Burrows—Wheeler transform

The Burrows—Wheeler transform (BWT, also called
block-sorting compression) rearranges a character
string into runs of similar characters. This is useful for
compression, since it tends to be easy to compress a
string that has runs of repeated characters by techniques
such as move-to-front transform and run-length encod-
ing. More importantly, the transformation is reversible,
without needing to store any additional data. The BWT is
thus a “free” method of improving the efficiency of text
compression algorithms, costing only some extra compu-
tation.

1 Description

The Burrows—Wheeler transform is an algorithm used in
data compression techniques such as bzip2. It was in-
vented by Michael Burrows and David Wheeler in 1994
while working at DEC Systems Research Center in Palo
Alto, California.['l It is based on a previously unpublished
transformation discovered by Wheeler in 1983.

When a character string is transformed by the BWT, the
transformation permutes the order of the characters. If
the original string had several substrings that occurred of -
ten, then the transformed string will have several places
where a single character is repeated multiple times in a
TOW.

For example:

The output is easier to compress because it has many re-
peated characters. In fact, in the transformed string, there
are a total of eight runs of identical characters: XX, II,
XX, SS, PP, .., II, and III, which together make 17 out of
the 44 characters in it.

2 Example

The transform is done by sorting all rotations of the text
into lexicographic order, by which we mean that the 8 ro-
tations appear in the second column in a different order,
in that the 8 rows have been sorted into lexicographical
order. We then take as output the last column and the
number k =7 of the row that the non rotated row ends up
in. For example, the text ""BANANAI" is transformed
into “BNN"AAIA” through these steps (the red | charac-
ter indicates the 'EOF' pointer):

The following pseudocode gives a simple (though ineffi-
cient) way to calculate the BWT and its inverse. It as-

sumes that the input string s contains a special character
'EOF' which is the last character, occurs nowhere else in
the text, and is ignored during sorting.

function BWT (string s) create a table, rows are all pos-
sible rotations of s sort rows alphabetically return (last
column of the table) function inverseBWT (string s) cre-
ate empty table repeat length(s) times // first insert cre-
ates first column insert s as a column of table before first
column of the table sort rows of the table alphabetically
return (row that ends with the 'EOF' character)

3 Explanation

To understand why this creates more-easily-compressible
data, consider transforming a long English text frequently
containing the word “the”. Sorting the rotations of this
text will group rotations starting with “he " together, and
the last character of that rotation (which is also the char-
acter before the “he ") will usually be “t”, so the result of
the transform would contain a number of “t” characters
along with the perhaps less-common exceptions (such as
if it contains “Brahe ") mixed in. So it can be seen that the
success of this transform depends upon one value having
a high probability of occurring before a sequence, so that
in general it needs fairly long samples (a few kilobytes at
least) of appropriate data (such as text).

The remarkable thing about the BWT is not that it gen-
erates a more easily encoded output—an ordinary sort
would do that—but that it is reversible, allowing the orig-
inal document to be re-generated from the last column
data.

The inverse can be understood this way. Take the final
table in the BWT algorithm, and erase all but the last col-
umn. Given only this information, you can easily recon-
struct the first column. The last column tells you all the
characters in the text, so just sort these characters alpha-
betically to get the first column. Then, the first and last
columns (of each row) together give you all pairs of suc-
cessive characters in the document, where pairs are taken
cyclically so that the last and first character form a pair.
Sorting the list of pairs gives the first and second columns.
Continuing in this manner, you can reconstruct the entire
list. Then, the row with the “end of file” character at the
end is the original text. Reversing the example above is
done like this:

https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Move-to-front_transform
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/Michael_Burrows
https://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)
https://en.wikipedia.org/wiki/DEC_Systems_Research_Center
https://en.wikipedia.org/wiki/Palo_Alto
https://en.wikipedia.org/wiki/Palo_Alto
https://en.wikipedia.org/wiki/Character_string_(computer_science)
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Sorting
https://en.wikipedia.org/wiki/Lexicographic_order
https://en.wikipedia.org/wiki/End-of-file
https://en.wikipedia.org/wiki/Pseudocode

4 Optimization

A number of optimizations can make these algorithms
run more efficiently without changing the output. There
is no need to represent the table in either the encoder or
decoder. In the encoder, each row of the table can be rep-
resented by a single pointer into the strings, and the sort
performed using the indices. Some care must be taken
to ensure that the sort does not exhibit bad worst-case
behavior: Standard library sort functions are unlikely to
be appropriate. In the decoder, there is also no need to
store the table, and in fact no sort is needed at all. In
time proportional to the alphabet size and string length,
the decoded string may be generated one character at a
time from right to left. A “character” in the algorithm
can be a byte, or a bit, or any other convenient size.

One may also make the observation that mathematically,
the encoded string can be computed as a simple modifica-
tion of the suffix array, and suffix arrays can be computed
with linear time and memory.

There is no need to have an actual 'EOF' character. In-
stead, a pointer can be used that remembers where in a
string the 'EOF' would be if it existed. In this approach,
the output of the BWT must include both the transformed
string, and the final value of the pointer. That means the
BWT does expand its input slightly. The inverse trans-
form then shrinks it back down to the original size: it is
given a string and a pointer, and returns just a string.

A complete description of the algorithms can be found in
Burrows and Wheeler’s paper, or in a number of online
sources.

5 Bijective variant

When a bijective variant of the Burrows—Wheeler trans-
form is performed on ""BANANA”, you get ANNBAA”
without the need for a special character for the end of the
string. This forces one to increase character space by one,
or to have a separate field with a numerical value for an
offset. Either of these features makes data compression
more difficult. When dealing with short files, the savings
are great percentage-wise.

The bijective transform is done by sorting all rotations of
the Lyndon words. In comparing two strings of unequal
length, one can compare the infinite periodic repetitions
of each of these in lexicographic order and take the last
column of the base-rotated Lyndon word. For example,
the text ""BANANAI" is transformed into “ANNBAAA|"
through these steps (the red | character indicates the EOF
pointer) in the original string. The EOF character is un-
needed in the bijective transform, so it is dropped during
the transform and re-added to its proper place in the file.

The string is broken into Lyndon words so the words in
the sequence are decreasing using the comparison method

5 BIJECTIVE VARIANT

above. ""BANANA” becomes (*) (B) (AN) (AN) (A),
but Lyndon words are combined into (*) (B) (ANAN)
(A).

The above may be viewed as four cycles

A= (N)(N)... = MAMA

B = (B)(B)... =BBBB...

ANAN = (ANAN)(ANAN)... = ANANANAN...
A =(A)A).. = AAAAA..

or 5 cycles WHERE ANAN broken into 2

AN = (AN) (AN) ... = ANANANAN

AN = (AN) (AN) ... = ANANANAN

If a cycle is N character it will be repeated N times:
@)

B)

(ANAN)

A)

or

™)
B)
(AN)
(AN)
(A)

to get the "BANANA

Since any rotation of the input string will lead to the same
transformed string, the BWT cannot be inverted without
adding an EOF marker to the input or, augmenting the
output with information such as an index, making it pos-
sible to identify the input string from all its rotations.

There is a bijective version of the transform, by which
the transformed string uniquely identifies the original. In
this version, every string has a unique inverse of the same
length.[?3]

The fastest versions are linear in time and space.

The bijective transform is computed by factoring the in-
put into a non-increasing sequence of Lyndon words;
such a factorization exists in the Chen—Fox—Lyndon theo-
rem,! and may be found in linear time.! The algorithm
sorts the rotations of all the words; as in the Burrows—
Wheeler transform, this produces a sorted sequence of n
strings. The transformed string is then obtained by pick-
ing the final character of each string in this sorted list.

For example, applying the bijective transform gives:

The bijective transform includes eight runs of identical
characters. These runs are, in order: XX, II, XX, PP, ..,
EE, .., and IIII.

In total, 18 characters are used in these runs.

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Suffix_array
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Sorting
https://en.wikipedia.org/wiki/Lyndon_word
https://en.wikipedia.org/wiki/Lexicographic_order
https://en.wikipedia.org/wiki/End-of-file
https://en.wikipedia.org/wiki/Bijective
https://en.wikipedia.org/wiki/Lyndon_word
https://en.wikipedia.org/wiki/Chen%E2%80%93Fox%E2%80%93Lyndon_theorem
https://en.wikipedia.org/wiki/Chen%E2%80%93Fox%E2%80%93Lyndon_theorem

6 Dynamic Burrows—Wheeler

transform

When a text is edited, its Burrows-Wheeler transform will
change. Salson et al.'®! propose an algorithm that de-
duces the Burrows—Wheeler transform of an edited text
from that of the original text, doing a limited number of
local reorderings in the original Burrows—Wheeler trans-
form, which can be faster than constructing the Burrows—
Wheeler transform of the edited text directly.

7 Sample implementation

This Python implementation sacrifices speed for simplic-
ity: the program is short, but takes more than the linear
time that would be desired in a practical implementation.

Using the null character as the end of file marker, and
using s[i:] + s[:i] to construct the ith rotation of s, the
forward transform takes the last character of each of the
sorted rows:

def bwt(s): """Apply Burrows-Wheeler transform to
input string.""" assert "\0” not in s, “Input string cannot
contain null character ("W\0")" s += "\0” # Add end of file
marker table = sorted(s[i:] + s[:i] for i in range(len(s)))
Table of rotations of string last_column = [row[—1:]
for row in table] # Last characters of each row return
"" join(last_column) # Convert list of characters into
string

The inverse transform repeatedly inserts r as the left col-
umn of the table and sorts the table. After the whole table
is built, it returns the row that ends with null, minus the
null.

def ibwt(r): """Apply inverse Burrows-Wheeler trans-
form.""" table = [""] * len(r) # Make empty table for
i in range(len(r)): table = sorted(r[i] + table[i] for i in
range(len(r))) # Add a column of r s = [row for row in
table if row.endswith("\0”)][0] # Find the correct row
(ending in "\0”) return s.rstrip("\0”) # Get rid of trailing
null character

Here is another, more efficient method for the inverse
transform. Although more complex, it increases the
speed greatly when decoding lengthy strings.

def ibwt(r, *args): """Inverse Burrows-Wheeler trans-
form. args is the original index \ if it was not indicated
by a null byte.""" firstCol = "".join(sorted(r)) count =
[0]#256 byteStart = [—1]*%256 output = [""] * len(r)
shortcut = [None]*len(r) #Generates shortcut lists for i
in range(len(r)): shortcutlndex = ord(r[i]) shortcut[i] =
count[shortcutIndex] count[shortcutIlndex] += 1 short-
cutlndex = ord(firstCol[i]) if byteStart[shortcutlndex]
—1: byteStart[shortcutlndex] = i locallndex =

(r.index("\x00”) if not args else args[0]) for i in
range(len(r)): #takes the next index indicated by the
transformation vector nextByte = r[locallndex] output
[len(r)-i-1] = nextByte shortcutlndex = ord(nextByte)
#assigns locallndex to the next index in the transfor-
mation vector locallndex = byteStart[shortcutIndex] +
shortcut[locallndex] return "".join(output).rstrip("\x00”)

8 BWT in bioinformatics

The advent of next-generation sequencing (NGS) tech-
niques at the end of the 2000 decade has led to another
application of the Burrows—Wheeler transformation. In
NGS, DNA is fragmented into small pieces, of which the
first few bases are sequenced, yielding several millions of
“reads”, each 30 to 500 base pairs (“DNA characters”)
long. In many experiments, e.g., in ChIP-Seq, the task
is now to align these reads to a reference genome, i.e.,
to the known, nearly complete sequence of the organ-
ism in question (which may be up to several billion base
pairs long). A number of alignment programs, special-
ized for this task, were published, which initially relied on
hashing (e.g., Eland, SOAP,""! or Mag'®"). In an effort to
reduce the memory requirement for sequence alignment,
several alignment programs were developed (Bowtie,”!
BWA,"% and SOAP2!']) that use the Burrows—Wheeler
transform.

9 References

[1] Burrows, Michael; Wheeler, David J. (1994), A block sort-
ing lossless data compression algorithm, Technical Report
124, Digital Equipment Corporation

[2] Gil, J.; Scott, D. A. (2009), A bijective string sorting trans-
form (PDF)

[3] Kufleitner, Manfred (2009), “On bijective variants
of the Burrows-Wheeler transform”, in Holub, Jan;
Zdirek, Jan, Prague Stringology Conference, pp. 65-69,
arXiv:0908.0239.

[4] e Lothaire, M. (1997), Combinatorics on words, En-
cyclopedia of Mathematics and Its Applications 17,
Perrin, D.; Reutenauer, C.; Berstel, J.; Pin, J. E.;
Pirillo, G.; Foata, D.; Sakarovitch, J.; Simon, I.;
Schiitzenberger, M. P.; Choffrut, C.; Cori, R.; Lyn-
don, Roger; Rota, Gian-Carlo. Foreword by Roger
Lyndon (2nd ed.), Cambridge University Press, p.
67, ISBN 0-521-59924-5, Zbl 0874.20040

[5] Duval, Jean-Pierre (1983), “Factorizing words over an or-
dered alphabet”, Journal of Algorithms 4 (4): 363-381,
doi:10.1016/0196-6774(83)90017-2, ISSN 0196-6774,
Zbl 0532.68061.

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Null_character
https://en.wikipedia.org/wiki/Next-generation_sequencing
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/ChIP-Seq
https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Eland_(software)
https://en.wikipedia.org/wiki/Maq
https://en.wikipedia.org/wiki/Bowtie_(sequence_analysis)
https://en.wikipedia.org/wiki/Michael_Burrows
https://en.wikipedia.org/wiki/David_Wheeler_(British_computer_scientist)
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://bijective.dogma.net/00yyy.pdf
http://bijective.dogma.net/00yyy.pdf
http://www.stringology.org/event/2009/p07.html
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/0908.0239
https://en.wikipedia.org/wiki/M._Lothaire
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-521-59924-5
https://en.wikipedia.org/wiki/Zentralblatt_MATH
https://zbmath.org/?format=complete&q=an:0874.20040
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252F0196-6774%252883%252990017-2
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0196-6774
https://en.wikipedia.org/wiki/Zentralblatt_MATH
https://zbmath.org/?format=complete&q=an:0532.68061

(6]

(7]

(8]

(9]

[10]

(11]

10

Salson M, Lecroq T, Léonard M and Mouchard L (2009).
“A Four-Stage Algorithm for Updating a Burrows—
Wheeler Transform”. Theoretical Computer Science 410
(43): 4350-4359. doi:10.1016/j.tcs.2009.07.016.

Li R et al. (2008). “SOAP: short oligonucleotide
alignment program”. Bioinformatics 24 (5): 713-714.
doi:10.1093/bioinformatics/btn025. PMID 18227114.

Li H, Ruan J, Durbin R (2008-08-19). “Mapping short
DNA sequencing reads and calling variants using mapping
quality scores”. Genome Research 18 (11): 1851-1858.
doi:10.1101/gr.078212.108. PMC 2577856. PMID
18714091.

Langmead B, Trapnell C, Pop M, Salzberg SL (2009).
“Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome”. Genome Biology 10 (3):
R25. doi:10.1186/gb-2009-10-3-r25. PMC 2690996.
PMID 19261174.

Li H, Durbin R (2009). “Fast and accurate short
read alignment with Burrows—Wheeler = Trans-
form”. Bioinformatics 25 (14): 1754-1760.
doi:10.1093/bioinformatics/btp324. PMC 2705234.
PMID 19451168.

Li R et al. (2009). “SOAP2: an improved ultrafast
tool for short read alignment”. Bioinformatics 25 (15):
1966-1967. doi:10.1093/bioinformatics/btp336. PMID
19497933.

External links

Compression comparison of BWT based file com-
pressors

Article by Mark Nelson on the BWT

A Bijective String-Sorting Transform, by Gil and
Scott

Yuta’s openbwt-v1.5.zip contains source code for
various BWT routines including BWTS for bijec-
tive version

On Bijective Variants of the Burrows—Wheeler
Transform, by Kufleitner

Blog post and project page for an open-source com-
pression program and library based on the Burrows—
Wheeler algorithm

10 EXTERNAL LINKS

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252Fj.tcs.2009.07.016
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%252Fbioinformatics%252Fbtn025
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/18227114
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577856
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577856
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577856
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1101%252Fgr.078212.108
https://en.wikipedia.org/wiki/PubMed_Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577856
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/18714091
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690996
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690996
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1186%252Fgb-2009-10-3-r25
https://en.wikipedia.org/wiki/PubMed_Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690996
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/19261174
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%252Fbioinformatics%252Fbtp324
https://en.wikipedia.org/wiki/PubMed_Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1093%252Fbioinformatics%252Fbtp336
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/19497933
http://compressionratings.com/bwt.html
http://compressionratings.com/bwt.html
http://marknelson.us/1996/09/01/bwt/
http://bijective.dogma.net/00yyy.pdf
http://bijective.dogma.net/00yyy.pdf
http://encode.ru/attachment.php?attachmentid=959&d=1249146089
http://encode.ru/attachment.php?attachmentid=959&d=1249146089
http://encode.ru/attachment.php?attachmentid=959&d=1249146089
http://arxiv.org/abs/0908.0239
http://arxiv.org/abs/0908.0239
http://google-opensource.blogspot.com/2008/06/debuting-dcs-bwt-experimental-burrows.html
http://code.google.com/p/dcs-bwt-compressor/

11 Text and image sources, contributors, and licenses

11.1 Text

e Burrows—Wheeler transform Source: https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform?oldid=679503046 Con-
tributors: Damian Yerrick, LC~enwiki, Brion VIBBER, Taw, PierreAbbat, Michael Hardy, JakeVortex, Alexr, Kku, Stw, Cyp, Nikai, John
K, Charles Matthews, Timwi, Dcoetzee, Doradus, Populus, Ed g2s, Jaredwf, Fredrik, Rursus, Connelly, Giftlite, Inkling, Kmote, Taak,
Rparle, Spooky, Pne, Torsten Will, Beland, OverlordQ, WhiteDragon, Thorwald, Mormegil, Wfaulk, Felix Wiemann, ZeroOne, Pt, R.
S. Shaw, Mc6809%e, Sligocki, RJFJR, Mixer, GregorB, MarkHudson, Rjwilmsi, Wikibofh, Brighterorange, SystemBuilder, FlaBot, Math-
bot, Quuxplusone, Intgr, Chobot, Bgwhite, YurikBot, Piet Delport, TeeEmCee, Crasshopper, Tribaal, Cbogart2, DmitriyV, Burton Radons,
SmackBot, Faisal.akeel, Reedy, Speight, Oli Filth, Malbrain, Frap, Henning Makholm, Breno, Seb951, Ben Moore, Dicklyon, Saxbryn, Re-
question, Cyhawk, RolandIllig, Ambulnick, JAnDbot, Gstein, David Eppstein, Falcor84, Jerry, Wrev, LokiClock, Drnathanfurious, Ocolon,
Duncan.Hull, AlleborgoBot, SieBot, Thesuperslacker, Robackja, Miniapolis, EoGuy, Mark.t.nelson, Bloodhold, Okted, Xchmelmilos, Ad-
dbot, Xpicto, Luckas-bot, Yobot, PMLawrence, AnomieBOT, Hexadecima, DataWraith, Jwaustin188, Pereant antiburchius, BenzolBot,
Citation bot 1, Samir000, Garandel, Jfmantis, RjwilmsiBot, EmausBot, John of Reading, WikitanvirBot, Todd434, Gestapolur, Berberisb,
ClueBot NG, Yanghoch, Drachefly, BG19bot, Mark Arsten, Thegreatgrabber, Comatmebro, Deltahedron, Stamptrader, Monkbot, Ribli
and Anonymous: 90

11.2 Images

o File:Symbol_template_class.svg Source: https://upload.wikimedia.org/wikipedia/en/5/5¢/Symbol_template_class.svg License: Public
domain Contributors: ? Original artist: ?

11.3 Content license

e Creative Commons Attribution-Share Alike 3.0

https://en.wikipedia.org/wiki/Burrows%25E2%2580%2593Wheeler_transform?oldid=679503046
https://upload.wikimedia.org/wikipedia/en/5/5c/Symbol_template_class.svg
https://creativecommons.org/licenses/by-sa/3.0/

	Description
	Example
	Explanation
	Optimization
	Bijective variant
	Dynamic Burrows–Wheeler transform
	Sample implementation
	BWT in bioinformatics
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

