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Abstract
Learned Sparse Retrieval (LSR) techniques use neural machinery

to represent queries and documents as learned bags of words. In

contrast with other neural retrieval techniques, such as generative

retrieval and dense retrieval, LSR has been shown to be a remarkably

robust, transferable, and efficient family of methods for retrieving

high-quality search results. This half-day tutorial aims to provide

an extensive overview of LSR, ranging from its fundamentals to the

latest emerging techniques. By the end of the tutorial, attendees

will be familiar with the important design decisions of an LSR

system, know how to apply them to text and other modalities, and

understand the latest techniques for retrieving with them efficiently.

Website: https://lsr-tutorial.github.io
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1 Extended Abstract
1.1 Motivation and Scope
Neural information retrieval approaches, which use deep learning

to improve relevance ranking based on the similarity of query

and document content, have greatly improved search quality [31].

These approaches can be divided into two categories: re-ranking

methods that use a transformer to compare query and document
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text at query time and first-stage retrieval methods that produce

document representations offline and store them in an index. Re-

ranking methods use a pre-trained language model like BERT, T5,

or ChatGPT to predict relevance scores at inference time, which is

a slow but effective strategy [31, 54]. First-stage retrieval methods

produce query and document representations independently, which

means that document representations can be pre-computed and

only a query representation needs to be computed at query time.

While these methods are not as effective as re-ranking methods,

they are substantially faster and often used to identify promising

candidate documents that can be reranked in a later stage.

First-stage retrieval methods can be divided into generative rank-

ing methods, dense retrieval methods, and learned sparse retrieval

methods. Generative retrieval is an emerging approach in which

document representations are stored in the transformer model itself,

removing the need for a separate index but creating new efficiency

and scalability challenges [29, 47, 56]. Dense retrieval methods, on

the other hand, build dense, fixed-dimensional representations for

each document, which are then indexed and retrieved over [27].

However, dense retrieval comes with several limitations. Retrieval

over the dense vectors does not scale without using approximation

techniques like HNSW [37], dense representations can be costly in

terms of storage [59], and the latent vector representations used

are inherently challenging to interpret [25].

Learned Sparse Retrieval (LSR) techniques provide a solution

to these problems by representing documents as sparse vectors,

typically with dimensions that represent terms in a vocabulary,

akin to traditional Bag-of-Words (BoW) models. However, unlike

BoW models, LSR models learn the tokens [35] and weights [16]

through training, allowing them to match semantically, as dense

and generative retrieval models do. Moreover, their sparsity allows

them to leverage efficient posting-list-based retrieval algorithms

for fast, exact top-𝑘 retrieval [28].

The growing body of work in LSR and its integration into in-

dustry search products [24] suggests that LSR has emerged as a

prominent and compelling family of retrieval techniques. How-

ever, there has not yet been a tutorial focused on this important

research direction (unlike other techniques such as Generative Re-

trieval [55]). This tutorial brings together researchers who have

made contributions to LSR—including those in modeling, training,

and modality—to cover LSR from its fundamentals to emerging

topics. Although the tutorial is directed at those with intermediate

experience in IR, we expect the range and depth of topics covered

to provide value to beginners and experts too.
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1.2 Objectives
After the tutorial, attendees will understand the concepts behind

learned sparse retrieval (LSR) and know how to apply it in practice.

Specifically, attendees will learn to:

• Compare LSR methods to other transformer-powered rank-

ing methods (i.e., dense retrieval and reranking with cross-

encoders)

• Evaluate LSR methods using standard datasets and evalua-

tion practices

• Describe the components of LSR methods, such as the choice

of sparse encoders and sparse regularizers, and their associ-

ated design decisions

• Compare the impact of LSR methods’ components in terms

of effectiveness and efficiency

• Describe the design of state-of-the-art LSR methods

• Apply LSR to scenarios outside of monolingual text retrieval,

such as multilingual and multimodal settings

• Describe how learned sparse representations can be stored

in an inverted index for first-stage retrieval

• Describe strategies for improving the efficiency of retrieval

from an inverted index

• Understand how hybrid approaches that further improve

effectiveness can be created by combining LSR methods with

dense retrieval methods

1.3 Topics and Schedule
The tutorial is planned for a half-day, consisting of two 90-minute

sessions with a break in between. The tutorial will be held in person.

We propose to cover the following topics:

Part 1 (90 minutes) – Fundamentals
Introduction to LSR [20 min] To introduce LSR, we start with
a definition of sparse retrieval. Sparse retrieval is characterized

by representing queries and documents as a set of their terms

(BoW) [49] and using probability-based methods [13, 14] that score

term matches independently from each other [50], with one famous

example being BM25 [48]. The main advantage of this natural repre-

sentation of documents is that it is effective at retrieving documents

that have lexical matches to the query, which is a signal of rele-

vance [52]. However, while lexical matching is a useful prior, it can

be too restrictive, as it does not include synonyms, regionalisms

and other different ways of expressing the same idea [23]. In an

effort to fix this lexical mismatch, document and/or query expan-

sion methods [15, 20, 46] have been proposed. Inspired by prior

efforts to design both the scoring function and term expansion, LSR

methods [22, 35, 61, 64] appeared as a way of learning scoring and

expansion rather than defining heuristics.

Datasets and Evaluation [10 min] LSR approaches have most

often been trained on the MSMARCO passage retrieval dataset [1],

which consists of Web queries and passages. Evaluation is then

performed either in-domain or out-of-domain. In-domain can either

be the MSMARCO query devset (small 6980 queries version) with

the main metric being MRR@10 [58] or the TREC-DL tasks [8–12]

that use the MSMARCO corpus, but add new queries and relevance

judgments, using nDCG@10 [26] as the main metric. For out-of-

domain, the main experiments use the BEIR [57] benchmark, which

is where LSR methods showcase their effectiveness, for example by

greatly out-performing both BM25 and the dense retrieval methods

of the time in [21].

LSR Framework [30 min] Learned sparse retrieval can be de-

scribed as a framework [45] consisting of three primary compo-

nents: a sparse encoder, a sparse regularizer, and a supervision signal.
The sparse encoder projects raw queries and documents into the vo-

cabulary space, generating lexical or bag-of-words representations.

This encoder has two key properties: weighting and expansion.

Weighting can either be learned or fixed (e.g., BM25 provides an ex-

ample of fixed weighting), while expansion can be learned, reused

from existing methods, or omitted altogether (with BM25 serving

as an example of no expansion). The sparse regularizer controls the
sparsity of the lexical representation by approximating it through

a differentiable weighted loss term. This component is crucial as it

affects the size of the inverted index and the retrieval latency of the

LSR system. Finally, the supervision signal refers to the techniques

employed to train the LSR model, such as hard negative mining

and distillation from a teacher model.

Text LSR [30 min] The previously introduced framework offers a

foundation for analyzing various LSR methods from the literature.

In the context of text retrieval, we will examine several prominent

approaches, including SNRM [61], DeepImpact [38], EPIC [35],

SPLADE [22], and UniCoil [30], through the unified lens of this

framework. SNRM [61] was among the first to explore the use

of neural networks (specifically, an LSTM network) for learning

term expansion and weighting from training data; however, its

effectiveness remains limited. The rise of pretrained transformer

models, such as DistilBERT [51] and BERT [17], has significantly

advanced the field of neural IR [31], and LSR in particular.

DeepImpact [38] leverages a BERT model to re-weight term

scores in both queries and documents. EPIC [35] enhances docu-

ment semantics by extracting expansion terms from the logit matrix

of a Masked Language Model (MLM), while keeping queries unex-

panded. Similarly, UniCoil [30] shares traits with EPIC but performs

document expansion using an external model, Doc2Query [46].

SPLADE [22] goes further by incorporating term weighting and

expansion for both queries and documents, utilizing the MLM head.

By employing distillation during training, SPLADE [21, 22] achieves

competitive performance on MSMARCO and demonstrates strong

zero-shot generalization on the BEIR benchmark, surpassing many

dense retrieval models.

In this section, alongside discussing the differences between

these methods, we will provide a quantitative analysis of how these

distinctions, as defined by the framework’s components, impact

the effectiveness and efficiency of LSR systems.

Part 2 (90 minutes) – Emerging Topics

Multilingual LSR [20 min] While common LSR methods like

SPLADE produce representations grounded in an English vocab-

ulary, other work has explored challenging multilingual settings

in which the input text and the representation vocabulary are not

restricted to a single language [42, 43]. In this setting, using a large

multilingual vocabulary can substantially increase computational

costs and introduce difficulties aligning representations across lan-

guages [42].
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Multimodal LSR [20 min] Learned sparse representations are

typically grounded in an English vocabulary that is tied to the un-

derlying transformer model (e.g., a WordPiece vocabulary is used

with BERT). This property means that representations are transpar-

ent, but it creates challenges in settings where the input data is not

aligned with the vocabulary. In a multimodal setting, the queries or

documents being ranked may not even contain text, such as when

matching captions with images. A variety of approaches have been

proposed to overcome the challenge of aligning images with tex-

tual representations, including distillation-based approaches that

adapt existing dense retrieval methods and large-scale approaches

that couple a large amount of training data with complex new

architectures [6, 34, 44, 62].

Indexing & Efficient LSR [30 min] Inverted Indexes are natural

candidates to be used to index and retrieve learned sparse repre-

sentations, given the extensive research of these data structures

in Information Retrieval [18, 19, 32, 36, 39, 40]. Yet, maybe surpris-

ingly, Inverted Indexes do not allow for efficient retrieval when

applied to sparse embeddings. The reason is that LSR embeddings

fail to comply with some crucial assumptions [2, 4], namely 1)

term frequencies following a Zipfian distribution and 2) queries

being short. For this purpose, it is common practice to trade the

exactness of the search for significant efficiency gains. On the one

hand, graph-based solutions meant for searching over dense embed-

dings have been adapted to work in the sparse domain.
1
Notably,

these solutions won the dedicated track at the BigANN@NeurIPS

competition in 2023. On the other hand, approximated Inverted

Indexes, specially tailored to work with sparse embeddings, have

also been proposed [3, 41]. Among them, Seismic [4, 5] excels in ef-

ficiency/effectiveness trade-off w.r.t to the other solutions. Example

code using Seismic will be provided as part of the support material.

Hybrid Dense-Sparse Retrieval [20 min] Beyond relying solely

on learned sparse retrieval for document retrieval, recent works

demonstrate that sparse and dense retrieval methods capture com-

plementary relevance signals, such as lexical matching and semantic

matching. In this section, we will review recent works that explore

the fusion of dense and sparse representations in order to further

improve effectiveness [7, 33, 53, 60, 63].
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