
Evolutionary Computation and Evolutionary
Deep Learning for Image Analysis, Signal

Processing and Pattern Recognition

Stefano Cagnoni1, Ying Bi2, and Yanan Sun3

1University of Parma, Italy
2Zhengzhou University, China

3Sichuan University, China
cagnoni@ce.unipr.it; yingbi@zzu.edu.cn; ysun@scu.edu.cn

http://gecco-2024.sigevo.org/

ACM ISBN 979-8-4007-0495-6/24/07.. $15.00
https://doi.org/10.1145//3638530.3648410

Instructors
Stefano Cagnoni is an Associate Professor at the University of Parma. His research is
mainly focused on EC applications to Image Analysis, Signal Processing and Pattern
Recognition. Editor-in-chief of the "Journal of Artificial Evolution and Applications" from
2007 to 2010. For more than 10 years since 1999, he has chaired EvoIASP, an event
dedicated to evolutionary computation for image analysis and signal processing, now
merged with other events into the EvoApplications conference. At GECCO, he has co-
chaired MedGEC, workshop on medical applications of EC and is currently co-chairing
ECXAI on EC and Explainable AI. Co-editor of journal special issues dedicated to EC for
Image Analysis and Signal Processing and Explainable AI. Member of the Editorial Board
of the journals “Evolutionary Computation” and “Genetic Programming and Evolvable
Machines”.

Ying Bi is a professor at Zhengzhou University, China. Her research focuses mainly on
evolutionary computer vision and machine learning. She has published an authored book
on genetic programming for image classification and over 50 papers in fully refereed
journals and conferences. She is currently the Vice-Chair of the IEEE CIS Task Force on
Evolutionary Computer Vision and Image Processing, and a member of the IEEE CIS Task
Force on Evolutionary Computation for Feature Selection and Construction. She is serving
as the workshop chair of IEEE CEC 2024, organizer of the EDMML workshop in IEEE
ICDM 2023, 2022, and 2021, and co-chair of the special session on ECVIP at IEEE CEC
2023, 2022 and IEEE CIMSIVP at IEEE SSCI 2023, 2022. She is serving as AEs for seven
international journals.

Yanan Sun is a professor at Sichuan University, China. He has been a research postdoc at
Victoria University of Wellington, New Zealand. His research focuses mainly on
evolutionary neural architecture search. He has published >70 papers in fully referred
journals and conferences, including IEEE TEVC, IEEE TNNLS, IEEE TCYB, NeurIPS,
CVPR, ICCV, GECCO, and CEC. 12 out of the published papers have been selected as
ESI Hot Paper, ESI Highly Cited Paper, IEEE CIS Chengdu Section Best Paper,
AJCAI2024 Spotlight Paper, and MLMI2022 Best Paper. He is the funding chair of the
IEEE CIS Task Force on Evolutionary Deep Learning and Applications. He is the leading
chair of the special session on EDLA at IEEE CEC 2019, 2020, 2021, 2022, and 2024, and
the symposium on ENASA at IEEE SSIC 2019-2023. He is an associate editor of IEEE
TEVC, an associate editor of IEEE TNNLS, and an editorial member of Memetic
Computing.

2

Tutorial Agenda

 Introduction: Evolutionary Image Analysis and Signal
Processing

 Part I: A basic pathway to GP-based Deep Learning

 Part II: Evolutionary Neural Architecture Search for
IASP and Pattern Recognition

 Part III：Evolutionary Deep Learning based on
Genetic Programming for IASP and PR

 Summary
3

Introduction:
Evolutionary Image Analysis

and Signal Processing

1231

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638530.3648410&domain=pdf&date_stamp=2024-08-01

Computer Vision

 The “art” of making computers see (and understand what
they see)

 Computer vision vs image processing

 Sub-topics:
• Image acquisition

• Image enhancement

• Image segmentation

• 3D-information recovery/feature extraction

• Image understanding
• Object tracking
• Edge detection
• Segmentation
• Motion detection
• Object/digit recognition

5

Computer and Human Vision

HUMAN

Perception

Selective information
extraction

Grouping by ‘similarity’

Extraction of spatial
relationships

Object recognition and
semantic interpretation

COMPUTER

Image acquisition

Feature enhancement
(signal/image processing)

Segmentation

3D-information Recovery

Image Understanding

6

LOW-LEVEL VISION

HIGH-LEVEL VISION

Application Taxonomy

 EC techniques
• GA, GP, ES, EP, PSO, DE, LCS, EMO, EDA, etc.

 EC as an optimization tool
• Optimisation of parameters of specific solutions (using GA,

ES, PSO…)
Related with a well-defined task or for a whole system

• Generation of solutions from scratch (GP, …)
Performance optimization based on specific objective functions
It is difficult to choose a model with reasonable assumptions

 EC as THE solution (or a relevant part of it)
• Interactive qualitative comparisons between solutions
• Generation of emergent collective solutions

Achievement of higher-level and complex tasks from collective
use of trivial, local, hard-wired behaviours: generation of full
EC-based solutions, NOT just parameter optimization tasks

7

Part I: A Basic Pathway to
GP-based “Deep” Learning

8

1232

 Develop functionalities that can substitute (deep) neural
networks’ layers

 Using the higher representation power of symbolic
function representation to synthesize more compact (and
possibly interpretable) functions

 Evaluate what can be obtained by using the simplest and
most direct possible approach, as close as possible to

one function = one GP tree

Goals and constraints

9

Deep Learning for Images
Typical Convolutional Neural Network structure

Feature Extraction Classification

X Y=fe(X) Z=c(Y)
Input Embedding layer Classifier

Input

10

Deep Learning
using GP

Feature Extraction Classification

X Y=fe(X) Z=c(Y)

Input

X Y=fe(X) Z=c(Y)
Input Embedding layer Classifier

11

Observations:

 Y = fe(X) is a vector of features; therefore, fe(X) may be
either a multi-output tree or a set of traditional GP trees.
Its input may be a whole image (pattern) or it may be seen
as a filter or a set of non-linear kernels, applicable to a
small region, to be convolved with the input image.

 Z = c(Y) may be either a single output or, as happens in
neural networks, a set of N binary classifiers or, possibly,
a softmax layer, where N is the number of possible
classes.

GP-based “Deep” Learning

12

1233

Let’s make the simplest assumption: single-output GP trees
composed of simple functions

and focus on the embedding layer:

 If we have real numbers as outputs, an M-dimensional
embedding could be obtained:

 by evolving M trees in parallel

 by sequentially (iteratively) evolving single trees

GP-based “Deep” Learning

13

Regarding the classifier:

One may set the classifier type and use a wrapper method
to evolve an optimal embedding for that specific
classifier...

… but one may also consider a co-evolutionary wrapper
where both the embedding and the classifier are
“concurrently” evolved by two GP populations (termed P1
and P2, respectively)

 Cooperative coevolution

 Competitive co-evolution (GAN ?)

GP-based “Deep” Learning

14

Real input data and traditional GP (input data type same as
output data type)

 The dimension of the embedding must be much larger
than 1!

Binary input data and traditional GP

 A 64-bit embedding may be enough to generate
discriminative features

GP-based “Deep” Learning
Real vs Binary input data

15

Inputs: Unsigned long (32 or 64 bit words) that encode
arrays of binary inputs. The bit string may encode
consecutive samples of a temporal sequence, a row or a
window within a binary image, etc.

Function set: bitwise logical operators + circular shifts

A whole block of data is affected by a single bit-wise
Boolean operation (SIMD paradigm).

Output: a 32/64 bit string, that may represent 32/64 possible
outputs of a binary classifier.

So, 32/64 (non-independent) solutions are evaluated for
each individual.

SUB-MACHINE CODE GENETIC PROGRAMMING
(Poli, Langdon 1998)

16

1234

Real-world dataset collected by Società Autostrade SpA
at highway toll booths

 11034 binary patterns representing the ten digits from
0 to 9

6024 in the training set
5010 in the test set (exactly 501 per class)

 Size: 13x8 pixels  strings of 104 binary features

SmcGP example: Character Recognition

ROW 1

ROW 2

ROW 13

ROW 1 ROW 2 ROW 13

8 pixels 8 pixels 8 pixels…

104 pixels 17

New architecture: SmcGP + Embedding
(a tiny step towards Deep GP)

word
32/64-bit word

Best-fitness bit

32/64-bit word

Input data embedding

GP-evolved input
transformation

GP-evolved digit i
classifier

18

Generate a random initial embedding (P1Best)

Repeat
1. Compute the training set transformed by P1best
2. (P2 evolution) Evolve the classifier
3. P2best  best classifier

4. (P1 evolution) Evolve the input data transformation using P2best as a classifier
5. P1best  best transformation

Until the termination condition is reached

INPUT DATA EMBEDDING

RAW DATASET

Co-evolutionary algorithm

TRANSFORMED
DATASET

19

Evolution of an embedding/classifier pair for one digit:

 Population: 1000

Max number of generations: 1000
(20 generations for each GP x 25 iterations)

 Termination condition/overfitting control: 40
consecutive generations without fitness
improvement on the validation set (if selected)

 5 runs

 Evolution parameters same as in the original paper

 Training set: 4218 patterns (almost balanced)

 Validation set: 1806 patterns (almost balanced)

 Test set: 5010 patterns (501 per digit)

Parameters

20

1235

Original SmcGP implementation

Original SmcGP + overfitting control (validation set)

 SmcGP + Embedding

 SmcGP + Embedding + overfitting control

The method has been implemented in Python using
DEAP (Distributed Evolutionary Algorithms in Python)

Configurations

21

Results (best highlighted in yellow)

Standalone Classifier Mean

St. Dev.

Best

Worst

Embedding Mean

St. Dev.

Best

Worst

Embedding + Mean

Overfitting Control St. Dev.

Best

Worst

Standalone Classifier Mean

+ Overfitting Control St. Dev.

Best

Worst

99.58

99.76

99.20

99.84

99.49

99.89

99.60

99.65

99.67

99.67

99.6799.49

99.6099.67

99.31

How can we move further on?

 Similar ideas could be applied to more traditional GP trees
with continuous inputs and outputs: a single embedding
would not suffice, though.

Possible solutions:

 Incremental evolution of embeddings: first embedding
as shown, subsequent embeddings added and
optimized with respect to the classifier AND the
embedding elements previously computed.

GP-based autoencoders

 Use of convolutional layers where GP play the role of
non-linear convolutional kernels/functions, multiple
trees, multiple layers, etc.

23

Magnani, G., Mordonini, M., Cagnoni S. Hybrid GP/PSO Representation of 1-D
Signals in an Autoencoder Fashion (Proc. WIVACE 2023, Springer CCIS, vol. 1977, 2024)

GP-based parametric symbolic regression actually
generates autoencoders for function/signal families sharing
a common parametric model:

• Each function/signal instance Ii is encoded into the
parameters Pi (ENCODER)

• Plugging the parameters Pi into the model reconstructs
the original instance Ii (DECODER)

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

24

1236

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

Consider a set of 1D functions (e.g., time series) resulting
from deforming, shifting, scaling, etc… a basic function that
can be expressed as a single parametric model.

A very familiar case: a set of Gaussians having different
mean, standard deviation and amplitude, i.e.,

{ Ki G(x,mi,si), i = 1..N }

where ki ≡ (Ki, mi, si) are constants and G a Gaussian kernel

Infinite possible Gaussians share the same equation and
parameters, whose values characterize their shape and
position.

25

One could think of adapting GP such that it finds A SINGLE
symbolic representation for the whole family of functions,
i.e., what is called a basis function, having a few free
parameters, setting whose values one could obtain a good
approximation of any function in the data set.

This means we want to find fGP such that

fGP(x, k1, k2, .. kn)) ≈ K G(x,m,s)

NB In the most ideal case (a noiseless signal), a general
model could be evolved as the GP-based symbolic
regression of a single instance from the function family

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

26

This way, we can represent each function in our data set only
by the values {ki} of the free parameters.

Thus, the parameters that, given the model, solve the
regression problem for a function in the family:
 represent an embedding for that function
 Permit recovering the function starting from the GP encoding

This is exactly what autoencoders do!

 Could GP hybridized with GA, PSO, or any other handy
parameter optimizer (gradient descent?) be the solution?

 Could we apply it to any set of functions, having as a
secondary goal to minimize the embedding size?

GP2SO: modeling and embedding 1-D signals using
parametric symbolic regression

27

• GP is good at performing symbolic regression

• PSO is good and fast at parameter fitting (and VERY GPU-
friendly!)

We can consider a hybrid autoencoder-like approach in which

• GP finds the function family expression and

• PSO fits the free parameters to represent/reconstruct each
specific function

• The code can be easily and effectively optimized for GPUs

GP2SO implementation

28

1237

fGP(x, k1, k2, … kn)) ≈ K G(x,m,s) = f(x,m,s)

This means:

• The terminal set T includes the independent variable x
and the free parameters

• The fitness of a tree representing a possible fGP is
computed by an external optimizer (PSO) that finds the
values of k1, k2, …, kN minimizing the target function

Fitness = d (fGP, f)

that can be expressed, for instance, as the total squared
error over a sampling of f

GP2SO implementation

29

GP2SO: Preliminary results

Using the sampling of three Gaussians as input, and adding
to the terminal set 6 free parameters, k1, ..., k6, that underwent
PSO, we evolved the following model:

fGP (x, k) = k1

k2 + k3 (x-k4)2 + k5 (x-k4)4 + k6 (x-k4)8

TEST RESULTS

Generating the sampling of 300 Gaussians Gi (200 samples
each, with x in [-10, 10]) and reconstructing (representing)
such functions as the optimal vector ki computed by PSO, we
obtained approximations with a total squared error TSE
always < 0.13, with TSE < 0.001 for 95.34% of the instances)

30

The embedding is optimal with respect to signal
reconstruction.

• Is it also good for classification?

• Can we use this approach for feature
extraction/construction?

We plotted the parameter sets obtained for the 300
Gaussians on the (m,s) coloring the dots according
to the first T-sne component (Red channel) and the
second T-sne component (Blue channel) of each
Gaussian.

Analysis of the parameter space

31

Near points have similar colors, i.e., they are
similarly embedded

Clustering of Gaussians

(x,y) Coordinates

X = Mean

Y = St. Dev.

Color

R: 1st T-sne coordinate

B: 2nd T-sne coordinate

NB All values normalized
between 0 and 1

32

1238

R, G, B: real ECG
M,B,C: corresponding
reconstructed ECG

Both training and test
ECG signals are
reconstructed well.

Is this result equally
good for
classification?

A real-world example: embedding of ECG signals

Same model, different parameters for each signal
33

Unfortunately NOT!

(x,y) Coordinates

X = 1st T-sne
coordinate

Y = 2nd T-sne
coordinate

Color

R: class A

B: class B

A real-world example: embedding of ECG signals

34

With more extended function sets and more complex trees
(including, for instance, periodic functions) some problems
with parameter redundancy (existence of several parameter
sets mapping the same function) may occur.

Remedy:
add a regularization term W_R (sum of the parameters’
absolute values) and a size penalty W_S to the fitness
function measuring the reconstruction error:

Fitness’ = Fitness + W_S * size + W_R * Si abs(ki)

Possible problems: Redundancy

35

Representations optimal for reconstruction may not be as
good for classification (e.g., PCA).
• Often true in medicine when signal anomalies’ energy is

much smaller than the total signal energy.

Possible remedies:
• Different, more scale-independent distance measures as

fitness (e.g., cosine similarity)
• In classification problems, adding statistics about the

residuals of the reconstruction, followed by further feature
selection to identify the most relevant components.

Possible problems: Reconstruction-oriented
representation

36

1239

GP2SO is not intrinsically efficient, requiring an entire PSO
run for each GP fitness case evaluation during training, and
another for encoding each new unseen data instance during
inference

Remedy:
PSO search is both fast and easy to implement on GPUs with
speed-ups easily reaching two orders of magnitude over a
single-thread implementation

Possible problems: Computational Efficiency

37

GP2SO can obtain latent representations of complex data.

Pros and cons:

+ Possibility of learning from very few examples:
very appealing for problems like medical diagnosis, etc., in
which only few data are available.

- The need to run PSO for each pattern to be learned or
transformed is computationally heavy

- Some problems (by now…) with classification.

Conclusions (GP2SO)

38

Credits

The work described has been developed as their B.Eng.
theses or Machine Learning project by

Fabrizio De Santis, M.Eng.
Dario Cavalli, M.Eng.
Giorgia Tedaldi, M.Eng.
Federico Brandini, M.Eng.,
Federico Sello, B.Eng.

Many thanks also to
Andrea Bettati, M.Eng,
Marco Carraglia, M.Eng,
Natalia Teresa Mazzara, M.Eng.
Leonardo Miccoli, M. Eng.

for contributing to the development/debugging of SmcGP in
DEAP. 39

Part II: Evolutionary Neural
Architecture Search for IASP
and Pattern Recognition

40

1240

Introduction

41

Deep LearningMachine Learning

A technique by which a
computer can learn from
data, without using a
complex set of different
rules.

A technique to perform
machine learning
inspired by our brain’s
own network of neurons.

Artificial Intelligence

Mimicking the Intelligence
or behavioural pattern of
humans or any other
living entity.

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s 2017’s now

Introduction

42
Object Detection Alpha Star Automatic Drive

A
P
L
I
C
A
T
I
O
N

F
I
E
L
D

SPEECH

• Automatic Speech
Recognition

• Voice Assistant
(Siri)

SPEECH

• Automatic Speech
Recognition

• Voice Assistant
(Siri)

VISION

• Image Recognition
• Automatic Drive
• Face Recognition

VISION

• Image Recognition
• Automatic Drive
• Face Recognition

NATURE LANGUAGE
PROCESSING

• Text Analysis
• Text Translation
• Chatting Robot

NATURE LANGUAGE
PROCESSING

• Text Analysis
• Text Translation
• Chatting Robot

Introduction

43

…

DepthConcat

Conv 1×1Conv 1×1Conv 1×1

Conv 1×1 Conv 5×5 Conv 3×3

MP 3×3

DepthConcat

AP 5×5

Conv 1×1

…

…

DepthConcat

Conv 1×1Conv 1×1Conv 1×1

Conv 1×1 Conv 5×5 Conv 3×3

MP 3×3

DepthConcat

…

GoogleNetGoogleNet

Conv 7×7

Conv 3×3

Conv 3×3

Pool 2×2

Conv 3×3

…

Conv 3×3

Conv 3×3

…ResNetResNet TransformerTransformer

Input

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Input

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

… …
…MobileNetMobileNet

3×3 Depthwise Conv

BN

ReLU

1×1 Conv

BN

ReLU

…

3×3 Depthwise Conv

BN

ReLU

1×1 Conv

BN

ReLU

…
…

2012
• AlexNet
• NIN
• VGG
• GoogleNet
• …

2015

• Highway Networks
• ResNet
• DenseNet
• Dual Path Network
• …

2017

• MobileNet(V1-V3)
• CondenseNet
• ShuffleNet(V1,V2)
• GhostNet
• EfficientNet
• …

2022

• Synthesizer
• Transformer-XL
• Longformer
• Reformer
• Axial

Transformer
• …

Introduction

44

 NAS algorithms can be broadly classified into three different categories based on
optimizer methods:
– Reinforcement Learning-based NAS
– Gradient-based NAS
– Evolutionary Computation-based NAS (ENAS)

Concept diagram of NAS

NAS can be modeled by an optimization problem

𝒜: the search space of the neural architectures
ℒ(·): measures the performance of the architecture A

 Neural Architecture Search (NAS) aims to automatically design high-performance
deep neural network architecture without relying on expert experience.

1241

Introduction

45

 Evolutionary
Computation-based
NAS(ENAS)

VS

 Reinforcement Learning-based
NAS
– Often find the ill-conditioned

architectures
– Not completely automatic
– Usually requires much

computational resources

 Gradient based NAS
– Often find the ill-conditioned

architectures
– Not completely automatic
– Often require to construct a

supernet in advance, which also
highly requires expertise

– Insensitiveness to the local
minima

– No requirement to gradient
information

Introduction

46

History
 before1999: Evolutionary artificial neural networks (EANN)

• Search for both the neural architectures and the optimal weight
values

• Apply to small-scale neuron networks

 2000-2016: Neuroevolution
• Search for both the neural architectures and the optimal weight

values
• Apply to median-scale neuron networks

 2017-now: ENAS
• Focus mainly on searching for the architectures of deep neural

networks
• Mainly convolutional neural networks

Background

47

The flowchart of a common ENAS algorithm.

 Key issues in each step

Population Initialization:
• Encoding space
• Encoding strategy

Population Updating:
• Evolutionary operators
• Selection strategy

Fitness Evaluation:
• Acceleration method

Background

48

ENAS

CNN DBN AE RNN

The categories of ENAS from neural network perspective

1242

Convolutional Neural Network

49

 The definition of Convolutional Neural Network (CNN)
– Convolutional Neural Network (CNN) is a class of Feedforward Neural

Networks (FNN) with convolutional computation and deep structure.
– Research on convolutional neural networks started in the 1980s and 1990s,

with time-delay networks and LeNet-5 being the first convolutional neural
networks to appear [1].

[1] LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The handbook of brain theory and
neural networks, 1995, 3361(10): 1995.

The application of CNNs

Convolutional Neural Network

50

Typical representative works of Convolutional Neural
Networks

ResNet 2015

LeNet-5 1998 AlexNet 2012

Deep Belief Network

51

The definition of Deep Belief Network (DBN)
A DBN is a generative model which comprises of many layers of hidden units
and is made up by stacking multiple Restricted Boltzmann Machines(RBMs).
The belief neural network proposed by Neil in 1992 is different from the
conventional FFNN. Hinton (2007) describes DBNN as "a probabilistic
generative model consisting of multiple layers of random latent variables."

The application of DBNs

Deep Belief Network

52

 The components of Deep Belief Network (DBN)
• The components of the DBN are Restricted Boltzmann

Machines (RBM).
• The process of training a DBN is performed layer by layer.

1243

Auto-Encoder

53

 The definition of Auto-Encoder (AE)
– Autoencoder (AE) is a class of Artificial Neural Networks (ANNs) used in

semi-supervised and unsupervised learning.
– In 1994, Hinton and Richard S. Zemel constructed the first self-encoder-

based generative model by proposing the "Minimum Description Length
principle (MDL)".

The application of AEs

Auto-Encoder

54

 The components of Auto-Encoder (AE)
– An AE is typically composed of two symmetrical components: the encoder

and the decoder.
– Common encoding parameters: number of hidden layers, neurons per layer.

Auto-Encoder

55

 Typical representative works of Auto-Encoder (AE)

Sparse Autoencoder
2011

Denoising Autoencoder 2008 Variational Autoencoders 2016

Encoding Space and Initial Space

56

The relationship between encoding space,
search space and initial space.

Initial space ⊆ Search space = Encoding space

• Encoding space means that where
the potential deep neural network
architecture will be searched, it is
also called as “search space”

• Initial space means that where
the first generation of population
will be created

Encoding Space
(Search Space) Initial Space

1244

Encoding Space and Initial Space

57

 Taxonomy on encoding space

 Taxonomy on initial space

 According to the common
constraints:
• Fixed depth
• Rich initialization
• Partial fixed structure
• Relatively few constraints

 According to the basic units they
adopt:
• Layer-based
• Block-based
• Cell-based
• Topology-based

• The trivial space contains only a few primitive layers and can evolve to
a competitive architecture.

• For a random space, all the individuals in the initial population are
randomly generated in the limited space, and it has been adopted by
many methods.

• The well-designed space contains the state-of-the-art architectures. In
this way, a promising architecture can be obtained, whereas it can
hardly evolve to other novel architectures.

Encoding Space

58

The encoding space defines which architectures
can be represented in principle.
 Direct design:

Pros. Encompass all network
architectures
Cons. Be exponential and time-
consuming
Application: Applied to unfamiliar
scenarios

 Combining prior knowledge:
Pros. Effectively reduce the search
space
Cons. Limits the network to learn
structures
Application: Applied to familiar
scenarios

The relationship between encoding space,
search space and initial space.

Encoding Space
(Search Space)

Initial Space

Encoding Space

59

The initial space is often a subspace of the
encoding space and determines what kind
of individuals may appear in the initial
population.

 Direct initialization:
Pros. No relevant experience required
Cons. Novel structures can be discovered
Application: Applied to unfamiliar scenarios

 Combining prior knowledge:
Pros. Contains the state-of-the-art architectures
Cons. Novel structures can not be discovered
Application: Applied to familiar scenarios

The relationship between encoding space,
search space and initial space.

Encoding Space
(Search Space)

Initial Space

Basic Units of Encoding Space

60

Layer-based
Focus on the

parameters in the
layer (e.g. the filters)

Block-based
Focus on the

parameters of
specific block (e.g.
amount in ResNet

Block)

Cell-based
The architecture is

built by stacking the
same cells

Topology-based
Concerned about

the operations
between nodes

Conv1

Conv2

Conv3

Input

Output

ResNet BlockConv Layer

Input

Filters

Output

Skeleton and Cell

Input

Cell 1

Cell 2

Cell n

Output

…

1

4

2

3

Input

Topology Selection

1

2

3

Output

1245

Basic Units of Encoding Space

61

The layer-based encoding space denotes that the basic units in the
encoding space are the primitive layers, such as convolution layers
and fully-connected layers.

• Pros: Lead to a huge search space, since it tries to encode so much
information in the search space.

• Cons: Take more time to search for a promising individual because there are
more possibilities to construct a well-performed DNN from the primitive
layers

Convolution layer Fully-connected layer

Basic Units of Encoding Space

62

The block-based encoding space is developed, where various layers
of different types are combined as the blocks to serve as the basic
unit of the encoding space.

• Pros: Have promising performance and often require fewer parameters to
build the architecture.

• Cons: Still need to learn some parameters for each layer, which is time
consuming.

ResBlock DenseBlock

Basic Units of Encoding Space

63

The cell-based encoding space is similar to the block-based one,
and it can be regarded as a special case of the block-based space
where all the blocks are the same.

• Pros: Greatly reduce the size of the encoding space. All the basic units in the
encoding space are the same and parameters in terms of constructing the
promising DNN is much fewer.

• Cons: No theoretical basis for that the cell-based space can help to obtain a
good architecture.

AmoebaNet-A architecture the micro and macro cell

Basic Units of Encoding Space

64

The topology-based space does not consider the parameters or the
structure of each unit (layer or block), yet they are only concerned
about the connections between units.

• Pros: Obtain a highly accurate and efficient neural network architecture and
greatly reduce the search time and overhead

• Cons: Limitations on the representation of the neural network architecture

An overview of DARTS

1246

Constraints on Encoding Space

65

The constraints on the encoding space are important,
because the constraints represent the human intervention
which restricts the encoding space and lighten the burden
of evolutionary process.
• Fixed depth

– A strong All the individuals in the population have the same
depth.

– constraint and largely reduces the encoding space.

• Rich initialization
– A strong constraint with a lot of manual experience.
– The initialized architectures are manually designed, which goes

against the original intention of NAS.

• Partial structure fixed
– The architecture is partially settled.

Constraints on Encoding Space

66

• Fixed depth
Keep the length of the chromosome
unchanged, thus all the individuals in
the population have the same depth.
• Advantages:
Conveniently employ the genetic
operators of EC methods.
• Disadvantages:
Largely reduce the size of encoding
space.

An example of fixed depth constraint [1].

[1] A. Singh, S. Saha, R. Sarkhel, M. Kundu, M. Nasipuri, and N. Das, “A genetic algorithm based kernel-size selection
approach for a multi-column convolutional neural network,” 2019, arXiv:1912.12405. [Online]. Available:
http://arxiv.org/abs/1912.12405

Constraints on Encoding Space

67

• Rich initialization
The well-designed encoding space, which

usually requires a lot of expertise.
• Advantages:
Might achieve good performance on
specific problems.
• Disadvantages:
It often require the algorithm designers
have strong expertise of deep neural
networks, and the designers may clear
know the rough architecture for solving
the problem at hand.

An example of encoding space with rich
initialization constraint [1].

[1] F. M. Johner and J. Wassner, “Efficient evolutionary architecture search for CNN optimization on GTSRB,” in Proc.
18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2019, pp. 56–61.

Constraints on Encoding Space

68

• Partial structure fixed
The architecture is partially settled.
• Advantages:
Allow algorithm designers to bring
some of their expert knowledge
into the Encoding.
• Disadvantages:
Partially reduce the size of
encoding space.

An example of encoding space where partial
structure are fixed[1].

[1] Y. Bi, B. Xue, and M. Zhang, “An evolutionary deep learning approach using genetic programming with convolution
operators for image classification,” in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2019, pp. 3197–3204.

1247

Encoding Strategy

69

The encoding strategy can be divided into two categories according
to whether the length of an individual changes or not during the
evolutionary process:
• Fixed-length encoding strategy

– It is easy to take the use of standard evolutionary operations.
– The maximal depth is limited in advance.
– The maximal length is determined by experts because the optimal depth

is unknown.

• Variable-length encoding strategy
– It can contain more details of the architecture with more freedom of

expression.
– The neural architecture with the optimal depth which is unknown can be

searched.
– The evolutionary operators may be not suitable for this kind of encoding

strategy and need to be redesigned.

Encoding Strategy

70

Fixed-length encoding strategy

Generate individuals of fixed encoded length at
initialization, and the individual lengths remain
unchanged during the evolutionary process.

Advantage
• Facilitates the use of standard crossover

and mutation operations
• Reduce search space size

Disadvantage
• Difficult to precisely predefine the optimal

depth of the DNN
• Require rich domain knowledge from both

encoding and DNN

0 0000

1 0001

2 0002

13 1101

14 1110

15 1111

candidate layer

C convolution P pooling F fully connection

conv 3×3

conv 5×5

conv 1×1

number binary code

mean_ 2×2

max_ 2×2

FC

… … … …

3×3 3×3
max
_2×

2
1×1 FC FCnetwork

binary
string 0001 0001 1110 0000 1111 1111- - - - -

1 1 14 0 15 15

An illustrative example of fixed-length
encoding strategy.

fixed length=6 ?

Encoding Strategy

71

Variable-length encoding strategy

The coding length of individuals may change
continuously during evolutionary process, so
that its corresponding the network is not
limited to a specific depth.

Advantage
• The optimal length of DNN can be

obtained by searching
• Contain more details of the architecture

with more freedom of expression

Disadvantage
• Redesign evolutionary operators which

may not suitable for this kind of encoding
strategy

C C ⊕

skip connection unit

P

pooling unit

candidate unit parameter code

in : input spatial size out : output spatial size r : random number

in : 32, 64, 128, 240…
out : 32, 64, 128, 240…

mean : 𝒓 ∈ (0, 0.5]
max : 𝒓 ∈ (0.5, 1)

in - out
e.g. 32 - 64

r
e.g. 0.2

network 1
32 64 ⊕meaninput 128 240 ⊕128 64 ⊕ output

32 - 64 128 - 240 128 - 640.3

32 128 ⊕ maxinput

0.4

64 64 ⊕mean 128 240 ⊕
output32 - 128 64 - 640.8 128 - 240

network 2
code 1 32 - 64 - 0.3 - 128 - 240 - 128 - 64

code 2 32 - 128 - 0.8 - 64 - 64 - 0.4 - 128 - 240
An illustrative example of variable-

length encoding strategy[1].
[1] Sun, Yanan, et al. "Automatically designing CNN architectures using the genetic algorithm for image
classification." IEEE transactions on cybernetics 50.9 (2020): 3840-3853.

Encoding Strategy

72

Most of the neural architectures can
be represented as directed graphs,
which are made up of different basic
units and the connections between
the units.
The encoding for an architecture can
be divided into two aspects:
• Configurations of basic units

– Layers
– Blocks
– Cells

• Connections
– Linear structure
– Non-linear structure

An illustrative example of a neural network
represented as a directed graph.

Basic units

Connections

0

1

2 3

4

Input

Output

1248

Encoding Strategy

73

• Linear structure: the basic
units are stacked one by one
to build up the skeleton of
the architecture.
• Its widespread use in ENAS

stems from its simplicity.

• Non-linear structure: there
are skip-connections or loop-
connections in the
architecture.
• Adjacent matrix is the most

popular way to represent the
connections.

Binary string：
1-00-111

Adjacent matrix:
0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 0

Convolution layer Pooling layer

Fully connected layer

An illustrative example of linear structure[1].

An illustrative example of non-linear structure[2].

[1] Sun, Yanan, et al. "Evolving deep convolutional neural networks for image classification." IEEE Transactions on Evolutionary
Computation 24.2 (2019): 394-407.
[2] Xie, Lingxi, and Alan Yuille. "Genetic CNN." Proceedings of the IEEE international conference on computer vision. 2017.

Population Updating - EAs

74

Mate Selection

Evolutionary Operations

Fitness Evaluation

Environmental Selection

The flow chart of EAs in Population
Updating.

• Mate Selection: the individuals with better fitness
are selected by a selection algorithm to be the
parents to produce offspring.

• Fitness Evaluation: A fitness function is performed
on the new generated individuals to compute their
fitness.

• Evolutionary Operations: the evolutionary
operations, such mutation and crossover, are
performed on the selected parents to produce new
individuals.

• Environment Selection: A selection strategy is
utilized like environment selection which chooses
individuals based on their fitness to make up the
next population.

Population Updating - EAs

75

 mate selection and environmental
selection
• Elitism

• Roulette

• Discard the worst or the oldest

• Tournament selection

• Others

Mate Selection

Evolutionary Operations

Fitness Evaluation

Environmental Selection

The selection strategy is used in
mate selection and environmental

selection.

Selection strategy:

Population Updating - EAs

76

• Elitism: the simplest strategy that
keeps the individuals with higher
fitness.
• It can cause a loss of diversity in the

population, which may lead the
population falling into local optima.

• Discard the worst or the oldest:
discarding the worst is similar to
elitism, which removes the
individuals with poor fitness
values from the population.
• Discards the oldest is also called

aging evolution, which can explore
the search space more, instead of
zooming in on good models too
early.

Population Offspring

Individual with
the best fitness

Directly
preserve to the
offspring

An illustrative example of Elitism.

Population Offspring

Individual with
the worst fitness

An illustrative example of Discard the worst.

Discard

1249

Population Updating - EAs

77

• Roulette: gives every individual a
probability according to its fitness
among the population to survive
(or be discarded), regardless it is
the best or not.
• The individuals with better fitness

have a higher probability to be
selected, and the individuals with
low fitness also have a chance of
being selected.

• Tournament selection: selects
the best one from an equally
likely sampling of individuals.
• The worst individual never survives,

while the best individual wins all
tournaments in which it participates

Population Offspring

An illustrative example of Tournament selection.

Individuals in the
population

Candidates
selected for a
tournament

Winner passed
on to the next
generation

Population

An illustrative example of Roulette.

Population Updating - EAs

78

 Single objective
Only consider one indicator of neural architecture such as the performance

value
(e.g. only searching for the architecture with the highest classification

accuracy)
Problems:

 Cannot find an architecture that can achieve the best in all objectives, some
compromise architectures are need.

Accuracy:99%
Need more
computational resources

Accuracy:80%
Need less
computational resources

Which to choose?

Population Updating - EAs

79

 Multi-objective
Performance of the neural network and the number of parameters are

considered simultaneously

Solutions:
 converting it into a single objective optimization problem with weighting factors
(i.e. the weighted summation method)

 directly address it through some famous multi-objective optimization algorithms

- NSGA-II
- NSGA-III
- MOEA/D

Population Updating - EAs

80

Mutation and Crossover operators are two of the
most commonly used evolutionary operations in EAs.

Mutation
Type

Add UnitAdd Unit

Delete UnitDelete Unit

Modify UnitModify Unit

Random strategy Random strategy

Guided strategy Guided strategy

Variable mutation
probability

Variable mutation
probability

1250

Population Updating - EAs

81

Crossover
• The crossover operation is

inspired by the crossover
phenomenon of chromosomes in
biology. The chromosomes of two
parents cross and exchange equal
segments between non sister
chromatids in the genetic process
to generate two new
chromosomes. At the same time,
the probability of chromosomes
crossover is generally high.

Common crossover operator
• Cluster crossover
• internal crossover

Homologous
chromosomes

Chromosome
s crossover

Chromosomes crossover.

Recombinant
chromosomes

Parent 1

Crossover operator.

Child 1

Child 2Parent 2

Population Updating - EAs

82

Cluster crossover: One or more cross points are randomly
generated in the coding strings of two parent individuals, and then
gene exchange is conducted at the control position of two individuals.

An example of cluster crossover [1].

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3
amount, in, out
8, 64, 256

3 type=1
amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

amount, in, out,
k3, 128, 28, 12

1 type=2

mean pooling

2 type=3
amount, in, out
9, 28, 256

3 type=1
amount, in, out
6, 256, 128

4 type=1

max pooling

5 type=3
amount, in, out,
k5, 128, 256, 40

6 type=2

parent 1

parent 2

recombine

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3
amount, in, out
6, 64, 128

3 type=1

max pooling

4 type=3
amount, in, out,
k5, 128, 256, 40

5 type=2

amount, in, out,
k3, 128, 28, 12

1 type=2

mean pooling

2 type=3
amount, in, out
9, 28, 256

3 type=1
amount, in, out
8, 256, 256

4 type=1
amount, in, out
5, 256, 80

5 type=1

mean pooling

6 type=3

child 1

child 2

[1] Sun, Yanan, et al. "Completely automated CNN architecture design based on blocks." IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 4, pp. 1242-1254, 2020.

Population Updating - EAs

83

Detail of basic unit
• number: the position of unit in network

• type: different types of unit

• parameters: parameter configuration

for each unit

• 1: ResNet Block unit
• 2: DenseNet Block unit
• 3: Pooling layer unit

An example of RB.

conv 1 conv 2 conv 3input output⊕

⊕ add

conv 1 conv 2 conv 3input outputconv 4

An example of DB including four convolutional layers.

ResNet Block unit

• amount: the number of RBs
• in: input spatial size
• out: output spatial size

Pooling layer unit

• one PU consisting of a
single pooling layer

• pooling layer types: max/
mean pooling

DenseNet Block unit

• amount: the number of DBs
• in: input spatial size
• out: output spatial size
• k: growth rate of spatial

size per layer

Population Updating - EAs

84

Internal crossover: Each type of unit is collected from the
individual and stacked in the order of the individual. Align the units of
same type in two individuals, pair the units at the same and perform
the crossover operation. Then restore the unit lists to generate two
new individuals.

An example of internal crossover [1].

C1 P1 C2 C3 P2 F1 F2 F3parent 1

C2

C3

C1

convolution
unit list

P2

P1

pooling
unit list

F2

F3

F1

fully connection
unit list

C1 P1 C2 P2 P3 F1 F2 F3 F4parent 2

C2

C1

convolution
unit list

P2

P1

pooling
unit list

P3

F2

F3

F1

fully connection
unit list

F4

unit collection unit alignment

C2

C3

C1convolution
unit list C2

C1
crossover

crossover

P2

P1pooling
unit list P2

P1

P3

crossover

crossover

fully
connection
unit list

F2

F3

F1

F2

F3

F1

F4

crossover

crossover

crossover

unit restore

C1 C2 P1 P2 F1 F2 F3

child 1 C1 P1 C2 C3 P2 F1 F2 F3

child 2 C1 P1 C2 P2 P3 F1 F2 F3 F4

C1 C2 P1 P2 F1 F2 F3

[1] Sun, Yanan, et al. "Evolving deep convolutional neural networks for image classification." IEEE transactions on
evolutionary computation 24.2 (2017): 394-406.

1251

Population Updating - EAs

85

Mutation
The mutation operation of genetic algorithm is
inspired by chromosomes variation.
⁻ Mutation operations may perform on each

position of the units from one individual.
Mutation can be defined as small random
adjustments in chromosomes to obtain new
solutions.
Common mutation strategy
• Random strategy
• Gaussian strategy
• RNN based strategy

Advantage
• Make EAs have global random

search ability
• Maintain population diversity

Chromosomes variation.

Mutation operator.

Deletion

Duplication

Inversion

Random
Strategy

Population Updating - EAs

86

Random strategy
A mutation position is randomly
selected in the current individual,
and one particular mutation
operation is selected from the
mutation list with a identical
probability.

Common mutation

operations
• Add (add a unit with random

parameter settings)
• Delete (remove the unit at

the selected position)
• Modify (randomly changing

the parameter values of the
unit at the selected position)

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out,
k4, 64, 128, 12

3 type=2

amount, in, out
8, 128, 256

4 type=1

amount, in, out
5, 256, 80

5 type=1

mean pooling

6 type=3

Add

A example of add operator [1].

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
8, 64, 256

3 type=1

amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

mutation position

type=2type=1 type=3
candidate
units

𝑝 =
1

3
𝑝 =

1

3
𝑝 =

1

3

[1] Sun, Yanan, et al. "Completely automated CNN architecture design based on blocks." IEEE transactions on neural
networks and learning systems 31.4 (2019): 1242-1254.

Population Updating - EAs

87

A example of delete operator [1].

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
5, 64, 80

3 type=1

mean pooling

4 type=3

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
8, 64, 256

3 type=1

amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

mutation position

Delete

A example of modify operator [1].

amount, in, out,
k5, 128, 128, 20

1 type=2

max pooling

2 type=3
amount, in, out,

k
5, 128, 128, 12

3 type=2

amount, in, out
5, 128, 80

4 type=1

mean pooling

5 type=3

Modify

amount, in, out,
k5, 128, 64, 20

1 type=2

max pooling

2 type=3

amount, in, out
8, 64, 256

3 type=1

amount, in, out
5, 256, 80

4 type=1

mean pooling

5 type=3

mutation position

parameter
settings

type 1, 2, 3 amount 5, 6, 7… in, out 32, 64, 128… …

[1] Sun, Yanan, et al. "Completely automated CNN architecture design based on blocks." IEEE transactions on neural
networks and learning systems 31.4 (2019): 1242-1254.

Efficient Evaluation

88

[1] Ying, Chris, et al. "Nas-bench-101: Towards reproducible neural architecture search." International Conference on Machine
Learning. PMLR, 2019.
[2] Real, Esteban, et al. "Large-scale evolution of image classifiers." International Conference on Machine Learning. PMLR, 2017.
[3] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." Proceedings of the aaai conference on
artificial intelligence. Vol. 33. No. 01. 2019.

 It will take about 32 minutes to train a neural network
to convergence on the TPU v2 accelerator which is the
ultra high-performance hardware[1], not to mention
training hundreds or thousands of neural networks in
ENAS.

 Examples:
• Large-scale Evo algorithm[2] use 250 GPUs for 11

days.
• AmoebaNet[3] which takes the use of 450 GPUs for 7

days.
Such computational resources are not available

for everyone interested in NAS.

1252

Efficient Evaluation

89

 Due to the evaluation is the most time-consuming stage,
the strategies to improve the efficiency of evaluation will
be discussed.

 Five of the most common methods to shorten the time:
‒ Weight inheritance
‒ Early stopping policy
‒ Reduced training set
‒ Population memory
‒ Performance predictor

Weight Inheritance

90

• The evolutionary operators usually
do not completely disrupt the
architecture of an individual. →
Some parts of the new generated
individual are the same with
previous individuals.

• The ultimate weight inheritance
let the new individual completely
inherit the knowledge its parent
learned and training such an
individual to convergence will save
a lot of time.

Inherit

An example of weight inheritance.

1

2

3

Input

Output

1

2

3

4

Input

Output

Individual in
current population

New generated
individual

Early Stopping Policy

91

• The simplest way is to set a fixed relatively small number
of training epochs.

• Disadvantages: The early stopping policy can lead to
inaccurate estimation about individual performance
(especially the large and complicated architecture).

An example of inaccurate estimation about individual performance using early stopping policy.

Reduced Training Set

92

• Using a subset of that data has similar properties to a
large dataset can also shorten the time effectively.

• The smaller dataset can be regarded as the proxy for the
large one, e.g. CIFAR-10 and ImageNet.

CIFAR-10, 10 classes ImageNet, 1000 classes

CIFAR-10 and ImageNet.

1253

Population Memory

93

• The population memory is a unique acceleration method of
ENAS.

• It works by reusing the corresponding architectural
information that has previously appeared in the population.

if the identifier
of indi #k

= the identifier
of indi #1 The fitness

of indi #k =
fitness #1

An illustrative example of population memory.

Cache

identifier of indi #1 fitness #1

identifier of indi #2 fitness #2

…… …

identifier of indi #n fitness #n

Evaluate indi #k

Indi #k

First query in
the cache

Performance Predictor

94

• Performance predictor directly maps the architecture
and its performance by using a regression model.

• Advantages: can effectively evaluate the architecture.

Training

classifier
accuracy1 Encoding

Encoding

Random
feature
selector

Random
feature
selector

Predictor Pool

Data 1

Data n

CART1
CARTk

Decision variables：CNN architecture

classifier
accuracy2

…

……

An illustrative example of performance predictor (E2EPP[1]).

[1] Sun, Yanan, et al. "Surrogate-assisted evolutionary deep learning using an end-to-end random forest-based performance
predictor." IEEE Transactions on Evolutionary Computation 24.2 (2019): 350-364.

Part III：Evolutionary Deep
Learning based on Genetic
Programming for IASP and PR

95

Non-NN-based Deep Learning

𝐶𝑎𝑛 𝑓 𝑥 𝑏𝑒 𝑜𝑡ℎ𝑒𝑟 𝑓𝑜𝑟𝑚𝑎𝑡 𝑡𝑜 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝑑𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔?

• Zhi-Hua Zhi, and Ji Feng. "Deep forest." National science review 6, no. 1 (2019): 74-86.
• Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma. "PCANet: A simple deep learning

baseline for image classification?." IEEE transactions on image processing 24, no. 12 (2015): 5017-5032.
• Onuwa Okwuashi, and Christopher E. Ndehedehe. "Deep support vector machine for hyperspectral image

classification." Pattern Recognition 103 (2020): 107298.

• Deep Forest: decision tree

• PCANet: PCA filters

• Deep Support Vector Machine: SVM

• Genetic Programming based Deep
Structures/Learning

• ……

96

1254

Deep Learning (Prof. Zhihua Zhou)

Layer-by-layer
Processing

Feature
Transformation

Sufficient model
Complexity

97

Why Genetic Programming?

① Flexible variable-length representation

② GP is a learning algorithm that automatically learns model

structures and coefficients

—a model can be a feature, a set of features, a classifier, a rule, or

an ensemble

③ Perform multiple tasks using a single tree/program

④ Easy to have deep structures and complex functions as nodes

⑤ Potential interpretability (understandability)

Other advantages: population-based beam search, non-differential
objective functions,
ease of cooperating with domain knowledge

98

3-Tier/2-Tier GP

99

3-Tier/2-Tier GP

Daniel Atkins, Kourosh Neshatian and Mengjie Zhang. "A Domain Independent Genetic Programming Approach to Automatic Feature
Extraction for Image Classification". Proceeding of the 2011 IEEE Congress on Evolutionary Computation. IEEE Press. New Orleans, USA.
June 5-8, 2011. pp. 238-245.

Harith Al-Sahaf, Andy Song, Kourosh Neshatian, Mengjie Zhang. "Two-Tier Genetic Programming Towards Raw Pixel Based Image
Classification". Expert Systems With Applications. Vol. 39, Issue 16. 2012. pp. 12291-12301

100

1255

2-Tier GP (2012)

101

GP-HoG [2015-16]

102

MLGP: An Automatic Feature Extraction Approach to
Image Classification Using Genetic Programming

Five layers:

① Input layer

② Region detection layer

③ Feature extraction layer

④ Feature construction

layer

⑤ Classification layer

Ying Bi, Bing Xue, Mengjie Zhang. An Automatic Feature
Extraction Approach to Image Classification Using Genetic
Programming. Proceeding of the 21th Europen Conference on
Applications of Evolutionary Computation (EvoApplications
2018). Lecture Notes in Computer Science. Parma, Italy. 4-6
April 2018. pp. 421-438.

103

Example Solutions

 An example solution on
face images

 An example solution on
object images

104

1256

FGP: Genetic Programming with A Flexible Program Structure
and Image-Related Operators for Feature Learning to
Image Classification

 The complexity of the FGP solutions for different tasks can be various

 The FGP method can learn various types and numbers of effective features from raw images

 FGP can be easily applied to different types of image classification tasks to achieve good

classification performance

 The evolved solutions of FGP can be easily visualised, which provide more insights on the tasks

An image An FGP program Learnt features Linear SVM

Class
label

Ying Bi, Bing Xue, Mengjie Zhang. Genetic Programming with Image-Related Operators and a Flexible Program Structure for Feature Learning in Image Classification.
IEEE Transactions on Evolutionary Computation. Vol. 25, Issue 1. 2021. pp. 87 - 101. DOI: 10.1109/TEVC.2020.3002229

105

Experimental Results

 Classification error rates of the proposed FGP method

106

IEGP: Genetic Programming with A New Representation to
Automatically Learn Features and Evolve Ensembles for
Image Classification

 A new multi-layer individual representation is developed in IEGP to allow it to

automatically and simultaneously learn features and evolve ensembles for image

classification

 IEGP can learn high-level features through multiple transformations

 IEGP can automatically select and optimise the parameters for the classification

algorithms in the evolved ensemble

 IEGP can automatically address the diversity issue when building the ensembles

Ying Bi, Bing Xue, Mengjie Zhang. "Genetic Programming with A New Representation to Automatically Learn Features and Evolve Ensembles for
Image Classification". IEEE Transactions on Cybnertics. Vol. 51, Issue 4. 2021. pp. 1769-1783. DOI:10.1109/TCYB.2020.2964566. 107

Multi-Layer Representation of IEGP

Overall Algorithm

108

1257

Experimental Results

 Classification accuracy of the proposed IEGP method

109

Example Solutions

1

2

Ensemble of different classifiers

Ensemble of ensembles

110

GP-FR: with feature reuse

Qinglan Fan, Ying Bi, Bing Xue, and Mengjie Zhang. "Genetic programming for image classification: a new program representation with flexible feature reuse." IEEE
Transactions on Evolutionary Computation, DOI: 10.1109/TEVC .2022.3169490, 2022.

• A new GP approach with a new program structure, a new function set
and a new terminal set to achieve flexible feature reuse

• Evolve programs/solutions that conduct region detection, image
filtering, feature extraction, feature concatenation, and classification
automatically and simultaneously

111

EDLGP

Ying Bi, Bing Xue, and Mengjie Zhang. "Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification." IEEE Transactions on
Evolutionary Computation, DOI: 10.1109/TEVC.2022.3214503, 2022.

• Evolve variable-length tree based symbolic models, achieving promising
classification performance in the data-efficient scenario

• A flexible multi-layer model representation to automatically evolve
shallow or deep models for different image classification tasks

112

1258

EDLGP

Ying Bi, Bing Xue, and Mengjie Zhang. "Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification." IEEE Transactions on
Evolutionary Computation, DOI: 10.1109/TEVC.2022.3214503, 2022.

Classification Performance

• Comparisons
between the
new approach
and CNNs of
varying
complexity and
dropout rate

113

Two-stage GP (BERGP)

Ying Bi, Jing Liang, Bing Xue, and Mengjie Zhang. "A Genetic Programming Approach with Building Block Evolving and Reusing to Image Classification." IEEE
Transactions on Evolutionary Computation, DOI: 10.1109/TCYB.2022.3174519, 2023.

• A two-stage approach (BERGP) based on GP with simple program
structures is developed to automatically evolve and reuse blocks to
construct solutions of ensembles for data-efficient image classification

• The first stage evolves a set of small and diverse blocks for image
feature extraction

• The second stage makes effective reuse of the evolved blocks to
construct ensembles for image classification

114

Two-stage GP (BERGP)

Ying Bi, Jing Liang, Bing Xue, and Mengjie Zhang. "A Genetic Programming Approach with Building Block Evolving and Reusing to Image Classification." IEEE
Transactions on Evolutionary Computation, DOI: 10.1109/TCYB.2022.3174519, 2023.

Example Solutions

• Eight trees/blocks
selected from Stage 1

115

Summary

NN-based evolutionary deep learning has started to
demonstrate great potential to outperform the manually
designed state-of-the-art deep networks in image
classification and analysis

GP based evolutionary deep learning has also started,
and is expected to demonstrate the advantages in
effectiveness, efficiency and interpretability in image
analysis

Evolutionary deep learning is still in an early stage, but is
expected to show the great accuracy, efficiency, small
training set, and good interpretability of the deep models.

116

1259

Acknowledgement

 Thanks GECCO 2043 Organizers

 Thanks CI lab at Zhengzhou University

 Thanks ECRG group at VUW

117

Summary

118

Concluding Remarks

 Evolutionary computer vision and image analysis is still a
big and hot topic

 Evolutionary deep learning will play a significant role

GP-based deep learning will have more developments

 Interpretability and expandability will be a major focus

 EC techniques will be more popular in pattern recognition

 Classification, Clustering

GP, GAs, PSO, DE,

 EC will be in more mainstream conferences and
journals

GPU/FPGA will be popular tools

119

Future Events

 IEEE SSCI Symposia

 CI in Feature Analysis, Selection and Learning in Image and Pattern
Recognition (IEEE FASLIP))

 CI for Multimedia Signal and Vision Processing (IEEE CIMSIVP)

 EvoStar 2025

 Special Session on Evolutionary Machine Learning

 EvoApplications including Image Analysis and Pattern Recognition

 Paper submission: 01 November 2024

 IEEE CEC 2025

 Special Session on Evolutionary Computer Vision

 Paper Submission Deadline: 31 Jan 2025 (tentative)

120

1260

