeared in the population.

if the identifier 
of indi #k 

= the identifier 
of indi #1 The fitness 

of indi #k = 
fitness #1 

An illustrative example of  population memory.

Cache

identifier of indi #1    fitness #1

identifier of indi #2    fitness #2

……    …

identifier of indi #n    fitness #n

Evaluate indi #k 

Indi #k

First query in 
the cache

Performance Predictor
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• Performance predictor directly maps the architecture
and its performance by using a regression model.

• Advantages: can effectively evaluate the architecture.

Training

classifier
accuracy1 Encoding

Encoding

Random 
feature 
selector

Random 
feature 
selector

Predictor Pool

Data 1

Data n

CART1
CARTk

Decision variables：CNN architecture

classifier
accuracy2

…

……

An illustrative example of performance predictor (E2EPP[1]).

[1] Sun, Yanan, et al. "Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance 
predictor." IEEE Transactions on Evolutionary Computation 24.2 (2019): 350-364.

Part III：Evolutionary Deep 
Learning based on Genetic 
Programming for IASP and PR

95

Non-NN-based Deep Learning

𝐶𝑎𝑛 𝑓 𝑥  𝑏𝑒 𝑜𝑡ℎ𝑒𝑟 𝑓𝑜𝑟𝑚𝑎𝑡 𝑡𝑜 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝑑𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔?

• Zhi-Hua Zhi, and Ji Feng. "Deep forest." National science review 6, no. 1 (2019): 74-86.
• Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma. "PCANet: A simple deep learning

baseline for image classification?." IEEE transactions on image processing 24, no. 12 (2015): 5017-5032.
• Onuwa Okwuashi, and Christopher E. Ndehedehe. "Deep support vector machine for hyperspectral image

classification." Pattern Recognition 103 (2020): 107298.

• Deep Forest: decision tree

• PCANet: PCA filters

• Deep  Support Vector Machine: SVM

• Genetic Programming based Deep
Structures/Learning

• ……

96
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Deep Learning (Prof. Zhihua Zhou)

Layer-by-layer 
Processing

Feature 
Transformation

Sufficient model 
Complexity

97

Why Genetic Programming?

① Flexible variable-length representation

② GP is a learning algorithm that automatically learns model

structures and coefficients

—a model can be a feature, a set of features, a classifier, a rule, or

an ensemble ......

③ Perform multiple tasks using a single tree/program

④ Easy to have deep structures and complex functions as nodes

⑤ Potential interpretability (understandability)

Other advantages: population-based beam search, non-differential 
objective functions,
ease of cooperating with domain knowledge

98

3-Tier/2-Tier GP

99

3-Tier/2-Tier GP

Daniel Atkins, Kourosh Neshatian and Mengjie Zhang. "A Domain Independent Genetic Programming Approach to Automatic Feature
Extraction for Image Classification". Proceeding of the 2011 IEEE Congress on Evolutionary Computation. IEEE Press. New Orleans, USA.
June 5-8, 2011. pp. 238-245.

Harith Al-Sahaf, Andy Song, Kourosh Neshatian, Mengjie Zhang. "Two-Tier Genetic Programming Towards Raw Pixel Based Image
Classification". Expert Systems With Applications. Vol. 39, Issue 16. 2012. pp. 12291-12301

100
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2-Tier GP (2012)
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GP-HoG [2015-16]
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MLGP: An Automatic Feature Extraction Approach to
Image Classification Using Genetic Programming 

Five layers:

① Input layer

② Region detection layer

③ Feature extraction layer

④ Feature construction

layer

⑤ Classification layer

Ying Bi, Bing Xue, Mengjie Zhang. An Automatic Feature 
Extraction Approach to Image Classification Using Genetic 
Programming. Proceeding of the 21th Europen Conference on 
Applications of Evolutionary Computation (EvoApplications
2018). Lecture Notes in Computer Science. Parma, Italy. 4-6 
April 2018. pp. 421-438.

103

Example Solutions

 An example solution on
face images

 An example solution on
object images

104
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FGP: Genetic Programming with A Flexible Program Structure
and Image-Related Operators for Feature Learning to
Image Classification

 The complexity of the FGP solutions for different tasks can be various

 The FGP method can learn various types and numbers of effective features from raw images

 FGP can be easily applied to different types of image classification tasks to achieve good

classification performance

 The evolved solutions of FGP can be easily visualised, which provide more insights  on the tasks

An image An FGP program Learnt features Linear SVM

Class
label

Ying Bi, Bing Xue, Mengjie Zhang. Genetic Programming with Image-Related Operators and a Flexible Program Structure for Feature Learning in Image Classification. 
IEEE Transactions on Evolutionary Computation. Vol. 25, Issue 1. 2021. pp. 87 - 101. DOI: 10.1109/TEVC.2020.3002229
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Experimental Results

 Classification error rates of the proposed FGP method

106

IEGP: Genetic Programming with A New Representation to
Automatically Learn Features and Evolve Ensembles for
Image Classification

 A new multi-layer individual representation is developed in IEGP to allow it to 

automatically and simultaneously learn features and evolve ensembles for image

classification

 IEGP can learn high-level features through multiple transformations

 IEGP can  automatically select and optimise the parameters for the classification

algorithms in the evolved ensemble

 IEGP can automatically address the diversity issue when building the ensembles

Ying Bi, Bing Xue, Mengjie Zhang. "Genetic Programming with A New Representation to Automatically Learn Features and Evolve Ensembles for 
Image Classification". IEEE Transactions on Cybnertics. Vol. 51, Issue 4. 2021. pp. 1769-1783. DOI:10.1109/TCYB.2020.2964566. 107

Multi-Layer Representation of IEGP

Overall Algorithm
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Experimental Results

 Classification accuracy of the proposed IEGP method

109

Example Solutions

1

2

Ensemble of different classifiers

Ensemble of ensembles

110

GP-FR: with feature reuse

Qinglan Fan, Ying Bi, Bing Xue, and Mengjie Zhang. "Genetic programming for image classification: a new program representation with flexible feature reuse." IEEE 
Transactions on Evolutionary Computation, DOI: 10.1109/TEVC .2022.3169490,  2022.

• A new GP approach with a new program structure, a new function set
and a new terminal set to achieve flexible feature reuse

• Evolve programs/solutions that conduct region detection, image
filtering, feature extraction, feature concatenation, and classification
automatically and simultaneously

111

EDLGP

Ying Bi, Bing Xue, and Mengjie Zhang. "Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification." IEEE Transactions on 
Evolutionary Computation, DOI: 10.1109/TEVC.2022.3214503, 2022.

• Evolve variable-length tree based symbolic models, achieving promising
classification performance in the data-efficient scenario

• A flexible multi-layer model representation to automatically evolve
shallow or deep models for different image classification tasks
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EDLGP

Ying Bi, Bing Xue, and Mengjie Zhang. "Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification." IEEE Transactions on 
Evolutionary Computation, DOI: 10.1109/TEVC.2022.3214503, 2022.

Classification Performance

• Comparisons
between the
new approach
and CNNs of
varying
complexity and
dropout rate

113

Two-stage GP (BERGP)

Ying Bi, Jing Liang, Bing Xue, and Mengjie Zhang. "A Genetic Programming Approach with Building Block Evolving and Reusing to Image Classification." IEEE 
Transactions on Evolutionary Computation, DOI: 10.1109/TCYB.2022.3174519, 2023.

• A two-stage approach (BERGP) based on GP with simple program
structures is developed to automatically evolve and reuse blocks to
construct solutions of ensembles for data-efficient image classification

• The first stage evolves a set of small and diverse blocks for image
feature extraction

• The second stage makes effective reuse of the evolved blocks to
construct ensembles for image classification

114

Two-stage GP (BERGP)

Ying Bi, Jing Liang, Bing Xue, and Mengjie Zhang. "A Genetic Programming Approach with Building Block Evolving and Reusing to Image Classification." IEEE 
Transactions on Evolutionary Computation, DOI: 10.1109/TCYB.2022.3174519, 2023.

Example Solutions

• Eight trees/blocks
selected from Stage 1

115

Summary

NN-based evolutionary deep learning has started to 
demonstrate great potential to outperform the manually 
designed state-of-the-art deep networks in image 
classification and analysis

GP based evolutionary deep learning has also started, 
and is expected to demonstrate the advantages in 
effectiveness, efficiency and interpretability in image 
analysis

Evolutionary deep learning is still in an early stage, but is 
expected to show the great accuracy, efficiency, small 
training set, and good interpretability of the deep models.
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Summary

118

Concluding Remarks

 Evolutionary computer vision and image analysis is still a
big and hot topic

 Evolutionary deep learning will play a significant role

GP-based deep learning will have more developments

 Interpretability and expandability will be a major focus

 EC techniques will be more popular in pattern recognition

 Classification, Clustering

GP, GAs, PSO, DE,

 EC will be in more mainstream conferences and
journals

GPU/FPGA will be popular tools
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Future Events

 IEEE SSCI Symposia

 CI in Feature Analysis, Selection and Learning in Image and Pattern
Recognition (IEEE FASLIP))

 CI for Multimedia Signal and Vision Processing (IEEE CIMSIVP)

 EvoStar 2025

 Special Session on Evolutionary Machine Learning

 EvoApplications including Image Analysis and Pattern Recognition

 Paper submission: 01 November 2024

 IEEE CEC 2025

 Special Session on Evolutionary Computer Vision

 Paper Submission Deadline: 31 Jan 2025 (tentative)

120

1260


