
A Great Vim Cheat Sheet

Note: If you’re decent at vim and want your mind blown, check out Advanced Vim.

I’ve compiled a list of essential vim commands that I use every day. I then give a few instructions on how to making
vim as great as it should be, because it’s painful without configuration.

Cursor movement (Inside command/normal mode)

w - jump by start of words (punctuation considered words)
W - jump by words (spaces separate words)
e - jump to end of words (punctuation considered words)
E - jump to end of words (no punctuation)
b - jump backward by words (punctuation considered words)
B - jump backward by words (no punctuation)
0 - (zero) start of line
^ - first non-blank character of line (same as 0w)
$ - end of line

Advanced (in order of what I find useful)
Ctrl+d - move down half a page
Ctrl+u - move up half a page
} - go forward by paragraph (the next blank line)
{ - go backward by paragraph (the next blank line)
gg - go to the top of the page
G - go the bottom of the page
: [num] [enter] - Go To that line in the document

Searching
f [char] - Move to the next char on the current line after the cursor
F [char] - Move to the next char on the current line before the cursor
t [char] - Move to before the next char on the current line after the cursor
T [char] - Move to before the next char on the current line before the cursor

All these commands can be followed by ; (semicolon) to go to the next searched item, and ,
(comma) to go the the previous searched item

Insert/Appending/Editing Text
Results in insert mode

i - start insert mode at cursor
I - insert at the beginning of the line
a - append after the cursor
A - append at the end of the line
o - open (append) blank line below current line (no need to press return)
O - open blank line above current line
cc - change (replace) an entire line
c [movement command] - change (replace) from the cursor to the move-to point.

http://vimsheet.com/advanced.html

ex. ce changes from the cursor to the end of the cursor word
Esc - exit insert mode
r [char] - replace a single character with the specified char (does not use insert mode)
d - delete

d - [movement command] deletes from the cursor to the move-to point.
ex. de deletes from the cursor to the end of the current word

dd - delete the current line
Advanced

J - join line below to the current one

Marking text (visual mode)
v - starts visual mode

From here you can move around as in normal mode (hjkl etc.) and can then do a command (such as y , d ,
or c)

V - starts linewise visual mode
Ctrl+v - start visual block mode
Esc - exit visual mode

Advanced
O - move to Other corner of block
o - move to other end of marked area

Visual commands

Type any of these while some text is selected to apply the action

y - yank (copy) marked text
d - delete marked text
c - delete the marked text and go into insert mode (like c does above)

Cut and Paste
yy - yank (copy) a line
p - put (paste) the clipboard after cursor
P - put (paste) before cursor
dd - delete (cut) a line
x - delete (cut) current character
X - delete previous character (like backspace)

Exiting
:w - write (save) the file, but don't exit
:wq - write (save) and quit
:q - quit (fails if anything has changed)
:q! - quit and throw away changes

Search/Replace
/pattern - search for pattern
?pattern - search backward for pattern
n - repeat search in same direction
N - repeat search in opposite direction
:%s/old/new/g - replace all old with new throughout file (gn is better though)
:%s/old/new/gc - replace all old with new throughout file with confirmations

https://github.com/vinitkumar/white-paper

Working with multiple files
:e filename - Edit a file
:tabe - make a new tab
gt - go to the next tab
gT - go to the previous tab

Advanced
:vsp - vertically split windows
ctrl+ws - Split windows horizontally
ctrl+wv - Split windows vertically
ctrl+ww - switch between windows
ctrl+wq - Quit a window

Marks

Marks allow you to jump to designated points in your code.

m{a­z} - Set mark {a-z} at cursor position
A capital mark {A-Z} sets a global mark and will work between files
‘{a­z} - move the cursor to the start of the line where the mark was set
‘’ - go back to the previous jump location

General
u - undo
Ctrl+r - redo
. - repeat last command

Making Vim actually useful

Vim is quite unpleasant out of the box. For example, typeing :w for every file save is awkward and copying and
pasting to the system clipboard does not work. But a few changes will get you much closer to the editor of your
dreams.

.vimrc
My .vimrc file has some pretty great ideas I haven't seen elsewhere.
This is a minimal vimrc that focuses on three priorities:

adding options that are strictly better (like more information showing in autocomplete)
more convenient keystrokes (like [space]w for write, instead of :w [enter])
a similar workflow to normal text editors (like enabling the mouse)

Installation
Copy this to your home directory and restart vim. Read through it to see what you can now do (like
[space]w to save a file)

mac users - making a hidden normal file is suprisingly tricky. Here’s one way:
in the command line, go to the home directory
type nano .vimrc
paste in the contents of the .vimrc file
ctrl+x , y , [enter] to save

You should now be able to press [space]w in normal mode to save a file.
[space]p should paste from the system clipboard (outside of vim).

If you can’t paste, it’s probably because vim was not built with the system clipboard option. To check, run
vim ­­version and see if +clipboard exists. If it says ­clipboard , you will not be able to copy

https://github.com/theicfire/dotfiles/blob/master/vim/.vimrc

from outside of vim.
For mac users, homebrew install vim with the clipboard option. Install homebrew and then run brew
install vim .

then move the old vim binary: $ mv /usr/bin/vim /usr/bin/vimold
restart your terminal and you should see vim ­­version now with +clipboard

Plugins
The easiest way to make vim more powerful is to use Vintageous in sublime (version 3). This gives you Vim
mode inside sublime. I suggest this (or a similar setup with the Atom editor) if you aren't a vim master. Check
out Advanced Vim if you are.

Vintageous is great, but I suggest you change a few settings to make it better.

Clone this repository to ~/.config/sublime­text­3/Packages/Vintageous , or similar. Then
check out the "custom" branch.

Alternatively, you can get a more updated Vintageous version by cloning the official repo and then
copying over this patch.

Change the user settings (User/Preferences.sublime­settings) to include:
"caret_style": "solid"

This will make the cursor not blink, like in vim.
sublime might freeze when you do this. It’s a bug; just restart sublime after changing the file.

ctrl+r in vim means "redo". But there is a handy ctrl+r shortcut in sublime that gives an "outline" of a
file. I remapped it to alt+r by putting this in the User keymap

{ "keys": ["alt+r"], "command": "show_overlay", "args": {"overlay":

"goto", "text": "@"} },

Add the ability to toggle vintageous on and off
Mac users: you will not have the ability to hold down a navigation key (like holding j to go down). To fix
this, run the commands specified here: https://gist.github.com/kconragan/2510186

Now you should be able to restart sublime and have a great vim environment! Sweet Dude.

Switch Caps Lock and Escape
I highly recommend you switch the mapping of your caps lock and escape keys. You'll love it, promise!
Switching the two keys is platform dependent; google should get you the answer

Other

I don’t personally use these yet, but I’ve heard other people do!

:wqa - Write and quit all open tabs (thanks Brian Zick)

http://vimsheet.com/advanced.html
https://github.com/theicfire/Vintageous
https://github.com/guillermooo/Vintageous
https://github.com/theicfire/Vintageous/commit/19ff6311b01e3ae259b7eb8e3944687b42ba06ff
https://github.com/guillermooo/Vintageous/wiki/Toggling-Vintageous
https://gist.github.com/kconragan/2510186

