

Steven Pousty and Katie J. Miller

Getting Started with OpenShift

Getting Started with OpenShift
by Steven Pousty and Katie J. Miller

Copyright © 2014 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Charles Roumeliotis
Proofreader: Rachel Head

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2014: First Edition

Revision History for the First Edition:

2014-03-26: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491901434 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Getting Started with OpenShift, the cover image of a purple-naped lory, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-90143-4

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491901434

Table of Contents

Preface. vii

1. Introduction. 1
What Is the Difference Between IaaS, PaaS, and SaaS? 1
The Three Versions of OpenShift 2
Choosing the Right Solution for You 3
Things to Understand 4

Words You Need to Understand 4
Technology You Need to Understand 5

2. Creating Applications. 9
Preliminary Steps 9
Setting Up the Command-Line Tools 9
Creating Your First Application 11
Autoscaling and Why You Should Use It by Default 14
Reasons to Move to the Paid Tier 15

3. Making Code Modifications. 17
Cloning Code to Your Local Machine 17
Modifying Application Code 18
Building and Deploying Your Code 20
Action Hook Scripts 21
Hot-Deploying Code 22

4. Adding Application Components. 25
Database-Related Cartridges 25
Nondatabase Cartridges 27

Cron 27
Continuous Integration 29

iii

Metrics and Monitoring 31
Finding Cartridges and QuickStarts 32

Adding Third-Party Cartridges 35

5. Environment and Application Management. 37
SSH Access 37

Using SSH to Interact with a Database 39
Importing SQL in an SSH Session 40

Environment Variables 41
Preconfigured Environment Variables 41
Custom Environment Variables 42
Overriding Preconfigured Environment Variables 43

Log Access 43
Changing Application Server or Database Settings 44

Application Server Configuration Changes 44
Database Configuration Changes 45

Using Marker Files 45

6. Library Dependencies. 47
Where to Declare Dependencies 47
Incorporating Your Own Binary Dependencies 49
Modifying Your Application to Use the Database 50

Code to Connect to the Database 50
Code to Close the Database Connection 51
Code to Query the Terms for the Insult 51
What We Have Gained by Adding a Database 52

7. Networking. 53
WebSockets 53
SSH Port Forwarding 55
Custom URLs 57
SSL Certificates 59
Talking to Other Services 60
Addressable Ports 60

8. Disk Usage. 65
Where You Can Write “to Disk” 65
Determining How Much Disk Space Is Used 66
Copying Files to or from Your Local Machine 67
Other Storage Options 68

9. Backup. 69

iv | Table of Contents

Managing Deployments and Rollbacks 69
Manual Deployments 69
Keeping and Utilizing Deployment History 70

Application Snapshots with RHC 71
Backing Up Your Database 73

Writing a Cron Script 73
Moving Data off the Gear 74

10. Team Collaboration. 77
Managing Multiple SSH Keys 77
Domain Access for Teams 78
Possible Workflows 79

11. Summary. 81
What We Covered 81
Other Areas to Explore 82
Final Words 83

A. Basic Linux for Non-Linux Users. 85

Table of Contents | v

Preface

One of the newest and most promising trends in application development and DevOps
is the rise of Platform as a Service (PaaS). If you haven’t heard of it yet, you will learn
more in Chapter 1. Trust us for now when we say it promises to greatly simplify appli‐
cation development and system administration work for web applications. It is also one
of the few new technologies that actually helps developers and sys admins to get along,
allowing each to trust/enable the other and be happy that their needs are being met.
This book is focused on giving the application developer a quick yet ample introduction
to Red Hat’s PaaS, OpenShift.

Fundamentally, the reason you want to use OpenShift is because you like writing ap‐
plications, not administering servers. With just a couple of changes to the way you
develop applications, you can spin up your web server and database with one command.
You will no longer need to keep a server operating system up-to-date, patch the web
servers, maintain the DNS, and do all the other tasks that distract you from writing
code. By the end of reading this guide you will be all set to build, deploy, and host your
applications on OpenShift.

Who Should Read This Book
First and foremost, those who are impatient! You don’t want to sit down and read a
lengthy “Authoritative Guide” or a “Reference Manual.” You want a nice succinct book
to get you going on OpenShift as quickly as possible. If you like the platform and can
successfully develop an initial application for it, then you will sit down and read more
thorough guides. Given this goal, we do not delve very deeply into any particular topic
and there are specific topics we leave out, such as how you build custom server plug-
ins to run on OpenShift.

You are a web or mobile application developer—you write apps that use HTTP for part
or all of their communication with end users. Perhaps you hate doing sys admin work;
this is perfect because deploying your application on a Platform as a Service allows you

vii

to bypass what we consider drudgery. If you are a system adminstrator and you want
to learn more about providing OpenShift as a development platform, have a look at the
Administration Guide.

As the title indicates, we are assuming little in the way of background knowledge except:

• You know how to create a web application.
• You know how to use the command line.
• You can program in one of the six main programming languages OpenShift sup‐

ports.
• You can use a text editor on a console; the most basic is Nano but Vim or Emacs

will be OK as well.

We also assume some familiarity with basic Linux commands. If you have not used a
Unix-like terminal, we recommend you review Appendix A.

This guide is intended for programmers who want to get started using OpenShift as
quickly as possible, but also want to understand a little bit of what they are doing.

Why We Wrote This Book
We want to enable you to become self-sufficient in the basic use of OpenShift for creating
and hosting your web applications, in as few words as possible. Therefore, we will not
go into long explanations of the technologies used in OpenShift or different program‐
ming paradigms, but instead will give you links where you can go to read more.

This book grew out of the numerous workshops and talks we have given for developers.
Unfortunately, we cannot be in all the places we want to be or talk to all the developers
we want to meet. Our hope is for the book to help scale out our ability to teach more
people the joy of developing on OpenShift.

Introducing the Insult Application
In the course of this book we are going to build a very simple but devastatingly effective
application—a Shakespearean insult generator. It will combine two random adjectives
and a noun to insult the user of the web page. It can be found online, running on
OpenShift. The app will evolve as we go through the book; it will start as a simple Hello
World application, and we will add features until finally it will pull the adjectives and
nouns out of a database. We will use the application’s development as a means of intro‐
ducing you to the different aspects of creating and maintaining an application on Open‐
Shift.

For the purposes of this book, we wrote the code in Python, at the risk of alienating
programmers who use other supported languages. Hear us out while we explain our

viii | Preface

http://openshift.github.io/documentation/oo_administration_guide.html
http://www.nano-editor.org/docs.php
http://insultapp-osbeginnerbook.rhcloud.com/
http://insultapp-osbeginnerbook.rhcloud.com/

reasoning on why Python was the best choice. The book needed to be short, so we did
not have room to put code samples for all of OpenShift’s supported languages in the
text itself. Python is one of the top three programming languages used on OpenShift.
We believe that Python is a very readable language (if you can get over your fear of
indentation), even to those who are not yet familiar with its syntax. We have endeavored
to keep the code base simple; developers of all kinds should be able to follow the code
examples.

The goal of this book was not to make you a better Python programmer. It does not go
into Python best practices, it does not use a lot of the more advanced libraries, and it
does not show advanced usage of Python on OpenShift. For example, it is possible to
use app.py in your application to specify a web server other than Apache with
mod_wsgi. We do not cover those topics here because the application is merely a vehicle
to introduce OpenShift’s functionality, which is language agnostic. We plan to post ports
of the application to other languages on the GitHub site for the book. Please check there
or help us by porting yourself—we love pull requests.

How This Book Is Organized
The aim of this book is to get you up and running on OpenShift as quickly as possible.
To that end, we dive into the most crucial content first and fill in the finer details as we
go along.

Chapter 1 defines Platform as a Service and OpenShift, and gives an overview of the
basic terms, technologies, and commands you will need to understand for the rest of
the book.

Chapter 2 through Chapter 4 demonstrate how to create and modify OpenShift appli‐
cations with a variety of components and capabilities. By the end of Chapter 4, you will
know how to create your own OpenShift application with support for a given program‐
ming language, database, and/or other technologies.

Chapter 5 and Chapter 6 explain some of the key application management mechanisms
and how to connect your application code with your OpenShift database.

Chapter 7 through Chapter 9 delve into details you may need to support your particular
application’s needs, such as the use of certain ports or persistent storage space, and to
maintain your app in the long term.

Chapter 10 outlines the platform’s support for team development work.

Chapter 11 summarizes the book and presents some additional resources for those
interested in more detail on OpenShift.

Preface | ix

Online Resources
As you read through this book, you can try out what you are learning by signing up for
a free account at OpenShift.com. The code examples shown, as well as additional re‐
sources, are available on GitHub (see “Using Code Examples” on page xi for more in‐
formation).

Throughout the text we use the command line to interact with OpenShift, utilizing the
Red Hat Cloud (RHC) client tools. This is a fast and convenient way to interact with
OpenShift that will be familiar to many developers; however, there are other options for
those who prefer a graphical approach. You can find more information about the
OpenShift Web Console and read about OpenShift plug-ins for integrated development
environments (IDEs)on the OpenShift website.

This book aims to provide the key information a developer needs to get started with
OpenShift; we do not show every possible command or option. If you would like more
details, please see the documentation and other resources at the OpenShift Developer
Center.

If you would like to write your own cartridges for OpenShift, you will want to check out
the Cartridge Developer’s Guide; we do not cover this topic.

A huge range of programming languages, frameworks, and technologies can run on
OpenShift; to find out more about support for your favorites and the latest platform
developments, we recommend reading the OpenShift blog.

If you have questions or issues, you can reach the OpenShift team through Stack Over‐
flow, via email to openshift@redhat.com, on Twitter (@openshift), or in the #openshift
channel on IRC’s FreeNode network.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

x | Preface

http://www.openshift.com
https://www.openshift.com/get-started#web
https://www.openshift.com/get-started#ide
https://www.openshift.com/developers
https://www.openshift.com/developers
http://openshift.github.io/documentation/oo_cartridge_developers_guide.html
http://blog.openshift.com
http://stackoverflow.com/questions/tagged/openshift
http://stackoverflow.com/questions/tagged/openshift

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/getting-started-with-openshift.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Getting Started with OpenShift by Katie J.
Miller and Steven Pousty (O’Reilly). Copyright 2014 Red Hat, Inc., 978-1-491-90047-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Preface | xi

https://github.com/oreillymedia/getting-started-with-openshift
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/getting-started-with-openshift.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
A huge thank you must go the entire OpenShift team for allowing us to pester them
with questions during the writing of this book. In particular, Grant Shipley, our super‐
visor, was instrumental in pushing us to write this and freeing up some of our time to

xii | Preface

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/getting-started-with-openshift
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

get it done. A big thank you must also go to Michelle Brinich for working to get our
book through all the hoops at Red Hat.

Furthermore, we would like to thank Brian Anderson from O’Reilly for keeping us on
target with a short deadline and giving us great feedback.

Steven
I would like to thank Angelina, for her excellent humor, food, patience, and keeping me
sane while I worked on the book. Thanks to my kids Fay, Tessa, and Felix for tolerating
and understanding my sometimes grumpy moods (I hate writing) and not being able
to watch Cowboy Bebop or Korra or go on a hike or shoot BB guns with you. I also want
to thank all the developers who sat through my various workshops or talked to me on
IRC—your feedback helped me refine my ideas for this book. Thanks to Katie for taking
on writing this book with me and for being a partner in the creation and editing of the
book. Finally, I would like to thank Hashem for giving me the capacity to write the book:
B"H.

Katie
I would like to thank my husband, Brendan, for his love, support, and unwavering belief
in me; I would not have had the capacity to undertake this or many of my other technical
endeavors without you. I am also grateful to the rest of my family and circle of friends
for their ongoing encouragement and support. Special mention goes to Gareth as parts
of this book were written outside the ICU; my thoughts and prayers are with you for a
speedy recovery. Finally, my thanks goes to Steve for all of his efforts—it was fun working
together to pump out this book.

Preface | xiii

CHAPTER 1

Introduction

Welcome to this “Impatient Beginner’s Guide” to OpenShift. You have signed up for an
account and now you are ready to create an application. Let’s move right to covering
the minimum background information you will need so you can get to building things.

What Is the Difference Between IaaS, PaaS, and SaaS?
Let’s start by clearing up some “cloud computing” acronyms that people like to throw
around.

Infrastructure as a Service (IaaS) is when a provider spins up computers for you on
demand with certain predefined virtual hardware configurations. It is mainly targeted
at system administrators and DevOps staff who used to rack and stack hardware. Prob‐
ably the most famous of these services is Amazon EC2, but there is also Rackspace,
Microsoft Azure, and Google Compute Engine, among others. The idea is that you
specify the amount of RAM, CPU, and disk space you want in your “machine” and the
provider spins it up for you in a matter of minutes.

This service is great since you no longer have to go through a long procurement process
or fixed investment to obtain machines for your work. The drawback to this solution is
that you are still responsible for installing and maintaining the operating system and
server packages, configuring the network, and doing all the basic system administration.
If you are reading this book, then system administration is probably not your area of
expertise and you would likely rather spend your time writing code.

Software as a Service (SaaS) requires the least amount of maintenance and administra‐
tion on your part. With SaaS you just sign up for the service and start using it. You may
be able to make some customizations, but you’re limited to what the service provider
allows you to do. Common examples of SaaS are Gmail, Salesforce, and QuickBooks
Online. While these services are useful because you can start working right away with
little to configure or deploy, they are of limited use to programmers. They offer the least

1

amount of customization of the three cloud services mentioned here. As Steve’s kids’
physical education teacher says: “You get what you get and you don’t get upset.”

Platform as a Service (PaaS) is the middle ground between IaaS and SaaS. It is primarily
targeted at application developers and programmers. With PaaS, you issue a few com‐
mands (which could be in a web console) and the platform spins up the development
environment along with all the “server” pieces you need to run your application. For
example, in this book we are going to make a Python web application with a PostgreSQL
database. To get all this spun up, you issue one command and OpenShift does all the
networking and server installs, and creates a Git repository for you. The OpenShift
administrators will keep the operating system up-to-date, manage the network, and do
all the sys admin work—leaving the developer to focus on writing code.

The Three Versions of OpenShift
OpenShift is Red Hat’s PaaS, and there are three different versions: OpenShift Origin,
OpenShift Online, and OpenShift Enterprise (see Figure 1-1). OpenShift Origin, the
free and open source version of OpenShift, is the upstream project for the other two
versions. It is on GitHub and released under an Apache 2 license. All changes to the
code base go through the public repository, for both Red Hat and external developers.
If you want to use this version you will have to install it on your own infrastructure. We
are not going to cover the installation of the OpenShift PaaS in this book.

Figure 1-1. The relationship between the three versions of OpenShift

Approximately once every three weeks (the length of a sprint), Origin is packaged up
and released as a new version of OpenShift Online. We are going to be using this version
of OpenShift in the book. With Online, Red Hat takes care of hosting the PaaS on

2 | Chapter 1: Introduction

http://openshift.github.io

Amazon Web Services (AWS) and you just create an account for it. All the server work,
such as updating the OS and managing networks, is covered by the OpenShift operations
team. You are free to focus on your application and its code.

The final version is OpenShift Enterprise, which is currently released about once a
quarter. This version of OpenShift allows you to take the PaaS and run it anywhere you
want, from bare metal in your data center to Rackspace or AWS. It is a complete package
with Red Hat Enterprise Linux and all the OpenShift bits on top of it. It is also fully
supported by Red Hat and is intended for customers who want stability and a
production-ready install out of the box. Since stability is paramount, some of the features
found in Origin or Online may not be in Enterprise for a release or two. The great part
about having Enterprise in-house is that it allows sys admins and DevOps staff to have
control over “standard architecture” while still allowing developers to self-provision.
Developers get all the speed and agility they want, without the usual wait for “machine”
provisioning. It actually helps the sys admins and developers get along.

You can move applications between any of these versions of OpenShift, as long as the
cartridges used are available on the versions between which you are migrating. This
gives developers and companies a very nice hybrid cloud option. Developers and small
teams can work on Online, perhaps using Online for some of the applications that allow
for data in the public cloud. However, if they start developing an application that has
more stringent data requirements, they can bring it back behind the company firewall,
keeping the same development pattern they used for the Online platform. The Online
version can also be used to try out a new technology, for example Node.js at a Java shop,
with minimal risk and learning investment for the sys admins. Then, if the development
team likes the new technology, they can demo the application to the decision makers
and sys admins to show the value in bringing the technology in-house. The sys admins
can use Red Hat’s expertise in configuring the new technology on OpenShift to provide
it internally. Since they have it in-house and it is standard Node.js, they can then tweak
and tune it in a way that allows for rapid deployment to all internal projects using the
new technology.

Choosing the Right Solution for You
As always with these questions, the optimal solution depends on the specifics of your
use case. Maybe the decision has already been made for you—for example, if you work
at a corporation that has already chosen OpenShift Enterprise and that is what you will
be using. If you want the fewest management concerns, then you should look to Open‐
Shift Online. Everything will be managed by the OpenShift Operations team. The trade-
off is that you have less control over how the system is set up, what cartridges are avail‐
able, and how the network is configured.

If you want to be on the cutting edge of PaaS, you feel comfortable supporting yourself
on Linux-based machines, and you want to provide your own “hardware,” then running

Choosing the Right Solution for You | 3

OpenShift Origin with Fedora or CentOS could be an option. On the other hand, if you
want a more stable and supported version of OpenShift running Red Hat Enterprise
Linux, then you are going to be interested in OpenShift Enterprise.

Given the state of developers, corporations, and the cloud, some good use cases for
Online are hackathons, prototype projects, consulting houses, startups, smaller divi‐
sions in larger corporations, and students. OpenShift Origin might be good for a cor‐
poration trialing the notion of running its own PaaS, a hosting provider, or a university
that wants to set up student experimentation. Please be aware that, given the trajectory
of PaaS, there will probably be large corporations using public PaaS instances for pro‐
duction workloads within a year of the publication of this book. Steve is willing to bet
a beer or a lemonade on it.

With that brief introduction, we are done talking about broad concepts and will now
move into the discussion of concepts particular to OpenShift and how to get started.

Things to Understand
We know you are impatient and want to get started, but it is important for us to get
some definitions cleared up first. It is also important to introduce some technology that
you’ll use throughout your development workflow. If you are comfortable with the
technology feel free to skip right over that next section, but please make sure you un‐
derstand the definitions.

Words You Need to Understand
There is some basic terminology that is specific to OpenShift or used specifically on the
platform. It is important to clarify these terms since they will be used throughout the
text:
Application

This is your typical web application that will run on OpenShift. At this time, Open‐
Shift is focused on hosting web applications. With this in mind, and to try to provide
some security for your applications, the only ports exposed to incoming traffic are
HTTP (80), HTTPS (443), and SSH (22). OpenShift also provides beta WebSock‐
et support on HTTP (8000) and HTTPS (8443).

Gear
A gear is a server container with a set of resources that allows users to run their
applications. Your gears run on OpenShift in the cloud. There are currently three
gear types on OpenShift Online: small, medium, and large. Each size provides 1 GB
of disk space by default. The large gear has 2 GB of RAM, the medium gear has 1
GB of RAM, and the small gear has 512 MB of RAM.

4 | Chapter 1: Introduction

http://en.wikipedia.org/wiki/WebSocket
http://en.wikipedia.org/wiki/WebSocket

Cartridge
To get a gear to do anything, you need to add a cartridge. Cartridges are the plug-
ins that house the framework or components that can be used to create and run an
application. One or more cartridges run on each gear, and the same cartridge can
run on many gears for clustering or scaling. There are two kinds of cartridges:
Standalone

These are the languages or application servers that are set up to serve your web
content, such as JBoss, Tomcat, Python, or Node.js. Having one of these car‐
tridges is sufficient to run an application.

Embedded
An embedded cartridge provides functionality to enhance your application,
such as a database or Cron, but cannot be used on its own to create an appli‐
cation.

Scalable application
Application scaling enables your application to react to changes in traffic and au‐
tomatically allocate the necessary resources to handle your increased demand. The
OpenShift infrastructure monitors incoming web traffic and automatically brings
up new gears with the appropriate web cartridge online to handle more requests.
When traffic decreases, the platform retires the extra resources. There is a web page
dedicated to explaining how scaling works on OpenShift.

Client tools, Web Console, or Eclipse plug-ins
You can interact with the OpenShift platform via RHC client command-line tools
you install on your local machine, the OpenShift Web Console, or a plug-in you
install in Eclipse to interact with your application in the OpenShift cloud. The only
time you must use these tools is when you are managing the infrastructure or com‐
ponents of your application. For example, you would use these tools when creating
an application or embedding a new cartridge. The rest of your work with your
application will happen through Git and SSH, which we describe in the following
section.

Technology You Need to Understand
There is also some basic technology you need to be able to use to effectively work with
OpenShift as a developer. The rest of this book will assume you understand this tech‐
nology at a basic level.

SSH
SSH is a tool you install on your local machine that allows you to log in to your OpenShift
gears and have command-line access. With SSH, all interactions with the server are
encrypted. OpenShift also uses SSH keys to authenticate your login for both command-

Things to Understand | 5

http://bit.ly/1gV8NYI
http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm

line access and Git interactions. With the use of keys, you never have to type in a pass‐
word to connect to the server.

Once you SSH into your gear, you have all the access you need as an application devel‐
oper; you can look at logs, change configuration for your app servers, and move files
around. However, you are not an administrator on the gear; you cannot install new
binaries using yum, you cannot change DNS settings, and you cannot get root access.
One other benefit of SSH is that you can also use it to port forward, which “tricks” your
local machine into thinking things running on your gear can be accessed locally. There
is a whole section dealing with remote access over SSH on OpenShift.com, and we
discuss it further in Chapter 5. There is also an OpenShift blog post discussing SSH port
forwarding. There are instructions on how to use port forwarding in Chapter 7.

Git
Git is a program that provides distributed version control. You may have used Subver‐
sion, CVS, or Visual SourceSafe; these are centralized version control systems. With
centralized systems there is a master server and everyone else has a copy of the code
that they need to synchronize with the master. With Git, every repository, from the one
on your laptop to the one on the server, is considered a legitimate master. Everything
is kept in sync through patches sent between repositories. You can use Git like a pseudo-
centralized version control system by having everyone on the team agree on “The Mas‐
ter.” Wikipedia has a good discussion about some of the differences between centralized
and distributed version control systems.

The important thing to keep in mind with Git is that the Git repository on your machine
is considered a repository, and you need to commit your changes there first. You have
to add any new files and commit any changes on your local machine before you can
push your changes to any other Git repository.

On OpenShift, when you spin up the primary application gear you create a Git repos‐
itory on that gear that hosts all the code for your application. If you use the command-
line tools or the Eclipse tools, at the end of application creation you clone the Git repos‐
itory from the gear onto your local machine. We use SSH to secure all our Git transac‐
tions, so if you don’t get your SSH keys set up properly you can’t actually do any devel‐
opment work on your application. After the cloning, you now have two Git repositories:

• A remote repository on the OpenShift gear
• A local repository on your laptop or desktop

There are three basic commands you need to use to work with OpenShift:
git add

Add a file to your local Git repository. Even if a file is in the directory representing
your Git repo, it is not considered part of the repository until you add it.

6 | Chapter 1: Introduction

https://www.openshift.com/developers/remote-access
https://www.openshift.com/blogs/getting-started-with-port-forwarding-on-openshift
https://www.openshift.com/blogs/getting-started-with-port-forwarding-on-openshift
http://git-scm.com/
http://en.wikipedia.org/wiki/Distributed_revision_control

git commit

Commit any changes you have made to your local repository.

git push

Push the changes from your local repository back up to the gear from which it was
cloned.

If you are interested in learning more, there are several different decent documents to
get you going. If you are coming from Subversion land, there is even a Git introduction
for you. The fine people at GitHub have also put together a nice collection of resources
about Git.

A quick note about the difference between Git and GitHub. Git is the tool; GitHub is a
site that allows for public and private hosting of Git repositories. GitHub also adds a lot
of social features, making it very easy for developers to find and collaborate on code.
We host many QuickStarts—Git repositories that are a shortcut to getting started with
a framework or an application—on GitHub. That said, there is no requirement to use
GitHub with OpenShift, and your application repositories are private and only acces‐
sible to people with SSH access to your gear.

This chapter covered the minimal amount of background you need to get started cre‐
ating applications. We didn’t cover much information about how OpenShift is archi‐
tected, its various pieces, or other tools you can use when working on the platform.
Once you build a few applications, you can go on and read more about those topics if
you need to. With all those preliminaries out of the way, let’s move on to why you really
got this book—time to create a web application!

Things to Understand | 7

http://bit.ly/1dubZuh
http://bit.ly/1mjkIaS
http://bit.ly/1r0Je1h
http://bit.ly/1gLk81Y
http://bit.ly/1gLk81Y
http://bit.ly/O86g76
http://bit.ly/O86g76
https://github.com/
https://github.com/openshift/

CHAPTER 2

Creating Applications

Since this is a guide for the impatient, we are going to dig right in and create our first
application. In this chapter we are going to spin up a plain Python application without
any code dependencies. Like we said in the Preface, we chose Python because it is easy
to read. The goal is for you to get comfortable with the syntax for creating OpenShift
applications; you do not need to know Python to understand this book. Again, we are
just using Python to illustrate the patterns of working with OpenShift; this book will
most definitely not make you a Python expert.

Preliminary Steps
Before you get started, you’ll need to do two things:

• Sign up for an OpenShift account.
• Install the RHC command-line tools. While you can also use the web interface or

the Eclipse plug-in, we believe the command-line tools offer the best opportunity
to experience the full power of developing applications on OpenShift. If you would
like to know more about creating and managing your applications through the Web
Console or an IDE, see the links in “Online Resources” on page x.

In the next section, we will explain the rhc setup command.

Setting Up the Command-Line Tools
Once you have installed the client tools, you need to configure them to work with your
OpenShift Online account. To do this, use the following command:

$ rhc setup

9

https://openshift.redhat.com/app/account/new
https://www.openshift.com/get-started#cli

Executing this command sets up your command-line tools to talk to the OpenShift
servers. When you run this command, the following things will happen:

• RHC will talk to the OpenShift server and make sure your OpenShift username and
password are valid. All the interactions between the command-line tools and the
OpenShift servers use the OpenShift REST API.

• RHC creates a token on your local machine that saves you from having to authen‐
ticate against the REST API each time. This token will expire after 30 days, forcing
you to authenticate again.

• RHC will prompt you to create a namespace. Your namespace will be part of all
your application URLs and has to be unique on OpenShift. Our recommendation
is to make it short but somehow related to you. You can change it later, but it will
change all your application URLs.

• Finally, the tool will check to see if you have an SSH key pair named id_rsa and
id_rsa.pub. If you do, it will upload the public key (.pub) to the OpenShift server.
If you don’t have a key pair with these names it will create a pair for you and then
ask to upload the public key. You need a key uploaded so you can carry out all the
day-to-day development interactions with the server. After it uploads the key, your
setup is complete.

Further Notes on SSH
If you ever find that SSH is failing or you are having trouble with key pairs, go ahead
and run rhc setup again. SSH failing can also manifest in you not being able to git
push, due to an authorization failure. The setup command actually carries out a bunch
of different tests when it runs and it may be able to detect your problem. You can also
use the ssh command in verbose mode (ssh -v) to see what keys it is trying to use.

If you are on Windows, you may be using PuTTY as your SSH client. Unfortunately for
you, PuTTY uses a different kind of key-signing routine than OpenSSH, which is used
by OpenShift. If you add your public PuTTY key to the Web Console you may be able
to SSH into your application, but it is highly likely that your Git interactions will not
work. You will need to convert your PuTTY public key into an OpenSSH-compatible
key.

Make sure to protect your SSH private key. If somebody gains access to your private key,
that person can then use it to log in to every site where you put the public key. Needless
to say, that would be bad. On the other hand, don’t worry about sharing your public key
—it was intended to be put on plenty of other machines, some of which may be insecure.

You may be wondering why you need a password and an SSH key. The reason for this
is that there are two different ways to interact with the server: infrastructure mode and
development mode.

10 | Chapter 2: Creating Applications

http://red.ht/1fW9cQe

In infrastructure mode, you use the RHC command-line tools to create an application,
allocate more gears, or add another cartridge. This is the only time you are required to
use the command-line tools (or Web Console or IDE plug-in). The REST API used by
the command-line tools uses the OpenShift username and password for authentication.

In development mode, you don’t need to use the command-line tools; you can do all
your work with SSH and Git. Both of these tools use your SSH key to let you interact
directly with your gears. This includes interactions like using Git pushes, SSH tunneling,
and connecting to your gear’s console via SSH. When you SSH in, you can change some
server configurations and look at your logs. This piece of OpenShift doesn’t care about
your username and password, and you will see the advantages of this later in the book.
This is why you need an SSH key and a username and password.

Creating Your First Application
With our RHC setup complete, we are ready to create our first application. For the
purposes of this book, we are going to create a Python application. In actuality you could
use any of the supported web cartridges to make an application. The list of cartridges
grows pretty rapidly, so if you want to see the full list of cartridges on OpenShift, please
execute the following command:

$ rhc cartridge list

You can also create your own cartridges. We are not going to cover how to create a
cartridge in this book, since we consider that topic to be an advanced use case. Besides,
if we talked about it here, how could you write about it when you write your OpenShift
book? We cover much more about cartridges in “Finding Cartridges and QuickStarts”
on page 32.

Before you make an application, use the command line to create or navigate into the
directory where you would like your application code to be created. At the end of ap‐
plication creation, the command-line tools will clone the application’s Git repository to
your local machine in the same directory where you executed the command.

Let’s create an app!

Here’s the syntax for creating an OpenShift application:

$ rhc app create app_name web_language

or:

rhc app create app_name web_language other cartridges

And here is how we use this command to create an application named insultapp using
the Python 2.7 cartridge:

[me@localhost ~]$ rhc app create insultapp python-2.7

Creating Your First Application | 11

http://bit.ly/1l7Q1VN

Application Options

Domain: osbeginnerbook
Cartridges: python-2.7
Gear Size: default
Scaling: no

Creating application 'insultapp' ... done

Waiting for your DNS name to be available ... done

Cloning into 'insultapp'...
The authenticity of host 'insultapp-osbeginnerbook.rhcloud.com (19.66.2.6)'
can't be established.
RSA key fingerprint is 4e:65:76:72:47:6f:6e:6e:61:47:69:76:65:55:55:70.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'insultapp-osbeginnerbook.rhcloud.com' (RSA) to the
list of known hosts.

Your application 'insultapp' is now available.

 URL: http://insultapp-osbeginnerbook.rhcloud.com/
 SSH to: 6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.com
 Git remote: ssh://6e7672676e61676976757570@insultapp-osbeginnerbook.
 rhcloud.com/~/git/insultapp.git/
 Cloned to: /home/me/insultapp

Run 'rhc show-app insultapp' for more details about your app.

That’s it! When the command finishes executing you will have an Apache HTTP server
with mod_wsgi running in the cloud. It will have a public URL, which will have the form
http://insultapp-<namespace>.rhcloud.com. It will also have a private Git repository that
has been cloned to your local machine, in a directory with the same name as your
application.

We could have made our app a scalable application (meaning each cartridge goes on its
own gear) by passing in the -s flag. You would do this if you wanted to make sure your
cartridges were not sharing resources or you wanted to enable the application server
tier to scale (manually or automatically) from the database tier. We will discuss this
further in the next section.

We could also pass in the -g flag to use gear sizes other than the default (small) size. On
OpenShift Online’s free tier you only have access to the small gears, but if you move into
the paid tiers you can get a medium or large gear, which has more RAM. Please see
“Reasons to Move to the Paid Tier” on page 15 to understand other reasons to move into
the paid tier.

Finally, we could use the --from-code option to point to a publicly accessible Git repos‐
itory to serve as the template for our application. We could have done that in this ex‐
ample, but we are going to build the example application by hand instead. One caveat

12 | Chapter 2: Creating Applications

with this flag is that when OpenShift tries to create the gear, the application has to
download and build the Git repository within a particular time period. If the rhc cre
ate command times out before the build and deploy occurs, then OpenShift will roll
back the entire application and you will be left with nothing except the bitter taste of
disappointment. Use this feature with caution for now.

To delete OpenShift applications, use the command rhc app de
lete. This will trash all your resources in the application on the
OpenShift servers and allow you to use the resources in a new appli‐
cation.

Go ahead and look at your web page. What you should see is the template page created
for all OpenShift applications (Figure 2-1). This page is pretty generic. In the next
chapter, we will modify the application and deploy the code changes. Take a step back
and marvel at what you just did. With one command you spun up Apache with
mod_wsgi, allocated disk space, configured logging, configured Linux permissions, reg‐
istered an IP address with a DNS server, and made both a remote and a local Git repos‐
itory. With that little bit of typing you have a fully functional application development
hosting environment. This is the magic of OpenShift, and your development process
may never be the same again.

Figure 2-1. What your first application looks like

Creating Your First Application | 13

Autoscaling and Why You Should Use It by Default
OpenShift is the only PaaS on the market that provides autoscaling at the application
tier. We have not used it here for the sake of simplicity, but if we were going to run an
app in the “real world,” we would make it scalable. When you make an application
scalable, a software-based load balancer called HAProxy will be added to the same gear
as the application server. All web traffic to the application will then be routed through
HAProxy. Currently, if the number of active connections goes above 16—whether they
are regular HTTP or WebSocket connections—HAProxy will trigger the creation of
another application gear. OpenShift will spin up another app server gear, rsync the code
over to the new gear, plug the gear into HAProxy, and then start using it to serve con‐
nections. If the connections later drop back below the threshold for long enough for it
not to be considered random noise, HAProxy will trigger the draining of connections
and OpenShift will spin down the gear.

All of this happens without any human intervention, so you do not have to wake up in
the middle of the night or take time out from sailing around the world on your yacht
(wouldn’t that be nice). Of course, OpenShift lets you set a maximum number of gears
for application server use so you are not surprised by some large bill at the end of the
month, thereby ending your yacht trip.

As we have taught more and more classes and seen more and more people using Open‐
Shift, we have arrived at the conclusion that almost all apps should be created as scalable
applications. There are several reasons for this:

• Your application server, your database server, and any other servers you put in your
application will each go on their own gears and therefore not compete for disk,
memory, or other resources. This will give you much better performance compared
to nonscaling, where they all run in the same gear.

• It gives you more flexibility if you start to experience more load on your application.
You can set the scaling limits for the application tier to accommodate the new traffic.

• It will allow you to scale up manually if you know a big event is coming up and you
want to warm up the servers beforehand.

• There is no command to make a nonscalable application into a scalable application.
If you want to make a nonscalable app scalable, you will need to snapshot it, spin
up a new scalable application, and then restore it to the new application (see “Ap‐
plication Snapshots with RHC” on page 71 for information about snapshots).

You are given enough resources in the free tier to make your application scalable, so
there is really no reason why you shouldn’t do this by default.

14 | Chapter 2: Creating Applications

Reasons to Move to the Paid Tier
Everything we do in this book can be carried out using the free tier of OpenShift, but
there are strong reasons why you might want to move into one of the paid tiers as your
application becomes more serious. We will call out some of the benefits as we discuss
topics in the following chapters, such as the ability to use your own SSL certificates.
However, for the sake of gathering them in one place, we have included a short list here:

1. Your application will never be idled. Currently on the free tier, if there are no HTTP
connections to your application for 48 hours, OpenShift idles the gear. Idling means
OpenShift will serialize the entire application to disk. The next HTTP request to
the application will have to wait while OpenShift deserializes the application. Please
be aware that the time before idling could change; look at the OpenShift website
for the latest information. If you are a paid-tier user, then your users will never
experience the delay of the application coming back from idling.

2. You gain the ability to buy more gears, thereby allowing you to create more appli‐
cations. With more gears you can also allow your applications to scale to handle
more traffic.

3. You gain the ability to buy larger gears, which can be crucial for memory-hungry
application servers.

4. You gain the ability to purchase premium application servers for more than three
gears or on larger gears, such as JBoss EAP or Zend Server. You get to use these
application servers on three small gears in the free tier, but the paid tier allows you
to buy more and put them on more appropriately sized gears.

5. You gain the ability to get access to more disk space, beyond the 1 GB that comes
with the free tier.

6. You can use your own SSL certificates with your custom domain names.
7. Some of the tiers provide the ability to open support tickets.

There is certainly no requirement to use the paid tier, but there are numerous reasons
you may find yourself wanting to take advantage of what it has to offer.

Reasons to Move to the Paid Tier | 15

CHAPTER 3

Making Code Modifications

In Chapter 2 we used OpenShift and a single RHC command to create a Python appli‐
cation running in the cloud. In a matter of seconds the application was live on the
Internet; when we visited its URL we got back the OpenShift equivalent of a Hello
World page, including some useful information on what to do next. Spinning up an
application quickly and easily like this is pretty cool, but a static page can only entertain
for so long. In this chapter we will modify the default application to do something more
exciting and deploy the changes to OpenShift.

Cloning Code to Your Local Machine
When you create an OpenShift application with the RHC command-line tools, by de‐
fault the new Git repository created on the OpenShift gear will be cloned to your local
machine. The contents will end up in a new directory with the same name as the ap‐
plication, created inside the directory in which you ran the rhc app create command.
If you would like the repository to be cloned to a different location, specify this by adding
the --repo repo_dir_path option to your rhc app create command; the repository
contents will be cloned into the directory specified, which should either be empty or
not yet exist. If you do not wish to clone the Git repository as part of the app creation
process, you can add the --no-git flag.

If you choose not to clone the OpenShift application repository when you create the
app, or something goes wrong and the clone fails, you can clone it later using the com‐
mand rhc git-clone. This is a wrapper for the standard git clone command that
provides some extra benefits: you can specify what to clone by using the application’s
name, rather than its full Git URL, and it adds some RHC configuration data to the Git
repository config. This means that you can run RHC commands from within the cloned
directory without having to specify the application to which you wish them to apply
with -a appname. Where RHC commands shown in this book omit the -a appname

17

option, it is because they are being run within an app repository cloned via RHC, either
with rhc app create or rhc git-clone.

To view the Git URL for your OpenShift application, run the command rhc app show
-a appname.

In order to clone an application repository, you must have supplied
OpenShift with an SSH public key for the machine on which you are
working. If you have not yet done this, run the command rhc setup.
See Chapter 2 for more information.

Modifying Application Code
Once you have a local copy of the OpenShift application repository you can modify the
code using whatever tool you prefer: a command-line text editor, a graphical editor, or
an IDE. For our example application, we will start by making a few changes to add and
utilize the Python Flask microframework. Writing raw Web Server Gateway Interface
(WSGI) apps is not much fun. Flask is a lightweight alternative that will give us just
enough support to fulfill our app’s main aim: insulting people. To learn more about
Flask, see its website.

First up, we need to add Flask as a dependency. To do this, we navigate to the local cloned
insultapp repository and open the setup.py file with our chosen editor (long live the
Vim, though some of us believe Nano rules). In this file we can set the application name
and other details; the most significant change to make, though, is uncommenting the
install_requires line and replacing Django with Flask 0.10.1. Our resulting setup
section looks like this:

setup(name='Insult App',
 version='1.0',
 description='Insults you',
 author='Katie and Steve',
 author_email='example@example.com',
 url='http://www.python.org/sigs/distutils-sig/',
 install_requires=['Flask==0.10.1'],
)

The next file we need to edit is wsgi/application. It contains the HTML for the “Welcome
to your Python application on OpenShift” page we saw in Chapter 2. We do not need
any of the template code, so we delete everything beneath the comment lines marked
as IMPORTANT. Beneath the comment, we add the line from routes import app as
application, referencing the application code we are about to add next. Here is the
source of the resulting application file:

#!/usr/bin/python
import os

18 | Chapter 3: Making Code Modifications

http://flask.pocoo.org

virtenv = os.environ['OPENSHIFT_PYTHON_DIR'] + '/virtenv/'
virtualenv = os.path.join(virtenv, 'bin/activate_this.py')
try:
 execfile(virtualenv, dict(__file__=virtualenv))
except IOError:
 pass
#
IMPORTANT: Put any additional includes below this line. If placed above this
line, it's possible required libraries won't be in your searchable path.
#
from routes import app as application

Finally, we add a new file in the wsgi directory called routes.py. This contains a single
route for the application’s root directory, which maps to an insult function that returns
the mildly irritating string, “Hello, code monkey!” Here is the code:

import os
from flask import Flask

app = Flask(__name__)
Keeps Flask from swallowing error messages
app.config['PROPAGATE_EXCEPTIONS'] = True

@app.route("/")
def insult():
 return "Hello, code monkey!"

if __name__ == "__main__":
 app.run()

In routes.py we create a Flask application type called app. From there we use annotations
to define that HTTP requests to the root URL get handled by the function insult. The
application file loads the Python virtual environment (a mechanism for having different
Python libraries on the same machine) and imports the app from the routes module
defined in routes.py.

Now that we have made some changes to the application code base, we should commit
them to the local Git repository. We can do that with the following Git commands: add
to add the changes to the repository index, and commit to record the new contents of
the index. It is good practice to use the git status command before each one to make
sure you are clear on what is happening, although for brevity this is not shown here:

[me@localhost ~/insultapp]$ git add -A
[me@localhost ~/insultapp]$ git commit -m "Added Flask microframework"
[master b1d87e3] Added Flask microframework
 3 files changed, 32 insertions(+), 315 deletions(-)
 rewrite wsgi/application (99%)
 create mode 100644 wsgi/routes.py

Modifying Application Code | 19

The code changes are now committed on our local machine, but our OpenShift app
remains unaffected. In the next section, we will push our modifications to the cloud.

Building and Deploying Your Code
Once you have committed your code changes, you can deploy them to OpenShift with
just one command: git push. There is no special binary or secret sauce involved; it is
just pure Git and SSH. If we run the command git status, we can see that we have
modifications ready and raring to go. The git push command sends them on their
merry way up into the cloud:

[me@localhost ~/insultapp]$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)
#
nothing to commit, working directory clean
[me@localhost ~/insultapp]$ git push

We have not included the full output of the push command here as it was quite lengthy,
but here are some choice snippets:

remote: Stopping PYTHON cart
...
remote: Building git ref 'master', commit b1d87e3
...
remote: Installed /var/lib/openshift/6e7672676e61676976757570/app-root/runtime
/repo
remote: Processing dependencies for Insult-App==1.0
...
remote: Processing Flask-0.10.1.tar.gz
...
remote: Preparing build for deployment
...
remote: Activating deployment
...
remote: Starting PYTHON cart
remote: Result: success
remote: Activation status: success
remote: Deployment completed with status: success

Note that each time new code is deployed, the directory on the gear containing the
current copy of the Git repository is blown away and then replaced with an updated
copy, so anything stored there between deployments will be lost. We explain where you
can store files persistently in Chapter 8.

20 | Chapter 3: Making Code Modifications

By default, pushing code changes to the OpenShift repository will also
trigger a deployment; however, this behavior can be changed. See
Chapter 9 to learn how.

As we can see from the console output, when code is pushed to OpenShift it kicks off a
build lifecycle, which has build and deployment phases. This lifecycle will differ slightly
depending on the application cartridge in use, whether or not the app is scalable, and
whether or not a builder cartridge such as Jenkins is included. In the case of our example
app, the Python cartridge is stopped, the Git repository is cloned, a series of Python-
specific processes occur to fetch dependencies and prepare the app, the resulting build
is deployed, and the cartridge is restarted. You will learn more about most of these other
pieces of application deployment in later chapters. In the next section we will talk about
how you can write scripts to hook into various phases of the build.

Once this cycle is complete, we can visit our application URL in a browser and are now
greeted with “Hello, code monkey!” (see Figure 3-1).

Figure 3-1. The Flask application in action

Action Hook Scripts
OpenShift cartridges are designed to take care of the major tasks required to build and
deploy a web application. If there are actions you want to perform as part of the build
lifecycle that go beyond the basics, you can include these in action hook scripts.

Action hook scripts are included as part of your application Git repository, in
the .openshift/action_hooks directory. Different cartridges may support different hooks,
depending on their build lifecycles; however, they should all include pre_build, build,
deploy, and post_deploy, as well as pre and post hooks for the start, stop, restart,
reload, and tidy actions.

To run code at a particular time in the lifecycle, place a script in the action_hooks
directory with the same name as the phase when you want it to be executed. The script
can be written in Shell, Python, PHP, Ruby, or any other scripting language installed in
the OpenShift environment that you can reference. It does not matter what language

Action Hook Scripts | 21

you chose for your web application; all of these scripting environments are still available
to run on your gear. The script should be executable; run the chmod x scriptname
command to ensure this.

Windows users may find that permissions they set on their action
hook scripts are lost when the scripts are pushed to OpenShift with
Git. To fix this issue, run the command git update-index --chmod=
+x .openshift/action_hooks/* and push the scripts again.

Action hook scripts need to be added and committed in Git just like any other repository
file. When they are pushed to the cloud, you will see any effects as the build lifecycle
runs. For example, if you delete files in the /tmp directory as part of an action hook, the
git push output will echo the result of that command unless you tell your script to
swallow output.

Hot-Deploying Code
When we pushed our code changes to the example application, we saw that the Python
cartridge was stopped while the app was built and deployed, and then started back up
again. If there had been a database cartridge installed in our application, it would have
been stopped as well. This meant our application was unavailable for that time; if we
had hit the URL at that moment, we would have received a 503 Service Unavailable
message. In addition, for many of OpenShift’s programming languages, you do not need
to stop the server to deploy new code on the server. Going through a start/stop cycle
for the application server significantly slows down the deployment experience.

We want to properly insult people rather than scaring them away with server error status
codes, so our next code change will be to add a marker file to tell the platform to hot
deploy the code. This signals that OpenShift should deploy new application versions
without restarting the server. The hot deployment option is available on most of the
core OpenShift application cartridges; the JBoss, Tomcat, PHP, Zend, Perl, Ruby, and
Python cartridges all support this. (See “Using Marker Files” on page 45 for more infor‐
mation about marker files.) Enabling hot deployment is as simple as creating an empty
file named hot_deploy in the .openshift/markers directory, adding it to the local repos‐
itory with git add, doing a git commit, and then finally executing a git push:

[me@localhost ~/insultapp]$ touch .openshift/markers/hot_deploy
[me@localhost ~/insultapp]$ git add .openshift/markers/hot_deploy
[me@localhost ~/insultapp]$ git commit -m "Changing application to hot deploy"

22 | Chapter 3: Making Code Modifications

There are times when you want the server to be stopped and then
started again, such as when making changes to server.xml in a Java
application: you need the application server to restart in order to
pick up the changes. There might also be times when you believe a
bug in the code you are deploying or running has crashed the ap‐
plication server. Please remember to remove or rename the hot_de‐
ploy file, git add, git commit, and then git push in this situa‐
tion. This is a sometimes-forgotten problem that has bitten at least
one of your gentle authors more than once.

Our app is looking pretty good now, but a single canned insult will get old fast. We will
make things more entertaining by adding some randomization, Elizabethan style. There
is a list of insulting Shakespearean words that has been floating around the Internet
practically since it was a twinkle in someone’s eye (no, not Al Gore). There are two
columns of adjectives and one column of nouns; the idea is to combine one word from
each column. Our next step is to gather a few insulting words and add a wsgi/insult‐
er.py file to encapsulate the serious business logic of contempt:

from random import choice

def insult():
 return "Thou " + generate_insult() + "!"

def named_insult(name):
 return name + ", thou " + generate_insult() + "!"

def generate_insult():
 first_adjs = ["artless", "bawdy", "beslubbering", "bootless", "churlish"]
 second_adjs = ["base-court", "bat-fowling", "beef-witted", "beetle-headed",
 "boil-brained"]
 nouns = ["apple-john", "baggage", "barnacle", "bladder", "boar-pig"]

 return choice(first_adjs) + " " + choice(second_adjs) + " " + choice(nouns)

We use the choice function in the random module to select a random element in the
Python lists, such as first_adjs. Next, we change the code in wsgi/routes.py to make
use of our new functions:

import os
from flask import Flask
import insulter

app = Flask(__name__)
Keeps Flask from swallowing error messages
app.config['PROPAGATE_EXCEPTIONS'] = True

@app.route("/")
def insult():
 return insulter.insult()

Hot-Deploying Code | 23

@app.route("/<name>")
def insult_name(name):
 return insulter.named_insult(name)

if __name__ == "__main__":
 app.run()

Notice we import the insulter module (the file named insulter.py) and then use the
two insult-constructing functions to generate our insults. You can also see that in the
second @app.route we are grabbing any text after the / and making it available to the
function insult_name as a parameter called name. We added this function for cases when
only a personalized insult will do.

We add and commit those changes to the Git repository, and then the final step is to
git push our latest two commits. The output from OpenShift shows that the server has
not been stopped and restarted because hot deployment is enabled:

remote: Not stopping cartridge python because hot deploy is enabled
...
remote: Not starting cartridge python because hot deploy is enabled

Once the new code has hit the cloud, we can refresh the app for some random Shake‐
spearean insult fun (see Figure 3-2).

Figure 3-2. A random insult from the hot-deployed app

In this chapter we showed how to modify OpenShift application starter code, spicing
up our Python demo app with logic to insult its users. We achieved this with Git com‐
mands including add, status, commit, push, and, with the help of RHC, clone. We also
explained how we can add custom scripts to the application lifecycle with action hooks,
and how to use a marker file to configure an app to hot deploy.

24 | Chapter 3: Making Code Modifications

CHAPTER 4

Adding Application Components

OpenShift cartridges provide the components for building your application infrastruc‐
ture. Our example Python app currently utilizes a single cartridge, Python 2.7. In this
chapter, we will demonstrate how to add cartridges that provide additional capabilities,
such as data storage, task scheduling, and monitoring. We will also explain how to find
and use third-party cartridges created by the open-source community or OpenShift
partner organizations.

This chapter shows how to add cartridges to an OpenShift applica‐
tion after it has been created. However, you can also select multiple
cartridges when you create your app. To do this, add the extra car‐
tridge names or URLs after the primary cartridge name. For example,
to create a PHP 5.4 application with Cron and a MySQL 5.5 data‐
base, you could use the following command:
rhc app create appname php-5.4 mysql-5.5 cron-1.4

Database-Related Cartridges
The cartridges most commonly added to OpenShift applications after creation are da‐
tabase cartridges, such as PostgreSQL, MySQL, and MongoDB. If the application is not
scalable, the database cartridge will be installed on the same gear as the primary appli‐
cation cartridge. If the application is scalable, the database cartridge will be added on
its own gear. This enables the gear hosting the application cartridge to be replicated,
without affecting the database. It also prevents the application server and the database
from sharing the memory and disk space of a single gear.

Cartridges can be added with the command rhc cartridge add, and removed with
rhc cartridge remove. Other RHC cartridge management commands include list,

25

status, start, restart, stop, and storage; rhc cartridge --help will display the
full list of options.

Here we add a PostgreSQL 9.2 cartridge to our running example, Insult App:

[me@localhost ~/insultapp]$ rhc cartridge add postgresql-9.2

Adding postgresql-9.2 to application 'insultapp' ... done

postgresql-9.2 (PostgreSQL 9.2)

 Gears: Located with python-2.7
 Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:
 $OPENSHIFT_POSTGRESQL_DB_PORT
 Database Name: insultapp
 Password: SLat4aTfsSt1
 Username: adminm4rvN42

PostgreSQL 9.2 database added. Please make note of these credentials:

 Root User: adminm4rvN42
 Root Password: SLat4aTfsSt1
 Database Name: insultapp

Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:
$OPENSHIFT_POSTGRESQL_DB_PORT

We can see from the output that the PostgreSQL cartridge has been added and is located
on the same gear as the Python cartridge; this is because our demo application is not
scalable. RHC has also displayed some useful information about the database set-up,
including the database root user’s username and password.

There are multiple ways to connect to your OpenShift database. Spoiler alert: we will
show you how to connect to a DB in your application code in Chapter 6; there are some
other topics we need to cover first before we get there. We will demonstrate how to
connect to the gear hosting the database via SSH and how to view the environment
variables related to database (and other) cartridges in Chapter 5. To find out how to use
port forwarding to connect to an OpenShift database, see Chapter 7.

There are additional cartridges you can add to your OpenShift appli‐
cation to help you manage some databases: for example, the
phpMyAdmin, RockMongo, and MongoDB Monitoring Service car‐
tridges. See “Finding Cartridges and QuickStarts” on page 32 for tips
on where to find OpenShift cartridges.

26 | Chapter 4: Adding Application Components

Nondatabase Cartridges
Our discussion so far has been focused on OpenShift cartridges that provide program‐
ming language runtimes, application servers, web frameworks, and databases. These
are the major building blocks of OpenShift applications, but the platform can also pro‐
vide complementary functionality. At the end of the previous section, we briefly men‐
tioned some of the cartridges available to assist with database administration and man‐
agement. In this section, we will examine some of the other cartridges you may like to
add to your app to facilitate tasks such as job scheduling, continuous integration, and
metrics collection.

Cron
The Cron cartridge allows users to schedule jobs to be executed periodically, using the
Linux cron utility. This tool can be used for tasks such as deleting temporary files,
generating reports, backing up data, or Rickrolling friends regularly. To use cron, first
add the Cron cartridge to your application with the rhc cartridge add command, as
shown here for our Insult App:

[me@localhost ~/insultapp]$ rhc cartridge add cron
Using cron-1.4 (Cron 1.4) for 'cron'
Adding cron-1.4 to application 'insultapp' ... done

cron-1.4 (Cron 1.4)

 Gears: Located with python-2.7, postgresql-9.2

To schedule your scripts to run on a periodic basis, add the scripts to
your application's .openshift/cron/{minutely,hourly,daily,weekly,monthly}/
directories (and commit and redeploy your application).

Example: A script .openshift/cron/hourly/crony added to your application
 will be executed once every hour.
 Similarly, a script .openshift/cron/weekly/chronograph added
 to your application will be executed once every week.

If we run the rhc app show command, we can see that our example application still has
one gear but now lists three cartridges, Python 2.7, PostgreSQL 9.2, and Cron 1.4:

[me@localhost ~/insultapp]$ rhc app show
insultapp @ http://insultapp-osbeginnerbook.rhcloud.com/
(uuid: 6e7672676e61676976757570)
--
 Domain: osbeginnerbook
 Created: Mar 14 1:59 PM
 Gears: 1 (defaults to small)
 Git URL: ssh://6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud
 .com/~/git/insultapp.git/
 SSH: 6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.com

Nondatabase Cartridges | 27

http://en.wikipedia.org/wiki/Rickrolling

 Deployment: auto (on git push)

 python-2.7 (Python 2.7)

 Gears: Located with postgresql-9.2, cron-1.4

 postgresql-9.2 (PostgreSQL 9.2)

 Gears: Located with python-2.7, cron-1.4
 Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:
 $OPENSHIFT_POSTGRESQL_DB_PORT
 Database Name: insultapp
 Password: SLat4aTfsSt1
 Username: adminm4rvN42

 cron-1.4 (Cron 1.4)

 Gears: Located with python-2.7, postgresql-9.2

To make use of our new Cron cartridge, we need to place a script in our local Git
repository in one of the .openshift/cron directories. The directory we choose will dictate
whether the job is performed every minute, hour, day, week, or month. The script needs
to be executable (chmod +x scriptname) and should be added, committed, and pushed
with Git, as described in Chapter 3.

Here is an example script that we will set to run every minute, so that it sends some
special output to the cartridge log directory every half an hour:

#!/bin/bash
.openshift/cron/minutely/ricktock

MIN=$(date '+%M')
LOG=${OPENSHIFT_PYTHON_LOG_DIR}/ricktock.log
MSG1="Never gonna give you up\nNever gonna let you down\nNever gonna run around
and desert you"
MSG2="Never gonna make you cry\nNever gonna say goodbye\nNever gonna tell a lie
and hurt you"

if [$MIN == 15]; then
 echo -e `date` $MSG1 >> $LOG
fi

if [$MIN == 45]; then
 echo -e `date` $MSG2 >> $LOG
fi

exit

Now we add this script, called ricktock, to our example application on OpenShift:

[me@localhost ~/insultapp]$ chmod +x .openshift/cron/minutely/ricktock
[me@localhost ~/insultapp]$ git add .openshift/cron/minutely/ricktock

28 | Chapter 4: Adding Application Components

[me@localhost ~/insultapp]$ git commit -m "Adding ricktock minutely Cron script"
[master 2548477] Adding ricktock minutely Cron script
 1 file changed, 18 insertions(+)
 create mode 100755 .openshift/cron/minutely/ricktock
[me@localhost ~/insultapp]$ git push

Once the script has been deployed (and we’ve waited a little while), we can see the
glorious result in the application log output with the rhc tail command. This com‐
mand reads the last lines of all the files in the log directory and sends the output to your
local console:

[me@localhost ~/insultapp]$ rhc tail
==> python/logs/ricktock.log <==
Fri Mar 14 14:15:44 EST 2014 Never gonna give you up
Never gonna let you down
Never gonna run around and desert you

For more information about viewing application logs, see “Log Access” on page 43. For
an example of a Cron script to back up your OpenShift database, see “Writing a Cron
Script” on page 73.

Continuous Integration
Another capability you may wish to add to your OpenShift applications is support for
continuous integration. In this section we will show how to create an instance of the
open source Jenkins continuous integration server on OpenShift, as well as how to
configure your apps to build on this server. It is also possible to build OpenShift appli‐
cations on Travis CI, but that is an advanced discussion so it will not be covered in this
book.

Before we can configure our OpenShift application to build on Jenkins, we need to create
a Jenkins server app. While we are using a small gear again, given how memory-intensive
Jenkins can be we highly recommend using a medium or large gear if you want to make
heavy use of it. The process for this is the same as for any other OpenShift application;
we can use rhc app create, as shown here:

[me@localhost ~/insultapp]$ cd ..
[me@localhost ~]$ rhc app create jenkins jenkins-1
Application Options

 Domain: osbeginnerbook
 Cartridges: jenkins-1
 Gear Size: default
 Scaling: no

Creating application 'jenkins' ... done

 Jenkins created successfully. Please make note of these credentials:

 User: admin

Nondatabase Cartridges | 29

http://jenkins-ci.org/
http://www.openshift.com/quickstarts/travis-ci-on-openshift

 Password: iYddhaBUvg2m

Note: You can change your password at: https://jenkins-osbeginnerbook.rhcloud
.com/me/configure

Waiting for your DNS name to be available ... done

Cloning into 'jenkins'...
The authenticity of host 'jenkins-osbeginnerbook.rhcloud.com (19.77.5.25)' can't
be established.
RSA key fingerprint is 54:68:65:46:6f:72:63:65:69:73:73:74:72:6f:6e:67.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'jenkins-osbeginnerbook.rhcloud.com,19.77.5.25' (RSA)
to the list of known hosts.

Your application 'jenkins' is now available.

 URL: http://jenkins-osbeginnerbook.rhcloud.com/
 SSH to: 4e6f72726973206265617264@jenkins-osbeginnerbook.rhcloud.com
 Git remote: ssh://4e6f72726973206265617264@jenkins-osbeginnerbook.rhcloud.com/
 ~/git/jenkins.git/
 Cloned to: /home/codemiller/code/book/jenkins

Run 'rhc show-app jenkins' for more details about your app.

Once we have a Jenkins server in our OpenShift domain we can add the client Jenkins
cartridge to our example application. The client cartridge is used to indicate that you
want to use your domain’s Jenkins server to build this application:

[me@localhost ~]$ cd insultapp
[me@localhost ~/insultapp]$ rhc cartridge add jenkins-client-1
Adding jenkins-client-1 to application 'insultapp' ... done

jenkins-client-1 (Jenkins Client)

 Gears: Located with python-2.7, postgresql-9.2, cron-1.4
 Job URL: https://jenkins-osbeginnerbook.rhcloud.com/job/insultapp-build/

Associated with job 'insultapp-build' in Jenkins server.

Adding the client cartridge has prompted OpenShift to create a job for the insult ap‐
plication, called insultapp-build, on the Jenkins server. When we push changes to
OpenShift, the application will now be built on Jenkins. If the build and any tests are
successful, the result will be deployed to the application gear or gears. If the build is
unsuccessful, the OpenShift application will continue to run without downtime.

For more information about Jenkins, see the “Build with Jenkins”
section on OpenShift.com.

30 | Chapter 4: Adding Application Components

https://www.openshift.com/jenkins

Metrics and Monitoring
Another category of cartridges you may wish to add to support your application is
cartidges for metrics collection and monitoring.

At the time of writing, the OpenShift Metrics cartridge was at version 0.1 and still under
development. It is designed to be able to be embedded with any primary application
cartridge type. To add it to your application, use the command rhc cartridge add
metrics-0.1 -a appname. Once it is installed, you can access real-time statistics about
your application’s resource usage at http://appname-domain.rhcloud.com/metrics, as
shown in Figure 4-1. The cartridge gives visibility to some key information, including
the amount of CPU and RAM use (and how that relates to the gear limit), how much
swap space is being utilized, application process IDs, and whether or not your applica‐
tion is in an idle state.

Figure 4-1. The OpenShift Metrics cartridge interface

Another monitoring option is the Monit cartridge, which uses the open source Monit
process supervision tool. The cartridge comes with some predefined rules for checking
OpenShift application availability, storage, and memory use. It will send email notifi‐
cations when significant events occur, such as your gear reaching 80 percent of its quota

Nondatabase Cartridges | 31

http://bit.ly/1fEeEpO
http://mmonit.com/monit/
http://mmonit.com/monit/

or your app becoming unavailable. Additional rules can be added to check different
application metrics and to take actions based on the results, such as restarting a car‐
tridge. See “Adding Third-Party Cartridges” on page 35 to learn how to install Monit and
other community cartridges.

If your OpenShift application is scalable, it will include the HAProxy cartridge for load
balancing. Although its primary function is not monitoring, it is worth noting that
HAProxy includes a page that allows you to view some useful data about your applica‐
tion, available at http://appname-domain.rhcloud.com/haproxy-status. This status page
shows how many application gears you have running, if all the gears are online, how
many users are connecting to your app, and how much data the app is streaming.

For those using MongoDB, another monitoring cartridge that may
come in handy is the MongoDB Monitoring Service (MMS) cartridge.

Given that OpenShift is open source, new cartridges are being developed by the com‐
munity all the time; the next section offers tips on finding them and shows how to utilize
third-party cartridges.

OpenShift partner organization New Relic offers a mature applica‐
tion monitoring solution, with free standard accounts available. There
was no New Relic OpenShift cartridge at the time of writing, but there
are instructions on how to add New Relic to your Java/JBoss appli‐
cation. Another OpenShift partner, AppDynamics, has created an
OpenShift QuickStart for its monitoring software.

Finding Cartridges and QuickStarts
One of the joyous consequences of having an open source platform is that the commu‐
nity is always creating exciting new things for it. When you run the command rhc
cartridge list, the result shows supported cartridges (Table 4-1 shows the list as of
March 2014); these are the components that are maintained by Red Hat and receive
updates such as security patches. However, this is not the extent of the cartridges avail‐
able. There are many more OpenShift cartridges that have been created by the com‐
munity and partner organizations. There are also many QuickStarts, which combine
one or more cartridges with preconfigured code and libraries to enable you to quickly
and easily launch a given application on OpenShift.

32 | Chapter 4: Adding Application Components

http://bit.ly/1cEYzjV
http://bit.ly/1iJheJI
http://bit.ly/1iJheJI
http://bit.ly/1kQPpUe
https://www.openshift.com/quickstarts

Table 4-1. Supported cartridges for OpenShift Online (as of March 2014)
[me@localhost ~]$ rhc cartridge list

jbossas-7 JBoss Application Server 7 web

jbosseap-6 (*) JBoss Enterprise Application Platform 6 web

jenkins-1 Jenkins Server web

nodejs-0.10 Node.js 0.10 web

nodejs-0.6 Node.js 0.6 web

perl-5.10 Perl 5.10 web

php-5.3 PHP 5.3 web

zend-5.6 PHP 5.3 with Zend Server 5.6 web

php-5.4 PHP 5.4 web

zend-6.1 PHP 5.4 with Zend Server 6.1 web

python-2.6 Python 2.6 web

python-2.7 Python 2.7 web

python-3.3 Python 3.3 web

ruby-1.8 Ruby 1.8 web

ruby-1.9 Ruby 1.9 web

jbossews-1.0 Tomcat 6 (JBoss EWS 1.0) web

jbossews-2.0 Tomcat 7 (JBoss EWS 2.0) web

diy-0.1 Do-It-Yourself 0.1 web

10gen-mms-agent-0.1 10gen Mongo Monitoring Service Agent addon

cron-1.4 Cron 1.4 addon

jenkins-client-1 Jenkins Client addon

mongodb-2.4 MongoDB 2.4 addon

mysql-5.1 MySQL 5.1 addon

mysql-5.5 MySQL 5.5 addon

metrics-0.1 OpenShift Metrics 0.1 addon

phpmyadmin-4 phpMyAdmin 4.0 addon

postgresql-8.4 PostgreSQL 8.4 addon

postgresql-9.2 PostgreSQL 9.2 addon

rockmongo-1.1 RockMongo 1.1 addon

switchyard-0 SwitchYard 0.8.0 addon

haproxy-1.4 Web Load Balancer addon

(*) denotes a cartridge with additional usage costs.

Finding Cartridges and QuickStarts | 33

mailto:me@localhost

Web cartridges can be added only to new applications.

There are several places you can go to look for OpenShift cartridges and QuickStarts.
A decent place to start is OpenShift.com; some downloadable cartridges and many
QuickStarts are listed there. You can browse the OpenShift-maintained offerings and
some partner and community offerings in the OpenShift Web Console.

Another good website to help you find ready-made applications and app components
is the OO-Index. Its sole purpose is to index OpenShift cartridges and QuickStarts.It
was in active development at the time of this writing and the production URL was not
yet known, but you should be able to find the link at OpenShift’s website.

Given that a lot of cartridge code is hosted on GitHub, another way of finding a cartridge
or QuickStart for a particular technology is to search for OpenShift and the technology
name on the GitHub website. Search engine results may also help you to unearth treas‐
ures, especially if the programmers have written blog posts about their work.

If you cannot find an existing cartridge or QuickStart for the pro‐
gramming language, framework, or other technology you want to run
on OpenShift, it does not mean all hope is lost. Most things that can
run on Red Hat Enterprise Linux can run on OpenShift. You may be
able to use the DIY cartridge (available via rhc app create) and
install the technology manually. For example, Steve has written a blog
post on how to run Minecraft on OpenShift. Alternatively, you could
create your own cartridge. Demonstrating how to create cartridges is
beyond the scope of this book.

Popular downloadable cartridges and QuickStarts include:

• ActiveMQ
• Django
• Drupal
• Flask
• Ghost
• Go
• Jekyll
• Rails

34 | Chapter 4: Adding Application Components

https://www.openshift.com/developers/download-cartridges
https://www.openshift.com/quickstarts
https://openshift.redhat.com/app/console/application_types
http://www.openshift.com
https://github.com/search?q=openshift
https://www.openshift.com/developers/do-it-yourself
http://bit.ly/OPVFxU
http://bit.ly/OPVFxU
http://bit.ly/1qCuZ2o
http://github.com/bdecoste/openshift-origin-cartridge-activemq
https://www.openshift.com/quickstarts/django
https://www.openshift.com/quickstarts/drupal-8
https://github.com/openshift/flask-example
https://www.openshift.com/quickstarts/ghost-on-openshift
https://github.com/smarterclayton/openshift-go-cart
https://www.openshift.com/quickstarts/jekyll
https://github.com/openshift/rails-example

• Redis
• Spring
• Vert.x
• WordPress

Adding Third-Party Cartridges
To add a third-party cartridge to your application, you need to provide RHC with the
URL to its manifest file, which will be called manifest.yml. This file is found within the
metadata directory in the cartridge source repository. You can use this URL in RHC
commands instead of a cartridge type such as python-3.3 or postgresql-9.2; it can be used
with the rhc app create and rhc cartridge add commands.

For example, to add the Monit cartridge mentioned in “Metrics and Monitoring” on
page 31 to our Insult App application, we could use the following command (alterna‐
tively, we could use the shorter version that redirects to the manifest URL, which the
cartridge author provided in the documentation):

[me@localhost ~/insultapp]$ rhc cartridge add https://raw2.github.com/mfojtik/
openshift-origin-cartridge-monit/master/metadata/manifest.yml
The cartridge 'https://raw2.github.com/mfojtik/openshift-origin-cartridge-monit/
master/metadata/manifest.yml' will be downloaded and installed
Adding https://raw2.github.com/mfojtik/openshift-origin-cartridge-monit/master/
metadata/manifest.yml to application 'insultapp' ... done

mfojtik-monit-5.6 (monit 5.6)

 From: https://raw2.github.com/mfojtik/openshift-origin-cartridge-monit/master/
 metadata/manifest.yml
 Gears: Located with python-2.7, postgresql-9.2, cron-1.4

Please set the email you want to receive monit alerts:

$ rhc env set MONIT_ALERT_EMAIL=email@address.com -a insultapp
$ rhc cartridge restart monit -a insultapp

Monit Server Manager is running at: https://insultapp-osbeginnerbook.rhcloud.com/
monit-status
Username: admin
Password: Ny4nc=pt

You can add custom monitoring rules by editing ~/.monitrc file

Finding Cartridges and QuickStarts | 35

https://github.com/smarterclayton/openshift-redis-cart
https://www.openshift.com/quickstarts/spring-framework-on-jboss-eap6
https://github.com/vert-x/openshift-cartridge/
https://www.openshift.com/quickstarts/wordpress-3x
http://goo.gl/eGL2Bs

Unlike the supported cartridges maintained by OpenShift, commu‐
nity cartridges do not receive automatic security updates and up‐
grades.

If we later wish to remove the cartridge, we can reference it with the short name pro‐
vided, as shown here:

[me@localhost ~/insultapp]$ rhc cartridge remove mfojtik-monit-5.6
Removing a cartridge is a destructive operation that may result in loss of data
associated with the cartridge.

Are you sure you wish to remove mfojtik-monit-5.6 from 'insultapp'? (yes|no):
yes

Removing mfojtik-monit-5.6 from 'insultapp' ... removed

In this chapter, we have seen how to go beyond the required web cartridge to add extra
components to an OpenShift application. Additional cartridges can be used to provide
databases, metrics and monitoring, job scheduling, and other useful capabilities. Open‐
Shift Online provides a suite of supported cartridges that receive automatic updates;
however, there are also an array of partner-provided and community cartridges and
QuickStart applications available. Furthermore, developers can create their own car‐
tridges to bring new technologies to OpenShift; the Cartridge Developer’s Guide details
how to do so.

In the next chapter, we will show how to perform a mixed bag of tasks for managing
your OpenShift application, such as accessing your gears and database via SSH, viewing
the logs, and setting environment variables.

36 | Chapter 4: Adding Application Components

http://bit.ly/1qCuZ2o

CHAPTER 5

Environment and Application Management

Once you have added the application cartridges you need and pushed your code to the
cloud, you will hopefully hit the OpenShift URL and find your app just works. Now is
the time to throw your hands in the air and do a happy dance; this is the awesomesauce
of Platform as a Service. Once you are all danced out, you might realize there are some
aspects of your application you would like to explore further or tweak; the next few
pages will help with that.

In this chapter, you will learn how to access your application’s container, view its log
output, and fiddle with its configuration should the need arise. We will explain how to
connect to your application’s gear via SSH, how to view and set OpenShift environment
variables, and how to access application logs. We will also show how to make configu‐
ration changes to your application server or database and how to use marker files to set
options such as hot deployment.

SSH Access
Your application’s remote container, called a gear, can be accessed using the Secure Shell
(SSH) protocol in the same way as you access regular machines. To communicate with
OpenShift securely, your OpenShift account must first contain an SSH public key be‐
longing to the machine from which you wish to connect. This key is uploaded to Open‐
Shift when you first run the terminal command rhc setup (see Chapter 2 for more on
this); you can also add keys manually via the OpenShift Web Console’s Settings section.

The simplest way to connect to an application gear is to go to the command line, change
into the directory where your app was cloned locally, and enter the command rhc
ssh. This will start an SSH session with your main application gear. If the local clone of
your application repository is not linked to your OpenShift app in RHC (in which case
you will receive an error message), or you wish to SSH from another directory, you
should add the -a appname option, replacing appname with the name of your app.

37

If you would prefer to use an alternative tool for creating an SSH connection, you can
view the SSH URL you will need for your main application gear with the command rhc
app show -a appname.

If your app is scalable and you would like to SSH into the other gears, you can use the
command rhc app show --gears -a appname to view their SSH URLs and the ssh
command-line tool to connect (e.g., ssh user@host).

Once you have connected to the gear via SSH, you will see a “Welcome to OpenShift
console” message and a warning about making destructive modifications to your ap‐
plication; you should always take care when making changes on the gear directly as it
is possible to make persistent, unversioned changes to your app and its environment.
By default, you will find yourself in the home directory of the OpenShift user for your
application, which will have a UUID username that doesn’t quite roll off the tongue. If
you list the contents of the directory, you will see subdirectories for the cartridges on
your gear, as well as Git, your app’s deployment history, and the app itself.

Here is the output from a sample SSH session with our Python demo application. We
connect to the application gear, then use the ls command to list the contents of some
of the key directories, starting with our OpenShift application user’s home directory:

[me@localhost ~/insultapp]$ rhc ssh
Connecting to 6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.com ...

 You are accessing a service that is for use only by authorized users.
 If you do not have authorization, discontinue use at once.
 Any use of the services is subject to the applicable terms of the
 agreement which can be found at:
 https://www.openshift.com/legal

 Welcome to OpenShift console

 This console will assist you in managing OpenShift applications.

 !!! IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!
 Shell access is quite powerful and it is possible for you to
 accidentally damage your application. Proceed with care!
 If worse comes to worst, destroy your application with "rhc app delete"
 and recreate it
 !!! IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!

 Type "help" for more info.

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> ls
app-deployments app-root cron git postgresql python

38 | Chapter 5: Environment and Application Management

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> ls app-root
build-dependencies data dependencies repo runtime
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> ls app-root
/repo
app.py.disabled data Insult_App.egg-info libs README.md setup.py setup.pyc
setup.pyo wsgi

The demo application uses a Python cartridge, so there is a Python directory in the
application’s home directory. The app-root directory contains several important appli‐
cation subdirectories, notably repo, containing the current clone of the application’s Git
repository, and data, which is a persistent directory you will read more about later in
the book (see Chapter 8).

When accessing an application gear via SSH, you can run the usual Linux commands
you might execute on a local machine. However, there are some restrictions. Your app
runs within a container secured with SELinux, and you do not have root access. As you
would expect, you cannot access other applications running on the same remote ma‐
chine. If you receive “Permission Denied” errors, it is likely because you have attempted
to overstep your bounds. Remember, you are a developer, not an administrator on your
gear.

Using SSH to Interact with a Database
One set of useful commands you can run when connected to an application gear via
SSH are those associated with your database cartridge. If you are using PostgreSQL, as
we are in our demo application, you can access your application database from your
SSH session with the psql command. In the following example, we connect to the
database, issue the help command to see what options are available, and then use \q to
quit:

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> psql
psql (9.2.4)
Type "help" for help.

insultapp=# help
You are using psql, the command-line interface to PostgreSQL.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit
insultapp=# \q
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\>

The OpenShift environment has been configured so that psql connects using the admin
username and password to the default database. You can always override these options
using the normal methods you use with psql. You may also like to use other PostgreSQL

SSH Access | 39

commands such as pg_dump or pg_restore. If you are using MySQL, you may wish to
run commands, such as mysql and mysqldump, or, for MongoDB, mongo and mongodump.

Importing SQL in an SSH Session
The ability to issue database commands in an SSH session provides one method of
importing data into your OpenShift database. You can connect to the database and enter
SQL manually if you want to test it out or edit something specific. Most times, though,
you will want to import your data from a file.

One way you can transfer a SQL file to your database gear is to use the scp (secure copy)
command. Here is an example of sending a file called import.sql to the persistent data
directory on our example application gear. You can use the command rhc app show
--gears to obtain the SSH URL of the gear:

[me@localhost ~/insultapp]$ scp import.sql 6e7672676e61676976757570@insultapp
-osbeginnerbook.rhcloud.com:~/app-root/data
import.sql 100% 5360 8.2KB/s 00:00

If your database cartridge shares a gear with your application cartridge, which it will if
your app is not scalable, another way of copying your SQL file to your gear is to check
it in to your Git repository. For our Insult App, we have added, committed, and pushed
an import.sql file at the root level of the repository. It contains the full list of Shake‐
spearean insults, split into nouns and adjectives. You can view the full contents of this
file in the book’s Git repository (see “Using Code Examples” on page xi). Here is an
excerpt:

DROP TABLE IF EXISTS short_adjective;
DROP TABLE IF EXISTS long_adjective;
DROP TABLE IF EXISTS noun;

BEGIN;

CREATE TABLE short_adjective (id serial PRIMARY KEY, string varchar);
CREATE TABLE long_adjective (id serial PRIMARY KEY, string varchar);
CREATE TABLE noun (id serial PRIMARY KEY, string varchar);

INSERT INTO short_adjective (string) VALUES ('artless');
INSERT INTO short_adjective (string) VALUES ('bawdy');
INSERT INTO short_adjective (string) VALUES ('beslubbering');

INSERT INTO long_adjective (string) VALUES ('base-court');
INSERT INTO long_adjective (string) VALUES ('bat-fowling');
INSERT INTO long_adjective (string) VALUES ('beef-witted');

INSERT INTO noun (string) VALUES ('apple-john');
INSERT INTO noun (string) VALUES ('baggage');
INSERT INTO noun (string) VALUES ('barnacle');

40 | Chapter 5: Environment and Application Management

To import this data into our PostgreSQL database, we issue the following commands
within an SSH session:

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> cd app-root
/repo/
[insultapp-osbeginnerbook.rhcloud.com repo]\> psql -f import.sql

Our example application database is now populated and ready to help produce a bundle
of new insults; we will alter our code to make use of this in the next chapter.

Executing database commands in an SSH session is not the only
method of connecting to your app database; we will demonstrate how
to connect via your app code in Chapter 6 and how to use port for‐
warding to facilitate access in Chapter 7.

Environment Variables
Only masochistic developers hardcode database connection strings or server ports; we
have environment variables to save us from the pain of marrying code to a particular
environment. OpenShift and its standard cartridges have a bunch of useful environment
variables available out of the box that you can reference in your applications. It is also
possible to set custom environment variables.

Due to some maintenance that the operations team may need to do,
your application’s IP address can change. Hardcoding the values
pointed to by the environment variables in your OpenShift applica‐
tion can cause it to break. So, in case you didn’t get the message, don’t
hardcode the values of the environment variables.

You can view the values of some of the essential environment variables, such as your
database details, in the output of the command rhc app show -a appname. To view all
of the environment variables and their values, SSH into your application gear and ex‐
ecute the command env. To view only the environment variables with names including
the word “OPENSHIFT,” use the command env | grep OPENSHIFT.

Preconfigured Environment Variables
Table 5-1 outlines some of the key preconfigured environment variables for our demo
application. Other cartridges have similar variables: just replace PYTHON or POSTGRESQL
with the relevant cartridge or database name.

Environment Variables | 41

Table 5-1. Useful environment variables
Environment variable Value Purpose

OPENSHIFT_APP_NAME insultapp Application name

OPENSHIFT_APP_DNS insultapp-

osbeginnerbook.rhcloud.com

Application domain name

OPENSHIFT_PYTHON_IP 19.66.2.6 IP address the app listens on

OPENSHIFT_PYTHON_PORT 8080 Port the app receives external
requests on

OPENSHIFT_SECRET_TOKEN Not shown for brevity 128-character string unique to the
application and synced across all
gears

OPENSHIFT_DATA_DIR $OPENSHIFT_HOMEDIR/app-

root/data/

Persistent data directory

OPENSHIFT_REPO_DIR $OPENSHIFT_HOMEDIR/app-

root/runtime/repo/

Currently deployed copy of the app

OPENSHIFT_TMP_DIR /tmp/ Temporary directory; SELinux and
PAM namespaces protect data from
other users

OPENSHIFT_PYTHON_LOG_DIR $OPENSHIFT_HOMEDIR/python/

logs/

Cartridge-specific log directory

OPENSHIFT_POST

GRESQL_DB_LOG_DIR

$OPENSHIFT_HOMEDIR/post

gresql/log/

Database log directory

OPENSHIFT_POSTGRESQL_DB_HOST 19.66.2.7 Database hostname or IP

OPENSHIFT_POSTGRESQL_DB_PORT 5432 Database port

OPENSHIFT_POSTGRESQL_DB_USER

NAME

adminm4rvN42 Database username

OPENSHIFT_POSTGRESQL_DB_PASS

WORD

SLat4aTfsSt1 Database password

Custom Environment Variables
Developers can extend the array of built-in environment variables by adding their own.
One way to achieve this is to export the custom variables in one of the action hook
scripts that runs before your application starts. For example, you could add the line
export FOO=bar to .openshift/action_hooks/pre_start_python. Alternatively, you can
create and set custom environment variables with RHC. This is the preferred solution
if the values of your environment variables are sensitive and hence you would rather
not check them in to your Git repository.

Custom environment variables can be managed with the RHC commands env set, env
list, env show, and env unset. Here is an example of each command:

42 | Chapter 5: Environment and Application Management

[me@localhost ~]$ rhc env set API_USERNAME=admin API_PASSWORD=secret -a
insultapp
Setting environment variable(s) ... done
[me@localhost ~]$ rhc env list -a insultapp
API_PASSWORD=secret
API_USERNAME=admin
[me@localhost ~]$ rhc unset API_PASSWORD -a insultapp
Removing environment variables is a destructive operation that may result in
loss of data.
API_PASSWORD

Are you sure you wish to remove the environment variable(s) above from
application 'insultapp'? (yes|no): yes

Removing environment variable(s) ... removed
[me@localhost ~]$ rhc env show API_USERNAME API_PASSWORD -a insultapp
API_USERNAME=admin

Overriding Preconfigured Environment Variables
Some preconfigured environment variables can be overridden: for example, OPEN
SHIFT_SECRET_TOKEN. This environment variable provides a random token string that
is synchronized across gears. Example uses for this include cookie encryption, forming
JBoss clusters, and seeding a Rails secret token. The OPENSHIFT_SECRET_TOKEN variable
is set by default with a random value generated when the application is created. However,
it can be overridden with RHC if you wish to replace it with a secret string you have
generated yourself:

[me@localhost ~/insultapp]$ rhc env set OPENSHIFT_SECRET_TOKEN=new_token
Setting environment variable(s) ... done

You can override other preconfigured environment variables in the same fashion. These
will then be listed alongside your custom variables when you run the command rhc
env list. Some preconfigured environment variables are protected and cannot be
overridden; you will receive an error message if you attempt to override one of these
with RHC.

Log Access
To ensure your application is working correctly, or troubleshoot when it is not, you may
want to view the log files. You can do this by connecting to the application gear via SSH
and navigating to the relevant locations, which you can find by checking the environ‐
ment variables as described in the previous section. In general, you will find the log
directories for web cartridges can be referenced with $OPENSHIFT_<car‐
tridge>_LOG_DIR and databases with $OPENSHIFT_<database>_DB_LOG_DIR. For
example, our demo application’s logs are directed to $OPEN‐
SHIFT_PYTHON_LOG_DIR and $OPENSHIFT_POSTGRESQL_DB_LOG_DIR.

Log Access | 43

A simpler method for checking the logs is to use RHC’s tail command. By default, rhc
tail -a appname will tail the log files within the cartridges’ log directories; in the case
of our Python application, this means the files stored in $OPENSHIFT_HOMEDIR/
python/logs and $OPENSHIFT_HOMEDIR_postgresql/log. However, you can specify a
different or more specific set of files, relative to $OPENSHIFT_HOMEDIR, with the -f
option. You can also set various Linux tail command options by adding -o.

The following command tails the insultapp application’s database logs only, outputting
the last 50 lines rather than the default of the last 10:

[me@localhost ~]$ rhc tail -f postgresql/log/* -o '-n 50' -a insultapp

Application and database cartridges will be configured to output their logs to the di‐
rectories referenced by the aforementioned environment variables by default. If you
produce application-specific logs, you should direct these to your web cartridge’s log
directory as well, e.g., $OPENSHIFT_PYTHON_LOG_DIR. Files in this directory will
automatically be included in the output of the rhc tail command.

To learn how to manage disk usage and back up your remote files, including log files,
see Chapters 8 and 9.

Changing Application Server or Database Settings
One of the advantages of using a Platform as a Service is that you do not have to tinker
with dozens of configuration files just to get an app running in the cloud. That said, you
may well want to alter the out-of-the-box config, and many cartridges facilitate that.

Application Server Configuration Changes
If you are coding in Java and using an application server such as Tomcat, JBoss, or
WildFly, you can override server config files within your OpenShift Git repository. This
is where you could change, for example, the application server’s log levels or settings
for your data source. Look inside the .openshift/config directory to see which files have
been cloned ready for modification. These configuration files will already include the
relevant OpenShift environment variables, so you will want to use them as a starting
point when making changes.

Many of the other application cartridges are Apache-based. You cannot edit the main
httpd.conf file, but some cartridges do offer configuration options. One way to make
Apache configuration changes to individual directories is by using .htaccess files. A
common use case for this is adding an .htaccess file containing mod_rewrite directives
to the /php directory in a WordPress application, so requests to the default OpenShift
URL are redirected to a custom domain. For specific configuration options for your
cartridge of interest, please refer to its documentation.

44 | Chapter 5: Environment and Application Management

Database Configuration Changes
Another set of cartridges users may wish to reconfigure are the database cartridges. For
example, you may want to change the log rotation frequency or tweak settings for re‐
source usage or caching. If you need to change PostgreSQL’s configuration, you can edit
the postgresql.conf file. If your application is not scalable, you can do this by using SSH
to connect to your app gear, navigating to $OPENSHIFT_HOMEDIR/postgresql/conf,
and opening the file with Vim, Nano, or some other editor. If your application is scalable,
the PostgreSQL instance will have its own gear; use the command rhc app show --
gears -a appname to view its SSH URL, then connect to the database gear with the ssh
command (or your preferred SSH tool). The postgresql.conf file will be in the same
location as on an application gear with an embedded PostgreSQL cartridge. Once you
have made your changes, you can restart the PostgreSQL cartridge so that they take
effect with the command rhc cartridge restart postgresql -a appname.

The general process for making config changes to other database cartridges is the same
as described for PostgreSQL. In the case of MySQL, the relevant config file can be found
at $OPENSHIFT_HOMEDIR/mysql/conf/my.cnf. The MongoDB config file is available
at $OPENSHIFT_HOMEDIR/mongodb/conf/mongodb.conf.

Using Marker Files
Many basic OpenShift cartridge configuration options are controlled with marker files.
If a particular marker file is present, the option is enabled; otherwise, the default be‐
havior prevails. Marker files are added in an OpenShift application’s Git repository, in
the .openshift/markers directory. The contents of marker files are irrelevant; they are
empty files. They do not have any file extension.

One of the most common marker files used is hot_deploy—as mentioned in “Hot-
Deploying Code” on page 22—which tells OpenShift to deploy new builds without re‐
starting the cartridge server. Other marker files you may be interested in include
force_clean_build (instructs OpenShift to remove previously built artifacts before build‐
ing the app), disable_auto_scaling (prevents scalable applications from scaling accord‐
ing to load), and java7 (if this is removed, Java cartridges will use Java 6).

The marker files must be committed and pushed with Git. Here is an example of adding
the force_clean_build marker to our example app:

[me@localhost ~/insultapp]$ touch .openshift/markers/force_clean_build
[me@localhost ~/insultapp]$ git add .openshift/markers/force_clean_build
[me@localhost ~/insultapp]$ git commit -m "Adding marker to force clean build"
[me@localhost ~/insultapp]$ git push

This will cause OpenShift to re-create the app’s virtual environment and reinstall the
required Python eggs (these are code bundles, like JARs in Java). We do not want this

Using Marker Files | 45

to happen on every build as it takes time to download those dependencies, so once we
are satisfied that the environment is clean we would remove the marker file.

It’s time to take a deep breath; we have learned a lot in this chapter. We showed how to
use SSH to connect to your application’s gears and interact with databases hosted on
OpenShift. We know that application configuration is easier to maintain when we use
environment variables rather than hardcoded values; in this chapter we learned how to
access the values of OpenShift’s environment vars and how to define our own. We dis‐
cussed OpenShift application log access with rhc tail and where to direct app log
output. Finally, we explained how to make application server and database configuration
changes and how to control app config switches with marker files.

In the next chapter, we will dive into application dependencies and show how to connect
to a database from your OpenShift app code.

46 | Chapter 5: Environment and Application Management

CHAPTER 6

Library Dependencies

All applications beyond the very simple will have a requirement to use outside libraries
or dependencies. Examples of dependencies might be libraries for database connectivity,
turning images to text (object character recognition or OCR), calculating statistics, or
web templating. In this chapter we will show you how to use libraries in your OpenShift
applications. We will add the database drivers to our Insult App and then use it to access
the insults stored in the database.

Where to Declare Dependencies
All modern programming languages have a “build” process; OpenShift takes advantage
of this to build your application dependencies. At the time of this writing we are using
the processes listed in Table 6-1 to pull in dependencies for external libraries.

Table 6-1. Dependency mechanisms used by OpenShift, by language
Language Dependency mechanism

Java Maven

Python Pip

Ruby Gem

Node.js (JavaScript) NPM

PHP Pear

Perl CPAN

We have tried to make the process as close to development on your local machine as
possible. So, for example, with Python if you wanted to download the “default” Post‐
greSQL drivers (psycopg2) to your local machine you would use Pip:

$ pip install psycopg2

47

http://maven.apache.org/
http://www.pip-installer.org/en/latest/
http://rubygems.org/
https://npmjs.org/
http://pear.php.net/
http://www.cpan.org/

This would install the Psycopg2 drivers to a location where Python can see them on
your local machine. The way to reproduce this functionality on OpenShift is to include
the dependency in the appropriate “application metadata” file. When you include your
dependencies in this file, OpenShift will notice the dependencies during the build pro‐
cess and then download the files and put them where your language runtime can see
them. Table 6-2 presents a listing of all the files for a variety of languages.

Table 6-2. Files used for dependency declaration
Language Dependency file

Java pom.xml

Python setup.py (requirements.txt coming soon, probably by the time the book is published)

Ruby Gemfile.lock

Node.js (JavaScript) package.json

PHP deplist.txt

Perl deplist.txt

Let’s go ahead and add Psycopg2 to our project so we can use the library to connect to
our database of insults. Go into your local Git repository and edit the setup.py file. We
already have a dependency declaration for Flask (see “Modifying Application Code” on
page 18), and now we are going to add one for Psycopg2. Your install dependencies
section should look like this now:

install_requires=['Flask==0.10.1', 'psycopg2==2.5.2'],

The best practice on OpenShift is to always specify an exact ver‐
sion number for your dependencies. There are two reasons why:

1. If you use >= the build process will always have to check to see
if there is a newer version of the library available than what is
currently installed. This will slow down your build process.

2. There is the possibility that there will be a new version of the
library that is incompatible with your code. Not explicitly stat‐
ing a specific version number could lead to your application
breaking when you don’t expect it.

The first time you git push with this new dependency, the build will take longer because
of the download and build of the new dependency. After that OpenShift will use the
cached version. This is particularly noticeable for Java developers with Maven builds,
since the default pom.xml requires the full JEE dependency.

When you do your git push, you should see something like the following in the output:

48 | Chapter 6: Library Dependencies

...
remote: Processing dependencies for Insult-App==1.0
remote: Searching for psycopg2==2.5.2
remote: Best match: psycopg2 2.5.2
remote: Processing psycopg2-2.5.2-py2.7-linux-x86_64.egg
...

These are the lines where the OpenShift build process is adding the Psycopg2 library to
the virtual environment for your application.

A common problem we see in the forums goes something like: “The
application works fine on my local machine but when I deploy to
OpenShift I get an error that LibraryX is not available.” This is usu‐
ally a sign that you have not declared your dependency in the prop‐
er file or with the proper syntax for OpenShift to download it and
make it available. Unless it is in your Git repository or declared as a
dependency in the proper file, it will not be available to your appli‐
cation code.

Incorporating Your Own Binary Dependencies
For each programming language, there is a designated location in the Git repository
where you can place your own binaries for your application and have the build pick
them up (Table 6-3). For example, you would do this if you have a binary library that
you use within your company that you do not want to put in a public repository or in
the code base. This way you can reuse the library without exposing the code.

Table 6-3. Location to place your own libraries
Language Location in repository for binaries

Java More complicated as they have to be part of Maven; please see OpenShift knowledge base article E1040.
The other option is to bundle all the libs in your WAR file and just deploy the WAR.

Python libs

Ruby [role="filename"]vendor/cache/{myfile}.gem

Node.js (JavaScript) node_modules

PHP libs

Perl libs

Placing your libraries in these locations means you can use your own libraries, ensure
a certain version of a library is used, or include nonpublic libraries.

Some of these languages also have the ability to point to a library in a different Git
repository or in other places “on disk.” For example, in your Ruby application you can
specify the location to your Gem in your Gemfile.lock file. This is a much more flexible
method than using the location specified earlier. The same holds with setup.py or

Incorporating Your Own Binary Dependencies | 49

http://bit.ly/1gwrLp5

requirements.txt for Python; your metadata file can point to a GitHub repository or
other publicly accessible locations.

Modifying Your Application to Use the Database
Now that we know how to pull in dependencies, let’s go ahead and modify our code to
take advantage of the database. We are going to design the application so that our insult
propagation crew can search out new insults, add them to the database, and have them
appear without any code changes. We designed the database tables so we could pick
from each adjective type and noun separately and add to each group separately.

We did such a nice job with the separation of concerns between our classes in our original
application that we only have to modify insulter.py. We are going to replace the static
lists of adjectives and nouns with calls to the database, but nothing else in the application
has to change. Even within insulter.py we only have to modify one method. Hooray for
clean code!

One quick note before we dig in: as much as we would like to believe Insult App will be
hugely successful and allow us to retire early, this app will probably have only one or
two users at a time (if we are lucky). Therefore, we are not going to add the overhead
of having a connection pool for the database connections. Given that database connec‐
tions take a relatively long time to establish, in any real production application you
would want to use a connection pool for your database connections.

All right, on to the code!

Code to Connect to the Database
Since WSGI acts like CGI, where each class is spun up and run each time there is a
request, we are just going to go ahead and create a method to open a database connection
and then call it in the function where we retrieve the words to be used. Using Pyscopg2
is incredibly easy, and the environment variables put in by OpenShift allow us to es‐
tablish the connection in a portable way. First, we define a method to get a cursor (the
basic object that does all the database interaction). Here is the excerpt from insulter.py:

import psycopg2
...

def get_cursor():
 #open a connection
 conn = psycopg2.connect(database=os.environ['OPENSHIFT_APP_NAME'],
 user=os.environ['OPENSHIFT_POSTGRESQL_DB_USERNAME'],
 password=os.environ['OPENSHIFT_POSTGRESQL_DB_PASSWORD'],
 host=os.environ['OPENSHIFT_POSTGRESQL_DB_HOST'],
 port=os.environ['OPENSHIFT_POSTGRESQL_DB_PORT'])
 #get a cursor from the connection

50 | Chapter 6: Library Dependencies

 cursor = conn.cursor()
 return cursor

While it is bad form even in noncloud applications to hardcode database connection
parameters, in cloud applications it also has the potential to break your application. If,
for some reason, operations needs to migrate your gear to a different set of servers and
the IP addresses change, your application will still work if you used environment vari‐
ables. The other benefit to using environment variables is that you can give your Git
repository to another developer, who can push the code into his own version of the
application, and it will just work because the environment variables in his version will
point to the new information.

Code to Close the Database Connection
Whenever you open a database connection you eventually have to close it, or your
application will ultimately stop working because you have used up all the connections.
If you use a database pool, this can help with connection exhaustion, but as noted earlier,
we are not using a pool. Here is the code from insulter.py to close the cursor:

def close_cursor(cursor):
 conn = cursor.connection
 cursor.close()
 conn.close()

Code to Query the Terms for the Insult
Now that we have a connection to the database, we need to query it for the words we
want. Since we want to pick a word at random from the tables, we need to use a little
bit of fancy SQL. We found an interesting solution to the problem on Stack Overflow
for PostgreSQL. The basic idea is you use the OFFSET modifier in the SQL query. Here
is the description of the OFFSET keyword in the PostgreSQL manual:

OFFSET says to skip that many rows before beginning to return rows… If both OFFSET
and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT
rows that are returned.

We are basically just telling PostgreSQL to pick a random number between 1 and the
total number of rows and use that as the offset for where to start returning results, and
then just give us one result.

In the function, we pass in the cursor and the name of the table we want to execute the
query against. Psycopg2 returns a Python tuple, so we just grab the first element in the
tuple:

def get_word(cursor, table):
 sql = "select string from " + table + " offset random()*
 (select count(*) from " + table + ") limit 1;"
 cursor.execute(sql)

Modifying Your Application to Use the Database | 51

http://bit.ly/1oTApSQ
http://bit.ly/1gq5UTZ

 result = cursor.fetchone()
 return result[0]

Now that we have that function in place, we can basically replace all the lists and the
random calls with just a simple set of calls to the get_word function. The flow now
becomes open a cursor, make the calls, and then finally close the cursor—nice and
simple:

def generate_insult():
 local_cursor = get_cursor()
 final_insult = get_word(local_cursor, "short_adjective") + " " +
 get_word(local_cursor, "long_adjective") + " " +
 get_word(local_cursor, "noun")
 close_cursor(local_cursor)
 return final_insult

What We Have Gained by Adding a Database
Now that we have changed over our application to use a database, we can add new terms
without having to touch the code, build, and deploy. As a matter of fact, we could write
a separate web page for people to add new terms and the insult page would pick them
up on the fly. In this chapter, we have also learned how to add library dependencies to
our projects on OpenShift, and finally, how to access a database in an OpenShift appli‐
cation. At this point our application is finished. From here on, we are going to talk more
about how to interact and monitor the application behind the scenes.

52 | Chapter 6: Library Dependencies

CHAPTER 7

Networking

Even though a PaaS abstracts away much of the networking complexity, there is still a
lot you can do with the network on OpenShift. In this chapter we will cover some of the
networking you can do to either make your work easier or add capabilities to your
application.

WebSockets
One of the hot new technologies in web applications is the WebSocket protocol. Web‐
Sockets allow the client to open a persistent connection to the server. In this way, the
server can push information to the client, rather than always having the client pull
information from the server. This has a whole host of interesting applications and is
much more efficient than using long polling, an alternative technique that simulates
two-way communication. Examples of applications this could be used for include:

• Real-time chat applications
• Fleet or vehicle tracking, or any stream of positions
• Multiplayer gaming
• Monitoring applications
• Real-time auction sites

The prerequisites to using WebSockets are:

• Your server supports WebSockets. Some examples are:
— Node.js (JavaScript)
— Twisted (Python)
— Socky (Ruby)

53

http://en.wikipedia.org/wiki/WebSocket

— Socket (PHP)
— Tomcat7, Netty, and Vert.x (Java and more)

• Using a browser that supports WebSockets, which appears to be all the current
browsers.

From there, the basic flow of using WebSockets in your application is:

• The client application makes an upgrade request from HTTP to the WebSocket
protocol.

• The server responds that it supports the protocol.
• Away they go, talking over the WebSocket protocol rather than over HTTP.

Of course this is a simplification, but you get the basic idea. If you want to read a more
complete tutorial of how it works there are plenty of good examples; Matt West has
written a blog post covering the basics.

At the time of writing, OpenShift provided support for WebSockets but only at a beta
level. This means that it works but you have to use alternative ports to 80 to make your
WebSocket connections. Specifically, the URL you use to open a WebSocket connection
has to go to port 8000 for WS (standard WebSocket) or 8443 for WSS (secure Web‐
Socket). What this means in practice is that you cannot make your connection from the
client like this:

//Standard WebSocket
var socket = new WebSocket('ws://insultapp-osbeginnerbook.rhcloud.com');

//Secure WebSocket
var socket = new WebSocket('wss://insultapp-osbeginnerbook.rhcloud.com');

Rather, you need to specify the port number:

//Standard WebSocket
var socket = new WebSocket('ws://insultapp-osbeginnerbook.rhcloud.com:8000');

//Secure WebSocket
var socket = new WebSocket('wss://insultapp-osbeginnerbook.rhcloud.com:8443');

54 | Chapter 7: Networking

http://caniuse.com/websockets
http://caniuse.com/websockets
http://bit.ly/1l9Muq6

Please note that when trying to use WebSockets with OpenShift you
need to have a server that supports WebSockets. OpenShift current‐
ly uses Apache 2.2 to serve content for the default PHP, Python, Perl,
and Ruby cartridges. This version of Apache does not support Web‐
Sockets, so for any of those languages you would have to create a
DIY cartridge or your own language cartridge. Here is an example
of an OpenShift DIY that uses Python 2.6 with Tornado (a
WebSocket-capable server). There is also an advanced Ruby car‐
tridge that allows you to use WebSockets with Ruby. The only car‐
tridges that support WebSockets out of the box are Node.js, Tom‐
cat 7, and the WildFly 8 Java application server. The version of the
Apache HTTP server may change by the time you get this book, so
please check on the OpenShift website for the latest information on
WebSocket support.

Finally, each WebSocket connection you make to the server counts as a connection for
the purposes of autoscaling of your application. Currently on OpenShift, when a scalable
app has more than 16 connections on the gear it will trigger a scale-up event, causing
OpenShift to spin up a new gear, install the application code on it, and plug it into the
load balancer. That threshold includes any combination of HTTP and WebSocket con‐
nections.

SSH Port Forwarding
As explained in Chapter 1, all communication with your gear occurs over the Secure
Shell (SSH) protocol. One of the great features of SSH is port forwarding, which allows
you to securely communicate with your gear and make it appear as if the services on
the gear are running on your own machine. The basic idea is that SSH takes ports on
your local machines and tunnels them over a secure connection to a port on the remote
machine. For example, you can use SSH to take port 9999 on your local machine and
have it attach to port 5432 on your gear, which is the port that PostgreSQL listens on.
Now when you connect to port 9999 on your local machine, all your traffic to that port
will be sent directly to port 5432 on your gear.

Some potential uses of SSH port fowarding are:

• Attaching your database admin software on your local machine to the DB in your
OpenShift application

• Desktop software such as Excel or QGIS directly using data on the server
• Having your code on your local machine work with the database in your OpenShift

application
• Attaching the debugger on your local machine to the process running on OpenShift

SSH Port Forwarding | 55

http://bit.ly/1rtEe5j
http://bit.ly/PAjN8J
http://bit.ly/PAjN8J
http://bit.ly/1qCEjDk

To give an example, we are going to port forward for all the running servers on our gear
and then connect from the local laptop to our PostgreSQL instance on the gear using
the psql command-line tool. Even though psql will be running on our local machine,
with access to local SQL files, it will actually be talking to the PostgreSQL instance on
OpenShift. You could use this same technique to have a development web application
on your local machine talking to your OpenShift PostgreSQL instance before you deploy
the web application to OpenShift.

Before we begin, you are going to need your username and password for your OpenShift
database. If you don’t have this information written down, you can retrieve it with the
rhc show command:

[me@localhost insultapp]$ rhc app show
insultapp @ http://insultapp-osbeginnerbook.rhcloud.com/
(uuid: 6e7672676e61676976757570)

 Domain: osbeginnerbook
 Created: Mar 14 1:59 PM
 Gears: 1 (defaults to small)
 Git URL: ssh://6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud
 .com/~/git/insultapp.git/
 SSH: 6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.com
 Deployment: auto (on git push)

 python-2.7 (Python 2.7)

 Gears: Located with postgresql-9.2, cron-1.4

 postgresql-9.2 (PostgreSQL 9.2)

 Gears: Located with python-2.7, cron-1.4
 Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:
 $OPENSHIFT_POSTGRESQL_DB_PORT
 Database Name: insultapp
-> Password: SLat4aTfsSt1
-> Username: adminm4rvN42

 cron-1.4 (Cron 1.4)

 Gears: Located with python-2.7, postgresql-9.2

We marked the two lines containing the username and password with a ->. Make note
of these because you will need to use them when you connect to your database.

Next we use the rhc port-forward command to have the command-line tools port
forward all listening ports over SSH:

[me@localhost insultapp]$ rhc port-forward
Forwarding ports ...

56 | Chapter 7: Networking

Address already in use - bind(2) while forwarding port 5432. Trying
local port 5433

To connect to a service running on OpenShift, use the Local address

Service Local OpenShift
---------- -------------- ---- ----------------
httpd 127.0.0.1:8080 => 19.66.2.6:8080
postgresql 127.0.0.1:5433 => 19.66.2.7:5432

Press CTRL-C to terminate port forwarding

You can see from this output that there is a local PostgreSQL server running bound to
port 5432, forcing the port-forward command to bind to 5433. Now on a local machine,
when we connect to the local loopback address (127.0.0.1) on port 5433 we will actually
be connecting to PostgreSQL on the gear. Let’s go ahead and connect:

[me@localhost insultapp]$ psql -h 127.0.0.1 -p 5433 -U adminm4rvN42 insultapp
Password for user adminm4rvN42:
psql (9.3.2, server 9.2.4)
Type "help" for help.

insultapp=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+-----------------+-------+--------------
 public | long_adjective | table | adminm4rvN42
 public | noun | table | adminm4rvN42
 public | short_adjective | table | adminm4rvN42
(3 rows)

insultapp=#

There is no option to enter the password with the command, but it did prompt for one
on the second line. We entered SLat4aTfsSt1, and then we were at the PostgreSQL
command prompt talking to our server. We executed the \dt command, which lists all
the tables in the database, just to show that we are actually talking to the database running
on our gear.

Custom URLs
While it is convenient that OpenShift gives you a predefined URL that works out of the
box, you may want to use your own URL. This is actually quite easy to accomplish on
OpenShift. Before we get to that, though we need to understand a little about DNS
names. There are at least two types of DNS records that deal with URLs—A records and
CNAME records. An A record can reference any URL, such as insultapp.com or www.in‐
sultapp.com, and can take this name and point it at an IP address, like Red Hat does
with redhat.com, which points to 10.4.127.150. You have to have an IP address to be

Custom URLs | 57

able to use an A record. The benefit of an A record is that you can use the root or apex
name for your web application, such as http://insultapp.com.

CNAME records are used to take one name, such as www.insultapp.com, and point it
to a canonical (authoritative) name, such as insultapp-osbeginnerbook.rhcloud.com. For
all your OpenShift applications, the URL provided by default when you create your
application is the canonical URL. You would use CNAME records where a provider
doesn’t actually give you an IP address; this usually occurs with a content delivery net‐
work (CDN) such as Akamai or Edgenet, or with a PaaS such as OpenShift. The draw‐
back to CNAME records is that they can never map a root record to another name. For
example, you cannot take insultapp.com and point it to insultapp-
osbeginnerbook.rhcloud.com. This has nothing to do with the limitations of OpenShift
or your CDN—this is per Internet Engineering Task Force (IETF) specifications.

One of the most frequent questions we get, given this restriction, is, “How do I get
insultapp.com to point to insultapp-osbeginnerbook.rhcloud.com?” There are several
ways to do this, each with its own trade-offs, but we are going to cover the most common
method—using an HTTP redirect to handle getting the user to your web application.
With some DNS providers this is called “naked domain hosting.” Let’s cover the basic
idea with Insult App:

1. Go to your DNS provider and make a CNAME record to point www.insul‐
tapp.com to insultapp-osbeginnerbook.rhcloud.com.

2. Do an HTTP redirect from insultapp.com to www.insultapp.com. This can be
achieved by:
a. Hosting your own web server and placing a redirect as the response page at

http://insultapp.com.
b. Finding a DNS provider that does naked domain hosting (also called apex do‐

main hosting). In this case the DNS provider runs a web server for you and does
the redirect on its servers.

To finish up the whole custom URL process you need to go to your command-line tools
or the Web Console and define what URLs you have pointed to the canonical URL on
OpenShift. The process is as simple as:

$ rhc alias add <application> <alias>

For our example, you would enter:

$ rhc alias add insultapp www.insultapp.com

Since this is a very frequently asked question, we are going to list the steps one more
time for the whole process:

1. Purchase a DNS name.

58 | Chapter 7: Networking

2. Register a CNAME record with your DNS provider that points a subdomain you
just bought (e.g., www.abc.com) to the canonical URL you got from OpenShift.

3. If you want to point to a primary domain, make sure your DNS provider offers
naked domain hosting and point your primary domain at the canonical URL.

4. Finally, register each URL for which you created a CNAME with an OpenShift alias.

Although you may be tempted to take the IP address that comes back
when you do a dig or nslookup on your OpenShift URL and use it
for your A record, resist! OpenShift may change the IP address for
your app as part of normal maintenance or other operations. When
this happens your DNS entry will be wrong and nobody will be able
to get to your site using the A record URL, turning you into a sad
panda. Nobody likes a sad panda, so don’t do it.

SSL Certificates
Another common request from developers is to use HTTPS with their applications. By
default, all applications on OpenShift can piggyback off the certificate provided for free.
OpenShift Online provides a valid certificate for all *.rhcloud.com URLs. This means
that if we wanted to point users to https://insultapp-osbeginnerbook.rhcloud.com, the
SSL certificate would be valid and the browser would show the connection as SSL se‐
cured.

However, as we discussed earlier, you may want to use your own domain name on
OpenShift. In this case, the browser would see the URL as https://www.insultapp.com
but the certificate would only be valid for *.rhcloud.com URLs, causing the browser to
alert the user that there was something wrong with the HTTPS session. The traffic would
still be encrypted and the data secure, but the user would see an error with the HTTPS
session.

OpenShift provides the ability for you to add your own SSL certs that match the custom
domain names. This capability is provided when you enter the paid tier. At that level of
service, you can add your own certificates and private key files for any aliases you have.

We are going to assume you have already obtained a Base64 PEM-encoded certificate
file (it usually has a .crt or .pem extension). Be sure to obtain a file from a legitimate
certificate provider with a signature recognized by most browsers, to avoid warning
pop-ups. The private keys to go with the certificate must be in a separate file. If the
private key is encrypted you will also need to have the password available.

Once you have all that in hand you can use the RHC command-line tools to upload the
certificates. The general form of the command is:

SSL Certificates | 59

https://www.openshift.com/products/pricing

rhc alias update-cert application alias --certificate mycert.pem
--private-key myprivatekey

The reason you have to give both the application and the alias is that an application may
have multiple aliases, each of which would require its own cert. From then on, whenever
a user hits your web application with an HTTPS URL and one of your aliases, there will
be no error in the browser.

Please note that at the time of writing, the custom certificates will not work with the
OpenShift secure WebSocket solution. In this situation, the browser will show an error
for a secure WebSocket and the user will have to manually accept the certificate.

Talking to Other Services
While there are a lot of services provided out of the box with OpenShift, it also has a
robust partner ecosystem for adding even more functionality to your application. You
can add things such as caching solutions, monitoring solutions, Mobile Backend as a
Service (MBaaS), or Big Data as a Service (BDaaS). One of the services most commonly
used with OpenShift is an email service such as SendGrid. Given that the Online servers
are hosted on Amazon Web Services, any email sent from the servers will be coming
from an Amazon IP, which are blacklisted by most SMTP servers. For this reason, quite
a few OpenShift users use SendGrid to send email in their applications.

For example, if we wanted to send insults to people through our app (which would
probably break a whole bunch of spam laws), we could do it using this service. Since we
like our freedom, we will only talk you through how you would use the service in our
application. Since it is so simple, there is actually not much to say: you would just add
code like the example SendGrid Python snippet. In that snippet, you are using the
SendGrid SMTP servers just like you would use any other SMTP server. There are also
examples on that page showing how to use the SendGrid Python library and the Send‐
Grid web APIs to send emails.

We could also use a service for in-application analytics such as Keen IO. It basically lets
you send arbitrary JSON to its service, store it, and use an API to analyze it, and then
gives you a nice JavaScript API to make visualizations using your data. It has a full set
of docs and a simple Python API. By using a partner like this with OpenShift, you can
quickly add new functionality without having to learn it all from scratch. This gives you
more time to focus on making your application usable and awesome. Don’t forget to
see “Environment Variables” on page 41 for the preferred method for storing your API
key or username and password using the rhc env command.

Addressable Ports
Some OpenShift partner services, other services you might want to use, or other external
servers you want to connect to may not talk over HTTP or another standard port like

60 | Chapter 7: Networking

https://www.openshift.com/partners
http://sendgrid.com/docs/Code_Examples/python.html
https://keen.io
https://keen.io/docs/
https://keen.io/docs/
https://github.com/keenlabs/KeenClient-Python

25 (for SMTP). In these cases, such as when talking to an IRC server, you need to make
sure you can connect from your OpenShift gear on an outbound port to your desired
external endpoint. OpenShift uses SELinux to control the ability of your app to make
outbound connections.

SELinux stands for Security Enhanced Linux and is a Linux kernel
module used to provide a much more secure operating system (OS).
You define rules that you want to enforce, such as what processes a
user can see or, in this case, which ports a user can bind to. A sepa‐
rate part of the kernel then enforces the rules. Using it properly can
produce an incredibly secure OS; misconfigure it and you may have
a barely usable system.

SELinux uses a whitelist policy for allowable ports, meaning everything is denied except
for explicitly permitted ports. Fortunately, SELinux deals with labels (such as
smtp_port) rather than port numbers, so OpenShift operators are able to use, for ex‐
ample, generic_port, which then opens quite a few ports.

At the time of writing, the SELinux policy on OpenShift Online allowed the following
named SELinux labels for outbound connections:

mssql_port
mysqld_port
postgresql_port
git_port
oracle_port
flash_port
http_port
ftp_port
virt_migration_port
ssh_port
jacorb_port
jboss_management_port
jboss_debug_port
jboss_messaging_port
memcache_port
http_cache_port
amqp_port
generic_port
mongod_port
munin_port
pop_port
pulseaudio_port
smtp_port
whois_port
jabber_client_port
ircd_port
soundd_port

Addressable Ports | 61

http://selinuxproject.org/page/Main_Page

pki_ca_port
pki_ra_port
commplex_port

If you ever want to test if a port is available for an outbound connection, you can use
the telnet command. We will combine it with the timeout command so we are not
stuck if it connects to a service and we don’t know how to exit out of the session. We
are going to use timeout with the following syntax:

$ timeout -s 9 1 command

This tells timeout to run the following command for up to one second and then run
kill 9 on the command if it hasn’t returned back to the console.

Here is an example of running the full command we want over some common ports:

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> timeout -s
9 1 telnet 127.0.0.1 6667
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> timeout -s
9 1 telnet 127.0.0.1 10
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Permission denied
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> timeout -s
9 1 telnet 127.0.0.1 80
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Killed

The first command is trying to connect to the localhost IP, which is different from the
IP of our gear, over port 6667 (commonly used for IRC). At the end it says “Connection
refused,” which means the outbound connection was allowed but the server didn’t accept
the connection. This means on OpenShift Online you can go out over port 6667. The
next attempt tries to go out over port 10 and gets a “Permission denied” error, which
indicates you cannot go out on port 10. Finally, we try to go out on port 80; it is allowed,
and we connect to something running that accepts the connection. After one second
the Telnet process is killed by timeout.

Running this command too many times in quick succession is sure
to get your application flagged and shut down by OpenShift’s secu‐
rity scripts. Users are protected from developers who put in port-
scanning applications trying to hack other people’s applications.
These commands are a manual means of port scanning, so if you use
them too often, OpenShift will think your application has been
hacked. Don’t be naughty.

62 | Chapter 7: Networking

In the end you can see that while OpenShift restricts some of the networking function‐
ality to protect your application and other users, there is still quite a bit you can do with
the network on the platform. Most of the functionality allowed either lets you add new
capabilities to your application or enhance your development experience.

Addressable Ports | 63

CHAPTER 8

Disk Usage

Almost all applications want to either read or store files directly on the servers they are
hosted upon. These files could be images, text files, documents, or the files that the
database uses to store the data. Sometimes you (or your application) just need a tem‐
porary space to output a file or store a file before processing. When you move to “the
cloud,” file storage has different properties than storing files on your laptop or even your
own server in a rack. OpenShift has ways of handling all these application needs.

Where You Can Write “to Disk”
As an OpenShift application developer, you are given specific locations on “disk” where
you are allowed to create or modify files and directories. We use disk in quotes because,
as a developer, you are not actually sure what the space is located on—it could be disk
drives, solid state drives, a network-attached storage (NAS) device, or any other storage
location. As a developer, there are only two locations you should write files: /tmp and
the gear’s data directory.

As on all Linux systems, you have read, write, and execute permissions for the /tmp
directory. However, unlike a typical Linux machine, where everyone on the machine
shares those permissions on /tmp, OpenShift uses pluggable authentication module
(PAM) namespaces to give you your very own /tmp. This means nobody else on the
machine can see or use the /tmp that you use. The problem with putting files here is
that the space is ephemeral, meaning there is no guarantee how long a file or directory
will remain there. Furthermore, any data in /tmp will not survive an application restart.

The other directory available to you is the OpenShift data directory, which is currently
at $OPENSHIFT_HOMEDIR/app-root/data. We use the environment variable OPEN
SHIFT_DATA_DIR to point to this location. By using the environment variable you in‐
crease the portability and maintainability of your application, so we highly recommend
using it in your code and configuration (see Chapter 5 for more on environment

65

variables). In this private data directory, you also have full read, write, and execute
permissions. However, this directory is persistent, allowing it to survive application
stops and starts.

The data directory is where your application should store its files and put configuration
settings, download themes, or generally anything you want to survive restarts and Git
pushes. You can’t store anything in your Git directory unless you use the Git tools.
Anything written there outside of the Git lifecycle will be overwritten on the next Git
push.

To clarify, the you we have been talking about here is actually the user ID of your ap‐
plication, which is a 24-character hexadecimal number. The permissions are granted to
this user ID, which is the same user you identify yourself as when you SSH into or use
secure FTP (SFTP) with the gear. It is also the user who owns the processes for your
application servers, databases, or any other binaries you execute on the gear.

A current limitation in OpenShift is that the data directory is not on
a shared disk space for all the gears in a scalable application. This
means that when a new gear spins up in a scalable application, its
data directory will be empty. There is also no default method to
automatically synchronize the contents of the data directories. As
this book goes to print, the preferred solution for shared storage is
to either use a database to store the shared entities or place them in
external storage, such as Amazon’s S3. We discuss the use of an
external service at the end of the chapter.

Determining How Much Disk Space Is Used
At the time of writing, each gear in the OpenShift free plan was given 1 GB of disk space.
If you moved into the paid tier, your gear could be up to 6 GB. The locations that count
against that quota are:

• Your gear’s /data directory
• /tmp
• Your Git repository on the gear
• The log files for your application and database servers
• The data files for your database server

The easiest way to check your disk usage is by using the RHC command-line tools:

rhc app show appname --gears quota

66 | Chapter 8: Disk Usage

If you are executing the command from within the Git repository for your application,
then you can omit the ``appname`` from the command. This will give you output that
shows one line per gear in your application.

Here is an example:

Gear Cartridges Used Limit
------------------------ ------------------------ ------ -----
6861736b656c6c72756c6573 postgresql-9.2 75 MB 1 GB
6c616d626461733465766572 jbossews-2.0 haproxy-1.4 363 MB 1 GB

Here you can see we have two gears in this application. The gear with PostgreSQL on it
is using 75 MB and the gear with JBoss is using 363 MB.

If you want to see how much disk space is used and you are comfortable with the Linux
quota command, you can always SSH into a gear and use it to check your space.

To see all your gears and their SSH URLs, you can execute the command rhc app show
appname --gears and then SSH into each gear to run quota.

OpenShift will also start to warn you both on git push and when you SSH into your
gears if you exceed 90% of your quota.

If you are not familiar with *nix-style terminal commands, especial‐
ly if you are a Microsoft Windows user, please see Appendix A.

Copying Files to or from Your Local Machine
Since OpenShift uses SSH for all communication with the server, the two main ways to
transfer files up to your gears are SFTP (secure FTP) and SCP (secure copy). SCP is only
for moving files back and forth, while SFTP lets you do things like listing directories
and removing files. You can also use any tool that can use SSH, such as rsync, but we
are just going to cover SFTP and SCP here.

For people who prefer using a GUI for their file transfers, we highly recommend File‐
Zilla, a FOSS file transfer tool that can communicate over SFTP. Please be aware, though,
that FileZilla uses PuTTY-based SSH keys while OpenShift uses OpenSSH keys. You
will need to convert your public SSH key to a PuTTY public key. There is a blog post
on the OpenShift website covering the details on how to convert your key and use
FileZilla.

The syntax for using scp to copy to your gear is fairly straightforward:

$scp localFile 6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.
com:/app-root/data/

Copying Files to or from Your Local Machine | 67

http://bit.ly/1dK0eQs

The file localFile can also be replaced with a directory, and you can use -r to copy
directories recursively. Please remember that due to file permissions, you can’t write to
your home directory and instead need to write to $OPENSHIFT_DATA_DIR or /tmp.

The syntax to copy a file down to your machine is just as straightforward:

$ scp 6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.
com:/tmp/dbbackup.tgz /data/databaseBackups/

Finally, you can also move files between two gears in the same application:

Assumes you are in the /tmp directory on a gear
$ scp dbBackup.tgz 6e7672676e61676976757570@6e7672676e61676976757570-
osbeginnerbook.rhcloud.com:/tmp

Other Storage Options
The final way to create storage space for your OpenShift application is to use an external
storage service such as S3 or Dropbox. You can utilize these services using the same
processes as you would on your local machine—you can access them programmatically
but not directly as a backup service. You could also create a Cron job (see “Writing a
Cron Script” on page 73) to copy contents from your gears to one of these services.

If there is a specific application you want to use on OpenShift, such
as WordPress, we recommend doing a search for an S3 or Dropbox
plug-in, such as wp-tantan-3 or Updraft.

No matter how you look at it, there are a lot of different options for storage on OpenShift,
including putting assets in your database.

68 | Chapter 8: Disk Usage

https://github.com/bradt/wp-tantan-s3
http://wordpress.org/plugins/updraftplus/

CHAPTER 9

Backup

As discussed in Chapter 8, storage space on OpenShift gears is subject to a quota. Over
time, your application may well generate more data than you have space for on the
platform. When you manipulate data on your gears, there is the possibility of accidental
data corruption or deletion. When you deploy a new version of your application code,
there is a chance, there are pesky bugs lurking between your test cases. In order to be
able to respond promptly to any application issues and protect your app against unex‐
pected data loss, you should have a backup strategy. In this chapter, we will showcase
the application backup tools included in RHC and demonstrate how to use Cron to back
up your database or files.

Managing Deployments and Rollbacks
When you create a new OpenShift application, it is configured out of the box to auto‐
matically deploy any changes pushed to the application Git repository. By default, only
the latest version of your code is kept on your OpenShift gear. Both of these behaviors
can be altered to give you more control over your deployments.

Manual Deployments
To disable the automatic deployment of pushed Git commits, use the command rhc
app-configure --no-auto-deploy. You can change back to automatic deployment
with rhc app-configure --auto-deploy. To deploy the latest version of the Git repos‐
itory manually, use the command rhc app deploy ref. This command accepts the
flags --hot-deploy, --no-hot-deploy, --force-clean-build, and --no-force-
clean-build, which you can use as an alternative to or override for marker files to
trigger or disable these actions (see “Using Marker Files” on page 45 for more on marker
files).

Here is an example of manually deploying a new commit to Insult App:

69

[me@localhost ~/insultapp]$ rhc app-configure --no-auto-deploy
Configuring application 'insultapp' ... done

insultapp @ http://insultapp-osbeginnerbook.rhcloud.com/
(uuid: 6e7672676e61676976757570)

 Deployment: manual (use 'rhc deploy')
 Keep Deployments: 1
 Deployment Type: git
 Deployment Branch: master

Your application 'insultapp' is now configured as listed above.

Use 'rhc show-app insultapp --configuration' to check your configuration values
any time.
[me@localhost ~/insultapp]$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)
#
nothing to commit, working directory clean
[me@localhost ~/insultapp]$ git push
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 290 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused 0 (delta 0)
To ssh://6e7672676e61676976757570@insultapp-osbeginnerbook.rhcloud.com/~/git/
insultapp.git/
 a38c5e3..c100ed9 master -> master
[me@localhost ~/insultapp]$ rhc app deploy c100ed9
Deployment of git ref 'c100ed9' in progress for application insultapp ...

The reference supplied as an argument to rhc app deploy can be the identifier for a
git commit, tag, or branch. In this case, we have just used the latest git commit, as
shown in the git push command output.

We have shown deployments with Git, but it is also possible to de‐
ploy binaries with RHC. To switch to binary deployment, use the
command rhc app-configure --deployment-type binary. You can
then save a snapshot of your active deployment, as detailed in “Ap‐
plication Snapshots with RHC” on page 71, and deploy an altered
version with rhc deploy /path/to/app.tar.gz -a appname.

Keeping and Utilizing Deployment History
Another feature you may wish to configure in RHC is the number of saved deployments.
By default, this is set to one, which means only the current deployment is stored. Setting
this to a higher figure will tell OpenShift to keep a copy of the application repository

70 | Chapter 9: Backup

and dependencies used for each recent deployment, up to the given number of deploy‐
ments. This enables you to use RHC to quickly roll back to a previous deployment if
something goes wrong, without having to fiddle with your Git history. The deployment
files are stored in the app-deployments directory on the gear. They do contribute to your
storage quota, so you probably do not want to keep any more history than you really
need.

To configure the number of deployments stored, use the command rhc app-configure
--keep-deployments number. You can list the saved deployments with rhc deployment
list and show more information on a given one with rhc deployment show id. To
activate a particular deployment, use the command rhc deployment activate id.

Here is an example of configuring the Insult App to keep the current and previous two
deployments:

[me@localhost ~/insultapp]$ rhc app-configure --keep-deployments 3
Configuring application 'insultapp' ... done

insultapp @ http://insultapp-osbeginnerbook.rhcloud.com/
(uuid: 6e7672676e61676976757570)

 Deployment: auto (on git push)
 Keep Deployments: 3
 Deployment Type: git
 Deployment Branch: master

Your application 'insultapp' is now configured as listed above.

Use 'rhc show-app insultapp --configuration' to check your configuration values
any time.

When we deploy our next commit, we might find we accidentally included something
undesirable in our newly deployed code. We know the previously deployed version was
OK, though, so we can fix that in a jiffy:

[me@localhost ~/insultapp]$ deployment list
3:14 PM, deployment 70692b2b
6:28 PM, deployment 7461752d
[me@localhost ~/insultapp]$ rhc deployment activate 70692b2b
Activating deployment '70692b2b' on application insultapp ...

Once this command completes, the application code and dependencies will be as they
were before the most recent deployment.

Application Snapshots with RHC
While it is useful to be able to keep a record of your OpenShift deployments with RHC,
this mechanism only keeps track of repository code and its dependencies. If you wish
to take a snapshot of the entire application and its state, you should use the rhc snap

Application Snapshots with RHC | 71

shot command. This command exports the current state of your application, including
the repository code, SQL dumps of any database cartridges, $OPENSHIFT_DA‐
TA_DIR files, and anything else the cartridges used are configured to export. The gzip‐
ped TAR file created can be used to later restore the state of the application.

Both taking application snapshots and restoring an application to a
saved state require the application to be stopped and restarted.

To take a snapshot of your application, use the command rhc snapshot save. You can
add the --filepath path option to specify the location and filename of the archive file.
Add the --deployment option if you wish to save the snapshot as a deployable file
suitable for use with the rhc deploy command. To restore the application from the
archive file, use the command rhc snapshot restore --filepath /path/to/

tarball. Note that not everything included in the archive is necessarily re-created; log
files are not restored.

Here is an example of saving our Insult App application:

[me@localhost ~/insultapp]$ rhc snapshot save
Pulling down a snapshot to insultapp.tar.gz...
Creating and sending tar.gz

RESULT:
Success
[me@localhost ~/insultapp]$ ls
app.py.disabled data import.sql insultapp.tar.gz libs README.md setup.py
setup.pyc setup.pyo wsgi

The command produced a tarball called insultapp.tar.gz. Now we can make some
changes, pushing a new commit and connecting to the application via SSH to delete
files from the persistent data directory and add content to the database. We then decide
we want to restore the previous state, which we accomplish as shown here:

[me@localhost ~/insultapp]$ rhc snapshot restore
Restoring from snapshot insultapp.tar.gz...
Removing old git repo: ~/git/insultapp.git/
Removing old data dir: ~/app-root/data/*
Restoring ~/git/insultapp.git and ~/app-root/data
Activation status: success

RESULT:
Success

The Git repository, database, and data directory are now as they were when we took the
snapshot.

72 | Chapter 9: Backup

You can also use the rhc snapshot command to create a clone of an OpenShift appli‐
cation. To do this, create a new application of the same type (scalable/nonscalable) with
the same cartridges and run the restore command, supplying the location of the archive
file.

Backing Up Your Database
In addition to keeping deployment history and taking application snapshots with RHC,
you may well want to make backups of your database. These do not require application
downtime and can be performed regularly with the aid of the Cron utility. We discussed
how to connect to your database using SSH in Chapter 5 and showed how to use port
forwarding to interact with your database in Chapter 7. We demonstrated how to add
the Cron cartridge to your application in “Cron” on page 27. In this section, we will give
an example of a Cron script to create regular data dumps on the database gear and then
show two approaches to moving those backups off the gear. You could write similar
Cron scripts to back up other files, such as anything your application persists in
$OPENSHIFT_DATA_DIR.

Writing a Cron Script
Our Insult App demo application uses a PostgreSQL database, so the command we will
use to create SQL dumps is pg_dump. We want to create a backup every day, so we create
the following file in our Git repository at .openshift/cron/daily/backupdb (if you need a
refresher on OpenShift environment variables, see Chapter 5):

#!/bin/bash

DATE=`date +"%Y-%m-%d"`
FILE="$OPENSHIFT_APP_NAME-$DATE.sql.gz"
INIT_PATH=$OPENSHIFT_DATA_DIR/$FILE
BACKUP_DIR=$OPENSHIFT_DATA_DIR/sqlbackup

if [! -d "$BACKUP_DIR"]; then
 mkdir $BACKUP_DIR
fi
pg_dump $OPENSHIFT_APP_NAME | gzip > $INIT_PATH
mv $INIT_PATH $BACKUP_DIR/$FILE

This Cron job will create a SQL dump every day in the persistent data directory on our
gear. We have chosen to create the file in one directory and then move it to another
when the SQL dump is completed to avoid any issues with partially created files when
copying the backups elsewhere. To use the SQL dump to re-create the database from
scratch, we could issue commands such as the following in an SSH session on the da‐
tabase gear:

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> dropdb
$OPENSHIFT_APP_NAME

Backing Up Your Database | 73

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> createdb
$OPENSHIFT_APP_NAME
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> gunzip -c
$OPENSHIFT_DATA_DIR/insultapp-sqlbackup-2014-03-14.gz | psql $OPENSHIFT_APP_NAME

We could also simply use the final command to run the SQL from insultapp-
sqlbackup-2014-03-14.gz on the existing database.

If we were creating a similar Cron job for a scalable application it
would run on every gear in the app, so we would want to add logic to
check which gear the commands were being executed on before at‐
tempting the SQL dump. We could use environment variables such
as OPENSHIFT_GEAR_UUID to determine this, or check for a particular
file on the target gear.

Moving Data off the Gear
In the previous section we created a Cron job to create daily database backups on our
OpenShift application gear. You may also want to move or copy these backups to another
location, to save storage space or in case something goes wrong with the gear. There are
two approaches we can take to shifting the files: push-based or pull-based. The approach
you choose will depend on your systems and situation.

If you decide to take a pull-based approach, you could create a Cron job on the system
to which you want to copy the backups. This script would connect to the OpenShift
gear at regular intervals and copy the backup files; one way to accomplish this would
be using the rsync tool. Here is an example of a pull-based daily Cron script for Insult
App:

#!/bin/bash
rsync -avz --remove-source-files -e ssh 6e7672676e61676976757570@insultapp-
osbeginnerbook.rhcloud.com:~/app-root/data/sqlbackup /backup

This job copies the sqlbackup directory and its files from the gear to the local directory
at /backup. It also deletes the files from the gear after they have been successfully copied.
For this to work, the system running the job must be able to access the OpenShift gear
via SSH; its public key should have been added to the related OpenShift account (see
Chapter 5 for more on accessing gears via SSH).

The second alternative is a push-based approach. You may wish to push files to an
external service such as Amazon S3 or Dropbox, or your own server. In order to use
SSH and associated tools such as scp or rsync to send files from your gear to elsewhere,
you will need access to a public/private key pair on the gear. The .ssh directory within
an OpenShift user’s home directory is not writable, so we will need to create a new key
set within the persistent data directory. You can do so by issuing the following com‐

74 | Chapter 9: Backup

mands on your gear. In this example, we do not set a passphrase for the key pair; if you
wish to set a passphrase you will need to modify the Cron script shown to deal with this:

[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> mkdir
$OPENSHIFT_DATA_DIR/.ssh
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> ssh-keygen -f
$OPENSHIFT_DATA_DIR/.ssh/id_rsa
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in ...openshift/var/lib/openshift/
6e7672676e61676976757570/app-root/data//.ssh/id_rsa.
Your public key has been saved in /var/lib/openshift/6e7672676e61676976757570/
app-root/data//.ssh/id_rsa.pub.
The key fingerprint is:
4e:79:61:6e:79:61:6e:79:61:6e:79:61:6e:79:61:21 6e7672676e61676976757570@ex-std-
node710.prod.rhcloud.com
The key's randomart image is:
+--[RSA 2048]----+
| . ==@|
| *oXo|
| +.+.=|
| +... |
| S = + |
| + . |
| E |
| |
| |
+-----------------+
[insultapp-osbeginnerbook.rhcloud.com 6e7672676e61676976757570]\> ls
$OPENSHIFT_DATA_DIR/.ssh
id_rsa id_rsa.pub

This command has created two files for us: the private SSH key contained in id_rsa and
the public key in id_rsa.pub. We will need to add id_rsa.pub to the SSH configuration
for the target user on our backup server, which we are going to call mybackupserv‐
er.com because we are breathtakingly original. One way to do this would be copying the
entire contents of the new id_rsa.pub file and adding it to ~/.ssh/authorized_hosts in
user’s home directory on the target server.

Now that we have access to a private SSH key on the gear, here is a revised version of
the Insult App .openshift/cron/daily/backupdb script from the previous section that both
creates the SQL dump and copies it to another server using the scp (secure copy) com‐
mand:

#!/bin/bash

DATE=`date +"%Y-%m-%d"`
FILEPATH="$OPENSHIFT_DATA_DIR/$OPENSHIFT_APP_NAME-$DATE.sql.gz"

pg_dump $OPENSHIFT_APP_NAME | gzip > $FILEPATH

Backing Up Your Database | 75

scp -i $OPENSHIFT_DATA_DIR/.ssh/id_rsa -o StrictHostKeyChecking=no $FILEPATH
user@mybackupserver.com:~/backup && rm $FILEPATH

This script creates the SQL dump in the persistent data directory on the OpenShift gear,
copies the archive to backup within user’s home directory on mybackupserver.com (the
backup directory should already exist), and, if this action is successful, deletes the file
on the gear. The secure copy command references the private SSH key we created on
the OpenShift gear with the -i (identity file) option. We have disabled StrictHostKey
Checking as we do not want the Cron job to wait for someone to type “yes” to approve
the connection; we want to be off doing something way more entertaining while our
backup script works its magic each day.

In this chapter, we have shown three different ways to keep backup copies of aspects of
your OpenShift application: deployment history, snapshots, and database dumps. We
have also discussed how to do manual and binary deployments on the platform and
how to move files from OpenShift to elsewhere. The way that you utilize these techniques
to form your application backup strategy is dependent on your individual needs, so we
cannot prescribe a one-size-fits-all approach. However, at a minimum we would rec‐
ommend that you back up your database periodically, as well as any files persisted else‐
where. Carefully consider the impact of any data loss or downtime when deciding how
frequently your backups should be performed and how much deployment history to
store.

76 | Chapter 9: Backup

CHAPTER 10

Team Collaboration

In our discussion so far we have generally considered OpenShift and its features from
the point of view of a single developer. However, whether you embrace Agile, post-Agile
Programmer Anarchy, or some other newfangled way of working, most of us develop
software in teams. In this chapter, we will broaden our scope beyond the lone wolf and
look at OpenShift’s offerings for the whole wolf pack. We will show how to manage
multiple SSH keys and how to use an OpenShift domain to collaborate, before con‐
cluding with some thoughts about possible platform workflows.

Managing Multiple SSH Keys
One way of enabling another person to make changes to your OpenShift application
code is to add her machine’s public SSH key to your OpenShift account. This will enable
your collaborator to access the Git repositories of any of your OpenShift applications
using standard Git commands. It will not grant that person access to your OpenShift
Online account, or enable her to log in to RHC.

This method for code sharing is best suited to situations where the person you wish to
grant access to does not have an OpenShift account. If she’s willing to create an OpenShift
account or has one already, a better way to give access is to add her to your application’s
domain, as explained in the next section.

You can manage the SSH keys for your OpenShift account from the command line with
the rhc sshkey command. You can list all your SSH keys with rhc sshkey list, add
a key with rhc sshkey add, and remove a key with rhc sshkey remove. To add your
collaborator, have her supply you with her public SSH key; typically, this would be her
~/.ssh/id_rsa.pub file (this is the public part of the key pair; the corresponding private
key file, id_rsa, should never be shared). Here is an example of adding a new key to an
OpenShift account:

77

[me@localhost ~]$ rhc sshkey add myfriend ~/Downloads/id_rsa.pub
RESULT:
SSH key id_rsa.pub has been added as 'myfriend'

Once the key has been added, give your collaborator the Git URL of the OpenShift
application repository you want her to edit (you can view this with rhc apps). She can
use this URL with the regular git clone command, and will also be able to access the
application gear via ssh. If you want to add more collaborators, simply add more SSH
keys.

Domain Access for Teams
Adding SSH keys to your OpenShift account is one way of enabling collaboration on
application code, but it has limitations; it will not allow your team members to use RHC
commands with the shared apps, and it gives everyone you add full access to make
changes. A more flexible approach is to add members to your OpenShift domain.

All OpenShift applications must belong to a domain, sometimes referred to as a name‐
space. This becomes part of the OpenShift Online application URL, which has the form
appname-domain.rhcloud.com—this should look familiar by now. Depending on your
OpenShift account, you may be able to create multiple domains; users on the free tier
of OpenShift Online are limited to one domain.

OpenShift domains can be managed from the command line with the rhc domain
command. Use rhc domain list to see which domains you have access to and rhc
domain show to display the details of applications in a domain. If you have access to do
so, you can create new domains with rhc domain create name.

Domain membership can also be managed from the command line, using the rhc mem
ber command. When you add a member to a domain, you can give that member one
of three possible roles:
view

Viewers can see information about the domain and its applications but cannot make
any changes. They cannot use rhc env to view environment variables, access the
application via SSH, or clone the Git repository (unless their SSH public keys have
also been added to the domain OpenShift account).

edit
Editors can do everything viewers can do, plus create, update, and delete applica‐
tions in the domain. They can view and edit environment variables and access
application Git repositories and gears via SSH.

admin
Administrators can do everything editors can do, as well as update domain mem‐
bership and change the domain name.

78 | Chapter 10: Team Collaboration

These member permissions apply to all applications within a domain. If you wish to
give the same user a different level of access to different applications, you should place
them in separate domains.

Here is an example of adding and then removing a member in Insult App’s domain,
osbeginnerbook. OpenShift users are referenced by their username, which is usually their
email address; rhc account will display the details of the logged-in user:

[me@localhost ~]$ rhc member add phb@redhat.com -n osbeginnerbook --role view
Adding 1 viewer to domain ... done
[me@localhost ~]$ rhc member list -n osbeginnerbook
Login Role
----------------------- -------------
TheSteve0@redhat.com admin (owner)
codemiller@redhat.com admin
phb@redhat.com view
[me@localhost ~]$ rhc member remove phb@redhat.com -n osbeginnerbook
Removing 1 member from domain ... done

A domain member can use the command rhc domain leave -n domain if she wishes
to remove herself from a domain.

Possible Workflows
If you have read to this point, you should now have a good idea of how the OpenShift
platform works and what features it offers. However, you may still be wondering how
to adapt your current team processes to use OpenShift. Every team is different, so we
cannot offer a magic formula for this, but here are some points you may want to consider:

• User access is restricted at the domain level on OpenShift, as discussed earlier. Given
this, you will probably want to create a domain for each of your environments
(development, integration, test, stage, production, etc.) and add those who should
have access as members with the appropriate role (view, edit, admin).

• No one likes accidental production deployments. Consider turning off auto-deploy
for all apps in your production domain (see “Manual Deployments” on page 69).

• Think about restricting pushes to the staging or production environments to your
ops users.

Taking into account these items, here are the details of a possible team workflow utilizing
OpenShift:

1. Create a new Git repository for your project. This is the upstream for all develop‐
ment. This repository should not contain anything related to OpenShift, such as
the .openshift directory.

Possible Workflows | 79

2. Create an integration domain for the team. Add all the team members and give
them edit rights using the rhc member add command. This will be used as an
integration environment. Create an OpenShift application for the app under de‐
velopment in the integration domain. This application should probably be scalable,
to match the corresponding production application.

3. Create a domain for each developer where developers can create their own versions
of the application and try out changes before they push them to the integration
domain.

4. To push changes to the development or integration environments, the developers
use Git remotes. This means when a developer issues the command git push dev
master, his changes are deployed to the development environment. After testing,
he can do a git push int master to push the changes to the integration environ‐
ment.

5. The integration environment has the Jenkins cartridge (or an alternative continuous
integration cartridge) installed to build the project and run all the test cases. When
team members push their code to this domain, it automatically builds and tests the
application and will not deploy it if the tests do not pass. If there are other envi‐
ronments in the pipeline, such as a QA environment, they may also have continuous
integration set up to do other levels of testing, such as functional or user acceptance
testing.

6. Create staging and production domains containing OpenShift applications with
the same cartridges as the app under development; only grant rights to the opera‐
tions team members, or whoever should have the right to push deployments to
prod. After the testers have inspected the quality of the application in the integration
domain, they push the latest version to staging using the command git push stag
ing master. When it comes time to do a deployment, the ops people can then tag
the release and push it to production with git push production master. Only the
ops people should have admin rights for the production domain.

7. The new version of the application is now in production, but it has not yet been
deployed as it is configured with RHC for manual deployment. When deployment
is scheduled, the ops person uses the rhc deploy command to manually deploy the
application.

This workflow is not going to suit everyone and does not cover all aspects of the de‐
velopment process, but we hope it sparks some ideas of how OpenShift could become
part of your team.

80 | Chapter 10: Team Collaboration

CHAPTER 11

Summary

Now, sadly, it is time to wrap up the book. We hope it has been as much fun to read as
it was to write. Most importantly, we hope our book fulfilled its purpose: to get you up
and running comfortably with OpenShift as fast as possible.

What We Covered
To quickly recap, we covered:

• Some basic terminology explaining the OpenShift components
• How to create an application on OpenShift
• How to modify the template application to use your own code
• How to add other functionality to your application, such as a database or Cron job
• How to use the command line with your application to interact with the database
• How to use environment variables to add other functionality to your application
• How to work with your log files and create new ones if needed
• How to add external library dependencies to your application
• How to add WebSocket functionality to your application
• What networking options are available and what external ports you can use
• Where you can write to disk in your OpenShift application
• How to manage your disk space
• How to back up your database
• How to back up your entire application
• How to use OpenShift to work on a team project

81

That is a lot of territory covered in a relatively short number of pages. We also used a
Python application to illustrate the pattern of development on OpenShift.

Other Areas to Explore
To learn about other people using OpenShift and their projects, check out the OpenShift
Developer Spotlight. The OpenShift team also loves to show off the great applications
built by users in the Application Gallery. Now that we have taught you how to do all
this great stuff, we expect your cool application or biography any minute now.

If you want a more in-depth explanation of development on OpenShift, we highly rec‐
ommend the OpenShift Online User Guide. This guide is also short, but covers some
different topics from our book. It is well worth a read.

While we are great authors, in the highly unlikely scenario where you might need other
help than this book, there are also great resources on the OpenShift website, such as the
Knowledge Base and FAQs. OpenShift Online has moved to Stack Overflow for Q&A,
type resources.

There is also a Developer Center on the OpenShift site. It has information on how to
use the Web Console or Eclipse IDE integration. You can also find information there
on how to create your own QuickStarts for your favorite applications. The site also
covers how to add your own preferred server technology using a custom cartridge. Most
importantly, the resource center has links to other languages and databases OpenShift
supports, so you can dig in to more specific material for your programming language
of choice.

If you want to dive deeper into OpenShift itself, you would like to learn how to run it
on your own infrastructure so you can tweak it to your liking, or you love Ruby and
want to be part of an open source project, we highly recommend you visit the OpenShift
Origin site. Origin is the upstream project for the other two products and it has a friendly
and active community. There are many ways to get involved in the community. Here
are some links to get you started:

• All the code is up on GitHub.
— Pull requests from the community are welcome, and they go through the same

process as Red Hatter pull requests.
— You can also add GitHub issues.
— There are guidelines on how to contribute to the project.

• You can see the product roadmap and what the teams are working on for each sprint
on the OpenShift Trello boards.

• There is a public Bugzilla instance.

82 | Chapter 11: Summary

http://bit.ly/1r4Y46J
http://bit.ly/1r4Y46J
http://bit.ly/1hNgx1k
http://red.ht/1d7rU6P
https://www.openshift.com/kb
https://www.openshift.com/faq
http://bit.ly/1eYW33t
https://www.openshift.com/developers
https://www.openshift.com/developers/get-involved/creating-quickstarts
http://bit.ly/1qCuZ2o
http://openshift.github.io/
http://openshift.github.io/
https://github.com/openshift/
http://bit.ly/1cYGZb5
https://trello.com/openshift
http://red.ht/1qCLRWP

• You can come chat in IRC on irc.freenode.net—application developers should come
talk in #openshift and people interested in running OpenShift or modifying the
platform should drop in to #openshift-dev.

• There are weekly hangouts on Google+.

There are also at least two other published books on OpenShift, with several more books
at various stages of writing or publication. If you are interested in running OpenShift
Origin, then we recommend our colleague Adam Miller’s book, Implementing Open‐
Shift (Packt). For a book like ours, aimed at developers using OpenShift, but with a focus
on JBoss technologies, look to our colleague Eric Schabell’s book, OpenShift Primer
(Developer.Press).

Final Words
Always check the OpenShift website and blog for the latest and greatest features. PaaS
is a rapidly evolving area, and the OpenShift team has made a commitment to pushing
the state of the art forward. The team is also committed to listening to the users—if you
have suggestions for the service you can always write to Steve or Katie, or to open
shift@redhat.com. One of the things we love about working with OpenShift is that the
more you use it, the more possibilities emerge—so the most important thing at this
point is for you to get coding!

Final Words | 83

http://bit.ly/1fwwJBj
http://bit.ly/1fwwR3F
http://bit.ly/1fwwR3F
http://bit.ly/1ilgA73
mailto:openshift@redhat.com
mailto:openshift@redhat.com

APPENDIX A

Basic Linux for Non-Linux Users

In this appendix, we give a short introduction to the Linux filesystem for Windows (and
Mac nonterminal) users. You will need this information because your application will
be hosted on a Linux machine (Red Hat Enterprise Linux, in particular). One shortcut
you should know right away is that the tilde character (~) is an alias for your home
directory. The operating system will expand that symbol to the path to your home
directory.

Listing Directory Contents
To list the contents of a folder, you can execute the ls command. This will show the
contents of the directory, but will not display any information about permissions or
which items are directories. To view the permissions for items, use the command
ls -l. Use ls -lh for human-readable file sizes, or ls -lha to list all files, including
hidden files. The output should look something like this:

[me@localhost tmp]$ ls -lha
total 92K
drwxrwxr-x. 3 me me 4.0K Jun 28 06:28 .
drwx------. 58 me me 4.0K Jun 28 03:14 ..
drwxrwxr-x. 2 me me 4.0K Jun 28 06:28 a_directory
-rw-rw-r--. 1 me me 78K Jun 28 06:28 example.txt

Reading from left to right, the first 11 characters represent the file type and permissions.
If the first character is a d, it means the line refers to a directory. The next three characters
are the permissions for the user, the following three are the permissions for the group,
and the next three are the permissions for the “world.” Each character represents a
differently capability: r stands for read, w stands for write, and x stands for execute. For
example, the file example.txt has read and write permissions for the owner and group
but only read permissions for the world. If there were a shell script in this file you would
not be able to execute the script because the execute permission is not set. The final . in

85

the 11 characters indicates that extended attributes are enabled; in this case it is SELinux
permissions.

The next field, always a number, gives the number of directories and files that are linked
from that resource. For example, a_directory contains two “things” inside it: the first is
a reference to the directory above it and the second is the directory itself.

The next item is the owner of the resource, in this case the user me, followed by the
Linux group for that resource, which in this case is also me. They do not have to be the
same value.

Following that is the size of the resource and then the date and time of last modification.
Finally, we have the name of the resource. By default, anything that starts with a dot (.)
is not output when you use the ls or ls -l commands. For example .myHiddenDirec‐
tory would not show up. Again, to get ls to show the hidden files you need to use the
-a flag.

There are two special resources that will always show up when executing ls -la: the .
and .. resources. The single dot (.) refers to the current directory, which is good to know
from a permissions perspective, and the double dot (..) is the directory above.

To change to the parent directory, you can use the command cd ... If you want to
execute a file in a certain directory you have to first make sure the execute bit is set
(which we will show you how to change soon) and second, preface the command with
a ./. So, for example, the way to execute a script would be ./myScript.sh. Hopefully
you now see how the . and .. are expanded in those two commands.

Changing Permissions
To change permissions on a file or directory, you use the chmod command. As with most
Linux commands, you can use chmod --help to get a brief help output and use man
chmod to get a more detailed explanation. We are going to show you the basic syntax,
which looks like chmod who action permission resource where:

• who is:
— u = user
— g = group
— o = world
— a = all three of these groups (ugo)

• action is:
— + = add the permission
— - = remove the permission

86 | Appendix A: Basic Linux for Non-Linux Users

— = = whatever permission specified; overwrites the previous permissions
• permission is (we are only listing the most common):

— r = read
— w = write
— x = execute

For example, if we wanted to change the execute settings on example.txt for the owner
we would do this at the command prompt: chmod u+x example.txt. If we wanted to
change the permissions on all the contents of a_directory and any subdirectories to
maximum permissiveness, we would do chmod -R a+rwx a_directory; the -R option
is to apply the permissions recursively. Be careful with using -R—with great power
comes great responsibility.

Working with Files and Directories
In Linux, you can carry out various operations on files and directories from the com‐
mand line.

Creating Files
You can create files by opening the new filename in your text editor. For example, Steve
likes Nano as a text editor (nice and simple), so he would just do nano myNew
File.txt. Katie prefers Vim, so she would use the command vim myNewFile.txt. If
you wanted to create an empty file, you could use touch. If you execute the command
touch myNewFile.txt, it will create the new empty file. You can also use touch to update
the last modified time of an existing file to the time when you execute the command.

Moving Files and Directories
Moving files is achieved with the command mv. The syntax is pretty simple: mv old/dir/
filename.txt new/dir/newfilename.txt. This command is also commonly used to
rename files by moving the file to a new name in the same directory: mv oldFile
Name.txt newFileName.txt.

Copying Files and Directories
The command for copying files and directories is cp. As with the chmod commands, you
can also use it recursively with the -R flag. Here is the syntax for the command: cp
file.txt directory/toCopyTo/.

Working with Files and Directories | 87

Deleting Files
Deleting a file is also very simple. It is accomplished with the command rm. To remove
a file filename.txt, you could execute the command rm filename.txt. As with changing
permissions, you can execute deletion recursively; however, you should use this with
extreme caution as there is no undo button. For example, to remove all text files from
the current directory downward, you could do rm -r *.txt.

You can also use this command to remove a directory and all its contents at the same
time: rm -r myDirectory/. Did we mention you should use this carefully?

If you are prompted to confirm each deletion and you feel confident you are correct,
you can use the -f flag to tell rm to force the removal.

Creating Directories
Directories are created with the mkdir command: mkdir myNewDir.

Deleting Directories
The safe way to remove a directory is to:

1. Remove all the files in the directory.
2. Remove the directory using the rmdir command: rmdir myEmptyDir.

As mentioned before, you can use rm to do the same thing in one fell swoop, but you
should do so cautiously.

Where To Learn More
There are plenty of websites that can teach you the basic Linux commands, and there
is a collection of tutorials at the Linux.com tutorial site. We would also recommend the
following books:

1. Linux Pocket Guide, 2nd Edition by Daniel J. Barrett (O’Reilly)
2. The Linux Command Line: A Complete Introduction, by William E. Shotts Jr. (No

Starch Press)

If you want to have a system to practice these commands with we recommend installing
the Fedora or CentOS operating system, either as a dual boot on your machine or in a
virtual machine. We suggest Fedora or CentOS because they have the closest syntax to
the shell on Red Hat Enterprise Linux, which is the OS underneath OpenShift Online.

88 | Appendix A: Basic Linux for Non-Linux Users

http://www.linux.com/learn
http://shop.oreilly.com/product/0636920023029.do
http://shop.oreilly.com/product/9781593273897.do

About the Authors
Steven Pousty is a dad, son, partner, and PaaS Dust Spreader (aka developer evangelist)
with OpenShift. He goes around and shows off all the great work the OpenShift engi‐
neers do. He can teach you about PaaS with Java, Python, PostgreSQL, MongoDB, and
some JavaScript. He has deep subject area expertise in GIS/Spatial, statistics, and ecol‐
ogy. He has spoken at over 50 conferences and done over 30 workshops including
Monktoberfest, MongoNY, JavaOne, FOSS4G, CTIA, AjaxWorld, GeoWeb, Where2.0,
and OSCON. Before OpenShift, Steve was a developer evangelist for LinkedIn, deCarta,
and ESRI. Steve has a PhD in Ecology from University of Connecticut. He likes building
interesting applications and helping developers create great solutions.

Katie Miller, also known as codemiller, works as an OpenShift Developer Advocate at
Red Hat. Katie is a polyglot programmer with a penchant for Haskell. The functional
programming enthusiast cofounded the Lambda Ladies online community and co-
organizes the Brisbane Functional Programming Group. Katie is a familiar face at an
array of meetup groups spanning a variety of programming language communities,
including Java, JavaScript, Python, and Ruby. The former newspaper journalist has pre‐
sented at conferences and meetups across Australia and New Zealand, and as far afield
as Budapest, Hungary. Katie is passionate about coding, open source, software quality,
languages of all kinds, and encouraging more girls and women to pursue careers in
technology.

Colophon
The animal on the cover of Getting Started with OpenShift is a purple-naped lory (Lorius
domicella), a species of parrot in the Psittaculidae family. Endemic to the Indonesian
islands of Ambon, Seram, Saparua, Haruku, and South Maluku, these vibrantly colored
birds are considered a vulnerable species due to trapping for the cage-bird trade.

The purple-naped Lory, named for the way the black on top of its head fades to purple
at the nape of its neck, is mostly red, with a red tail that darkens to a deeper red at the
tip. Its wings are green; it has blue thighs and a yellow band across its chest. Adults have
orange beaks, whereas juveniles have brown beaks and lighter, grey-white eyerings, and
a wider band of yellow across the chest. The purple neck is also more extensive on
juveniles than on adults. The Lory can grow up to 11 inches (28 cm) and average about
8.2 oz (235 g) in weight.

The cover image is from Johnson’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Introducing the Insult Application

	How This Book Is Organized
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Steven
	Katie

	Chapter 1. Introduction
	What Is the Difference Between IaaS, PaaS, and SaaS?
	The Three Versions of OpenShift
	Choosing the Right Solution for You
	Things to Understand
	Words You Need to Understand
	Technology You Need to Understand

	Chapter 2. Creating Applications
	Preliminary Steps
	Setting Up the Command-Line Tools
	Creating Your First Application
	Autoscaling and Why You Should Use It by Default
	Reasons to Move to the Paid Tier

	Chapter 3. Making Code Modifications
	Cloning Code to Your Local Machine
	Modifying Application Code
	Building and Deploying Your Code
	Action Hook Scripts
	Hot-Deploying Code

	Chapter 4. Adding Application Components
	Database-Related Cartridges
	Nondatabase Cartridges
	Cron
	Continuous Integration
	Metrics and Monitoring

	Finding Cartridges and QuickStarts
	Adding Third-Party Cartridges

	Chapter 5. Environment and Application Management
	SSH Access
	Using SSH to Interact with a Database
	Importing SQL in an SSH Session

	Environment Variables
	Preconfigured Environment Variables
	Custom Environment Variables
	Overriding Preconfigured Environment Variables

	Log Access
	Changing Application Server or Database Settings
	Application Server Configuration Changes
	Database Configuration Changes

	Using Marker Files

	Chapter 6. Library Dependencies
	Where to Declare Dependencies
	Incorporating Your Own Binary Dependencies
	Modifying Your Application to Use the Database
	Code to Connect to the Database
	Code to Close the Database Connection
	Code to Query the Terms for the Insult
	What We Have Gained by Adding a Database

	Chapter 7. Networking
	WebSockets
	SSH Port Forwarding
	Custom URLs
	SSL Certificates
	Talking to Other Services
	Addressable Ports

	Chapter 8. Disk Usage
	Where You Can Write “to Disk”
	Determining How Much Disk Space Is Used
	Copying Files to or from Your Local Machine
	Other Storage Options

	Chapter 9. Backup
	Managing Deployments and Rollbacks
	Manual Deployments
	Keeping and Utilizing Deployment History

	Application Snapshots with RHC
	Backing Up Your Database
	Writing a Cron Script
	Moving Data off the Gear

	Chapter 10. Team Collaboration
	Managing Multiple SSH Keys
	Domain Access for Teams
	Possible Workflows

	Chapter 11. Summary
	What We Covered
	Other Areas to Explore
	Final Words

	Appendix A. Basic Linux for Non-Linux Users
	Listing Directory Contents
	Changing Permissions
	Working with Files and Directories
	Creating Files
	Moving Files and Directories
	Copying Files and Directories
	Deleting Files
	Creating Directories
	Deleting Directories

	Where To Learn More

	About the Authors

