
Copyright © Siemens AG 2010. All rights reserved.

Corporate Technology

Architecture of the Kernel-based 
Virtual Machine (KVM)

Jan Kiszka, Siemens AG, CT T DE IT 1
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com



Slide 2 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Agenda

 Introduction

 Basic KVM model

 Memory

 API

 Optimizations

 Paravirtual devices

 Outlook



Slide 3 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Virtualization of Commodity Computers

CPU

MMU

Instruction
Set

Clocks
&

Timers

Busses
&

I/O Devices

Interrupt
Controllers

Memory

On-Chip
Resources



Slide 4 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Virtualizing the x86 Instruction Set Architecture

x86 originally virtualization “unfriendly”
 No hardware provisions
 Instructions behave differently depending on privilege context
 Performance suffered on trap-and-emulate
 CISC nature complicates instruction replacements 

Early approaches to x86 virtualization
 Binary translation (e.g. VMware)
 Execute substitution code for privileged guest code
 May require substantial replacements to preserve illusion

 CPU paravirtualization (e.g Xen)
 Guest is aware of instruction restrictions
 Hypervisor provides replacement services (hypercalls)
 Raised abstraction levels for better performance



Slide 5 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Hardware-assisted x86 CPU Virtualization

Two variants
 Intel's Virtualization Technology, VT-x
 AMD-V (aka Secure Virtual Machine)

Identical core concept

CPU        
3
2
1
0

Host
State

Guest
State

VCPU   
3
2
1
0



Slide 6 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Advent and Evolution of KVM

Introduced to make VT-x/AMD-V available to user space
 Exposes virtualization features securely
 Interface: /dev/kvm

Merged quickly
 Available since 2.6.20 (2006)
 From first LKML posting to merge: 3 months
 One reason: originally 100% orthogonal to core kernel

Evolved significantly since then
 Ported to further architectures (s390, PowerPC, IA64)
 Always with latest x86 virtualization features
 Became recognized & driving part of Linux



Slide 7 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

The KVM Model

Processes can create
virtual machines

VMs can contain
 Memory
 Virtual CPUs
 In-kernel device models

Guest physical memory part of
creating process' address space

VCPUs run in process
execution contexts
 Process usually maps

VCPUs on threads

Hyper-
visor

Process

     Linux
     Kernel

Guest
Memory

CPU CPU

VCPU VCPU

Thread

CPU

KVM

Thread Thread



Slide 8 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Architectural Advantages of the KVM Model

Proximity of guest and user space hypervisor
 Only one address space switch: guest ↔ host
 Less rescheduling

Massive Linux kernel reuse
 Scheduler
 Memory management with swapping (though you don't what this)
 I/O stacks
 Power management
 Host CPU hot-plugging
…

Massive Linux user land reuse
 Network configuration
 Handling VM images
 Logging, tracing, debugging
 ...



Slide 9 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

VCPU Execution Flow (KVM View)

Execute native
guest code

Run
Update
context,

raise IRQs

Save Host,
Load Guest

State

Update
guest
state

VM entry VM exit
(with reason)

Save Guest,
Load Host

State

Handle
• I/O
• Invalid states
• ...

Handle
Signal

Handle
• In-Kernel I/O
• [vMMU]
• ...

Handle
Host
IRQ

K
er

n
el

U
se

r 
S

p
ac

e
C

P
U



Slide 10 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

KVM Memory Model

Slot-based guest memory
 Maps guest physical to

host virtual memory
 Reconfigurable
 Supports dirty tracking

In-Kernel Virtual MMU

Coalesced MMIO
 Optimizes guest access to

RAM-like virtual MMIO regions

Out of scope
 Memory ballooning

(guest ↔ user space hypervisor)
 Kernel Same-page Merging

(not KVM-specific) Hypervisor
Address Space

RAM

Coalesced
MMIO

RAM

Unassigned

RAM

RAM

Guest
Address Space



Slide 11 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

KVM API Overview

Step #1: open /dev/kvm

Three groups of IOCTLs
 System-level requests
 VM-level requests
 VCPU-level requests

Per-group file descriptors
 /dev/kvm fd for system level
 Creating a VM or VCPU returns new fd

mmap on file descriptors
 VCPU: fast kernel-user communication segment
 Frequently read/modified part of VCPU state
 Includes coalesced MMIO backlog
 VM: map guest physical memory (deprecated)



Slide 12 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Basic KVM IOCTLs

KVM_CREATE_VM

KVM_SET_USER_MEMORY_REGION
KVM_CREATE_IRQCHIP / ...PIT (x86)
KVM_CREATE_VCPU

KVM_SET_REGS / ...SREGS / ...FPU / ...
KVM_SET_CPUID / ...MSRS / ...VCPU_EVENTS / ... (x86)
KVM_SET_LAPIC (x86)
KVM_RUN



Slide 13 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Optimizations of KVM

Hardware evolves quickly
 Near-native performance in guest mode
 Decreasing costs of mode switches
 Additional features avoid software solutions, thus exits
 Nested page tables
 TLB tagging
 APIC virtualization
 ...

What will continue to consume cycles?
 Code path between VM-exit and VM-entry
 Mode switches, i.e. the need to exit at all



Slide 14 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Lightweight vs. Heavy-weight VM-Exits

Exits cost time!
 Basic state switch in hardware
 Additional state switches in software
 Analyze exit reason

 Return to user space
 Analyze exit reason
 Obtain KVM state (VCPU, devices)
 Handle exit cause
 Write back states
 Invoke KVM_RUN

 Software-managed state switch
 Hardware state switch

>10.000 cycles

>7.000 cycles

 In-kernel APIC
 In-kernel IO-APIC + PIC
 Coalescing MMIO
 In-kernel instruction interpreter (detect MMIO access)
 In-kernel network stub (vhost-net)



Slide 15 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Optimizing Lightweight Exits

Let's get lazy!
 Perform only partial state switches
 Complete at latest possible point
 Late restoring for guest and host state

Candidates (x86)
 FPU
 Debug registers
 Model-specific registers (MSRs)

Requirements
 Usage detection when in guest mode
 Depends on hardware support
 Demand detection while in host mode
 Preemption notifiers
 User-return notifier

z
z

z



Slide 16 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Lazy MSR Switching

Why is this possible?
 Some MSRs unused by Linux
 Some MSRs only relevant when in user space
 Some are identical for host & guest

Approach
 Keep guest values of certain MSRs until...
 sched-out fires
 KVM_RUN IOCTL returns
 Keep others until user-return fires (Intel only)

Optimizations are vendor-specific

Exemplary saving:
 2000 cycles for guest → idle thread → guest



Slide 17 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Paravirtual Devices

Advantages
 Reduce VM exits or make them lightweight
 Improve I/O throughput & latency (less emulation)
 Compensates virtualization effects
 Enable direct host-guest interaction

Available interfaces & implementions
 virtio (PCI or alternative transports)
 Network
 Block
 Serial I/O (console, host-guest channel, …)
 Memory balloon
 File system (9P)
 Clock (x86 only)
 Via shared page + MSRs
 Enables safeTM TSC guest usage

user space
business
(primarily)

KVM
business



Slide 18 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

An Almost-In-Kernel Device –
vhost-net

Goal: high throughput /
low latency guest networking
 Avoid heavy exits
 Reduce packet copying
 No in-kernel QEMU, please!

vhost-net
worker
kthread

 

          KVM

VCPU

Linux
network

stack

virtio
ring &
buffers

memory
slot

table

ioeventfd

memory r/w

r/w

r

irqfd

hypervisor process

The vhost-net model
 Host user space opens and

configures kernel helper
 virtio as guest-host interface
 KVM interface: eventfd
 TX trigger → ioeventfd
 RX signal → irqfd
 Linux interface vie tap or macvtap

Enables multi-gigabit throughput



Slide 19 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

What's next?

Generic Linux improvements
 Transparent huge pages (mm topic)
 NUMA optimizations (scheduler topic)

Improve spin-lock-holder preemption effects
Zero-copy & multi-queue vhost-net
Further optimize exits
 Instruction interpretation (hardware may help)
 Faster in-kernel device dispatching

Nested virtualization as standard feature
 AMD-V bits already merged and working
 VT-x more complex but likely solvable

Hardware-assisted virtualization on non-x86
 PowerPC ISA 2.06
 ARMv7-A “Eagle” extensions

…



Slide 20 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Thanks you for listening!

Questions?


