
An Introduction to Verilog

Examples for the Altera DE1

By: Andrew Tuline

Date: May 27, 2013

This is STILL a work in progress. . .

Introduction

Whether it’s computers or art, it never ceases to amaze me how many so called ‘Introductory’ books
start out with simple concepts but then take a huge leap to the finished product. For instance . . .

How to draw a face:

Step 1:

Step 2:

Step 3:

I can only shake my head at the gargantuan jump in complexity and then move onto the next book.

This document aims to build upon basic elements of digital logic written in Verilog and slowly build upon
them. It is not a reference manual, but rather a simple guide with reasonable steps between each
section.

Platform and Pre-Requisites

Before continuing, you should have a basic understanding of digital logic and have already installed a
Verilog platform of some form. In my case, I am using the Altera DE1 FPGA development board. The DE1
comes equipped with several switches and LED’s which we’ll use to provide inputs and outputs for our
circuits. I am using Version 13.0 of Altera’s Quartus II software along with the accompanying version of
Modelsim. In addition, you should already know how to get out of the starting gate with your platform
of choice. For the DE1, I went through the Digital Logic Tutorials at:

http://www.altera.com/education/univ/materials/digital_logic/tutorials/unv-tutorials.html

The ones I did were the Schematic and Verilog tutorials at:

ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Tutorials/Schematic/Quartus_II_Introduction.pdf

ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Tutorials/Verilog/Quartus_II_Introduction.pdf

The above tutorials get you started with the DE1 (or other DEx boards) and shows you how to:

• Create a project with your development board of choice
• Create a schematic or Verilog file
• Create a simple design
• Use the assignment editor to match circuit inputs/outputs to devices on the board
• Compile the design
• Program your board with the compiled design (using the .sof file)
• Display the resultant circuit with the RTL viewer
• Toggle the switches and watch the LED’s blink

Altera also provides some labs, (but these come without much supporting educational material or
answers, so their value may be limited to those of us not in university. They are located at:

http://www.altera.com/education/univ/materials/digital_logic/labs/unv-labs.html

http://www.altera.com/education/univ/materials/digital_logic/tutorials/unv-tutorials.html�
ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Tutorials/Schematic/Quartus_II_Introduction.pdf�
ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Tutorials/Verilog/Quartus_II_Introduction.pdf�
http://www.altera.com/education/univ/materials/digital_logic/labs/unv-labs.html�

Combinational Logic

As beginner’s we’re going to create some designs using Verilog and then program them on the
development board. Once we have a reasonable grasp of things, we should graduate onto using a
simulator to test our designs. This allows for improved debugging and timing analysis.

AND Gate
Go ahead and create a simple AND gate using Verilog. This should be a backwards step as you should
have already created an XOR gate with Altera’s Verilog tutorial.

This first example uses Verilog 1995 to define the ports.

// And gate
//
module andgate (x1, x2, f);
 input x1, x2;
 output f;

 assign f = x1 & x2;

endmodule

Note: To get this to compile, I made sure that the name of the Verilog file was called ‘andgate.v’.

RTL Viewer
Once this compiled properly, you can view the output by selecting ‘Tools | Netlist Viewers | RTL
Viewer’:

Assignment Editor
The assignments from your circuit to the FPGA location will vary depending on the board you are using.
If these weren’t already assigned, you’ll need to re-compile your design before programming the DE1.

On the DE1, PIN_L22 maps to SW[0] on the board (which we call x1), while PIN_L21 maps to SW[1]
(which we call x2) and PIN_U22 maps to LEDG[0] (which we call f). Once you have compiled and
programmed the board, you should be able to toggle the switches and see the expected outputs.

QSF files
If you haven’t already done so, you should download and import the DE1 assignment file to your project
from:

ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE1/DE1.qsf

Once the .qsf file has been imported by selecting ‘Assignment | Import Assignments’, your assignment
editor should look something along the lines of:

These should all turn black once the circuit has been compiled. Here’s the AND gate re-written with
Altera’s qsf definitions. It uses ‘bus’ notation, which allows us to define several switches with a single
entry. We can then use them in our logic as SW[1] and SW[0], which were defined in the .qsf file. For
example:

// And gate
//
module andgate (SW, LEDG);
 input [1:0]SW; // We’ll use 2 switches
 output [0:0]LEDG; // And a single green LED

 assign LEDG[0] = SW[1] & SW[0];

endmodule

When defining an array of inputs or outputs, you put the brackets with the size of the bus prior to the
name. For example [0:0] is 1 bit wide, while both [3:0] and [7:4] are 4 bits wide.

Here’s another way to write this more concisely in Verilog 2005 format:

ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE1/DE1.qsf�

// And gate
//
module andgate (
 input [1:0] SW,
 output [0:0] LEDG
);

 assign LEDG[0] = SW[1] & SW[0];

endmodule

We’ll try and remember to use this notation with our remaining examples.

‘Wire’

We often need to connect gates together and we’ll use a command called ‘wire’ to do so.

A ‘wire’ is a passive connection. You cannot assign a specific value to a ‘wire’, so it’s typically used
between combinational logic elements. For a good reference, see:

http://www.asic-world.com/tidbits/wire_reg.html

3 Input AND Gate
We’re going to use a couple of 2 input AND gates to create a 3 input AND gate. We’ll need a wire to
connect the output of one of the AND gates to the other.

// AND3 gate from two AND2 gates
//
module and3 (
 input [2:0]SW,
 output [0:0]LEDG
);

wire s1; // We need a wire for interconnection

 assign s1 = SW[1] & SW[0];
 assign LEDG[0] = s1 & SW[2];

endmodule

Here is how it appears in RTL:

http://www.asic-world.com/tidbits/wire_reg.html�

Alternatively, we could have used a single assign statement without requiring a ‘wire’ such as:

 assign LEDG[0] = SW[0] & SW[1] & SW[2];

 or even:

 assign LEDG[0] = &SW;

If you continue to have any significant problems up to this point, please make sure that you have gone
through the initial study materials.

Buffers

As shown earlier, you can define an array and use it as a bus. Here’s an 8 bit wide set of buffers:

// Buffers
//
module buffers (
 input [7:0] SW,
 output [7:0] LEDG
);

 assign LEDG = SW; // Could use ‘=~SW’ for inverters

endmodule

Five Wide Xor

In this example, the LED will be on when an odd number of switches are high.

// Xor5
//
module xor5 (
 input [4:0] SW,
 output [0:0] LEDG
);

 assign LEDG = ^SW;

endmodule

Suggestion: If you’re looking to design a circuit in Verilog, try Googling for it. It’s amazing what you can
find.

A 4:1 Multiplexer
Apparently, there’s lots of ways you can design this, so let’s look at some. The first example is my
favourite.

 We will want to give our SW’s different names as they’re going to be used in arrays for different
purposes. Let’s use the assignment editor and duplicate the SW settings to other variables:

• select [1:0] will use the same pins as SW[1:0]
• dat[3:0] will use the same pins as SW[7:4]

In this case, select[1] would be PIN_L21, while dat[3] would be PIN_M2 and so on.

// 4 to 1 mux
//
module mux4to1 (
 input [1:0] select,
 input [3:0] dat,
 output [0:0] LEDG
);

assign LEDG[0] = dat[select]; // ‘select’ is a 2 bit value

endmodule

Another method is as follows for a 2 to 1 mux:

// 2 to 1 mux
//
module mux2to1 (
 input [1:0] select,
 input [1:0] dat,
 output [0:0] LEDG
);

assign LEDG[0] = select ? dat[1] : dat[0];

endmodule

One way to combine single variables with an array would be as follows:

// 2 to 1 mux
//
module mux2to1 (
 input [1:0] select,
 input [1:0] dat1, dat0,
 output [0:0] LEDG
);

assign LEDG[0] = select ? dat1 : dat0;
endmodule

You could use a similar technique for a 4 to 1 multiplexer as well, but it starts to get ugly as shown
below. I’ll take the first version thank you.

// 4 to 1 mux
//
module mux4to1 (
 input [1:0] select,
 input [3:0] dat,
 output [0:0] LEDG
);

assign LEDG[0] = select[1] ? (select[0] ? dat[3] : dat[2])
 : (select[0] ? dat[1] : dat[0]);
endmodule

By now, you should be comfortable with assigning inputs and outputs to switches and LED’s, so unless
something different comes up like a clock, I’ll assume you’re OK.

Module Instantiation (i.e. subroutines)

We can use define and use modules and include them in our main code.

When passing parameters between the top module and lower level modules, you can use either:

- Implicit (declarations are in the same order)
- Named (both declarations are listed and linked

In addition, the name for including a module is called ‘instantiation’. Finally, each instantiation can have
a unique name.

For example:

module top (
input in1, in2, in3, in4,
output out1, out2

);

// Implicit instantiation - must be in same order
dostuff first (in1, in2, out1);

// Named instantiation - they don’t need to be in order
dostuff second (.stin1(in3), .stin2(in4), .stout(out2));

endmodule

module dostuff (
 input stin1, stin2,
 output stout
);
 assign stout = stin1 & stin2;

endmodule

Simple Half Adder

We’ll define a half adder and then use that to create a full adder.

// Half Adder
//
module halfadd (
 input a, b,
 output s, co
);

 assign s = a ^ b;
 assign co = a & b;

endmodule

Full Adder

 We will need to use some wires and a couple of instantiations to make this happen.

// Full Adder from Half Adders
//
module fulladd (
 input a, b, c_in,
 output sum_out, c_out
);

 wire s1, c1, c2;

 halfadd (a, b, s1, c1);
 halfadd (s1, c_in, sum_out, c2);
 assign c_out = c1 | c2;

endmodule

module halfadd (
 input a, b,
 output s, co
);

 assign s = a ^ b;
 assign co = a & b;

endmodule

Here’s the rtl output:

Sequential Logic

In order to define devices like latches, flip-flops and counters, we need to save state information. In
order to do so, we’ll be using additional components of Verilog

Reg & Wire

http://www.asic-world.com/tidbits/wire_reg.html

http://www.asic-world.com/tidbits/wire_reg.html�

Wire = A connection. You cannot assign a value to a wire, ie a clock or a connection from a gate to
another gate. Primarily used to connect combinational logic.

Reg = something you can assign a value to. Good for combinational and sequential logic.

Reg can be combinational in an ‘Always’ statement. This is good if you want to test the reg value.

Reg can be sequential, however you must test for it with posedge in an ‘Always’ statement.

Initial & Always
These are procedural blocks in Verilog.

Initial - Is executed only once when a circuit starts up.

Always - Is executed continuously.

Begin & End
These are used when the Initial or Always segments are longer than a single line.

Blocking and Non-blocking Assignments
Within an ‘Always’ procedural block, you can assign values either in sequence or in parallel. These are
also called blocking and non-blocking. For example:

always begin
a=b; // blocking assignment, b is copied to a
b=a; // b has now been copied to both a and b

end

always begin
a<=b; // non-blocking assignment
b<=a; // values of a and b have been swapped

end

D Flip Flop

This device is triggered on the edge of the clock, aka edge triggered.

// D flip flop
//
module verilog (
 input D, Ck,
 output reg Q
);

 always @(posedge Ck)
 Q = D;

endmodule

Here’s the RTL result:

D Latch
Interestingly enough, a D latch is more difficult to program than a D flip flop. It is level as opposed to
edge triggered on the clock.

// D latch
//
module verilog (
 input D, Ck,
 output reg Q
);

 always @(D, Ck)
 if (Ck) Q = D;

endmodule

Again, the RTL result:

T Flip Flop
// T flip flop
//
module verilog (
 input T, Ck,
 output reg Q
);

 always @(posedge Ck)
 if (T) Q = ~Q;
endmodule

An 8 Bit Register
It’s easy to extent a D flip-flop to a full blown register in Verilog. Let’s also add some more control as
well.

// 8 bit register
//
module register8 (
 input [7:0] data,
 input clock, set, reset,
 output reg [7:0] q
);

 always @(posedge clock) begin
 if (set)
 q = 8'b1111111;
 else if (reset)
 q = 8'b0;
 else
 q = data;
 end

endmodule

A 4 Bit Counter

// A 4 bit counter
//
module verilog (
 input clock,
 output reg [3:0] count
);

initial
 count = 0;

always @(posedge clock)
 count = count + 1;

endmodule

A Blinking LED With Instantiated Counter

CLOCK_50 is the 50Mhz clock from the .qsf file. You should map ‘LED’ to an LED obviously.

The slow clock frequency is (5*(10^6))/(2^26) = .745 Hz

We could have counted and compared to a specific decimal number in order to get a 1Hz slow clock, but
this makes for simpler logic.

// Blinking LED with implicit instantiated 50MHz clock
//
module blinky (
 input CLOCK_50,
 output [0:0]LEDG
);

 wire SlowClock; // Slow clock signal

 SlowIt(CLOCK_50, SlowClock); // Implicit instantiation
 assign LEDG[0] = SlowClock;
endmodule

module SlowIt(input FastClock, output reg SlowClock);
 reg [25:0]R;

 always @(posedge FastClock) begin
 R = R + 1;
 SlowClock = R[25]; //(50*10^6)/(2^26) or .745 Hz
 end

endmodule

// Blinking multi-LED with 50MHz clock
//
module ledcounter(
 input CLOCK_50,
 output reg [7:0] LEDG
);

 reg [27:0] count1;

always @(posedge CLOCK_50) begin
 LEDG <= count1[27:20]; // Green LED's are counting
 count1 <= count1 + 1; // Non-blocking assignments
end

endmodule

Using a Simulator

By this point, we’ve spent a lot of time creating circuits, using the assignment editor and programming
the DE1. Let’s move on to a simulator, so we can see a greater level of detail within the circuit via
waveforms, as opposed to just blinky LED’s. Before moving on, please go through the tutorial at:

http://ecee.colorado.edu/~ecen2350/AlteraSoftware/ModelSim_Session01.html

This is a relatively simple example, and it includes a separate file (also called testbench) that provides a
clock/counter as input for the design.

Alternatively, there’s chapters 1-6 of the Modsim tutorial at:

http://www.usna.edu/EE/ee362/LABS/modelsim_tut.pdf

You could also try out the Altera tutorial (however it’s pretty complex):

ftp://ftp.altera.com/up/pub/Altera_Material/12.0/Tutorials/Verilog/Using_ModelSim.pdf

Once you have completed the first tutorial, try out the following (simpler) code:

`timescale 1ns/1ns

module verilog (output reg myclk, output LED);

assign LED = myclk;

initial begin
 myclk = 0;

end

always begin
 #5 myclk = ~myclk;
end

endmodule

When we compiled a blinky LED for programming on the DE1, we used the CLOCK_50 pin to get our
clock signal. Since this isn’t available in the simulator, we’ll use a different method. First, we set the
overall timescale of the clock with `timescale 1ns/1ns. Then we enter a delay to create our clock cycles
with #5. In this case, that would be 5ns.

You can also use a #value to set propagation delay on other gates as well.

http://ecee.colorado.edu/~ecen2350/AlteraSoftware/ModelSim_Session01.html�
http://www.usna.edu/EE/ee362/LABS/modelsim_tut.pdf�
ftp://ftp.altera.com/up/pub/Altera_Material/12.0/Tutorials/Verilog/Using_ModelSim.pdf�

References

http://www.ee.ed.ac.uk/~gerard/Teach/Verilog/manual/index.html

http://vol.verilog.com/VOL/main.htm

http://www.asic-world.com/verilog/veritut.html

http://electrosofts.com/verilog/

http://sutherland-hdl.com/online_verilog_ref_guide/verilog_2001_ref_guid...

http://www.verilogwiki.info/wiki/index.php/Tutorials

http://www.swarthmore.edu/NatSci/echeeve1/Class/e15/QQS_V/QuickQuartusVerilog.html#Adding_A
_Predefined_Circuit_Element

http://www.cc.gatech.edu/~milos/Teaching/CS3220F2011/Slides

Books

Digital Design and Computer Architecture by David Money Harris & Sarah L. Harris

FSM in Verilog

http://inst.eecs.berkeley.edu/~cs150/sp12/resources/FSM.pdf

http://www.asic-world.com/tidbits/verilog_fsm.html

http://www.ee.ed.ac.uk/~gerard/Teach/Verilog/manual/index.html�
http://vol.verilog.com/VOL/main.htm�
http://www.asic-world.com/verilog/veritut.html�
http://electrosofts.com/verilog/�
http://sutherland-hdl.com/online_verilog_ref_guide/verilog_2001_ref_guide.pdf�
http://www.verilogwiki.info/wiki/index.php/Tutorials�
http://www.swarthmore.edu/NatSci/echeeve1/Class/e15/QQS_V/QuickQuartusVerilog.html#Adding_A_Predefined_Circuit_Element�
http://www.swarthmore.edu/NatSci/echeeve1/Class/e15/QQS_V/QuickQuartusVerilog.html#Adding_A_Predefined_Circuit_Element�
http://www.cc.gatech.edu/~milos/Teaching/CS3220F2011�
http://www.amazon.ca/Digital-Design-Computer-Architecture-Harris/dp/0123944244/ref=dp_ob_title_bk�
http://inst.eecs.berkeley.edu/~cs150/sp12/resources/FSM.pdf�
http://www.asic-world.com/tidbits/verilog_fsm.html�

	Examples for the Altera DE1
	Introduction
	How to draw a face:

	Platform and Pre-Requisites
	Combinational Logic
	AND Gate
	RTL Viewer
	Assignment Editor
	QSF files
	‘Wire’
	3 Input AND Gate
	Buffers
	Five Wide Xor
	A 4:1 Multiplexer

	Module Instantiation (i.e. subroutines)
	Simple Half Adder
	Full Adder
	/

	Sequential Logic
	Reg & Wire
	Initial & Always
	Begin & End
	Blocking and Non-blocking Assignments
	D Flip Flop
	D Latch
	T Flip Flop
	An 8 Bit Register
	A 4 Bit Counter
	A Blinking LED With Instantiated Counter

	Using a Simulator
	References

