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Virtualization of Commodity Computers
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Virtualizing the x86 Instruction Set Architecture

x86 originally virtualization “unfriendly”
= No hardware provisions
" |Instructions behave differently depending on privilege context
= Performance suffered on trap-and-emulate
= CISC nature complicates instruction replacements

Early approaches to x86 virtualization
" Binary translation (e.g. VMware)
= Execute substitution code for privileged guest code
= May require substantial replacements to preserve illusion

= CPU paravirtualization (e.g Xen)
= Guest is aware of instruction restrictions
* Hypervisor provides replacement services (hypercalls)
» Raised abstraction levels for better performance
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Hardware-assisted x86 CPU Virtualization

Two variants
" |ntel's Virtualization Technology, VT-x
= AMD-V (aka Secure Virtual Machine)

Identical core concept
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SIEMENS
Advent and Evolution of KVM

Introduced to make VT-x/AMD-V available to user space
» Exposes virtualization features securely
" Interface: /dev/ikvm

Merged quickly
= Available since 2.6.20 (2006)
" From first LKML posting to merge: 3 months
= One reason: originally 100% orthogonal to core kernel

Evolved significantly since then
= Ported to further architectures (s390, PowerPC, |A64)
= Always with latest x86 virtualization features
» Became recognized & driving part of Linux
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The KVM Model

Processes can create
virtual machines
: Guest
VMs can contain MeL:r?sry Hyper-
= Memory visor
= Virtual CPUs Process
" |n-kernel device models VCPU VCPU
- | |
Guest physical memory part of Thread Thread Thread
creating process' address space
VCPUs run in process KVM Linux
execution contexts Kernel
* Process usually maps | J |
VCPUs on threads CPU CPU CPU
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Architectural Advantages of the KVM Model

Proximity of guest and user space hypervisor
" Only one address space switch: guest < host
" Less rescheduling

Massive Linux kernel reuse
= Scheduler
* Memory management with swapping (though you don't what this)
= |/O stacks
=" Power management
" Host CPU hot-plugging

Massive Linux user land reuse
= Network configuration
* Handling VM images
= | ogging, tracing, debugging
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VCPU Execution Flow (KVM View)
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KVM Memory Model

Slot-based guest memory

= Maps guest physical to RAM
host virtual memory —
= Reconfigurable RAM
= Supports dirty tracking
In-Kernel Virtual MMU RAM
Coalesced MMIO
= Optimizes guest access to Coalesced
RAM-like virtual MMIO regions MMIO
Out of scope
= Memory ballooning Unassigned/
(guest <« user space hypervisor)
= Kernel Same-page Merging RAM
(not KVM-specific) Guest Hypervisor
Address Space Address Space
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KVM API Overview

Step #1: open /dev/kvm

Three groups of IOCTLs
= System-level requests
= VM-level requests
= VCPU-level requests

Per-group file descriptors
= /dev/kvm fd for system level
= Creating a VM or VCPU returns new fd

mmap on file descriptors
» VCPU: fast kernel-user communication segment
" Frequently read/modified part of VCPU state
" |ncludes coalesced MMIO backlog
= VM: map guest physical memory (deprecated)
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Basic KVM IOCTLs

KVM_CREATE_VM

4
KVM_SET USER MEMORY_ REGION
KVM_CREATE_IRQCHIP / ...PIT (x86)

KVM_CREATE_VCPU

v

KVM_SET REGS/..SREGS/..FPU/ ...

KVM_SET CPUID/..MSRS/..VCPU EVENTS/.. (x86)
KVM_SET LAPIC (x86)
KVM_RUN
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SIEMENS
Optimizations of KVM

Hardware evolves quickly
* Near-native performance in guest mode
» Decreasing costs of mode switches
= Additional features avoid software solutions, thus exits
= Nested page tables
= TLB tagging
= APIC virtualization

What will continue to consume cycles?
" Code path between VM-exit and VM-entry
" Mode switches, i.e. the need to exit at all

Slide 13 2010-09-23 Jan Kiszka, CT TDE IT 1 © Siemens AG, Corporate Technology



SIEMENS
Lightweight vs. Heavy-weight VM-Exits

Exits cost time! .
= Basic state switch in hardware
= Additional state switches in software
" Analyze exit reason

= [n-kernel APIC

= [n-kernel 10-APIC + PIC

= Coalescing MMIO

= [n-kernel instruction interpreter (detect MMIO access)
= [n-kernel network stub (vhost-net)

= Software-managed state switch l >10.000 cycles
* Hardware state switch
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Optimizing Lightweight Exits

Let's get lazy!
* Perform only partial state switches
* Complete at latest possible point
= | ate restoring for guest and host state

Candidates (x86)
" FPU
= Debug registers
" Model-specific registers (MSRSs)

Requirements
= Usage detection when in guest mode
= Depends on hardware support
= Demand detection while in host mode
= Preemption notifiers
= User-return notifier
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Lazy MSR Switching

Why is this possible?
= Some MSRs unused by Linux
» Some MSRs only relevant when in user space
= Some are identical for host & guest

Approach
= Keep guest values of certain MSRs until...
= sched-out fires
= KVM_RUN IOCTL returns
= Keep others until user-return fires (Intel only)

Optimizations are vendor-specific

Exemplary saving:
= 2000 cycles for guest — idle thread — guest
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Paravirtual Devices

Advantages
* Reduce VM exits or make them lightweight
" Improve /O throughput & latency (less emulation)
= Compensates virtualization effects
= Enable direct host-guest interaction

Available interfaces & implementions
= virtio (PCI or alternative transports)

= Network

" Block user space
= Serial I/0O (console, host-guest channel, ...) business

= Memory balloon (primarily)

= File system (9P)
= Clock (x86 only)
= Via shared page + MSRs
* Enables safe™ TSC guest usage

KVM
business
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An Almost-In-Kernel Device —
vhost-net

Goal: high throughput /

low latency guest networking
= Avoid heavy exits
= Reduce packet copying
" No in-kernel QEMU, please!

The vhost-net model
= Host user space opens and
configures kernel helper
" virtio as guest-host interface
= KVM interface: eventfd
= TX trigger — ioeventfd
= RX signal — irgfd

= Linux interface vie tap or macvtap ~ Linux
Enables multi-gigabit throughput
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What's next?

Generic Linux improvements

" Transparent huge pages (mm topic)

* NUMA optimizations (scheduler topic)
Improve spin-lock-holder preemption effects
Zero-copy & multi-queue vhost-net
Further optimize exits

" |nstruction interpretation (hardware may help)
= Faster in-kernel device dispatching

Nested virtualization as standard feature
= AMD-V bits already merged and working
= VVT-x more complex but likely solvable

Hardware-assisted virtualization on non-x86
= PowerPC ISA 2.06
= ARMv7-A “Eagle” extensions
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Thanks you for listening!

Questions?
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