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Abstract—Swarm intelligence involves designing appropriate
rules which make swarms with the same limited ability organize
themselves to accomplish desired tasks. Numerous studies have
designed many different motion rules. According to a designed
rule, a swarm can self-organize into a desired pattern, such as
a gathering pattern or a flocking pattern. However, for swarms
that need to complete multiple tasks, it tends to be not enough
to devise motion rules of forming a single pattern. Therefore,
this paper presents a logical transformation method of motion
rules for swarms, which essentially matches different motion rules
to corresponding conditional states. The method consists of two
steps: the construction of the set of conditional states and the set
of motion rules, and the matching optimization calculation using
genetic programming. The feasibility of this method is verified
by simulations.

Index Terms—swarm intelligence, motion rules, gene program-
ming, matching optimization

I. INTRODUCTION

The design of the motion rules is one of the important
research directions of swarm intelligence [1]. Currently, typical
motion rules for swarms mainly include Reynold’s three
rules [2], Gene Regulation Network (GRN) [3], and artificial
potential field [4]. Reynold’s three rules are the general rules
for swarms designed according to the flight of a flock of birds.
Individuals in a swarm can maintain the normal movement
of the swarm by avoiding collision, keeping the consistent
direction, and keeping close [5]. Inspired by the generation
mechanism from DNA to protein in the organism, GRN can be
used to generate a model of motion rules controlled by protein
[6]. The formation of the protein concentration field is deter-
mined by the location of obstacles, targets, and neighbors. All
individuals in a swarm will continue to move in the direction
of the greatest reduction in the protein concentration around
them, until the concentrations of all individuals in the swarm
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reach the lowest in the surrounding concentration. In this way,
the swarm can move in an efficient manner and eventually
form a desired encircling pattern [7]. Artificial potential field is
usually used to control the movement direction of individuals
in a swarm by constructing concentration field artificially,
which is usually applied to the study of swarm gathering
and path planning [8]. In the above three motion rules,
Reynold’s three rules are mainly applied to the movement of
swarms, artificial potential field are all built based on human
subjectivity, and GRN not only take advantage of the fact that
proteins are produced in different concentrations according to
the expression of different genes in organisms, but also can be
adapted to different environments and to swarms with basic
computational and sensory functions.

With the development of swarm intelligence, the design of
single motion rule in specific scenarios can no longer meet
the needs of swarms to perform multiple tasks [9]. Based on
the existing motion rules, if a conversion mechanism between
different motion rules can be designed, this problem can
be solved. Although the above motion rules are specific to
swarms, what these rules actually limit is the movement of
each individual in a swarm. Different motion rules correspond
to the execution of different tasks in different conditions,
which can be easily understood as an if-then relationship [10]-
[12]. Therefore, as long as all the matching relations between
all different conditional states and tasks to be executed are
found, corresponding motion rules can be selected according
to different conditional states, so as to design the logical
transformation method of the motion rules for swarms. It is
obvious that this method consists of two steps. The first step
is to list all the possible conditional states and all the motion
rules that can be performed. The second step is to find an
effective matching scheme between the conditional states and
motion rules.

There are usually a great many of conditional states for an
individual. The selection of conditions often depends on the
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task to be completed [13]. For example, the conditional states
for the condition of whether find a target can be set as “found
target” or “not found target” for the task of searching for a
target. The conditional states of “target survival” and “target
dead” are not necessary for this task, because no matter which
state the target is in, it indicates that the target has been found
and the task of searching has been completed. In addition to
the surrounding environment conditions, the individuals’ own
conditions can also affect the implementation of tasks, such
as the battery power. Therefore, we can list all the possible
conditional states according to the tasks and the performance
of the individuals in the swarm.

Based on Reynold’s three rules, GRN, artificial potential
field and so on, one individual can perform behaviors like
searching and attacking, and multiple individuals can emerge
behaviors, such as clustering and entrapping. Refer to [9], we
name the motion rules performed by an individual according
to the behaviors emerged through executing the same motion
rules by each one in the swarm. For example, even though
an individual is unable to entrap a target, we define the
motion rules of entrapping for an individual as: if multiple
individuals in a swarm act according to the same motion rules
of entrapping, they can emerge the behavior of entrapping. All
the motion rules that can be performed by an individual in a
swarm can be named with the method described above. So
that we can list all the motion rules that can be conducted by
an individual in the swarm.

With all the possible conditional states and all the behaviors
that can be executed, the next step is to determine the matching
relationship between them. This can be viewed as a matching
optimization problem, and it is only necessary to select the
appropriate behavior for each possible conditional state [10]-
[12]. In fact, such a matching relationship is explainable. We
can clearly know which behavior an individual will perform
under certain conditional states and which behavior it will
switch to perform when the conditional states change [14]. For
different optimization method, reinforcement learning breaks
the explainability of the learning process. Other intelligent
optimization methods retain this characteristic better [14].
Evolutionary algorithm is a discrete optimization algorithm
inspired by species evolution, which has preferable global
optimization ability and convergence [9]. It has obvious evo-
lutionary explainability characteristics. Evolutionary algorithm
mainly includes GA, Gene Programming, and other methods.
GA is generally used to evolve object whose characteristics
can be encoded with binary string. Different encoding segment
represent different features. GP is mainly used to evolve
expressions with logical tree structure [15]. For the purpose
of this study, we chose to use a modified GP algorithm to find
an effective matching scheme between conditional states and
motion rules, that is, a logical transformation method of the
motion rules.

The main contributions of this paper are as follows:

o A logical transformation method of the motion rules is
proposed.

« A set containing all conditional states and a set containing
all executable motion rules is constructed.

+ The modified GP is used for matching optimization of
conditional states and executable motion rules.

The rest of this paper is organized as follows: Section
I introduces the framework of the proposed method. The
construction of sets is illustrated in Section III. Section IV
presents the modified GP algorithm in detail. In Section V,
the proposed method is verified by simulation.

II. THE METHOD ARCHITECTURE

The method architecture is presented in Figure 1. Its input
contains the task scenario and the swarm which needs to
accomplish tasks. According to the swarm and task scenario,
we can generalize the information of conditional states that
can be perceived and the motion rules that can be realized
by the individuals in the swarm. Then the set of conditional
states and the set of motion rules can be built. With the two
constructed sets, we can then use the modified GP algorithm
to optimize the matching relationships between conditional
states and motion rules. After that, we will obtain the logical
transformation scheme of motion rules for the swarm. The
concrete procedures are introduced in the following sections.

CInput: swarm & task scenario)

Build the set Build the set
of conditional of motion
states rules

N S

Matching optimization calculation
of conditional states and
motion rules

Output: Logical transformation
scheme of motion rules for
the swarm

Fig. 1. The framework of the proposed method architecture.

III. THE CONSTRUCTION OF SETS
A. Construction of the Set of Conditional States

According to the target tasks and the performance of the
individuals in the swarm, we can list all the different types
of perceptual conditions. Then the conditional states of each
perceptual conditions can be listed. Finally, these conditional
states that belong to different categories of conditions can be
arranged and combined to construct the elements of the set of
conditional states.

For example, there is a swarm that need to search for an
object and move it to a specified position. The perception
conditions of the individuals in this swarm include: whether
the object is detected, whether the object has been lifted, and
whether the individual has reached the specified position. The
corresponding conditional states of these perceptual conditions
are: the object is detected or the object is not detected, the
object is lifted or the object is not lifted, and the individual

473
Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 15:23:18 UTC from IEEE Xplore. Restrictions apply.



reaches the specified position or the individual does not reach
the specified position. If we use different capital letters to
specify these perceptual conditions as A, B, and C and use
different numbers to represent different states of the same con-
dition. These conditional states can be expressed as Al, A2,
B1, B2, C1, and C2. By arranging and combining these states,
we will get all the possible conditional states represented by
the set S = {A1BI1Cl, A1BIC2, A1B2CI1, A1B2C2, A2BICl,
A2BI1C2, A2B2C1, A2B2C2}.

B. Construction of the Set of Motion Rules

Since an individual in a swarm can only perform one
corresponding task based on the motion rules, permutation and
combination of executable motion rules is not needed. As long
as we list all the executable motion rules of an individual in
the swarm, the set of all the executable motion rules can be
constructed.

Similarly, take the individual in the previous subsection as
an example, the executable motion rules include searching,
grabbing, and moving to the specified position, which can be
represented by a, b, and ¢ with different lowercase letters.
Then these executable motion rules can be represented by the
set A = {a, b, c}.

IV. DESIGN OF THE MODIFIED GP ALGORITHM
A. GP Algorithm

The main processes of GP are as follows: First, an initial
population consisting of individuals with tree structures is
randomly generated. These individuals represent expressions
with different operations. Second, the individuals in the initial
population should be dealt with genetic operations, such as
crossover, reproduction, and mutation. After that, the calcu-
lated value of all individuals represented by the tree structures
should be assessed by comparing it with the real value. A
certain number of individuals with small error will be selected
as the initial population of the next round of iterative evolution.
If the error of an individual in the population or the number
of evolutionary iterations meets the requirements of evolution,
the optimal individual with the smallest error represented by
a tree structure is the output of this algorithm.

The representation of the tree structure is shown in Figure
2. Nodes in the tree consist of branch nodes and leave
nodes. A branch node represents an operation on its child
nodes. The branches in the figure include “+”, “-”, and “*”,
which correspond to adding, subtracting and multiplying the
two child nodes from left to right, respectively. A leaf node
represents a parameter or constant value and needs to be added
under a branch node. Leaf nodes have no child node. So the
tree structure in the figure represents the computation of the
expression “x * 3+ 8 — z”.

Genetic operations of crossover, mutation, reproduction, and
selection in GP are as follows. Crossover means that one
subtree of each of two individuals is randomly selected and
swapped. The two selected subtrees generally have different
structures and the number of nodes. Mutation usually means
that a random leaf node is selected and this node is replaced by

X 3 8 X

Fig. 2. The representation of a tree structure.

a new node or a subtree. Reproduction means simply copying
a random individual from a population as a new individual.
Selection means selecting a certain number of individuals
according to probability as the initial population of the next
round of iterative evolution. And the number is equal to the
size of the initial population. Individuals with higher fitness
values are more likely to be selected.

B. Modified GP Algorithm

Since this paper needs to use evolutionary algorithm to get
the matching relations between conditional states and motion
rules for specific task scenario, some adjustments should be
made to GP algorithm to make it suitable for the optimization
goal of this study. First, we fix the structure of the tree to
be optimized. As shown in Figure 3, the tree is divided into
four layers and each individual in the swarm should follow the
logic of this tree. In this figure, the leaf node “x” represents
the current conditional state. The leaf node “y” represents
the motion rule to be executed. “s;” and “s;” represent two
different conditional states in the set of conditional states.

‘ and “a;” are both motion rules in the set

s

In addition, “a;”
of motion rules. However, “a;” and ‘a;” might be the same
motion rule. The branch node “if” means if the first child
node returns “true”, the second child is executed and return
the execution result “success” or “failure”, otherwise return
“failure” directly. The branch node “=" indicates: If both child
nodes represent conditional states and the conditional states of
its two child nodes are the same, return “failure”. Otherwise
return “failure”. Similarly, if both child nodes represent motion
rules and the first child node represents the motion rule to be
executed, execute the motion rule represented by the second
child node and return the execution result “success” or “fail-
ure”. Otherwise return “failure”. The root node “tick” means
iterating through this tree, and if the previous(left) “if”” node
returns “failure”, the next(right) “if” node will be performed
until one node returns “success”. Then skip all subsequent
nodes for the next iteration. Each time the individual will judge
which conditional state the individual belongs to, and then the
individual performs the corresponding motion rule “y”. It is
important to note that each conditional state can exists and an
individual in the swarm can only conduct one motion rule at
a time, so all the conditional states to be judged in the tree
must contain all of the conditional states in the constructed set
and cannot be repeated.

In fact, the set of these judgements is the set of conditional
states. For each individual with tree structure in the initial
evolutionary population, the order of these judgements and
corresponding motion rules are generated randomly. Generic
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Fig. 3. The tree with fixed structure.

operations also involve crossover, mutation, reproduction, and
selection. But due to the design of the fixed tree structure, we
adjust these operations appropriately.

Selection and reproduction operations remain the same as
the original GP algorithm. Because the tree structure is fixed,
the new crossover operation means swapping the nodes repre-
senting the motion rules corresponding to the same conditional
state, which is shown in Figure 4. This ensures that the
structure of the trees and the set of conditional states remain
unchanged during evolution.

(a) Trees before crossover. (b) Trees after crossover.

Fig. 4. Two random trees before and after crossover.

Similarly, in the original algorithm, mutation means replace
a leaf node with a node or a subtree. In order to preserve the
tree structure, we adjust it to replace a leaf node with another.
In addition, the node being replaced can only be the leaf node
that represents the motion rule to be executed. An example of
mutation is shown in Figure 5. In this figure, the leaf node
“ar” mutates to “a,” and other nodes remain the same.

(a) The tree before mutation. (b) The tree after mutation.

Fig. 5. A random tree before and after mutation.

V. SIMULATIONS AND ANALYSIS
A. Experimental Evaluation

To verify the feasibility of our proposed method, we set
up a simulation experiment scenario as shown in Figure 6. A
small red circle represents an individual robot. The rectangle
in the lower right corner represents the base station. A swarm
consisting of nine identical robots is at the base station. Large
circles with crosses in the scenario represent targets. Each
target contains a threshold of the intensity of entrapping. The

target can only be transported to the base station if the intensity
of entrapping of surrounding robots is greater than or equal
to this threshold. Tasks the swarm needs to complete include
entrapping these targets and transporting the entrapped targets
to the base station. In this scenario, the motion rules that
the swarm can follow include the establishment of artificial
potential field with the base station as concentration center
to search or transport targets and the use of GRN to entrap
targets, which can be summarized as searching, entrapping,
and transporting. The task goal is to transport all targets in
the scenario back to the base station in the shortest possible
time.

Fig. 6. The simulation experiment scenario.

On the basis of the tasks, we design the fitness function as
100
F="(ci/3) x 100% (1)
i=1
where c¢; represents the number of targets which have been
transported to the base station at the i'" time step. This
equation means the fitness value after running 100 time steps.
According to the information of the swarm and task scenario
mentioned above, we conclude the conditional states as shown
in Table I. Thus, the set of conditional states is constructed
as S = {A1BICI, A1B1C2, A1B2Cl, A1B2C2, A2BICl,
A2B1C2, A2B2C1, A2B2C2}. Similarly, according to exe-
cutable motion rules, the set of motion rules is constructed as
A ={a, b, c}.

TABLE 1
CONDITIONAL STATES OF THE SIMULATION
Condition Conditional Conditional Symbols
symbols states
Is there a target A Detect a target Al
detected? No target detected A2
Is the target The target is entrapped B1
B -
entrapped? The target is not
B2
entrapped
Is the target at The target 1s at Cl1
; C base station
base station? -
The target is not
. C2
at base station

The next step is to use the modified GP algorithm to design a
logical transformation method of the motion rules for swarms.
The concrete parameters of this algorithm are set in Table II,
where the size of the initial population is 10, the probability
of selection is 0.1, the probability of crossover is 0.05, the
probability of mutation is 0.1, and the probability of replication
is 0.05.
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TABLE II
PARAMETERS OF THE MODIFIED GP ALGORITHM IN THE EXPERIMENT

Parameters Values
Size of the initial population 10
Probability of selection 0.1
Probability of crossover 0.05
Probability of mutation 0.1
Probability of reproduction 0.05

According to the processes of the modified GP algorithm,
we apply it to the simulation experiment scenario. Result of
the experiment is shown in figure 7. The broken line with
asterisks represents the best fitness values of each generation
during evolution. The dotted line with dots represents the mean
fitness values of each generation during evolution. And the
fitting curve of the mean fitness value is represented by the dot
dash line. It is clear that in the fifth generation, the best fitness
value reaches the optimal value 58.33. The mean fitness value
of the population is continuously increasing from the third
generation to the 15" generation. And then the mean fitness
value tend to be stabilized after 15! generation. Screenshots
of the optimized logical transformation method of the motion
rules used in the simulation scenario are shown in figure 8 in
order. Any target in base station is hidden. In figure 8(d), all the
targets are disappeared. It is attributed to that all of the targets
in this scenario nave been transported to the base station in
the end. These results show the feasibility, good optimization
ability and convergence of the modified GP algorithm.
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Fig. 7. Changes in fitness values during evolution.

VI. CONCLUSION

In this paper, we proposed a logical transformation method
of the motion rules for swarms. There are two steps to the
method. The first step is to construct the set of conditional
state and the set of motion rules. The second step is to use
the modified GP algorithm and the simulation scenario to find
an appropriate logical transformation scheme. After that, the
feasible optimized scheme can be applied to the scenario.

In fact, the scenario is not so complicated as to use the
evolutionary algorithm to find the best possible solution. We
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Fig. 8. Screenshots of the application of the optimized results.

are just here to verify the feasibility of the proposed method.
On condition that there are too many conditional states, the
situation may change and the adaptability of the proposed
algorithm may need to be reconsidered. Therefore, our next
work is considered to design a method with better adaptability
and evolutionary efficiency for more complex task scenarios.
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