ARM Cortex-M3/M4 Instruction Set
& Architecture

Cortex M4 block diagram

ISA Support

DSP Extensions

Floating Point Unit

Pipeline

Performance Efficiency

Performance Efficiency

Memory Protection
Interrupts
Interrupt Priority Levels

Wake-up Interrupt Controller

Sleep Modes

Bit Manipulation

Debug

Thumb® / Thumb-2

Single cycle 16/32-bit MAC
Single cycle dual 16-bit MAC
8/16-bit SIMD arithmetic
Hardware Divide (2-12 Cycles)

Single precision floating point unit
|EEE 7354 compliant

3-stage + branch speculation

3.40 CoreMark/MHz*

Without FPU: 1.25/1.52 / 1.91 DMIPS/MHz**
With FPU: 1.27 / 1.55/ 1.95 DMIPS/MHz**

Optional 8 region MPLU with sub regions and background region

Non-maskable Interrupt (NMI) + 1 fo 240 physical interrupts

8 to 256 priority levels

Up to 240 Wake-up Interrupts

Integrated WFI and WFE Instructions and Sleep On Exit capability.

Sleep & Deep Sleep Signals.

Optional Retention Mode with ARM Power Management Kit

Integrated Instructions & Bit Banding

m

Cortex M4
Embedded processor for DSP with FPU

[N O N [N [N N BN BN BN

IO (O (O (OO DN (OO P P P P

W POWERED

Debug and Trace
] : ________ I " -------- :']
| Data ! \ Serial wire |t Flash |
:mtchpoimsi i ETM E . viewer i ! E
i ¥ N 1§]

Bus Matrix

SRAM &
peripheral I/F

B

5y oy o e

] Cortex-M4

Optional JTAG & Serial-Wire Debug Ports. Up to 8 Breakpoints and 4 Watchpoints.

B B BN B BN OB OB B OB OB

Cortex M4 vs. M3

™
Cortex™-M3 Cortex -M4
Nested Vectored Wake Up Interrupt Nested Vectored Wake Up Interrupt
o e Controller Interface Interrupt Controller Controller Interface
CPU CPU (with DSP Extensions) FPU
Data
Code Data Code Deb
. Debu i ebug
R VWatchpoint Accesgs Interface \::fat;hppou: Access
Flash Patch M ash Fate Port
Memory Bus e | emory Bus & Breakpoint
e _ P Protection Mactri
- Matrix Serial : atrix Serial
Unit ITM Trace v%';:_i Chilt 1T irace Wire
SRAM & Viewer SRAM & Viewer,
Peripheral ETM Trace Trace Peripheral ETM Trace Trace
e Port Interface Port
(a) (b)

(b) The Cortex-M4 ISA is enhanced efficient DSP features
including extended single-cycle cycle 16/32-bit multiply-
accumulate (MAC), dual 16-bit MAC instructions, optimized
8/16-bit SIMD arithmetic and saturating arithmetic
instructions

ARM Cortex-M Series Famil

Prorea ARM Core Thumb® Thumb®-2 Hardware Hardware Saturated DSP Floating
Architecture Architecture Multiply Divide Math Extensions Point

Cortex-MO ARMvV6-M Von Neumann Most Subset 1 or 32 cycle No No No No
Cortex-MO+ ARMv6-M Von Neumann Most Subset 1 or32cycle No No No No
Cortex-M1 ARMv6-M Von Neumann Most Subset 3 or 33 cycle No No No No
Cortex-M3 ARMvV7-M Harvard Entire Entire 1 cycle Yes Yes No No

Cortex-M4 ARMV7E-M Harvard Entire Entire 1 cycle Yes Yes Yes Optional

ARMv7 M (Thumb-2) features

Source Destination Cycles

16b x 16b 32b 1 CORTEX-M3
32b x 16b 32b 1 ARM966 (ARM)
32b x 32b 32b 1 * ARM7TDMI (AR
32b x 32b 64b 3-7F
Dynamic
compiler
support fion
VFPV3
NEON™
advanced SIMD
Thumb®-2 Thumb-2
Ll (mandated) Mix of 16 and 32b instructions
TrustZone™ 1.2 CPI
SIMD 26% higher code density ARM32
25% speed improvement over Thumb16
VFPv2

Jazelle®

Thumb-2 only

ARMvVI M

ARMvT A&R

Thumb-2

e Mixes 16 and 32 bits instructions

— Enhancements: eg. UDIV, SDIF division, bit-field operators
UFBX, BFC, BFE, wrt traditional ARMvVAT

— No need to mode switch, can be mixed freely

* Not backwards binary compatible

— But porting is «easy»

""-:I'_hum b-2 tedﬁnnlng}h"*-a
A2-bit and 16 bit
Thumb instruction set ARMyT-M
Lamm T T - __— architecture
Cartex-M3 el

IIll & - I'
| # J— ——— \.x 1
. / - 3 |
| ; _ Thumb \ v
I ¥ . . i
N "-\ . instructions |)
I ' 1 . d 4
¥ h 1 16 bits
Incoming ARM. Instructions . l: :I ,'/ 2
: ——p | Instruction j——p : ~ - L 4
Instructions T - Executing e —— -
mmmmmm o M o
== oarm |— Bt
- e — p— e

T hit, 0: select ARM, "-h-_,_h__ o
1: select Thumb e

Cortex-M4 Processor Overview

Cortex-M4 Processor
— Introduced in 2010
— Designed with a large variety of highly efficient signal processing features

— Features extended single-cycle multiply accumulate instructions, optimized
SIMD arithmetic, saturating arithmetic and an optional Floating Point Unit.

High Performance Efficiency

— 1.25 DMIPS/MHz (Dhrystone Million Instructions Per Second / MHz) at the
order of pyWatts / MHz

Low Power Consumption
— Longer battery life — especially critical in mobile products
Enhanced Determinism

— The critical tasks and interrupt routines can be served quickly in a known
number of cycles

Cortex-M4 Processor Features

32-bit Reduced Instruction Set Computing (RISC) processor
Harvard architecture

— Separated data bus and instruction bus
Instruction set

— Include the entire Thumb®-1 (16-bit) and Thumb®-2 (16/ 32-bit) instruction sets
3-stage + branch speculation pipeline
Performance efficiency

— 1.25-1.95 DMIPS/MHz (Dhrystone Million Instructions Per Second / MHz)
Supported Interrupts

— Non-maskable Interrupt (NMI) + 1 to 240 physical interrupts
— 8 to 256 interrupt priority levels

Cortex-M4 Processor Features

Supports Sleep Modes
— Up to 240 Wake-up Interrupts

— Integrated WFI (Wait For Interrupt) and WFE (Wait For Event) Instructions and
Sleep On Exit capability (to be covered in more detail later)

— Sleep & Deep Sleep Signals

— Optional Retention Mode with ARM Power Management Kit
Enhanced Instructions

— Hardware Divide (2-12 Cycles)

— Single-Cycle 16, 32-bit MAC, Single-cycle dual 16-bit MAC

— 8, 16-bit SIMD arithmetic
Debug

— Optional JTAG & Serial-Wire Debug (SWD) Ports

— Up to 8 Breakpoints and 4 Watchpoints
Memory Protection Unit (MPU)

— Optional 8 region MPU with sub regions and background region

Cortex-M4 Processor Features

" Cortex-M4 processor is designed to meet the challenges of low dynamic power
constraints while retaining light footprints

= 180 nm ultra low power process —157 uW/MHz
" 90 nm low power process — 33 uW/MHz

" 40 nm G process — 8 uUW/MHz

ARM Cortex-M4 Implementation Data

Process 180ULL 90LP 40G
(7-track, typical 1.8v, 25C) (7-track, typical 1.2v, 25C) 9-track, typical 0.9v, 25C)
Dynamic Power 157 uW/MHz 33 pW/MHz 8 UW/MHz

Floorplanned Area 0.56 mm? 0.17 mm? 0.04 mm?

Cortex-M4 Block Diagram

ARM Cortex-M4 Microprocessor

--------- 1 Optional FPU ——————————
Nested Vector 1

I . I
. 1 Optional
—\ ossfgal <:> Interrupt <:> <:y Em%edded <:
1
: I Controller Processor core ITrace Macrocell}

protection unit I Wire Viewer

L \ (NVIC) I i
. R
< Debug : I P y : 1 Op =
1 1
1

1 Access Port
(™

----"ﬂ:---- R e e e : ------------- G ---‘I l'---:’\:----'
I 1
{ Optional | I Optional |
: Flash : : Data :
I patch 1 watchpoints
o ! oo =
‘VV @ @ ‘vy

Bus matrix

SRAM and
peripheral interface

£ ﬂ
N {}

Code interface

Cortex-M4 Block Diagram

* Bus interconnect
— Allows data transfer to take place on different buses simultaneously

— Provides data transfer management, e.g. a write buffer, bit-oriented
operations (bit-band)

— May include bus bridges (e.g. AHB-to-APB bus bridge) to connect
different buses into a network using a single global memory space

— Includes the internal bus system, the data path in the processor core,
and the AHB LITE interface unit

 Debug subsystem
— Handles debug control, program breakpoints, and data watchpoints

— When a debug event occurs, it can put the processor core in a halted
state, where developers can analyse the status of the processor at that
point, such as register values and flags

Cortex-M4 Block Diagram

* Nested Vectored Interrupt Controller (NVIC)
— Up to 240 interrupt request signals and a non-maskable interrupt (NMlI)

— Automatically handles nested interrupts, such as comparing priorities
between interrupt requests and the current priority level

* Wakeup Interrupt Controller (WIC)

— For low-power applications, the microcontroller can enter sleep mode by
shutting down most of the components.

— When an interrupt request is detected, the WIC can inform the power
management unit to power up the system.

 Memory Protection Unit (optional)

— Used to protect memory content, e.g. make some memory regions read-only
or preventing user applications from accessing privileged application data

3-Stage Pipeline ARM Organization

A[31:0]ﬁ control @ ° RGngter Bank
__> addressregister /1 § — I
- 2 read ports, 1 write ports, access
T A4 any register
c = — 1 additional read port, 1 additional
| < write port for r15 (PC)
Bank « Balrrel Shifter

- | LNy | instruction — Shift or rotate the operand by any
A :> Ty de:’de number of bits
| W | e | 0 ALU
e Al + Address register and
et incrementer
« Data Registers
— Hold data passing to and from

T r memory
| data out register |4>data inregister |§ * InStrUCtlon DeCOder a‘nd

{} D[31:0] ﬁ CO ntrOI

SOC Consortium Course Material 14

3-Stage Pipeline (1/2)

1 fetch decode | execute
2 fetch decode | execute
3 fetch decode ‘ execute i
instruction
_ B
time
 Fetch

— The instruction is fetched from memory and placed in the instruction pipeline

« Decode

— The instruction is decoded and the datapath control signals prepared for the
next cycle

e EXecute

— The register bank is read, an operand shifted, the ALU result generated and
written back into destination register

SOC Consortium Course Material 15

3-Stage Pipeline (2/2)

At any time slice, 3 different instructions may
occupy each of these stages, so the hardware In
each stage has to be capable of independent
operations

When the processor is executing data processing
Instructions , the latency = 3 cycles and the
throughput = 1 instruction/cycle

There are exceptions: multiycle instructions and
branches

SOC Consortium Course Material 16

Data Processing Instruction

address register

f

Rd PC %
registers

increment

\ %4

\

AP

dataout| | datain I

4 U5

(a) register - register operations (b) register - immediate operations

All operations take place in a single clock cycle

data out

SOC Consortium Course Material

17

Data Transfer Instructions

address register

I

address register

Increment

|datain | | i. pipe |

(a) 1st cycle - compute address (b) 2nd cycle - store data & auto-index

« Computes a memory address similar to a data processing instruction

« Load instruction follows a similar pattern except that the data from
memory only gets as far as the ‘data in’ register on the 2nd cycle and a

3rd cycle is needed to transfer the data from there to the destination
register

SOC Consortium Course Material 18

Branch Instructions

address register address register

increment ﬁ i
14
registers N registers N—
PC PC

mult :

mult

S s Sa—e:

data out | | datain i. pipe
(a) 1st cycle - compute branch target (b) 2nd cycle - save return address

* The third cycle, which is required to complete the pipeline refilling, is also
used to mark the small correction to the value stored in the link register
In order that is points directly at the instruction which follows the branch

SOC Consortium Course Material 19

Branch Pipeline Example

Cycle l 2 3 4 2
address Opeation

0x8000 BL felch | decode | executey linkret adjust

0x8004 X fetch | decode | '\

0x8008 XX fetch | |

0x8FEC ADD fetch | decode | execute

0x8FF0 SUB fetch | decode | execute

0x8FF4 MOV feich | decode

fetch

« Breaking the pipeline
« Two clock stalls - IPC goes down

SOC Consortium Course Material

20

Pipeline summary

Harvard architecture
Separate Instruction & Data buses
enable parallel fetch & store
Advanced 3-Stage Pipeline
Includes Branch Forwarding &
Speculation
Additional Write-Back via Bus Matrix

Fetch Decode Execute
Address Data Phase
AGU Phase & Loadi/Store
Write back & Branch

Instruction Decode

Wit
— Fetch i MU'tipl}f & Divide Jegr

& Register Read

Eran-:h ﬁ:-mlardlng &5peculatmn Branch
" smmmn®

E:-:E::ute E.tage bra n-:'.h |:ALLI I::ranr;h -E. L::- acl Et-:- re Eran-:h]

Decoding Thumb

I M
: i ARM :
Incoming ; Instructions
) ——» | Instruction j—> .
Instructions - decoder Executing
— um remap::
Irhtﬂ ARM
T bit, 0: select ARM,
1: select Thumb
Instruction1 [Fetch || Decode || Execute |
Instruction 2 (Decode || Execute |
Instruction 3 (Decode || Execute |
Instruction 4 [Decode || Execute |
>

Time

Instruction Prefetch & Execution

I nstruction
Mmooy

M
N+ 4
M+ 8
M+ CwiC

3

Eiyte

2 1

0

Unaligned 32-kit Thurmb-2
instruction in mamaory

A -+
=3 Az -lA Executing

Handles mix of 16+32b
instructions which can
be misaligned in word

ddress

Instruction

Branch speculation

=1 I Bz --l—"‘ Decading
D 4| Gz - Fetching
Instruction
|:|:3tUHEI1:| Fipeline stage
1T
IMETD“ 4""-. Decods
(It Co & oy | (nst®

—/

Exacute
iInst &)

Processor Modes

 The ARM has seven basic operating modes:

— Each mode has access to:
* |ts own stack space and a different subset of registers

— Some operations can only be carried out in a privileged mode

Mode Description

Exception modes

Supervisor Entered on reset and when a Software Interrupt
(SVC) instruction (SWI1) is executed
FIO Entered when a high priority (fast) interrupt is
raised
IR Entered when a low priority (normal) interrupt is
Q raised Privileged
modes
Abort Used to handle memory access violations
Undef Used to handle undefined instructions
Privileged mode using the same registers as User
System
mode
User Mode under which most Applications / OS tasks Unprivileged
run mode

Operating Modes

User mode: Exception modes:

— Normal program execution mode — Entered

i n ex ion
— System resources unavailable upon exceptio

— Full access
to system resources

— Mode changed
by exception only
— Mode changed freely

Excantion Privileged "
Start mﬁ: handler Operations Stacks
(resat) (privilege out of reset) (Main out of reset)
|I Excet
. _\‘\— Eccenton | cepten "ﬁ‘ Handler Privileged execution | Main Stack Used by
Privleged GGFITIEII'I | - An exception is being processed Full control 0S and Exceptions
mraadd/ et 0
Qo
L g
. =]
Program of Z3 Thread Privileged/Unprivileged Main/Process
CONTROL User thread _E - No exception is being processed
register = | - Normal code is executing

Exceptions

Exception Mode Priority IV Address

Reset Supervisor 1 0x00000000
Undefined instruction Undefined 6 0x00000004
Software interrupt Supervisor 6 0x00000008
Prefetch Abort Abort 5 0x0000000C
Data Abort Abort 2 0x00000010
Interrupt IRQ 4 0x00000018
Fast interrupt FIQ 3 0x0000001C

Table 1 - Exception types, sorted by Interrupt Vector addresses

Name

RO

R

Rz

R3

R4

RS

R

al

RE

R9

R10

R

Rz

Registers

Functions (and banked registers)

R13 (M3P)

H12 (PSP}

Rid

Ri15

Ganaral-purpose register
Ganaral-purpose register
Ganaral-purpose register
Ganaral-purpose register
Ganaral-purpose register
Ganaral-purposa registar
Ganaral-purposa registar
Genaral-purpose register
Genaral-purpose register
Genaral-purpose register
Genaral-purpose register
Genaral-purpose register

Genaral-purpose register

%

18

> Low registers

= High ragisters

-

Main Stack Pointar (MSP), F"r;:ess Stack Pointar (PSP,

Link Register (LR}
Program Counter {PC)

ARM Registers

* 31 general-purpose 32-bit registers
e 16 visible, RO — R15

e Others speed up the exception process

ARM Registers (2)

e Special roles:

— Hardware

* R14 — Link Register (LR):
optionally holds return address
for branch instructions

 R15 — Program Counter (PC)

— Software

e R13 - Stack Pointer (SP)

ARM Registers (3)

* Current Program Status Register (CPSR)
e Saved Program Status Register (SPSR)

* On exception, entering mod mode:
— (PC+4) > LR
— CPSR — SPSR_mod
— PC < IV address
— R13, R14 replaced by R13_mod, R14 _mod

— In case of FIQ mode R7 — R12 also replaced

Special Registers

Name

¥PSH

PRIMASK

FALILTMASK

BASEPRI

CONTROL

Functions

Program status registars
'

Irtermupt mask

b
“ registers

_
Control register

—_—

Special
registars

Provide arithmetic and logic processing flags (zero flag and carry
flag), execution status, and current executing interrupt number

Disable all interrupts except the nonmaskable interrupt (NMI) and

XPSR

PRIMASK

FAULTMASK
BASEPRI
CONTROL

hard fault

Disable all interrupts except the NMI

Disable all interrupts of specific priority level or lower priority level
Define privileged status and stack pointer selection

0xFFFFFFFF

CxE0DO0000
(xDFFFFFFF

oA DDO0000
OxOF FFFFFF

0xB0000000
OxSFFFFFFF
40000000
Ox3FFFFFFF
020000000
0x1FFFFFFF
Ox00000000

Memory map

 Statically defined memory map (faster addr
decoding) 4GB of address psace

System level

Extamal devics

Extemal HAM

Paripherals

SRAM

CODE

Private peripherals including
build-in interrupt controller
(MYIC), MPL control
registars, and debug
componeants

Mainly used as extamal
peripherals

Mainly used as extamal
memry

Mainly used as peripherals

Mainly used as static RAM

Mainly used for pregram
code. Also provides excaption
vactor table after power up

Bit Banding

* Fast single-bit manipulation: 1IMB = 32MB
aliased regions in SRAM & Peripheral space

T 6 5 4 3 210

o ejojolo|elo|o]| Read byte from SRAM JZME alias region

Ox23FFFFED

0x23FFFFFC | 0x23FFFFFs | s e n | Dx23FFFFE4

7

Mask and modify bit element | x| x | x| x| x| 1 x|x \ 1MB SRAM bit-band region

o ojojojop ool Write byte to SRAM

7T 65 4 3 2 10

LDE R0,=0x200FFFFF : Setup address

MOV B2, #0x4 : Setup data LDE R0.=0x23FFFFFC ; Setup address
LDE R1, [RO] : Read MOV R1, #0x1 : Setup data
ORR R1.R2 : Modify bat STR RI. [R0O] ; Write

STR R1. [R0] - Write back result

Traditional bit manipulation method Direct, single cycle access with bit banding

Cortex M3/M4 Instruction Set

]

32-bits

Major Elements of ISA

(registers, memory, word size, endianess, conditions, instructions, addressing modes)

RO

<€

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC

xPSR

Endidness

31 30 29 28 27 26

32-bits

mov ro, #1

1d rl1, [ro,#5]

v
mem((re)+5)

bne loop

subs r2, #1

System

Private peripheral bus - External

Private peripheral bus - Internal

External device 1.0GB

External RAM 1.0GB

Peripheral ~ 0.5GB

SRAM 0.5GB

Code 0.5GB

Endianess

OxFFFFFFFF

0xE0100000

0xE0040000

0xE0000000

0xAQ000000

0x60000000

0x40000000

0x20000000

0x00000000

> N[(Z|C|V|Q

RESEEVED

Traditional ARM instructions

Fixed length of 32 bits

Commonly take two or three operands
Process data held in registers

Shift & ALU operation in single clock cycle

Access memory with load and store instructions only
— Load/Store multiple register

Can be extended to execute conditionally by adding
the appropriate suffix

Affect the CPSR status flags by adding the ‘S’ suffix to
the instruction

Thumb-2

Original 16-bit Thumb instruction set
— a subset of the full ARM instructions

— performs similar functions to selective 32-bit ARM instructions but in 16-bit
code size

For ARM instructions that are not available

— more 16-bit Thumb instructions are needed to execute the same function
compared to using ARM instructions

— but performance may be degraded
Hence the introduction of the Thumb-2 instruction set

— enhances the 16-bit Thumb instructions with additional 32-bit instructions
All ARMvV7 chips support the Thumb-2 (& ARM) instruction set

— but Cortex-M3 supports only the 16-bit/32-bit Thumb-2 instruction set

16bit Thumb-2

Some of the changes used to reduce the length of the

Instructions from 32 bits to 16 bits:

* reduce the number of bits used to identify the register
— less number of registers can be used

* reduce the number of bits used for the immediate value
— smaller number range

* remove options such as ‘S’
— make it default for some instructions

* remove conditional fields (N, Z, V, C)

* no conditional executions (except branch)

* remove the optional shift (and no barrel shifter operation
— introduce dedicated shift instructions

* remove some of the instructions
— more restricted coding

Thumb-2 Implementation

e The 32-bit ARM Thumb-2 instructions are added

through the space occupied by the Thumb BL and
BLX instructions

31 16 15 0
Hwl Hw2

32-bit Thumb-2 Instruction format

* The first Halfword (Hw1)
— determines the instruction length and functionality

* |f the processor decodes the instruction as 32-bit long

— the processor fetches the second halfword (hw2) of the
instruction from the instruction address plus two

Unified Assembly Language

 UAL supports generation of either Thumb-2 or ARM
instructions from the same source code

— same syntax for both the Thumb code and ARM code

— enable portability of code for different ARM processor
families

* |nterpretation of code type is based on the directive
listed in the assembly file

 Example:
— For GNU GAS, the directive for UAL is

.syntax unified
* For ARM assembler, the directive for UAL is
THUMB

32bit Instruction Encoding

Example: ADD instruction format

* ARM 32-bit encoding for ADD with immediate field

31 28 27 26 25 24 2120 19 16 15 12 11 8 7 0
cono Mall Mi S Rn | Rd | IR IN
U f f
Condition / Minor Destination [8-bit immediate
flags _ opcode register number
Major Set 4-bit
opcode status rotate field
Immediate flag First
flag operand
Typical settings: register

Major opcode =00 (this indicates data operation instructions)
Minor opcode = 0100 (specifically, 100 = ADD instruction)
Immediate flag = 1 (immediate field in operand 2)

Set status flag = 1 (set carry flag after operation)

ARM and 16-bit Instruction Encoding
ARM 32-bit encoco

3

28 2726 25 24 21

ing: ADDS r1,
20 19 16 15 12 11
0001 DDDD

1110

00

1

0 100

1

15
 Equivalent 16-bit T

\

\\

rl, #2

8 _?
0000 0010

)

00 11

0

001 0000 0010

— No condition flag

Num

1312 1110 g8 7

0

0 instruction: ADD rl, #2

— No rotate field for the immediate number

— Use 3-bit encoding for the register

— Shorter opcode with implicit flag settings (e.g. the set status flag is
always set)

Application Program Status Register (APSR)

31 30 29 28 27 26 0

NIZ|IC|V(Q RESERVED

APSE bat fields are in the following two categories:

. Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits 1s available m The special-purpose program status
registers (xP5R) onpage B1-8. Application level software mmist ignore values read from reserved bits,
and preserve thewr value on a write. The bits are defined as UNE/SBZP.

. Flags that can be set by many instructions:

N, bit [31] Negatve condition code flag. Set to bit [31] of the result of the mstruction_ If the result
1s regarded as a two's complement signed integer, then N =1 if the result 15 negatrve and
N =0 1f 1t 15 positive or zero.

L, bit [30] Zero condition code flag. Set to 1 if the result of the instruction 15 zero, and to 0 otherwise.
A result of zero often indicates an equal result from a companson

C. bit [19] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V. bit [28] Owerflow condition code flag. Set to 1 1f the instruction results 1n an overflow condition
for example a signed overflow on an addition.

Q. bit [27] Set to 1 1f an SSAT or USAT mstruction changes (saturates) the input value for the signed or
unsigned range of the result.

Updating the APSR

SUB Rx, Ry
— Rx =Rx - Ry
— APSR unchanged
SUBS
— Rx =Rx - Ry
— APSR N or Z bits might be set
ADD Rx, Ry
— Rx=Rx + Ry
— APSR unchanged
ADDS
— Rx =Rx + Ry
— APSR C or V bits might be set

Conditional Execution

* Each data processing instruction

prefixed by condition code

e Result — smooth flow of instructions through pipeline

16 condition codes:

signed greater

EQ | equal MI | negative HI | unsigned higher | GT than
NE | not equal PL | positive or zero | LS Sl fuishe ol LE e
or same than or equal
CS u_nS|gned VS | overflow GE Slgitete] gieris AL | always
higher or same than or equal
CC | unsigned lower | VC | no overflow LT | signed less than| NV | special purpose

Conditional Execution

Every ARM (32 bit) instruction is conditionally executed.

The top four bits are ANDed with the CPSR condition codes, If
they do not matched the instruction is executed as NOP

The AL condition is used to execute the instruction irrespective
of the value of the condition code flags.

By default, data processing instructions do not affect the
condition code flags but the flags can be optionally set by using
“S”. Ex: SUBSrl,rl,#1

Conditional Execution improves code density and performance
by reducing the number of forward branch instructions.

Normal Conditional

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE rO,r1,r2
ADD rO,r1,r2

skip

Conditional Execution and Flags

* ARM instructions can be made to execute conditionally by post-
fixing them with the appropriate condition code

— This can increase code density and increase performance by reducing the
number of forward branches

CMP r0, rl rO - rl, compare rO with rl1 and set flags

ADDGT r2, r2, #1 if >r2=r2+1 flags remain unchanged
ADDLE r3, r3, #1 if <= r3=r3+1 flags remain unchanged

* By default, data processing instructions do not affect the condition
flags but this can be achieved by post fixing the instruction (and any
condition code) with an “S”

loop

ADD 12, r2, r3
SUBS rl, rl, #0xO0 decrement rl and set flags
BNE loop iIf Z flag clear then branch

Conditional execution examples

C source code

ARM instructions

unconditional

conditional

if (r0 == 0)

{
rl =rl + 1;
}
else
{
r2 =r2 + 1;

}

CMP rO, #0

BNE else

ADD rl, rl, #1

B end
else

ADD r2,
end

r2, #1

#1

#1

CMP r0, #0
ADDEQ rl, rl,

ADDNE r2, r2,

= 5 nstructions
= 5 words
= 50r6cycles

= 3 Instructions
= 3 words
= 3 cycles

ARM Instruction Set (3)
[ARMinstruction set |

Data Movement 45.28% Logical 3.91%
Flow Control 28.73% Shift 2.92%
Arithmetic 10.75% Bit Manipulation 2.05%

Compare 5.92% /O & Others 0.44%

ructural view of ARM ISA

31 30 29 28 2726 25 24 2322212019 1817161514 13121110 9@ & 7 & & 4 3 2 1 0

Data processing immediate shift cond[1] [0 O 0| opcode |S Rn Rd shift amcunt | shift | 0 Rm

Miscallaneous instructions:
See Figure -3 cond[1] [0 0 Of1 0 x x(0]x x x x x x x x X % x x x x x|0|x x x x

Fata processing register shift 2] cond[1] |0 O 0| opcode (S Rn Rd Rs 0 | shift |1 Rm
Miscellaneous instructions: cond[1] |0 0 0|1 O Dfx x x » x x x x x x x x[0]x x[1]x X x X
See Figure 33 x X

Mult|p|eS,wgrzéﬂgigfjgrg_% cond[1] [0 0 Ofx X x x X X X X X X X X %X X X X x|1|x x|1]|x x x x

Data processing immediate [2] cond [1] [0 O 1 opoode | S Rn Rd rotate immediate
Undefined instruction 3] cond[1] |0 0 1|1 O|x|0 O x x X X X X X X X X X X X X X X X ¥ X X
Move immediate to status register cond[1] |00 1|1 O|R|1 O Mask SBO rotate immediate
Load/store immediate offset cond[1] |0 1 O |P|U|B[W]|L Rn Rd immediate
Load/store register offeet cond[1] |0 1 1|P|U|B|W|L Rn Rd shift amount | shift | 0 Rm
Undefined instruction cond[1] |0 1 1 |x x X x X X X X X X X X X X X X X X X X[1|x ¥ X X

Undsfined instruction [47] |1 1 1 1| 0|x x x x ®x % % % %X %X X X X X X X X X X X X X X X ¥ X X

Load/store multiple cond[1] |1 0 O|P|U|S|W|L Rn regster list

Undefined instruction 4] |1 1 1 11 0 O0fx x X X % X

Branch and branch with link cond[1] (1 0 1|L 24-bit offset
Branch and branch with link)
and change to Thumb [4] 111110 1(H 24-bit offset
Coprocessor load/store and double cond[5] [1 1 O|P[U|N|[W|[L Rn CRd cp_num 8-bit offset
register transfers [B]
Coprocassor data processing cond[8] |1 1 1 0| opcodel CRn CRd cp_num |opcode2| 0 CRm
Coprocessor register fransfers cond[5] [1 1 1 O |opcodel|lL CRn Rd cp_num |opcode2 |1 CRm
Software interrupt cond[1] [1 1 1 1 swi number

Undefined instruction [4] |1 1 1 11 1 1 1 |x x ®x ®x x x % %X X %X X X X ¥ X X X X X X X X X X

Data Processing Instructions

* Arithmetic and logical operations

e 3-address format:

— Two 32-bit operands
(opl is register, op2 is register or immediate)

— 32-bit result placed in a register

e Barrel shifter for op2 allows full 32-bit shift
within instruction cycle

Data Processing Instructions (2)

Arithmetic operations:
— ADD, ADDC, SUB, SUBC, RSB, RSC

Bit-wise logical operations:
— AND, EOR, ORR, BIC

Register movement operations:
— MOV, MVN

Comparison operations:
— TST, TEQ, CMP, CMN

Data Processing Instructions (3)

Conditional codes
+
Data processing instructions
+
Barrel shifter

Powerful tools for efficient coded programs

Data Processing Instructions (4)

e.g.:
Rn Rf"
if (z==1) R1=R2+(R3*4
I (Z) () (Bm‘l‘el Hhiﬁer]
compiles to ; L

EQADDS R1’R2’R3’ LSL #2 \i‘u'ilhmclic logic unil/

(SINGLE INSTRUCTION !) Rd

Multiply Instructions

Integer multiplication (32-bit result)
Long integer multiplication (64-bit result)
Built in Multiply Accumulate Unit (MAC)

Multiply and accumulate instructions add product to
running total

Saturated Arithmetic

The QADD and QSUB instructions apply the specified add or
subtract, and then saturate the result to the signed range -2n—-1 < x

<2n-1-1,

T T N Bt
|II \ i
| |
|
|I T
| |
|I I|
L ri/_\ N

Fe——————————=

Without
saturation
/-JF _______________ / _n'f_’/;\l".l__________'
II I|
f ﬂ \ 'I I'
Dynamic \ |
range (0 V] Amplify | I|
b1 ! |
\A \h Jj II| 'II
——————————————— \ -————-I"'r—f—————'
v With
For signed n-bit saturation, this means that: signed
+ if the value to be saturated is less than -2™7 the result returned is -2 saturation
L]

For unsigned n-bit saturation, this means that:

if the value to be saturated is greater than 2™7-1, the result returned is 2™'-1
otherwise, the result returned is the same as the value to be saturated.

if the value to be saturated is less than 0, the result returned is 0
if the value to be saturated is greater than 27, the result retuned is 277
otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If

saturation occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q
flag unchanged. To clear the Q flag to 0, you must use the MSR instruction, see M5R on
page 186.

To read the state of the Q flag, use the MRS instruction, see MRS on page 185.

Multiply Instructions

Instructions:

MUL

MULA

UMULL

UMLAL

SMULL

SMLAL

Multiply

Multiply accumulate

Unsigned multiply

Unsigned multiply accumulate
Signed multiply

Signed multiply accumulate

32-bit result

32-bit result

64-bit result

64-bit result

64-bit result

64-bit result

MUL, MULA

* Multiply, multiply accumulate

Ell 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0
Cond UDDDDUAIS Rd Rn Rs 1T 00 1 Rm

[L |1 I_II | _’_1

Operand registers
Destination register

Set condition code
0 = do not alter condition codes
1 = set condition codes

Accumulate
0 = multiply only
1 = multiply and accumulate

Condition Field

MUL{cond}{S} Rd4,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} two-character condition mnemonic. See Table 4-2:
Condition code summary on page 4-5.

{S} set condition codes If S present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other
than R15.

MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4,

; setting condition codes.

Data Transfer Instructions

* Load/store instructions

* Used to move signed and unsigned
Word, Half Word and Byte to and from registers

* Can be used to load PC
(if target address is beyond branch instruction range)

LDR Load Word STR Store Word

LDRH Load Half Word STRH | Store Half Word
LDRSH | Load Signed Half Word | STRSH | Store Signed Half Word
LDRB Load Byte STRB | Store Byte

LDRSB | Load Signed Byte STRSB | Store Signed Byte

*I(opZ): Memory Addressing Mode

Used when accessing memory

Reading (Loading) data from memory:
DESTINATION — M(SOURCE) DESTINATION

must be a register SOURCE is any (0p2)
value

LDR rl, [rl2] R1 — M(R12)

Writing (Storing) data into memory
M(DESTINATION) — SOURCE SOURCE
must be a register DESTINATION IS
any (op2) value

STR rl, [rl2] M(R12) — R1

Store is the only ARM instruction to place
the SOURCE before the DESTINATION

/ IMemory Addressing (Syntax)

Offset Addressing
#(value)]
[Rn, RmM]

[Rn, Rm, (shift) #(value)]

Pre-Index Addressing

#(value)]!

[Rn, Rm]'!

[Rn, Rm, (shift) #(value)]!

Post-Index Addressing
[Rn], #(value)
[Rn],

[RN], (shift) #(value)

Offset Immediate
Offset Register
Offset scaled

Pre-Index Immediate
Pre-Index Register
Pre-Index scaled

Post-Index Immediate
Post-Index Register
Post-Index scaled

/4 ’Memory Addressing (RTL)
UL

Offset Addressing: LDR RO, [R1, R2]

(op2) < R1+R2
MBR — M((op2))
RO — MBR

Pre-Index Addressing: LDR RO,
(op2) < R1+R2

R1 — (op2)

MBR — M((op2))

RO — MBR

Post-Index Addressing: LDR RO,
(op2) < RI1

R1 R1+ R2

MBR < M((op2))
RO -

MBR

[R1,

[R1]

R217!

, R2

» 'Memory Addressing (RTL)
iy 4

Offset Addressing: LDR RO,
(op2) —~ R1+R2

MBR — M((op2))

RO — MBR

[R1, R2]
LDRRO, [R1, X]

R1

Pre-Index Addressing: LDR RO, [R1,

(op2) < R1+R2

R1 — (op2)

MBR — M((op2))

RO — MBR
Post-Index Addressing: LDR
(op2) < RI1

R1 R1 + R2

MBR < M((op2))
RO -

MBR

RO, [R1],

RO

R217!

/# ~Memory Addressing (RTL)
e

Offset Addressing: LDR RO,
(op2) —~ R1+R2

MBR — M((op2))

RO — MBR

[R1, R2]
LDRRO, [R1, X]

R1

Pre-Index Addressing: LDR RO, [R1,

(op2) < R1+R2

R1 — (op2)

MBR — M((op2))

RO — MBR
Post-Index Addressing: LDR
(op2) < RI1

R1 R1 + R2

MBR < M((op2))
RO -

MBR

LDR RO, [RL,X]!

R1

RO, [R1]

RO

R217!

RO

, R2

/# ~Memory Addressing (RTL)
e

Offset Addressing: LDR RO, [R1, R2]

(op2) —~ R1+R2 LDRRO, [R1,X]

MBR < M((op2)) R1

RO — MBR

Pre-Index Addressing: LbDR RO, [R1, R2]!

(op2) < R1+R2 LDR RO,[RL, x]!

R1 — (op2) R1

MBR «— M((op2))

RO — MBR

Post-Index Addressing: LDR RO, [R1], R2
(op2) <~ R1 LDRRO, [R1]x

R1 — R1+R2 R1 RO
MBR <« M((op2)) | > —

RO — MBR

<offset> options

e An immediate constant
— #10

* An index register
— <Rm>

* A shifted index register
— <Rm>, LSL #<shift>

Block Transfer Instructions

* Load/Store Multiple instructions

(LDM/STM)
M,

* Whole register bank or a subset LDM| m.,,
copied to memory or restored RO J M.,
with single instruction R |

R2
| | I\/|i+14
I I I\/|i+15
R14 STM
R15

Swap Instruction

* Exchanges a word
between registers

 Two cycles
but

single atomic action

e Support for RT
semaphores

RO

R1

R2

R7

R3

R15

Modifying the Status Registers

Only indirectly

RO
MSR moves contents R1
from CPSR/SPSR to VRS |
selected GPR R7
R8
MRS moves contents CPSR MSR |
SPSR |
from selected GPR to o
CPSR/SPSR A

Only in privileged
modes

Branching Instructions
Branch (B):
jumps forwards/backwards up to 32 MB
Branch link (BL):
same + saves (PC+4) in LR
Suitable for function call/return

Condition codes for conditional branches

10
11
12
13
14
15
16
19
22
24
28

29
31

: IProgram: suml6.s

LDR

EOR
LDR
Loop
LDR
ADD
ADD
SUBS
BNE

Table DCW
DCW
TablEnd DCD

Length DCW

RO, =Datal ;load the address of the lookup
table

R1, R1, R1 ;clear R1 to store sum

R2, Length ;init element count

R3, [RO] ;get the data

R1, R1,R3 ;addittorl

RO, RO, #+4 ;increment pointer

R2, R2,#1 ;decrement count with zero set

Loop iIf zero flag is not set, loop
&2040 ‘table of values to be added
&1C22

0

(TablEnd - Table) / 4 ;because we're having to align

/ IProgram: sum16.s

7
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ;decrementcount with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEndDCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align
EOR Quick way of setting R1 to zero

/ IProgram: sum16.s

7
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ;decrementcount with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEndDCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Loop Label the next instruction

/ IProgram: sum16.s

7
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ;decrementcount with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEndDCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

ADD Move Eointer iROi to next word o

/ ’Program: suml6.s

v
8 LDR
9 EOR
10 LDR
11 Loop
12 LDR
13 ADD
14 ADD
15 SUBS
16 BNE
19
22 Table DCW
24 DCW
28 TablEnd DCD
29
31 Length DCW
LDR/ADD

RO, =Datal ;load the address of the lookup table
R1, R1, R1 ;clear R1 to store sum
R2, Length ;init element count

R3, [RO] ;get the data

R1,R1,R3 ;addittorl

RO, RO, #+4 ;increment pointer

R2, R2, #1 ;decrement count with zero set

Loop iIf zero flag is not set, loop
&2040 ;table of values to be added
&1C22

0

(TablEnd - Table) / 4 ;because we're having to align

Using Post-index addressing we can remove the ADD:

LDR R3, [RO], #4

/ IProgram: sum16.s

7
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ;decrementcount with zero set

16 BNE Loop if zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEndDCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

Subtract and set flags
SUBS Decrement loop counter, R2

/ ’Program: suml6.s

7
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1, R1, R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ,get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ;decrementcount with zero set

16 BNE Loop If zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEndDCD O

29

31 Length DCW (TablEnd - Table) / 4 ;because we’re having to align

BNE Branch to Loop if counter is not equal to zero

/ IProgram: sum16.s

7
8 LDR RO, =Datal ;load the address of the lookup table
9 EOR R1,R1,R1 ;clear R1 to store sum

10 LDR R2, Length ;init element count

11 Loop

12 LDR R3, [RO] ;get the data

13 ADD R1,R1,R3 ;addittorl

14 ADD RO, RO, #+4 ;increment pointer

15 SUBS R2,R2,#1 ;decrementcount with zero set

16 BNE Loop iIf zero flag is not set, loop

19

22 Table DCW &2040 ;table of values to be added

24 DCW &1C22

28 TablEndDCD O

29

31 Length DCW (TablEnd - Table)/ 4 ;because we're having to align

DCW Assembler will calculate the length of data table for me

10
11
12
13
14
15
16
17
18
19
20
21
22

Loop

Done

: IProgram: suml16b.s

LDR

EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup
table

R1, R1,R1 ;clear R1 to store sum

R2, Length ;init element count

R2, #0 ;zero length table ?

Done ;yes => skip over sum loop

R3, [RO] ;get the data that RO points to
R1,R1,R3 ;addittoR1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop if zero flag is not set, loop

R1, Result :otherwise done - store result
&11

14
15
16
17
18
19
20
21
22

EOR

Loop

Done

/ IProgram: sum16b.s

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1,R1 ;clear R1 to store sum

R2, Length ;init element count

R2, #0 ;zero length table ?

Done ;yes => skip over sum loop

R3, [RO] ;get the data that RO points to
R1,R1,R3 ;addittoR1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop iIf zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Quick way of setting R1 to zero

14

20

CMP

Loop

Done

/ IProgram: sum16b.s

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1,R1 ;clear R1 to store sum

R2, Length ;init element count

R2, #0 ;zero length table ?

Done ;yes => skip over sum loop

R3, [RO] ;get the data that RO points to
R1,R1,R3 ;addittoR1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop iIf zero flag is not set, loop

R1, Result :otherwise done - store result
&11

|s table length zero?

/ ’Program: sum16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clearR1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 ;addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop if zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 Swi &11
BEQ Skip zero length tables

Protects from irocessini an emiti list N

/ ’Program: sum16b.s

14

16
17
18
19
20
21
22

Loop

Done

LDR/ADD

LDR
EOR
LDR
CMP
BEQ

LDR
ADD
ADD
SUBS
BNE

STR
SWI

RO, =Datal ;load the address of the lookup table
R1, R1,R1 ;clear R1 to store sum
R2, Length ;init element count

R2, #0 ;zero length table ?
Done ;yes => skip over sum loop
R3, [RO] ;get the data that RO points to

R1,R1,R3 :addittoR1

RO, RO, #+4 ;increment pointer

R2, R2, #0x1 ;decrement count with zero set
Loop if zero flag is not set, loop

R1, Result :otherwise done - store result
&11

Using Post-index addressing we can remove the ADD:
LDR R3, [RO], #4

/ ’Program: sum16b.s

9 LDR RO, =Datal ;load the address of the lookup table
10 EOR R1,R1,R1 ;clear R1 to store sum
11 LDR R2, Length ;init element count
12 CMP R2,#0 ;zero length table ?
13 BEQ Done ;yes => skip over sum loop
14 Loop
15 LDR R3, [RO] ;get the data that RO points to
16 ADD R1,R1,R3 ;addittoR1
17 ADD RO, RO, #+4 ;increment pointer
18 SUBS R2, R2, #0x1 ;decrement count with zero set
19 BNE Loop iIf zero flag is not set, loop
20 Done
21 STR R1, Result ;otherwise done - store result
22 SWiI &11
SUBS/BNE Decrement counter and branch to Loop if not zero

IF-THEN Instruction

Another alternative to execute conditional code is the new
16-bit IF-THEN (IT) instruction

— no change in program flow
— no branching overhead

Can use with 32-bit Thumb-2 instructions that do not
support the ‘S’ suffix

Example:
CMP R1, R2 ; IFR1=R2
ITEQ ; execute next (1st)

s instruction
ADDEQ R2, R1, RO ; 1stinstruction

The conditional codes can be extended up to 4 instructions

Software Interrupt

e SWI instruction

— Forces CPU into supervisor mode
— Usage: SWI #n

31 28 27 24 23

Cond Opcode |Ordinal

e Maximum 244 calls

« Suitable for running privileged code and
making OS calls

Barrier instructions

e Useful for multi-core & Self-modifying code

w

DMB Data memory barrier; ensures that all memory accesses are
completed before new memory access is committed

DSB Data synchronization barrier; ensures that all memory accesses are
completed before next instruction is executed

ISB Instruction synchronization barrier; flushes the pipeline and ensures
that all previous instructions are completed before executing new
instructions

