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Music is frequently associated with the notion of language, as both domains share several similarities, includ-
ing the ability for their content to be represented as sequences of symbols. In computer science, the fields
of Natural Language Processing (NLP) and Music Information Retrieval (MIR) reflect this analogy through a
variety of similar tasks, such as author detection or content generation. This similarity has long encouraged
the adaptation of NLP methods to process musical data, particularly symbolic music data, and the rise of
Transformer neural networks has considerably strengthened this practice.

This survey reviews NLP methods applied to symbolic music generation and information retrieval follow-
ing two axes. We first propose an overview of representations of symbolic music inspired by text sequential
representations. We then review a large set of computational models, particularly deep learning models,
which have been adapted from NLP to process these musical representations for various MIR tasks. These
models are described and categorized through different prisms with a highlight on their music-specialized
mechanisms. We finally present a discussion surrounding the adequate use of NLP tools to process symbolic
music data. This includes technical issues regarding NLP methods which may open several doors for further
research into more effectively adapting NLP tools to symbolic MIR.
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1 Introduction and Background

The evolution of Natural Language Processing (NLP) has been marked by a substantial journey,
progressing from rudimentary rule-based systems like ELIZA [230] in 1966 to the widespread
adoption of sophisticated deep learning models by the general public, such as ChatGPT. In parallel
with these advancements, computational music research has adopted NLP approaches to process
musical data for various analysis and generative tasks. This transfer of NLP methods to symbolic
music data has become more and more prevalent in the Music Information Retrieval (MIR)
community, especially with the breakthrough of Transformer models.

NLP is a field at the crossroads between linguistics and computer science that focuses on the
interaction between computers and human language. Its main purpose is to allow computers to
deal with human languages while taking into account their characteristics, such as syntactic or
semantic properties which are essential for language understanding, interpretation, or generation.
Through various techniques, in particular, by training deep learning models, multiple tasks are
tackled from text analysis such as sentiment analysis, part-of-speech tagging, text similarity, or
language identification to generative tasks such as summarization, question answering, chatbot
conversation, or machine translation.

The field of MIR combines musicology and computer science to develop techniques for analyz-
ing music or retrieving music-related data. It has been extended in recent years to encompass as
well techniques for music generation. While audio files encode music as sound, at a low repre-
sentation level such as waveforms or spectrograms, symbolic music consists of abstract notations
representing concepts such as notes, chords, or intervals, which compose musical scores. Although
requiring more sophisticated notation systems, symbolic music representations allow for the study
of music at a higher level, such as analysis of harmony, form, or texture. In practice, symbolic mu-
sic remains prevalent in digital music production mainly relying on the MIDI format, which stands
as a ubiquitous standard within digital audio workstations. The scope of this survey is limited to
symbolic music representations.

1.1 Music and Natural Language: Similarities and Specificities

Beyond computer science studies, parallels between music and natural language are often drawn,
as music is often considered as a linguistic system [103]. Both are specific to human species and
are learned through imitation. Both can be deployed under two modalities: an annotated form
(text, sheet music) and an auditory form (speech, musical performance) [62]. Several similarities
can also be found from a structural point of view while specificities remain.

Hierarchical Representations. Text and symbolic music representations are both semiotic sys-
tems [27] based on arrangements of symbols. Text is built on characters or ideograms, and written
music can be transcribed with a variety of symbols derived from various notation systems such
as standard notation, numbered notation, or tablature. Both can be represented as sequences of
elements which can be segmented or grouped at different levels. Text can be segmented into char-
acters, syntactic phrases, sentences, and paragraphs, whereas music can typically be segmented
into temporal units such as notes, motifs, musical phrases, or sections [129] as represented in
Figure 1.

However, while white-spaces facilitate token segmentation of text in many languages, identi-
fying boundaries of musical motives and phrases remain subjective [141] and can rise overlap
problems [87]. In this sense, musical scores might more easily be compared to unsegmented lan-
guages [172] where word segmentation can be unclear [96].

Underlying Time and Simultaneity in Music. Text and music can be perceived as elements unfold-
ing in time [250]. While speech might have a temporal dimension in terms of speech rate [223],
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Fig. 1. Possible segmentation levels in text and symbolic music. Such segmentations can, however, include
more or less fine-grained levels and their delimitations can be ambiguous (Section 4).

text does not explicitly encode any of these rhythmic modulations. In contrast, musical rhythm is
based on an isochronic grid [103] in which notes are notated with rigorous timings, in terms of
onsets and durations, beyond some microtimings linked to performance embellishments or tempo
changes. In addition, while sequences of notes in monophonic music can be compared to words in
text, polyphony adds a dimension that does not find any analogous element in text [7]. As a con-
sequence, slicing and tokenization methods have been elaborated to represent polyphonic music
as sequences of elements, although this generally requires an approximation or complexification
of the original data as presented in Section 2.

Symbol Polymorphism. The elements that constitute a musical score are less homogeneous than
text data. While textual elements are of a single type (characters, ideograms with possibly punctu-
ation), music symbols combine structural elements (bar, beat, etc.), note-related information (pitch,
duration, dynamics, etc.), and global information (tempo, instrument, etc.).

Grammars. Inspired by higher-level concepts in natural language, multiple models of musical
syntaxes have been proposed [6, 8]. Musical grammars rely on intrinsic concepts such as tension
and relaxation [130], harmony [192], or the implication-realization mechanism [166]. Grammatical
and syntactic rules induce expectancy in both language and music [103, 175], leading to similar
cognitive reactions for the interlocutor or the listener when they are being transgressed in both
fields [7, 179]. However, the existence of a global grammar describing music is not unanimously
accepted, even in a specific style [43].

1.2 Applying NLP Methods in Symbolic MIR

Common Tasks in MIR and NLP. Beyond the preceding parallels between text and symbolic music
representations, the NLP and MIR research fields are also related by similar tasks they address.
On the one hand, tasks involving labeled data that aim to classify whole textual document or
music piece are common, such as music composer classification [178] and text authorship attri-
bution [207], folk song origin classification [91] and language detection [105], music genre [36]
and text style [118] classification, or music emotion [102] and sentiment [229] classification. At a
lower level, such labels can also describe textual or musical segments which naturally leads to a
variety of segmentation tasks in both domains, including musical phrase retrieval [78] or musical
form analysis [258] in MIR and discourse parsing [142] or phrase segmentation [100] in NLP.

On the other hand, a variety of tasks rely on unlabeled music and text datasets. Apart from
clustering tasks in text [242] and music [31], these datasets are usually used to train generative
systems following a self-supervised way (i.e., predicting parts of the input itself, by learning repre-
sentations and patterns without external annotations). These models can be trained on tasks such
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Fig. 2. Overview of the survey, organized around three axes: similarities and specificities of NLP and MIR tasks
motivating representations of symbolic music inspired by NLP and models adapted from NLP for symbolic
music.

as symbolic music infilling [79] and text infilling [50], or music priming [99] and text continua-
tion [184]. At the scale of a piece or a document, style transfer is performed in both MIR, through
musical genres [241], and NLP, through language high-level elements such as formality or toxic-
ity [112]. More recently, text-conditioned generation has become more and more popular for the
general public, including chatbot dialog’ in NLP, and text-conditioned music generation [150].

However, NLP and MIR also include numerous tasks that are inherent to one field, as depicted in
Figure 2. These tasks specific to each field also reflect fundamental differences between these two
types of data, including semantics in language which is crucial in an entailment task, or polyphony
in music which is at the heart of harmonization and accompaniment generation tasks.

A variety of task evaluation methods have been implemented in both fields. In NLP, genera-
tive models are usually evaluated on benchmarks with a variety of metrics [17]. MIR generative
models are usually evaluated through user studies, taking the form of preference selection [206],
ranking [222], or scoring [151]. To counterbalance this subjective aspect, multiple quantitative
music-related metrics have been proposed to evaluate music generation [244]. For an in-depth
overview of music generation metrics, refer to the work of Ji et al. [107, p. 27].

Prominence of NLP Methods in Symbolic MIR. To address the preceding tasks, the MIR commu-
nity has closely followed advances in NLP by adapting successful tools from this field. This seems
particularly true for symbolic music generation for which multiple surveys have been published
in the past decade. These surveys generally fall into two categories. A first category categorizes
these generative systems from a technical perspective. These systems rely on methods such as

!https://chat.openai.com
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Fig. 3. Evolution of the number of articles containing NLP-related words. Left: Number of ISMIR papers
containing NLP-related words in their abstracts from 2000 to 2023. Right: Number of arXiv preprints returned
by the APl query “music AND <term>".

grammars or Markov chains [60], or more recently on deep learning methods [12], organized
by model architecture [226] or types of generation conditions [41, 265]. A second category of
overviews bring together works that share a common musical purpose or task [90] and catego-
rize them based on the nature of the generated content [143] or by the context surrounding the
generated content [107].

Although MIR studies commonly adapt techniques from other fields such as image process-
ing [97], a prominent amount of symbolic music generation approaches are adapted or inspired
from NLP methods. Figure 3 describes the number of publications from the ISMIR conference that
include NLP-related terms in their abstract as well as music/NLP-related arXiv preprints. The rise
of Transformers from 2017 has largely contributed to increase these references, and a large number
of the NLP-derived state-of-the-art models in symbolic MIR are now based on this model. This
trend has encouraged dedicated initiatives in the MIR community, such as the organization of the
workshop NLP4MuSA (NLP for Music and Spoken Audio).? In addition, more and more overviews
of deep learning approaches for music generation, including NLP-based methods, are presented as
tutorials at conferences such as ISMIR®* or CMMR.*

Although not the focus of the present survey, it is finally worth noting that NLP methods
have also widely been applied to audio [1, 34]. Such audio applications have gained popularity
among the general public through commercial products, including audio music generation plat-
forms® or Al-based audio effects,’ which can then be integrated into a human-machine creative
process [213].

1.3 Survey Outline

The original approach introduced in this survey emphasizes the adaptation of NLP methods for
music generation and information retrieval within the domain of symbolic music. These encom-
pass tools and methods not only for symbolic music generation, which constitutes a large part of
MIR research today, but also for existing analysis tasks. From a more epistemological point of view,
it is our hope that analyzing NLP approaches to process symbolic music representations brings an
original and promising approach to reconsider the question of what music shares with natural
language.

Zhttps://sites.google.com/view/nlpdmusa
Shttp://ismir2023program.ismir.net/tutorials html#T3
https://cmmr2023.gttm jp/keynotes/#Yang_abst
Shttps://suno.com/

®https://music.ai/
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We present an overview of NLP methods adapted for symbolic MIR by proposing taxonomies of
two technical aspects presented next and also shown in Figure 2—representations (Section 2) and
models (Section 3):

— Choosing a representation refers to encoding content (text or symbolic music) into a for-
mat suitable for computational processing. Adapting NLP models to symbolic MIR mainly
involves sequential representations.

— The model performs the task by processing a representation of the input content. Such a
model can be based on recurrent layers or attention heads of neural networks, with spe-
cific architectures or training paradigms, and potentially mechanisms specifically tailored
for symbolic music data. Although Transformers are only a limited part of NLP approaches,
they appear to be by far the predominant NLP model used in MIR today. For this reason, this
survey will mostly focus on attention-based models after mentions of shallow and recurrent
models.

We then discuss the use of such NLP techniques for symbolic MIR by raising possible technical
limitations when employing these methods stemming from differences between music and text.
We also outline future directions in which NLP methods can be implemented and adapted for
symbolic music (Section 4).

The MIR community frequently releases new models or methods adapted from NLP. This
survey includes such developments up until mid-2024. A collaborative repository is maintained to
facilitate continuous updates of newly released tools: https://github.com/dinhviettoanle/survey-
music-nlp.

2 Representations of Symbolic Music as Sequences

Text data inherently follows a sequential structure composed of elements spanning from individual
characters to full sentences. In contrast, representing musical content as a sequence of homoge-
neous elements is not as straightforward. The multiplicity of information included in a single note
(pitch, duration, position, etc.) and the common occurrences of simultaneous notes (polyphony,
chords and melody, etc.) make the problem more complex than with text. However, this sequential
representation is necessary for the musical data to be subsequently processed by sequential mod-
els, which were initially designed to handle text data. This section presents various methods that
have been proposed to represent music as sequences of elements.

2.1 Tokenization Strategies

Tokenization refers to the process of representing complex content into a sequence of elements
for computational processing. In NLP, tokenization is the task of segmenting a sequence of atomic
elements—characters—by grouping them together into informative tokens [161], such as subwords,
words, or multiple-word expressions. The rise of NLP models in MIR has naturally encouraged the
adoption of this term for music representations. We propose a taxonomy of tokenization strategies
in symbolic MIR represented in Figure 2 (left).

We organize tokenization strategies within two classes: time-slice-based tokenization and
event-based tokenization. Time plays a special role in music since the time position of notes
fundamentally contributes to the conveyed information. Musical elements are commonly thought
as occurring on an underlying isochronic grid [103] in which notes have rigorous timings
annotated on sheet music.” Representing time properties of musical elements has led to multiple

’Such exact timings can, however, be altered in a performance context where musicians have the freedom to distort this
time grid leading to expressive effects such as rubato, accelerando, or ritardando.
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Fig. 4. Artificial sequentiality possibly introduced in a tokenization strategy (e.g., Structured [81]). With
a note characterized by its pitch, duration, velocity, and time-shift, the sequentiality of the blocks (black
dashed) follows the temporality, but the order of the inner musical features is arbitrary. The sequentiality of
these blocks can even be artificial for simultaneous events (red dotted).

approaches [12, Section 4.8] including representations based on regular time steps (Section 2.1.1)
or driven by events occurring through time (Section 2.1.2).

2.1.1 Time-Slice-Based Tokenization. Dividing time at evenly spaced timings is a natural ap-
proach to representing music since musical elements are notated on scores at specific timings
according to particular rhythms. The approaches described in the following section represent sym-
bolic music as a sequence of fixed-time interval tokens.

DeepBach [83] is a model that aims to generate four-part chorales, for which time is evenly
divided at the level of 16th notes. As the number of simultaneous notes is upper-bounded in four-
part chorales, a time step can be represented as a vector containing four pitches. In the same
way, a concept of “musical words” defined by slices of three beats is proposed [29, 89] to model
musical context and semantic relationships in polyphonic music. Beyond pitches, this time-slice
representation has also shown to be adapted to the context of drum music [253]. More generally,
these representations can be seen as specific cases of piano rolls. A piano roll representation relies
on a matrix in which the horizontal axis represents time, and pitches are encoded along the vertical
axis, with possible additional characteristics such as velocity as a third dimension. Piano rolls are
usually portrayed as an alternative to sequential representations by using matrices. However, a
piano roll can be converted into a sequential format by considering it as a sequence of piano
roll slices—that is, fixed-size multi-hot vectors containing pitches quantized at a specific duration.
These serialized piano rolls consider tokens which can represent a small window of slices around
a middle piano roll slice [20] or a full musical bar [14].

2.1.2  Event-Based Tokenization. Unlike time-slice-based tokenization in which tokens are trig-
gered at each time step, event-based tokenization strategies involve tokens occurring when a specific
event takes place (a note being played, the start of a bar, etc.). Most tokenization strategies have
shifted toward this event-centric approach, helped by the large amount of available MIDI data. The
MIDI protocol (Musical Instrument Digital Interface) was first developed to handle communication
between music software and hardware. The serial transmission of MIDI messages provides a nat-
ural way to encode music as sequences of events. The large adoption of this format in the music
community has led to the availability of multiple datasets [107] which are essential for training
deep learning models.

In contrast with characters in text, MIDI messages can have various types, reflecting the multi-
ple features of musical notes such as duration, pitch, or velocity. Since these features characterize
a single temporal event, representing such features sequentially may necessitate introducing an
“artificial” sequentiality on top of the temporal sequentiality as illustrated in Figure 4. This sequen-
tiality is even more artificial when representing simultaneous notes occurring at the same time. In
the MIR field, two main classes of event-based tokens stand out that we refer to as elementary tokens
(Section 2.1.2.1, Table 1) and composite tokens (Section 2.1.2.2, Table 2). Sequences of elementary
tokens explicitly integrate this artificial sequentiality where each token is a single musical feature.
This can possibly result in two adjacent tokens describing the same temporal event (e.g., the pitch
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Table 1. Overview®of Event-Based Tokenization Strategies Based on Elementary Tokens
o . . Vocab.
Tokenization Alphabet (Atomic elements) Grouping size Data
ABC notation [209] ~ Text alphabet Bar patching [238] N/A Monophonic (Score)
SMT-ABC [182] . )
(MuPT) Text alphabet BPE [182] N/A Multi-track (Score)
Park et al. [173] s X s g . : (e
(Mel2Word) <Pitch-interval> (integer) <Time-shift> (music time) BPE [173] 30 Monophonic (Score)
. <Note-ON> (MIDI value) <Note-OFF> (MIDI value) BPE [123, 252] ’
MIDElike [170] 300 chift> (absolute time) <Velocity> (integer) Unigram [123] 88 Plano (Perf)
LakhNES [51] <NoteON-[trk]> (MIDI value) ~<NoteOFF-[trk]> (MIDI value) <Time-shift> (absolute time) - 630 Multi-track (Perf.)
<Pitch> (MIDI value) <Duration> (music time) <Velocity> (integer) BPE [64, 123, 252] .
REMI [101] <Chord> (class) <Bar> <Position> (music time) Unigram [123] 332 Piano (Score)
o REMI alphabet + features: <Instrument> (class) .
REMI+ [222] <Time-Signature> (class) <Tempo> (integer) - N/A Multi-track (Score)
REMI alphabet + metadata:
<Key> (class) . .
Lee et al. [128] <Instrument> (class) : _ . . <Time-Signature> (class) _ A N
(ComMU) <BPM> (integer) <Min/Max-velocity> (integer) <Nb-of-bars> (number) 728 Multi-track (Score)
. <Rhythm> (class)
<Pitch-range> (class)
REMI alphabet + control info: ~ <Occupation> (class) <Density> (class) .
MuslAC [79] <Tensile-train> (class) <Cloud diameter> (class) <Polyphony> (class) - 360 Multi-track (Score)
Wu and Yang [241]  <Durat.-[trk]> (music time) ~<Pitch-[trk]> (MIDI value) <Bar> . . ..
(MuseMorphose)  <Velocity-[trk1> (integer) ~ <Position> (music time) <Tempo> (integer) 3440 Multi-track (Score)
<Start-piece> <Start-track>/<End-track> <Instrument> (class)
MultiTrack [58] <Start-bar>/<End-bar> <Start-fill>/<End-fill> <Density-level> (integer) - 440 Multi-track (Perf.)
<Note-ON/OFF> (MIDI value) ~ <Time-shift> (absolute time) ¥ integer)
<Start-score>/<End-score>
MMR [144] s N <Start-bar>/<End-bar> <Change-track> .
<Position> (integer) N N . BPE [144] N/A Multi-track (Score)
<i > < >
(SymphonyNet) <Chord> (class) Pitch> (MIDI value) Duration> (music time)
<Pitch> (MIDI value) <Velocity> (integer) <Rest> (absolute time) .
TSD [64] <Duration> (absolute time) <Time-shift> (absolute time) ~ <Program> (class) BPE [64] 29 Multi-track (Perf.)
<Pitch> (MIDI value) <Velocity> (integer) .
Structured [81] <Duration> (absolute time) ~ <Time-shift> (absolute time) - 428 Piano (Perf)
S <Pitch-class> (class) <Octave> (integer) <Duration> (music time) _ . e
Lietal. [136] <Bar> (integer) <Position> (music time) <Velocity> (integer) N/A Monophonic (Score)
<Pitch> (MIDI value) <Duration> (music time) <Velocity> (integer)
Chen et al. [22] <Bar> (integer) <Position> (music time) <Grooving> (class) - 231 Guitar (Tablatures)
<String> (integer) <Fret> (integer) <Technique> (class)
<start>/<end> <Wait> (integer) BPE [123]
DadaGP [195] <Effect> (class) <Drums:note> (MIDI value) <Instr:note> (MIDI value) 2140 Guitar (Tablatures)

Unigram [123]

<String> (integer) <Fret> (integer)

The “alphabet” describes the types of atomic elements constituting the alphabet with their type. The “data”
corresponds to the type of music considered by the indicated article. It also specified whether the tokenization is score
or performance based.

of a note followed by its duration). On the contrary, sequences of composite tokens partly bypass
this artificial sequentiality by considering tokens as objects aggregating all the musical features
describing a temporal event in a unique “super-token.”

2.1.2.1 Elementary Tokens: Music as a Sequence of Individual Features. The constitutive elements
of a sequence composed of musical elementary tokens can be described at two levels (see Table 1):
the choices of an initial alphabet of atomic elements encoding different musical features and a
grouping of these atomic elements into higher level elements, presumably more expressive:

o Alphabet: In text, tokens frequently denote words or subwords, which themselves are combi-
nations of smaller elements—characters. In the MIR field, tokens most often refer to the atomic
elements of the sequence that constitute what we refer to as an alphabet. This alphabet can be
composed of a wide range of entities, such as chord labels, notes, decompositions of a note (pitch,
duration, etc.), or structural events such as bars. Thus, choosing an alphabet implies choosing a
level at which to describe music and a set of attributes to represent it.

8 An up-to-date and collaborative version of this table can be found at https://github.com/dinhviettoanle/survey-music-
nlp#event-based-tokenization.
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Table 2. Overview’of Event-Based Tokenization Strategies Based on Composite Tokens
Tok ion Musical features Super-token nature Data
PiRhDy [138] <Chroma> (class) <Octave> (integer) <Velocity> (integer) Homogeneous Multi-track
<Inter-onset-interval> (music time) <Note-state> (class)
Zixun et al. [266] <Pitch> (one-hot) <Duration> (one-hot) <Bar> (one-hot) Homogeneous Lead sheet

<Current-chord> (one-hot)

<Next-chord> (one-hot)

<Time-signature> (class)

<Tempo> (integer)

<Bar> (integer)

Octuple [251] <Position> (music time) ~ <Pitch> (MIDI value) <Durations (music fime) Homogeneous Multi-track
<Velocity> (integer) <Instrument> (class)
Dong et al. [52] <Type> (class) <Beat> (integer) <Position> (music time) .
(MMT) <Pitch> (MIDI value) <Duration> (music time) <Instrunent> (class) Homogeneous Multi-track
Dalmazzo et al. [40]  <Chord-root> (class) <Chord-nature> (class) .
< - >
(Chordinator) <Slash-chord> (Boolean) <MIDI-array> (multi-hot) Chord-extensions> (class) Homogeneous Chord sequences
Wang and Xia [228] - . . - .
< > (mus < > < > (mus s s
(MuseBERT) Onset> (music time) Pitch> (MIDI value) Duration> (music time) Homogeneous Multi-track
<Bar> <Position> (music time) <Tempo> (integer)
MuMIDI [189] <Track> (class) <Chord> (class) =p! 8 Family based Multi-track
. s . . <Pitch/Drum> (MIDI value)
<Velocity> (integer) <Duration> (music time)
<Family> (class) <Time-signature> (class) <Bar> (integer)
Compound Word [94] <Beat> (music time) <Chord> (class) <Tempo> (integer) Family based Piano
<Pitch> (MIDI value) <Duration> (music time) <Velocity> (integer)
< > <l > (i < >
Di et al. [48] Type> (class) Beat> (integer) Strenth> (class) Family based Multi-track

<Pitch> (MIDI value)

<Duration> (music time)

<Instrument> (integer)

<Duration> (music time or none)
<Value> (any—depends on type) ~ Family based

Encoder input:
<Group> (class)

<Onset> (number)

<Type> (class) Enc.: Multi-track

Makris et al. [154]

Decoder output: <Onset> (number) <Drums> (integer) Dec: Drums
< ily> <Ti -si > < > (il
Unsupervised Family. (clt.zss). Time-signature> (class) Bar: (ml.eger) Family based )
CPWord [214] <Beat> (music time) <Chord> (class) <Tempo> (integer) + learnin Piano
<Pitch> (MIDI value) <Duration> (music time) <Velocity> (integer) s
<Instrument> (class) <Position> (music time) Heterogeneous .
5 <Bar> fulti-
REMI Track [151] _goe. | <pi teh> (MIDI value) | <Velocity> (integer) | <Duration> (music time) 22" + learning Multi-track

The Musical features column describes the components of the vectors considered as tokens, in terms of musical
attribute. The “embedded object” denotes the manner these musical features are grouped together to form the
super-token, including fixed-size vectors or based on event families.

 Grouping strategy: Atomic elements can be grouped together to form more informative ele-
ments. These groupings can be established using fixed-size segmentations, statistically derived
groupings, or expert-defined rules. In text, atomic elements (characters) are directly merged to-
gether to constitute tokens (words or subwords) leading to a vocabulary of increasing size. Simi-
larly, music atomic elements can be grouped together to enrich the vocabulary with more infor-
mative tokens.

* Building an Alphabet of Atomic Elements to Encode Music. Symbolic music alphabets first
depend on whether the content is a “MIDI Score” or a “MIDI Performance” [170]. The first one is
a MIDI file converted from a sheet music format (musicXML, kern...) exactly following a written
metrical grid, whereas the second one is a performance encoded into the MIDI protocol. Scores
include information such as exact musical timings and enharmonics, whereas performance data
includes velocity and performance variations such as local tempo or dynamics. In the following,
we follow this distinction to organize existing alphabets for symbolic music tokenization.

On the one hand, performance-based tokenization focuses on encoding music as sequences of
performance events, nearly translating the gesture of an on-stage performer. The MIDI-like tok-
enization [99] follows MIDI events from the basic MIDI protocol, including a vocabulary of four
event types: <note_on>, <note_off>, <time_shift>, and <velocity>. This tokenization can be
adapted for monophonic melodies [191] or a polyphonic ensemble with a fixed number of in-
struments [51] by having <note_on/off> tokens specific to each instrument. TSD (Time-Shift-
Duration) [64] adapts the MIDI-like tokenization, using <duration>and <time_shift> to replace
pairs of <note_on/off>. The Structured MIDI encoding [81] is similar to TSD but enforces the
order of tokens describing a same event. This avoids syntax errors in the context of live music

% An up-to-date and collaborative version of this table can be found at https://github.com/dinhviettoanle/survey-music-
nlp#composite-tokens.
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generation and improves token sequence consistency by implicitly reducing the vocabulary size
at each generation step.

In contrast, score-based tokenizations describe music as a time-structured system based on mul-
tiple discretization levels of time. REMI (Revamped MIDI-derived events) [101] uses a set of score-
related elements to tokenize musical data, in particular <bar>, <position> and <duration> both
being expressed in musical time instead of absolute timings. The use of such time encoding ap-
pears to bring consistency in rhythm. Pitch encodings have also been adapted based on domain
knowledge, by relying on pitch classes and octaves instead of raw MIDI numbers. This pitch encod-
ing appears to provide better pitch distributions in both analysis [138] and generative tasks [136].
Multiple extensions of REMI have been implemented, adding additional tokens including meta-
data [128], musical features [205, 222], control tokens [79], hand positioning for piano music [75],
or track information [241]. Prior to MIDI-based tokenization, early sequential representations of
music rely on the various score dimensions [32]. These representations, called viewpoints, can
encode relations between successive events, such as melodic contours or positions of events in a
bar. The ABC notation has also been used as a direct way of encoding monophonic scores [209]
where tokens are considered to be text characters. Basic NLP models can be simply trained on
these textual data for generation [209]. With the breakthrough of efficient Large Language Mod-
els (LLMs) handling text, this representation has been used for text-to-music systems such as
ChatMusician [249] or MuPT [182] implementing a SMT-ABC (Synchronized Multi-Track ABC
Notation) which improves bar and track consistency for multi-track music.

In addition, some specificities related to the instrument or the type of music data may prompt
the need for adjustments to the tokenization strategy. Tokenization strategies for guitar tablatures
have been proposed for generation tasks directly in the tablature space [22, 195] by adding guitar-
specific tokens. Moreover, unlike text in language, which consists of a unique stream of words,
the challenge of encoding multi-track music (i.e., multi-instrument, with potentially polyphonic
tracks) involves finding a way to represent simultaneous events as a single sequence of tokens.
The representations from MMM (Multi-track Music Machine) [58], MuMIDI [189], and the MMR
(Multi-track Multi-instrument Repeatable) representation [144] deal with this issue by adding a
token related to tracks. However, MMR and MuMIDI interleave the different tracks to represent
the multiple tracks into one sequence. Instead, MMM concatenates all the tracks horizontally to
get this single sequence. In other words, comparing these multi-track tokenizations, MMM has
a horizontal reading of the score by concatenating single-instrument tracks, whereas MMR and
MuMIDI have a vertical reading of the score by first concatenating simultaneous bars or events
from multiple tracks.

 Grouping Atomic Elements for Shorter Sequences and More Informative Tokens. When
comparing text and music, textual sentences are often composed of hundreds of characters or
around a dozen words, which is an amount of tokens that models such as Transformers can han-
dle well. In contrast, musical sequences may be considerably longer due to various factors such as
polyphony or multiple existing token types. To address this complexity issue, two approaches can
be considered: adapting the model mechanisms to handle this type of data (Section 3) or manipu-
lating the representation of music to compress the sequence length by grouping tokens together.

A textual n-gram [114, Chap. 3] is a sequence of n elements (characters, words, etc.) grouped
together based on a fixed number of elements to constitute a token. N-grams have been one of
the earliest representations of music borrowed from NLP [56], then improved by n-grams/skip-
grams [200]. However, while grouping characters is straightforward for text data, musical n-grams
can be of a diverse nature with groupings occurring at multiple levels. Musical n-grams can be
composed of note intervals or rhythm ratios [234], musical descriptors [32], or chord n-grams to
represent music through harmony [169]. These musical n-grams also show statistical phenomena
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initially observed in text data representations. Various laws such as Heaps’ law [202] or Zipf’s
law [177, 234] can be observed with musical n-grams. Musically informed groupings can be derived
from the musical structure of a sequence. The CLaMP model [238], which is based on the ABC
notation that includes pipe characters to represent bars, considers a bar-based grouping. However,
such musically informed groupings are little studied because note-level groupings are more suited
as composite tokens (Section 2.1.2.2), and higher-level structures, such as motifs or phrases, are
often not well defined.

Finally, NLP studies have developed subword tokenization methods [161] where a vocabulary
of subwords is statistically learned on a training corpus. These include Byte-Pair Encoding
(BPE) [68, 201], WordPiece [199], or UnigramLM [122]. Some of them have been adapted for music
to create musical subwords as tokens. The BPE algorithm is adapted for orchestral data [144] by
exploiting the invariance of note order within a chord, to shorten sequence lengths. More than a
simple tool for shortening sequences, BPE has also been studied for its specific effects on musical
data. Multiple studies applied it on multiple encodings to examine how training Transformer mod-
els with input reduced by BPE affects both generation and analysis tasks. Although BPE builds a
more structured embedding space [64], experiments studying the impact of BPE in music analysis
tasks do not show a significant increase in performance [252], unlike BPE applied to text [201].In a
more restricted musical context, Mel2Word [173] implements BPE with monophonic tunes and en-
ables the retrieval of style-specific motifs. Finally, UnigramLM subword tokenization is also specif-
ically evaluated on music generation, applied to score-based music and guitar tablatures [123].
Their findings indicate that both approaches contribute to improved data representation, enhance
the structural quality of generated music, and enable the generation of longer sequences.

2.1.2.2  Composite Tokens: Music as a Sequence of Combinations of Musical Features. While se-
quences of elementary tokens need to introduce an artificial sequentiality by ordering musical fea-
tures that describe a single event, composite tokens encapsulate the entirety of a temporal event by
combining all its musical features into a single super-token. The choice of the type of super-tokens,
the musical features encapsulated within them, and the method used to construct the vector repre-
senting each super-token are the key variables in the approaches reviewed in the following. Table 2
describes the type of super-token and the list of features for each approach.

On the one hand, homogeneous super-tokens denote a representation where each super-token
contains the same set of features no matter the nature of the event it describes. The representation
developed by Zixun et al. [266] is based on the concatenation of multiple one-hot vectors describing
pitch, duration, chords, and bar. Octuple [251] is instead based on the embedding of eight musical
features which are concatenated to form the single vector representing a single note. Such homo-
geneous representations are also used by PIRhDy [138] encoding pitch classes and octave instead
of MIDI value, and MMT [52] for multi-track music. Instead of vectors, MuseBERT [228] embeds
matrices derived from a set of onset, pitch, and duration to describe both musical attributes with
their relations. Beyond notes, the Chordinator model [40] encodes chords described by a root, a
nature, extensions, and a set of notes composing the chord.

On the other hand, methods separating events by families have been developed to highlight
the distinction between note events and structural events such as the beginning of a bar. For
polyphonic music, MuMIDI [189] represents a token as a sum of the embeddings of bars, position,
and tempo, with possibly note characteristics. Similarly, Compound Word [94] gathers tokens into
two families—event related or note related—and concatenates these embedded atomic elements to
build the token. It has also been adapted for a task of drum accompaniment generation [154]. This
representation is also enhanced by Di et al. [48] in the context of video-to-music, by incorporating
a token family related to rhythm, encapsulating rhythm density and strength. Unsupervised
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Compound Word [214] is based on the original CPWord tokenization and includes BPE, which
learns the atomic element groupings instead of relying on pre-defined families resulting in
variable-length composite tokens. REMI_Track [151] improves REMI+ and also combines com-
posite tokens and BPE. Tokens are defined as 5-long vectors, with note-related elements of a
token (pitch, velocity, duration) being possibly grouped together under a BPE-element, which has
shown to improve inference efficiency when generating long sequences.

2.2 Comparing Tokenization Strategies

Various tokenization methods naturally lead to various performance depending on tasks or data.
In NLP, different tokenizers, which initially aim at segmenting text, can result in different vocab-
ularies so that they can result in unequal performance on various tasks or languages [49]. Few
studies have conducted such comparisons between multiple tokenization strategies in MIR con-
texts. Multiple strategies for pitch (pitch-class vs. absolute) and time grid (time resolution) encod-
ings are compared in the context of monophonic music generation [135]. Fradet et al. [65] focus
specifically on time encoding by comparing note positioning and duration encoding on genera-
tive, classification, and representation tasks. Beyond tokenization, a comparison between matrix,
graph, and sequence representations of symbolic music is performed on analysis tasks [252].

The MidiTok Python package [63] has been developed to provide a consistent interface for
handling multiple tokenization strategies with various tools designed to manipulate sequential
symbolic music data, such as data augmentation or BPE. Multiple other tokenizers derive from
this library, including a MusicXML tokenizer [252] or a component integrated into a processing
pipeline coupled with the HuggingFace library [123]. Similarly, Musicaiz [88] offers a tokenization
framework, with extensive visualization, generation, and analysis frameworks for symbolic music.

2.3 Preparing Music Data for Model Processing

The previous sections describe music encoded as sequential elements and operations that can be
applied to them while keeping their high-level musical meaning. When used as inputs of most
machine learning models, these elements need to be embedded or converted into numerical values
so that the model can process them. Text, subwords, words, or documents need to be projected into
a particular space to be processed [137], leading to multiple distributional vector space models and
embedding methods.

Earliest word representations simply relied on basic one-hot vectors, each with a length equiva-
lent to the vocabulary size. A document is represented by summing all these word vectors, leading
to a co-occurrence counts vector, also called bag-of-words, or BoW [114, Chap. 4]. This represen-
tation is improved by TF-IDF (Term Frequency-Inverse Document Frequency) [114, Chap. 6] that
takes into account the total number of documents in which a word appears. In symbolic music,
such BoWs or TF-IDFs have been implemented for music similarity analysis [233], mode classifica-
tion in Gregorian chant [35], or Chinese folk music clustering [254]. However, these approaches
do not capture any sequential information and the resulting space is often sparse, preventing the
ability to capture possible proximity between musical elements. Therefore, multiple methods have
been developed in the NLP field aiming at representing words as vectors in a dense and continuous
space including static and contextual embeddings.

Static embeddings assume that each word can be encoded using the same vector regardless of
the surrounding context in which the word occurs. Word2Vec [162] is based on a neural network
that builds such static embeddings. This method has been adapted for music, implicitly leading to
multiple interpretations of the definition of a musical word, including chords or musical phrases.
Multiple chord-based Word2Vec have been developed [98, 152]. Such chord embeddings exhibit
musical relations and are evaluated on downstream tasks like chord prediction and composer
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classification [126]. PitchClass2Vec [127] embeds chords with Fasttext [9], which relies on sub-
words instead of words. In particular, instead of embedding the whole set of pitches constituting
a chord, Pitchclass2vec decomposes the chord as intervals in the same way as Fasttext breaks
words into n-grams. An alternative approach considers temporal chunks of music as words.
Melody2Vec [92] uses Word2Vec on monophonic melodies by assuming such words as musical
phrases segmented by GTTM rules [130]. Word2Vec has also been adapted for polyphonic
music [89], by considering words as equal-length and non-overlapping slices of polyphonic music.
Visualizing these embeddings shows a structure and organization of the space that follows the
rules of tonal harmony [29].

Unlike static embeddings, contextual embeddings represent a same word with different vectors
depending on the context in which the word occurs because of the polysemous nature of words. Al-
though polysemy and semantics are not directly applicable in music, these contextual embeddings
can be useful for symbolic music because the context in which a note appear is fundamental—for
instance, in functional harmony (i.e., where chords are identified by their function relative to an
overall tonality). Technically, contextual embeddings are built concurrently with model training,
such as recurrent or attention-based models described in Section 3. Yet, while analyses of learned
contextual embeddings are numerous in NLP [145], only very few studies have specifically ob-
served the contextual aspect of such embeddings when applied to symbolic music. Such contex-
tual embeddings have been analyzed from a Long Short-Term Memory (LSTM) model [69] or
from BERT (Bidirectional Encoder Representations from Transformers) embeddings [85]. Fradet
et al. [64] have shown that the learned contextual embedding space from BERT is more structured
than the one learned from GPT-2. Musical context can also be defined by the relationship between
simultaneous elements, extending beyond the typical temporal context encoded by classic contex-
tual embeddings. PiRhDy embeddings [138] encode such musical-specific context encapsulating
melodic and harmonic contexts.

3 NLP Models for Symbolic Music Processing

This section reviews models that have been borrowed or inspired from NLP and adapted to address
MIR tasks. This transfer primarily arises from the temporal nature of music, which facilitates its
representation as sequences of elements, as presented in Section 2, thus allowing its processing by
NLP-based models, which are mostly data driven. Historically, shallow machine learning models
were prominent for many years in NLP. Starting in the 1990s, in particular, models based on re-
current cells, like RNNs, became widely popular. This trend continued until the breakthrough of
attention-based models in the mid-2010s. MIR studies also followed these trends, adapting these
models to symbolic music in various ways.

3.1 Corpora for Data-Driven Models

Although NLP and symbolic MIR research include a number of rule-based approaches, most state-
of-the-art models today are data driven. For this purpose, multiple datasets have been compiled,
particularly through common crawl in NLP [231], and have been released for model training.
In symbolic music, multiple collections of MIDI files have been compiled for generative mod-
els training. These include large crawled MIDI collections such as LakhMIDI [185] or MetaMIDI
Dataset [59], and specific music genres or instrumentations such as orchestral music [144], pi-
ano music [86], chorales [10], folk tunes [198], or pop music [227]. Other datasets with specific
music representations, such as guitar tablatures [195] or chords-only [42], have been built for
non-MIDI generative systems. Datasets linking symbolic music and other types of data are built
for multimodal models for audio-MIDI alignment [86] or, more recently, text-to-MIDI [159] and
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video-to-MIDI [16]. For an in-depth overview of music generation datasets, refer to the work of Ji
et al. [107].

Beyond music generation, a number of symbolic music datasets have also been released for tra-
ditional MIR tasks. While non-annotated datasets can automatically be compiled, such as through
web crawling, music analysis datasets typically require annotations by experts [46]. Most of the
datasets presented previously also include genre or composer annotations for full sequence classi-
fication tasks. Similarly, the EMOPIA dataset [102] includes annotations of valence and arousal for
emotion classification. With more local annotations, the TAVERN dataset [46] includes chord and
phrase annotations of a corpus of classical themes and variations. The When in Rome dataset [73]
specifically gathers annotations of chord functions of a larger music era range, for automatic func-
tional harmony analysis.

3.2 Shallow Models

Prior to the widespread adoption of data-driven methods, natural language modeling was mostly
addressed by rule-based systems, such as formal grammars. A formal grammar is a set of rules that
defines the syntactic structure of sentences in a language, specifying how words and phrases can
be combined to form grammatically correct sentences. They are used in text for syntactic parsing
or semantic analysis such as dependency parsing, representing text as tree structures. Musical
grammars [190] have also been formalized, particularly based on harmony, for tasks such as jazz
chord analysis [208]. Generative grammars [26], aiming at generating sentences based on rules,
have also been applied in music. For instance, the “Generative Theory of Tonal Music” [130] is
based on musical harmony and tension rules to generate music.

Such grammars are often used in conjunction with shallow sequential models. Hidden Markov
Models (HMMs) and Conditional Random Fields (CRFs) are sequential models that were ap-
plied to NLP tasks much earlier than symbolic music. HMMs rely on the assumption that each
observed element of a sequence is the result of a hidden process with the Markov property (short
span dependencies). As a generalization of HMMs, CRFs are discriminative models that can impose
dependencies on arbitrary elements of the sequence. In NLP, HMMs and CRFs have been imple-
mented for part-of-speech tagging [125], named entity recognition [157], or text classification [66].
These models have then been widely used in early MIR studies for various symbolic music tasks
such as style classification [220], melody prediction [203], harmonization [77], generation [218],
chord recognition [156], or key detection [165].

Neural networks have since demonstrated greater performances, leading to architectures such
as Recurrent Neural Networks (RNNs) that offer an alternative way of representing time and
therefore handling sequential data.

3.3 Recurrent Models

RNNs [193] are a class of artificial neural networks designed to process sequential data by
maintaining a hidden state that captures information about previous inputs. They have multiple
applications in NLP, as well as in other fields that involve sequential dependencies, such as time
series prediction. In MIR, only a few studies used raw RNN models, such as RNN-RBM [10] or
RNN-DBN [71] combining RNN, Restricted Boltzmann Machine, and Deep Belief Network for
polyphonic music generation. Such RNNs, however, have been shown to suffer from the issue of
vanishing gradient occurring with long sequences, which is often the case in symbolic music.
LSTM [93] has been developed to address this issue and has since been widely adopted in multi-
ple domains. An other improvement of recurrent networks then emerged with the introduction of
Gated Recurrent Units (GRUs) [23]. Compared to LSTM models, GRUs are based on a simpler
architecture, thereby reducing the total number of parameters and consequently reducing training
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time, while maintaining similar performances to LSTM [30]. Multiple studies have implemented
these models for harmonic analysis [19], music infilling [82], chorale harmonization [83], orches-
tral music generation [149], or expressive performance generation [170].

These recurrent layers are often part of larger architectures and might be improved through var-
ious mechanisms. They can be part of Generative Adversarial Networks (GANs) [72], which
are models consisting of a generator and a discriminator, trained simultaneously through adversar-
ial training to generate realistic data. Such architecture has been developed for chord-conditioned
generation [216] or lyrics-conditioned melody generation [248]. Recurrent layers can also be used
in Variational Auto-Encoders (VAEs) [120], which are generative models that learn to encode
and decode data in a probabilistic way, allowing for the generation of new samples while captur-
ing the underlying structure of the input data. While being mainly implemented for generative
purposes [14, 191], the learned latent space of VAEs can also be analyzed, revealing particular di-
rections representing musical aspects such as speed or repetitiveness [217] in the same way as
text VAEs can highlight semantic relations [45]. Specific architectures based on LSTM or GRU
have also been improved with mechanisms such as attention [4], which aims at giving different
weights of importance to the elements of the processed sequence. This mechanism can be used
with symbolic music for enhancing overall coherence in a multi-track arrangement task [263] or
enforcing temporal structure [106]. This mechanism is still used in recent LSTM-based models [84].
Finally, recurrent layers have also been employed in models trained on symbolic MIR tasks using
other paradigms, particularly reinforcement learning, based on a model trained to make decisions
by interacting with an environment by rewarding or penalizing it. The choice of these rewards is
often based on musical rules, such as pitch entropy or chords [124] or note intervals and repetitive-
ness [111]. An exhaustive overview of recurrent models used for symbolic MIR tasks is available
on the companion web page of this survey.!’ From the end of the 2010s and the breakthrough of
Transformer models [219], several state-of-the-art models have been derived from this model.

3.4 Attention-Based Models

Attention is a mechanism proposed by Bahdanau et al. [4], initially as an improvement of RNNs
(Section 3.3). Vaswani et al. [219] then introduced Transformers, showing that a model based solely
on attention—without using any recurrent mechanism—can outperform state-of-the-art results
in NLP. More precisely, Transformers are based on a self-attention mechanism and multi-head
attention blocks. They offer two main improvements to RNNs. The processing of sequences is sped
up, as the entire sequence is passed through the model once and processed in parallel. Moreover,
it provides a solution to the problem of vanishing or exploding gradients that occurs with basic
RNNs and the issue of hard training with LSTMs. Whereby during the weight update process of
the recurrent network, known as back propagation through time, such recurrent models often
struggle in capturing long-term dependencies between words [168]. This phenomenon is also true
for music generation [90].

Transformers have been applied to symbolic music representations, but also in a variety of
other domains, such as computer vision [54] or audio [53]. Their use has been greatly facilitated
with the development of libraries, such as AllenNLP [70], FairSeq [171], or, more predominantly,
HuggingFace [232]. This last library offers model architectures, pre-trained models, tokenizers,
and various utilities to simplify the development and deployment of NLP applications. As a result,
numerous MIR studies have started utilizing HuggingFace by leveraging its tools and resources
for musical tasks. These include implementations of subword tokenizers (Section 2.1.2) such as

Ohttps://github.com/dinhviettoanle/survey-music-nlp#recurrent-models
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BPE [201] or Unigram [122] used by Kumar and Sarmento [123] and model implementations such
as BERT [47] for MidiBERT [28] or GPT-2 [184] used in MMM [58].

In this section, we propose an overview of attention-based models applied to symbolic music
data seen through three technical prisms. A first way of characterizing these models is based on
their training paradigm, namely end-to-end training on specific tasks, or pre-training and fine-
tuning (Section 3.4.1). In a musical sense, pre-training assumes a hypothesis of a general under-
standing of music. Beyond the training process, we describe various architectures that have been
implemented (Section 3.4.2). The model architecture, based on Transformer encoders, decoders, or
combining different types of data, influences how music is processed. Finally, we present the en-
hancements of the Transformers’ internal mechanism to specifically process symbolic music data
(Section 3.4.3). Summaries of these Transformer-based models for symbolic MIR are presented in
Tables 3 and 4.

3.4.1 Training Paradigms: End-to-End Training and Pre-Training. Models can first be categorized
by their training paradigm. On the one hand, end-to-end models are models trained directly for
their specific task. On the other hand, pre-trained models involve a pre-training step on a generic
task followed by a fine-tuning step on one or multiple tasks. This approach is at the heart of LLMs in
NLP. From a musical point of view, pre-trained models aim first at modeling or understanding music
globally, similarly to the understanding of natural language in NLP [256], from which specific
downstream tasks can then be derived via fine-tuning.

3.4.1.1 End-to-end models. End-to-end models are trained for a specific task. They include
Transformer-based GANs [72], resulting in models for free generation [164] or emotion-driven
generation [167]. Other systems rely on Transformer-based VAEs [120] for priming-conditioned
generation [110], chord-conditioned generation [25], lyrics-conditioned generation [57], or artistic-
controllable generation [222]. This last task is also performed in a multi-track context [128], with
fine-grained control of the musical features at the track level.

End-to-end models also include several data-specific models designed to process musical data
beyond notes. The Chordinator [40] model handles chord data and is based on a minGPT archi-
tecture,!! without its pre-training process. Several models are trained on guitar tablatures, for
tablature generation [22], metadata-conditioned generation [195], style-driven generation [197],
or instrument-conditioned generation for bands [196]. Beyond generative tasks, a few models
performing analysis tasks have been developed using this end-to-end training fashion. They are
trained on labeled datasets, such as Roman numeral annotated datasets [20, 21] or style-annotated
datasets [3].

34.1.2 Pre-trained models. In contrast with end-to-end models, pre-trained models are usually
not task specific and follow two training phases. The model is first pre-trained on a large corpus of
data—generally unlabeled—via generic self-supervised tasks. Once the model is pre-trained, it is
fine-tuned on a specific downstream task by being trained on a smaller task-specific labeled dataset.
This fine-tuning step is also convenient, as it requires less data than the pre-training process, and
takes less time to train the model instead of multiple trainings from scratch for each existing task.
While pre-training was prior to attention-based models, the latest state-of-the-art NLP-derived
pre-trained models have switched to Transformer-based architectures both in NLP and MIR.

State-of-the-art pre-trained language models include BERT [47]. BERT is based on a bidirec-
tional training approach and a masked language model: a pre-training task includes masked word
prediction by taking into account its left and right context. Multiple variations of BERT applied to

Uhttps://github.com/karpathy/minGPT
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symbolic music have been proposed. MuseBERT [228] develops a specific representation merging
musical attributes and relations and processed by the attention mechanism. MusicBERT [251] is
a model designed based on RoBERTa [146] and improves the pre-training step by implementing a
custom bar-level masking strategy instead of the original token masking. A model combining this
MusicBERT model with a Music Transformer has been evaluated on several downstream tasks, re-
sulting in better performances than a MusicBERT only [67]. Instrument-specific BERTs have been
implemented such as SoloGPBERT [197] for guitar tablatures, MRBERT [134] for lead sheets, or
MidiBERT-Piano [28] for piano. This model is then extended beyond piano music and improved
with musically meaningful pre-training tasks [204]. BART [131] is also a model pre-trained via
token masking and is used by PianoBART [139], implementing multiple-level token masking and
resulting in better performance than other BERT models.

GPT (Generative Pre-trained Transformer) [183] is, instead, pre-trained through an auto-
regressive task, and is more suitable for tasks involving generation. In NLP, multiple improvements
of GPT have been developed, such as GPT-2 [184], GPT-3 [13], and GPT-4 [15]. For symbolic music,
Musenet [174] and MMM [58] are based on GPT-2 and are trained for conditioned generation. An-
other approach has been implemented for drum music generation [253]: music is represented as
textual data, and a pre-trained textual GPT-3 is fine-tuned on this textual representation of music.

Finally, beyond GPT and BERT, models that integrate pre-trained components have been devel-
oped for symbolic music purposes. LakhNES [51] and DBTMPE [181] avoid the lack of data for
their respective downstream tasks by being pre-trained on larger corpora and then fine-tuned for
chiptune music generation or genre classification.

3.4.2 Model Architecture: Transformer Encoder/Decoder and Multimodal Models. Attention-
based models can also be categorized by their architecture. In NLP, the first Transformer model for
translation [219] was based on an encoder-decoder architecture. Since then, several NLP models
based on either encoders [47], decoders [183], or with modified mechanisms have been proposed.
MIR studies have leveraged these existing models to adapt them for symbolic music data. Addi-
tionally, unlike NLP models that usually handle text for both input and output, MIR experiments
have been conducted with multimodal models capable of processing different types of data, partic-
ularly for tasks like text-to-symbolic music. These multimodal models have found application in
domains such as audio processing with MusicLM [1] or non-music fields such as image processing
with Dall-E [187].

3.4.2.1 Encoder only. Encoders are based on a self-attention mechanism, allowing the learning
of knowledge on the complete sequence. Bidirectional models, which are based on this encoder-
only architecture, have led to symbolic music adaptations of BERT such as MuseBERT [228], Mu-
sicBERT [251], MidiBERT-Piano [28], MRBERT [134], and SoloGPBERT [197]. Going further, Han
et al. [85] analyze the inner embeddings from BERT when trained on symbolic music and highlight
the role of specific layers on the model performance. BERT is also used as an architecture without
its pre-training process by MTBert [258] aiming at analyzing the sections of a fugue form. Beyond
BERT, mainly characterized by its pre-training process, Transformer encoders have also been ex-
perimented with as a component of global encoder-decoder architecture, in which the encoder
keeps a defined role, as detailed in the following. Such Transformer encoders are also widely used
as the discriminator module in GAN-based models [164, 255], initially developed for generation
purposes. They are usually implemented followed by an encoder-decoder or decoder-only as the
GAN generator.

3.4.2.2 Decoder only. In contrast with Transformer encoders, decoders implement a masked
self-attention mechanism. Such models only have knowledge of past tokens so that they are
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usually implemented for auto-regressive generative tasks. The first Music Transformer [99] is
based on a decoder-only model for priming and harmonization tasks, and is then reused by Sulun
et al. [210] for emotion-conditioned generation. Generation is tackled by the MultiTrack Music
Transformer [52] for instrument-conditioned generation then improved for genre control [243],
the Choir Transformer [261] for four-part harmonization, Compose & Embellish [240] for lead
sheet and piano accompaniment generation, and by Tang et al. [211] for expressive performance
reconstruction. Decoder-only models can also be trained through a pre-training/fine-tuning
process, particularly with GPT-based models, such as Musenet [174] or MMM [58]. By comparing
multiple decoder-only architectures, such pre-trained decoder-only models appear to perform
better in piano generation [61].

Several models combine recurrent models with Transformer decoders. Q&A [260] combines
GRU-based PianoTree-VAEs with a Transformer decoder for arrangement generation. In the same
way, Choi et al. [25] use a bi-LSTM model as a chord encoder, followed by Transformer decoders
as pitch and rhythm generators. This architecture is also implemented in the Bar Transformer
model [180] for long-term structure generation, where the LSTM captures note-level dependencies
and Transformer decoders capture bar-level relations.

A limiting issue with Transformers is the quadratic complexity of the attention mechanism
with respect to the sequence length, which induces long training times. The Linear Trans-
former [116] improves the attention mechanism with a linear complexity. The Compound Word
Transformer [94] takes advantage of this computational optimization, coupled with its shorter
sequence representation, for piano music generation. SymphonyNet [144] is also based on this
model to address the even longer length of orchestral pieces, necessitating this lightweight at-
tention mechanism to effectively process such data. Another improvement of Transformers is
Transformer-XL [39], also based on auto-regressive generation, which is able to take into account
amuch longer context than Transformers. Therefore, such models have been used in several gener-
ation studies involving multi-track music [128], piano music [101, 164, 241], lead sheets [136, 239],
or guitar tablatures [22, 195-197]. Chang et al. [18] implement an improved Transformer-XL, XL-
Net [245], a Transformer-based model that can attend to past and future in the same way as BERT,
while maintaining an autoregressive predicting order.

3.4.2.3 Encoder-decoder. Finally, following the architecture of the vanilla Transformer, multiple
models for symbolic MIR implement an encoder-decoder architecture. Functional harmony analy-
sis has been tackled by the Harmony Transformer [20, 21]. The model implements this architecture,
where the encoder has a chord segmentation role and the decoder infers the chord symbol.

For generative purposes, such architectures are used with an encoder that analyzes musical
constraints and a decoder that generates musical content. Makris et al. [153] implement similar
architectures, with an encoder analyzing chord valence that conditions an auto-regressive decoder
for a generation task. In the Theme Transformer model [205], the encoder analyzes the recurrent
theme, from which the decoder generates music depending on the conditions regarding the theme
position within the generated content. MusIAC [79] is a framework based on an encoder-decoder
architecture, in which an encoder is pre-trained as a masked language model, linked with a de-
coder which performs an infilling task. Multi-MMLG [257] is developed for a melody extraction
task. It implements an XLNet model aiming at classifying notes as main melody or accompani-
ment, followed by a modified MuseBERT model that extracts secondary melodies. T5 [186] is an
encoder-decoder model developed in NLP to handle text-to-text tasks. The model has been adapted
for music by MelodyT5 [237] for melody-related tasks or Composer’s Assistant [155] for an infill-
ing task, both using textual representations of music to leverage the text-to-text characteristics
of the backbone model. In NLP, encoder-decoder models are often implemented for translation
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purposes [219]. Gover and Zewi [75] implement BART [131], an encoder-decoder architecture with
learned positional embeddings, for a task analogous to language translation in the realm of music:
music arrangement. This task is also performed by Accomontage-3 [259] for multi-track music
with an encoder/multiple decoders architecture. This multiple independent decoder architecture
is also implemented in BandControlNet [151] and is called cross-track Transformer, which is shown
to improve fidelity-related metrics in a controllable generation task. Finally, this encoder-decoder
architecture is largely used in autoencoder architectures. The Transformer VAE [110] implements
a sampling step from a latent space, from which keys and values are derived for the cross-attention
mechanism. MuseMorphose [241] and FIGARO [222] are models based on VAEs, developed for con-
trollable symbolic music generation, which use their latent space representations as constraints.

3.4.2.4 Multimodal models. A variety of MIR systems have been developed to integrate other
types of data such as text or video, in combination with symbolic music. In symbolic MIR,
studies have explored models linking text and music, including a task of lyric-to-melody with
TeleMelody [113] processing musical high-level features or operating at the syllable level [57].
Text-to-image systems have been gaining in popularity these past few years, resulting naturally
in text-to-music systems in both audio [1] and symbolic music. MuseCoco [150] performs this
text-to-MIDI task. However, most text-to-symbolic-music tasks currently process ABC notation,
as this encoding is already in a textual format [236]. ChatMusician [249] is based on Llama-2 [215]
and is framed as a music chatbot that can write ABC notation music and chat with a user about
music theory knowledge. GPT-4 is able to perform such a text-to-ABC task, among multiple other
tasks [15], but struggles at modeling musical concepts such as harmony. To overcome this issue,
this task is split into multiple musically meaningful subtasks in ComposerX [44], which uses GPT-4
for melody generation, harmonization, and instrument selection. Finally, beyond generative tasks,
CLaMP [238] integrates two BERT-based models—one for text encoding and the other for music
encoding—for a tune query task based on natural language descriptions.

Multiple systems have been experimenting with symbolic music generation for video consider-
ing the use of music in videos like soundtracks in movies. Di et al. [48] generate music for videos
that are analyzed in terms of motion speed and saliency conditioning the generated music rhythm.
Kang et al. [115] add a semantic and emotion analysis of the scene, and more specifically generate
chords matching these video features.

3.4.3 Adapting Attention Models’ Inner Mechanisms to Symbolic Music. Extensive studies have
been conducted regarding the mechanisms of Transformers applied to text data, including atten-
tion and positional encoding. When applied to symbolic music, these mechanisms may be im-
proved to be tailored or visualized in this different context.

Transformers implement a self-attention mechanism, which can be easily interpreted by visu-
alizing it. Such visualization can show differences between attention heads being more or less
specialized in chords or melody [95]. Self-attention has also been studied as a source of high-level
interpretations, such as music theory insights, in terms of motifs, harmony, or temporal dependen-
cies. Such musical objects captured by attention are numerous, including cadential passages [148],
musical phrases or modulating sequences [109], or consonant musical intervals [52].

Multiple MIR studies have also developed positional encodings and customized for the specifici-
ties of music. With the Music Transformer model [99], a relative positional self-attention mechanism
is developed for music generation enabling the processing of much longer sequences. Similarly,
stochastic positional encoding [147] aims to be compatible with linear complexity attention. The
specificities of multi-track music inspired the SymphonyNet model to develop a 3-D positional em-
bedding [144] in which the track order is permutation invariant, unlike notes or bars that must
remain time dependent. Musically meaningful positional encodings have been developed based
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on notes attributes and relations [228], bars [18], musical themes [205], structure and musical
time [174], or instruments [259, 260].

The attention mechanism itself has also been adapted for symbolic music. The Museformer
model [247] is based on a fine-grained and coarse-grained attention aiming at reducing the com-
plexity of the mechanism, leveraging the expected repetitive aspect of music. RIPO (Relative Index,
Pitch and Onset) attention [80] is proposed with fundamental music embedding, relying on the struc-
ture of symbolic music built on relative onsets and pitches. In a context of controllable style trans-
fer, the MuseMorphose model [241] includes an in-attention conditioning that takes into account
constraints in the self-attention computation. Structure-enhanced self-attention from BandControl-
Net [151] incorporates a similarity score between bars in the attention computation to enhance
the structure consistency of tracks. For lead sheet data, a melody/rhythm cross attention is imple-
mented in MRBERT [134], in which these two features are merged and simultaneously processed
through attention.

Training strategies with musical specificities have also been developed. Based on a GAN archi-
tecture [72], a local prediction map [167] is proposed so that the discriminator also specifies which
parts of the generated sequence is real or generated. Pre-trained models, particularly masked lan-
guage models, are usually pre-trained on a token prediction task from a masked sequence and
a next sentence prediction task [47]. For symbolic music, MusicBERT [251] is pre-trained with
a bar-level masking: instead of masking a single token and leveraging its Octuple representation,
the pre-training process masks a type of feature for all the tokens within a bar. This masking is
improved with quad-attribute masking [204]. Going further, PianoBART [139], which also uses an
Octuple representation, implements a multi-level object masking strategy, where the masked to-
ken can be at the level of an Octuple-element, the whole Octuple, or ranging over multiple bars.
These strategies avoid information leakage between tokens, as some musical features can be easily
inferred from adjacent tokens. Taking inspiration from the multi-task pre-training approach of the
original BERT model, Shen et al. [204] also propose an analogous pre-training task with next sen-
tence prediction with key prediction. MuseBarControl [206], a Linear Transformer for controllable
generation, implements a pre-training task aiming at directly incorporating control signals during
the pre-training step to improve the resulting bar-level controllability.

4 Future Directions

The previous sections outline various NLP approaches adapted to music data, resulting in the
development of state-of-the-art tools for multiple symbolic MIR tasks. While these results are
shown to be empirically effective, it is worth taking a step back on this practice by questioning
the musical appropriation of tools that have originally been thought for natural language, given
that both modalities still share several differences as discussed in Section 1.1. We believe that
incorporating such reflections as well as common practices from the NLP field could help guide
future directions in the MIR field.

Data Availability. Text data differ from symbolic music data by a much wider availability. For
example, LLMs such as GPT-3 [13] are trained on datasets containing 300B tokens. Compared to
symbolic music, multiple models [58, 222] are trained on the LakhMIDI dataset, which is composed
of 175k songs, resulting in only 26M tokens using a basic MIDI-like tokenization. Moreover, while
new text data are released in large amounts, contributing to extending datasets such as Common-
Crawl based on publicly available text, symbolic music data is less likely to be released at this rate.
Thus, there is a huge gap between the amount of data needed to train text models, on which Trans-
formers are inherently efficient with such a large amount of data, and the availability of symbolic
music data. However, one way to expand symbolic music datasets could be through the use of
audio datasets transcribed into symbolic music data. Audio-to-symbolic transcription tools have
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shown strong performance [104] and could be leveraged to significantly increase the volume of
symbolic music data.

In addition to the limited quantity of music data, the diversity of the available datasets may also
be restricted. Similarly to classical music data which is largely biased toward Western music [86],
contemporary music such as pop music may be stemming from non-western countries [227] but
is still restricted to tonal music. In generative tasks, these biases in training data are naturally
reflected in the generated content.

Musical Alphabet. The Latin alphabet, on which most NLP studies are based, is composed of
homogeneous elements or characters. In contrast, musical alphabets based on the MIDI protocol
are heterogeneous, consisting of multiple types of tokens, such as velocity or duration. Therefore,
musical notes are represented by combinations of these atomic elements. This combinatorial as-
pect is fundamental in music as two slightly different combinations can lead to radically different
notes. In substance, this is comparable to Chinese characters that can be based on different radicals,
leading to entirely different meanings [235]. Such models have been developed for Chinese NLP
and take these radicals into account [212].

Toward Lighter Models. In the field of NLP, various studies have focused on developing compu-
tationally efficient yet lighter models [264], especially with the rise of LLMs. Such optimizations
leading to lighter models are desired for multiple reasons, including reducing training or infer-
ence time, as well as energy consumption or hardware costs. Multiple studies have explored model
compression with knowledge distillation [74]. This distillation process implements a lightweight
student network that is trained to reproduce a pre-trained teacher network. In NLP, this has led
to lightweight models such as DistilBERT [194]. In contrast with distillation, pruning methods are
based on altering an initial model by removing weights. Transformers are shown to be possibly
pruned by removing most of the attention heads while keeping decent performance [160] and can
help model explainability [221]. Finally, model design optimizations for lightweight processing
have been developed, such as token skipping in POWER-BERT [76] or sliding window attention
with cache in Mistral 7B [108]. In MIR, such advances toward lighter models have been tackled for
audio music [55].

In the field of symbolic MIR, models are currently not as big as NLP models, which can
reach 175B parameters in the case of GPT-3 [13]. However, recent models are increasingly re-
quiring higher computational power, such as the use of 4x40 GB GPUs [206]. Therefore, there
is a growing recognition of the efficacy of lighter models for symbolic music data, including
the development of Compound Words [94] for smaller sequences, or smaller vocabulary result-
ing in smaller embeddings [135]. These studies emphasize a promising direction for the appli-
cation of lighter models in symbolic MIR research. This direction may involve developing light
methods specifically tailored for symbolic music, featuring fewer parameters, reduced memory
usage, or shorter training or inference times. Such light models can have practical applications
in real-time music generation, including improvisation where an instantaneous inference time is
required.

Toward More Explainability. Deep learning models are often perceived as black boxes, lacking
explanations for the decisions they make. Several studies address the explainability aspects of
NLP tools [256]. From a technical standpoint, retrieving explanations from these tools can take
various forms. Extrinsic evaluation of a model involves assessing its performance on probing
tasks. In NLP, these probing tasks can vary in nature [33], encompassing syntactic or semantic
information retrieval [119]. In contrast, intrinsic evaluation refers to directly analyzing the inner
representations occurring in the model. In NLP, intrinsic evaluation is frequently conducted
on word embeddings to assess how well a model represents words in relation to each other
by examining relations like word similarity or analogies [225]. In the context of Transformers,
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beyond embeddings, multiple representations can be analyzed [11], particularly attention, being
a particularly human-interpretable mechanism.

At alow level, while text representations are most of the time based on words, music represen-
tations can be of very different nature. Therefore, specific representations can gain in expressive-
ness by incorporating more or less musical information [117, 158]. More recently, rationalization
(i.e., providing a natural language explanation of the process) based on LLMs has been explored
to provide musical descriptions of symbolic music data [121]. LLMs developed for chat can also
be evaluated in their reasoning [249, 262], assessing their musical understanding and knowledge
for future human-computer co-creation systems. Going further, providing interpretable tools that
align with human behavior can encounter challenges due to the inherent subjectivity of music.
In the context of music composition, stylistic aspects may offer different explanations, and certain
passages may only be explained by artistic effects desired by the composer [38]. Despite this subjec-
tivity and artistic aspect present in music, studying the explainability of tools for symbolic music
can be a way to gain a better understanding of how models process music data. For instance, ana-
lyzing models on simple tasks such as style classification can highlight or confirm musicological
characteristics in a particular style. Only a few studies have considered linking a model’s behavior
with musicological aspects such as cadences [148] or chord progressions [37]. Similarly, with the
increasing popularity of text-to-music systems, interpreting models on such tasks may reveal rela-
tions between specific words with the resulting generated content, potentially leading to questions
regarding biases within the currently available datasets of symbolic music.

A Need for Benchmarking and Comparative Analysis. Benchmarks (i.e., commonly accepted com-
binations of datasets, tasks, and evaluation metrics against which new models can be tested) are
crucial for meaningful model comparisons. The NLP community has introduced several bench-
marks, such as GLUE [224], to evaluate language understanding. Other specific NLP benchmarks
have also been developed, such as cross-lingual benchmarks [140] or domain-specific bench-
marks [176].

In symbolic MIR, there is currently an apparent lack of standardized benchmarks. Bundling
of datasets, tasks, and evaluation metrics for symbolic music data may provide frameworks to
compare and evaluate models. The re-introduction of MIREX challenges'* in 2024 is an encour-
aging step toward model benchmarking. However, such challenges have mainly covered audio
tasks. With the recent spread of text LLMs capable of processing ABC notation, ZIQI-Eval [132]
has been proposed to objectively compare models trained to answer multiple choice music-related
questionnaires. The question of model evaluation is fundamental. Subjectivity is often present in
music, both in analysis tasks, such as functional harmony analysis in which annotator biases can
emerge, and in generation tasks. Evaluation of generative systems through listening tests can be
even more subjective [246], particularly when performed by non-experts [2]. However, MIREX’s
symbolic music generation tasks still rely on such listening tests for evaluation. In addition, ob-
jective evaluation metrics have been proposed [123, 239]. Valuable contributions regarding these
benchmarking issues can be an evaluation toolkit library aiming at retrieving objective features
from generated pieces and comparing them to those extracted from a test set. However, this may
explain the challenges in establishing such music benchmarks: the inherent subjectivity of music
aesthetics restricts the possibility of “reference data,” which are essential for model evaluation. A
key challenge in music generation is that each model is typically specialized in a specific task.

Exploring Further Models for Symbolic MIR. Beyond improving existing MIR models, several
NLP models implement mechanisms or optimizations that can be relevant to symbolic music data.
The Longformer model [5] aims to represent long documents by implementing linear complexity

Uhttps://www.music-ir.org/mirex
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attention. Moreover, it also manages to perform well on character-level language modelling tasks.
These two characteristics are fundamental in symbolic music, as musical sequences are often
longer than textual sequences. Additionally, unlike text where words are often considered as
basic tokens, such grouping is less direct in music, so symbolic music tasks are more similar to
textual character-level tasks. On the representation side, BERT-sentence [188] may be relevant
in the field of symbolic MIR. This model builds embeddings for entire sentences and performs
comparisons between pairs of sentences with a faster computing time. In symbolic music, where
segmentation is a recurrent issue, such textual sentence-derived representation holds potential
relevance. In more practical cases, pattern matching is often used in incipit search engines such
as RISM:'® an embedding-based query method can improve the tool’s flexibility.

Finally, beyond NLP and the excitement of the general public for tools based on natural lan-
guage generation, another trend stemming from research studies is image generation, particularly
text-to-image. Image processing models have already been used for symbolic music, including con-
volutional neural networks [24], and the recent rise of diffusion models in this field has motivated
its adaption for music. Numerous recent models integrate state-of-the-art techniques from NLP
and image processing, using diffusion models coupled with Transformer blocks for music genera-
tion [133, 163], also leading to tutorials on diffusion models for music at ISMIR 2024.¢ Therefore,
as observed in recent publications and preprints (see Figure 3), a current trend from recent MIR
studies is to adapt such diffusion models initially developed for images to process music, in the
same way as state-of-the-art NLP models have been adapted for symbolic music.

5 Conclusion

Symbolic music is frequently associated with natural language, drawing parallels based on struc-
tural similarities, especially in their sequential representations and numerous shared tasks. Con-
sequently, the domain of symbolic MIR frequently draws inspiration from methods employed in
NLP. Musical adaptations of NLP tools are organized in this survey following two aspects: repre-
sentations and models.

The process of representing text and symbolic music through sequences, referred to as tokeniza-
tion, has been widely studied in the MIR field, leading to the development of various tokenization
strategies. In contrast with text where words are often considered as basic tokens, the diversity
of symbolic music tokenization strategies mainly stems from the multidimensionality of music,
wherein each note can be described by various features. This results in tokenizations based on
time-slices or musical events, incorporating technical improvements such as token grouping or
composite tokens. These representations of symbolic music are then processed by models that
draw inspiration from models initially developed to process text. Deep learning models were his-
torically based on recurrent models until the breakthrough of Transformers in NLP, which then
spread the development of several attention-based models for symbolic MIR. However, acknowl-
edging the particular characteristics of music in comparison with text, many models have incor-
porated music-specific mechanisms into Transformers, such as positional encoding or attention
mechanisms.

Despite the promising performances of these models on downstream tasks such as generation or
information retrieval, this usage of NLP tools—initially tailored for text data—on symbolic music
can be questioned. This includes technical issues, but also inherent epistemological differences
between text and music. These questions can therefore lead to future directions regarding this

Bhttps://opac.rism.info
8https://ismir2024.ismir.net/tutorials#page-section-2
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current trend, by keeping on taking inspiration from NLP advances, such as lighter, explainable
models or benchmarks, to improve tools for symbolic music generation and information retrieval.
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