
TCP/IP JumpStart-Internet Protocol Basics,
Second Edition
Andrew G. Blank

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World
rights reserved. No part of this publication may be stored in a retrieval system, transmitted, or
reproduced in any way, including but not limited to photocopy, photograph, magnetic, or
other record, without the prior agreement and written permission of the publisher.

Associate Publisher: Neil Edde
Acquisitions and Developmental Editor: Heather O'Connor
Editor: Donna Crossman
Production Editor: Kelly Winquist
Technical Editor: Michelle A. Roudebush
Book Designer: Maureen Forys and Kate Kaminski, Happenstance Type-O-Rama
Graphic Illustrator: Jerry Williams!
Electronic Publishing Specialist: Maureen Forys, Happenstance Type-O-Rama
Proofreaders: Emily Hsuan, Yariv Rabinovitch, Nancy Riddiough
Indexer: Nancy Guenther
Cover Designer: Archer Design
Cover Illustrator/Photographer: Archer Design

First edition copyright © 2000 SYBEX Inc.

Library of Congress Card Number: 2002100260

ISBN: 0-7821-4101-3

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc.
in the United States and/or other countries.

JumpStart is a trademark of SYBEX Inc.

Screen reproductions produced with Collage Complete and FullShot 99. FullShot 99 © 1991-
1999 Inbit Incorporated. All rights reserved. Collage Complete is a trademark of Inner Media
Inc. FullShot is a trademark of Inbit Incorporated.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary
trademarks from descriptive terms by following the capitalization style used by the
manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is
based upon final release software whenever possible. Portions of the manuscript may be based
upon pre-release versions supplied by software manufacturer(s). The author and the publisher
make no representation or warranties of any kind with regard to the completeness or accuracy
of the contents herein and accept no liability of any kind including but not limited to

performance, merchantability, fitness for any particular purpose, or any losses or damages of
any kind caused or alleged to be caused directly or indirectly from this book.

To my inspiration, my encourager, my perfect match, my best friend, and the love of my life,
my wife Suzie, you have had a profound and awesome impact on my life. I love you very
much.

To my son A.J. and my daughter Amber, I treasure your love and have tremendous pride in
both of you; Daddy loves you so much.

Acknowledgments

Several people have assisted me in many ways while writing this book. I'd like to
acknowledge their contributions and offer my sincere appreciation.

I appreciate several devoted people at Sybex. I have had the privilege of working closely with
some very talented people, especially Kelly Winquist and Heather O'Connor. Donna
Crossman did an exceptional job of editing my garbled-up thoughts into complete sentences.
Many thanks to the Sybex production department, including proofreaders Emily Hsuan,
Nancy Riddiough, and Yariv Rabinovitch, indexer Nancy Guenther, and Maureen Forys, who
diligently turned text into print. I appreciate the technical insight of Michelle Roudebush and
the selfless assistance of Sara Richardson. I applaud the imagination and creativity of Jerry
Williams in turning my sketches into artwork. What an awesome honor to work with all of
you!

I'd like to acknowledge the encouragement and prayers of my family and friends. All things
are possible!

Introduction

This book introduces TCP/IP to a person with any level of computer skills or computer
background knowledge. My hope in writing this book is to explain in a simple way some
concepts that may be considered difficult. My ambition is to write a book that makes no
assumptions and that leads a TCP/IP beginner to an intermediate understanding of TCP/IP.
This book isn't boringly technical; each topic is covered to sufficient depth but not to an
extreme.

As a network administrator and instructor, I have several years' experience working in the
computer industry and specifically with TCP/IP. Pulling from this experience, I've tried to
present the relevant material in an interesting way, and I've included what I have found to be
the most important concepts. The book is filled with several simple examples, diagrams, and
screen captures in an effort to make the TCP/IP protocol more tangible. Many of the graphics
include this book's mascot, whose name is Harry. Harry the Host represents a device attached
to a network and using TCP/IP.

This book is neither operating system-specific nor software-specific. Concepts are presented
so that the reader can gain an understanding of the topic without being tied to a particular
platform. Many books about TCP/IP are test-prep books or programmer guides to TCP/IP.
This book is different because it is not focused on passing a test and teaching answers to
questions. It is not a certification preparation book, although it can be an excellent
supplement. Anyone studying for a TCP/IP exam will find this book useful for fine-tuning
any concepts that they do not thoroughly understand.

Someone who may be interested in a particular topic within TCP/IP can pick up the book and
get a quick, thorough understanding. Many executives and IS decision-makers need to be
conversant with TCP/IP so that they can talk with their staff and other professionals. This is
the perfect book to provide that understanding.

Who Should Read This Book?

TCP/IP JumpStart is designed to teach the fundamentals of the TCP/IP protocol stack to
people who are fairly new to the topic.

This book will be useful to:

• People interested in learning more about TCP/IP
• Decision-makers who need to know the fundamentals in order to make valid, informed

choices
• Individuals interested in pursuing networking certifications
• Administrators who feel they are missing some of the foundational information about

TCP/IP
• Small business owners interested in understanding the protocol they will likely use on

their networks
• Those interested in learning more about how data moves across the Internet
• Instructors teaching a TCP/IP fundamentals course
• Students enrolled in a TCP/IP fundamentals course

What This Book Covers

Working with TCP/IP has been an interesting, exciting, and rewarding experience. As I
continue to learn about computers and TCP/IP, the more I see the need to continue learning.
No matter what sector of the computer industry you're employed in, TCP/IP is an important
foundational topic that you must understand; TCP/IP is the current and future standard
protocol.

TCP/IP JumpStart contains many drawings and charts that help create a comfortable learning
environment. It provides many real-world analogies that you will be able to relate to and
through which the TCP/IP protocol will become tangible. These analogies provide a simple
way to understand the technical process that is occurring through TCP/IP.

This book continues to build your understanding about TCP/IP progressively, like climbing a
ladder. Here is how the information is presented:

Chapter 1 This chapter provides an overview of where TCP/IP and the Internet came from
and how they are related. A lot of good Internet trivia appears in this chapter.

Chapters 2-5 These chapters describe what a protocol is and what the OSI and DoD models
are. These chapters include a discussion of what happens at each layer in the DoD model and
why the model is important.

Chapters 6-10 These chapters describe TCP/IP addressing-what IP addresses look like and
how they are implemented. You'll learn how to assign IP addresses both manually and
through Dynamic Host Configuration Protocol (DHCP). You'll learn all about DHCP. You'll
also learn about subnet masks: what they are, what they do, and how to create them.

Chapters 11-14 These chapters focus on name resolution methods and implementations.
You'll learn why name resolution is needed and the steps taken to resolve names. You'll learn
about Domain Name System (DNS), Dynamic DNS, and Windows Internet Naming Service
(WINS).

Chapter 15 You'll learn about the future of TCP/IP: the transition to a new version of IP in
the next few years. This chapter gives you a heads-up on what to expect, and tells you how to
find out more.

Making the Most of This Book

At the beginning of each chapter of TCP/IP JumpStart, you'll find a list of topics that you can
expect to learn about within that chapter.

To help you soak up new material easily, I've highlighted new terms in bold and defined
them in the page margins. And to give you some hands-on experience, there are Test It Out
sections that let you practice what you've just learned. In addition, several special elements
highlight important information:

 Note Notes provide extra information and references to related information.
 Tip Tips are insights that help you perform tasks more easily and effectively.
 Warning Warnings let you know about things you should do-or shouldn't do-as you learn

more about TCP/IP.

At the end of each chapter, you can test your knowledge of the chapter's relevant topics by
answering the review questions. (You'll find the answers to the review questions in Appendix
A.)

There's also some special material for your reference. If you'd like to quickly look up the
meaning of a term, Appendix B is a glossary of terms that have been introduced throughout
the book. If you are wondering what certain acronyms stand for, Appendix C is an acronym
guide spelling out the acronyms used in this book. Because TCP/IP is a current technology
and is likely to constantly change, a Web site has been set up to accompany this book.
Appendix D describes the materials that you will find on the TCP/IP JumpStart companion
Web site.

Chapter 1: The Origin of TCP/IP and the
Internet
Two people can communicate effectively when they agree to use a common language. They
could speak English, Spanish, French, or even sign language, but they must use the same
language.

Computers work the same way. Transmission Control Protocol/Internet Protocol (TCP/IP) is
like a language that computers speak. More specifically, TCP/IP is a set of rules that defines
how two computers address each other and send data to each other. This set of rules is called a
protocol. Multiple protocols that are grouped together form a protocol suite and work together
as a protocol stack.

TCP/IP is a strong, fast, scalable, and efficient suite of protocols. This protocol stack is the de
facto protocol of the Internet. As information exchange via the Internet becomes more
widespread, more individuals and companies will need to understand TCP/IP.

In this first chapter you'll look at the origins of TCP/IP.

What Is TCP/IP?

TCP/IP is a set of protocols that enable communication between computers. There was a time
when it was not important for computers to communicate with each other. There was no need
for a common protocol. But as computers became networked, the need arose for computers to
agree on certain protocols.

protocols Rules or standards that govern communications.

Today, a network administrator can choose from many protocols, but the TCP/IP protocol is
the most widely used. Part of the reason is that TCP/IP is the protocol of choice on the
Internet-the world's largest network. If you want a computer to communicate on the Internet,
it'll have to use TCP/IP.

network administrator A person who installs, monitors, and troubleshoots a network.

 Tip When multiple protocols work together, the group is collectively
known as a protocol suite or protocol stack. TCP/IP is an example of
a protocol suite (it describes multiple protocols that work together).
The implementation of TCP/IP is described as a protocol stack. Both
terms are used interchangeably, yet their definitions vary slightly.

Another reason for TCP/IP's popularity is that it is compatible with almost every computer in
the world. The TCP/IP stack is supported by current versions of all the major operating
systems and network operating systems-including Windows 95/98, Windows NT, Windows
2000, Windows XP, Linux, Unix, and NetWare.

Unlike proprietary protocols developed by hardware and software vendors to make their
equipment work, TCP/IP enjoys support from a variety of hardware and software vendors.
Examples of companies that have products that work with TCP/IP include Microsoft, Novell,
IBM, Apple, and Red Hat. Many other companies also support the TCP/IP protocol suite.

TCP/IP is sometimes referred to as "the language of the Internet." In addition to being the
official language of the Internet, TCP/IP is also the official language of many smaller
networks. For all the computers that are attached to the Internet to communicate effectively,
they must agree on a language. Just like every human language has certain rules so that the
people involved in the conversation understand what the other is saying, a computer language
needs a set of rules so that computers can effectively communicate. Some of the rules of a
language that computers use to communicate include determining when to send data and
when to receive data.

Features of TCP/IP

TCP/IP has been in a use for more than 20 years, and time has proven it to be a tested and
stable protocol suite. TCP/IP has many features and benefits. In this section, you will learn
about some of the most important ones.

Support from Vendors

As stated earlier, TCP/IP receives support from many hardware and software vendors. This
means that the TCP/IP suite is not tied to the development efforts of a single company.
Instead, the choice to use TCP/IP on a network can be based on the purpose of the network
and not on the hardware or software that has been purchased.

Interoperability

One of the major reasons why the TCP/IP suite has gained popularity and acceptance so
universally is that it can be installed and used on virtually every platform. For example, using
TCP/IP, a Unix host can communicate and transfer data to a DOS host or a Windows host. A
host is another name for a computer or device on a network. TCP/IP eliminates the cross-
platform boundaries.

host Any device (such as a workstation, server, mainframe, or printer) on a network or
internetwork that has a TCP/IP address.

Flexibility

TCP/IP is an extremely flexible protocol suite, and in later chapters you will learn about some
features that contribute to this flexibility. Examples of TCP/IP's flexibility include the latitude
an administrator has in assigning and reassigning addresses. An administrator can
automatically or manually assign an IP address to a host, and a TCP/IP host can convert easy-
to-remember names, such as www.sybex.com, to a TCP/IP address.

Routability

A limitation of many protocols is their difficulty moving data from one segment of the
network to another. TCP/IP is exceptionally well adapted to the process of routing data from
one segment of the network to another, or from a host on a network in one part of the world to
a host on a network in another part of the world.

In the following sections, you will learn about how these features of TCP/IP grew out of the
military's need for a reliable, flexible networking standard.

The Origins of the Internet: ARPAnet

Understanding the roots of the Internet will give you insight into the development of TCP/IP
and many of its rules and standards. If you know why TCP/IP was created and how it evolved,
the TCP/IP protocol suite is easier to understand.

The predecessor of today's Internet was ARPAnet, a supernetwork that was created by the
Advanced Research Projects Agency (ARPA) and launched in 1969. This network was
created in response to the potential threat of nuclear attack from the Soviet Union. One of
ARPA's primary goals was to design a fault-tolerant network that would enable U.S. military
leaders to stay in contact in case of nuclear war. By the standards of the time, this fault-
tolerant network seemed to be almost science fiction. ARPA set out on a mission to create a
network with what seemed to be impossible requirements.

ARPAnet The Advanced Research Projects Agency's supernetwork-the predecessor of the
Internet.

 Note In the late 1950s, the United States Department of Defense (DoD), under the
guidance of one of America's leading think tanks, the RAND corporation, formed
the Advanced Research Projects Agency (ARPA).

The protocol, or language of choice, used on the ARPAnet was called Network Control
Protocol (NCP)-TCP/IP had not yet been developed. As the ARPAnet grew, however, a new
protocol was needed because NCP simply didn't fulfill all the needs of a larger network. The
NCP protocol was similar to a human language that has only a few words. The language
might enable a few people to communicate, but as you include more people who want to talk
about many more subjects, you have to improve the language.

Network Control Protocol (NCP) The protocol used before TCP/IP.

The ARPAnet project had some specific goals and requirements. To reach these goals and
meet these requirements, some of the top computer minds worked in a collaborative effort
with little financial or public glory. Many of the top computer minds that worked on the

ARPAnet were affiliated with major universities. It was not the intention of the project leaders
to create the worldwide network that exists today, but fantastic growth soon followed the
ARPAnet's humble beginnings.

ARPAnet's Requirements

To fulfill the needs of the military, the new ARPAnet had to meet the following requirements:

• No one point more critical than any other Because the network needed to be able to
withstand a nuclear war, there could be no one critical part of the network and no
single point of failure. If there were any critical parts of the network, enemies could
target that area and eliminate communications.

• Redundant routes to any destination Because any location on the network could be
taken down by enemies in the event of a war, there had to be multiple routes from any
source to any destination on the network. Without redundant routes, any one location
could become a critical communications link and a potential point of failure.

• On-the-fly rerouting of data If any part of the network failed, the network had to be
able to reroute data to its destination on-the-fly.

• Ability to connect different types of computers over different types of networks
This network could not be tied to just one operating system or hardware type. Because
universities, government agencies, and corporations often rely on different types of
Local Area Networks (LANs) and network operating systems, interoperability among
these many networks was critical. Connecting to the network should not dictate that a
lot of new hardware had to be purchased; rather, the existing hardware should suffice.

• Not controlled by a single corporation If one corporation had a monopoly on this
network, the network would grow to boost the corporation instead of the usefulness
and effectiveness of the network. This network needed to be a cooperative effort
among many engineers who were working to improve the network for the sake of the
supernetwork, not that of a corporation.

By December of 1969 the ARPAnet had four hosts. The ARPAnet consisted of computers at
the University of California at Los Angeles, the University of California at Santa Barbara, the
University of Utah, and Stanford Research Institute. The ARPAnet set the foundation for what
would grow up to be the Internet.

Requests for Comments

To improve the technology that was being used on the ARPAnet, a system was designed to
encourage and facilitate correspondence among the engineers who were developing this new
network. This system, which is still in use today, relies on Requests for Comments (RFCs)
to provide feedback and collaboration among engineers. An RFC is a paper that has been
written by an engineer, a team of engineers, or just someone with a better idea, to define a
new technology or enhance an existing technology.

Request for Comments (RFC) A paper thoroughly describing a new protocol or technology.

The process of submitting RFCs was designed to be a "bulletin board" for posting technical
theories. The old-school way of writing a thesis or book was too slow. RFCs provided an
informal and fast way to share new technologies and ideas for enhancements. After an RFC is
written and posted, it can be evaluated, critiqued, and used by other engineers and developers.

If another engineer or developer can improve on the theory or standard, the RFC provides an
open forum in which to do so. Many of these papers are long, painstakingly technical, and in
most cases good reading material for someone with difficulty sleeping.

An RFC can be submitted for review to the Internet Engineering Task Force (IETF).
Engineers from the IETF review the papers that are submitted and assign a number to each.
From that point on, the RFC number becomes the effective "name" of the paper. For example,
the first RFC, which is about host software, is called RFC 1. RFC 1 was submitted in 1969 by
a developer named Steve Crocker. There are currently more than 3,000 RFCs.

Internet Engineering Task Force (IETF) A governing body of the Internet.

As the ARPAnet was growing and researchers and engineers were making improvements,
they used RFCs as a tool to strengthen and ensure the network's foundation. TCP/IP is a child
of the RFC method of development-no corporation makes money when you install TCP/IP.
Using RFCs has been the method of growing the ARPAnet with the best network minds
contributing.

 Tip It is possible for anyone to write and publish an RFC. Instructions on how to write and
submit an RFC are detailed in RFC 2223. Today, RFCs are posted on many Web sites.
Appendix D describes this book's companion Web site, which has links to RFC 2223 and
other RFC Web sites.

The Birth of TCP/IP

As stated earlier, the "language" spoken by hosts on the ARPAnet in 1969 was called NCP.
However, NCP had too many limitations and was not robust enough for the supernetwork,
which was beginning to grow out of control. The limitations of NCP and the growth of the
ARPAnet lead to research and development of a new network language.

In 1974 Vint Cerf and Bob Kahn, two Internet pioneers, published "A Protocol for Packet
Network Interconnection." This paper describes the Transmission Control Protocol (TCP),
which is a protocol in the protocol suite that would eventually replace NCP.

Transmission Control Protocol (TCP) The protocol describing communication between
hosts.

The TCP protocol describes the host-to-host portion of a communication. TCP explains how
two hosts can set up this communication and how they can stay in touch with each other as
data is being transferred. NCP did not resolve these issues to the extent that TCP was able to.

As you will learn in later chapters, TCP is responsible for making sure that the data gets
through to the other host. It keeps track of what is sent and retransmits anything that did not
get through. If any message is too large for one package, TCP splits the message into several
packages and makes sure that they all arrive correctly. After they have arrived, TCP at the
other end puts all the packages back together in the proper order.

By 1978, testing and further development of this language led to a new suite of protocols
called Transmission Control Protocol/Internet Protocol (TCP/IP). In 1982, it was decided
that TCP/IP would replace NCP as the standard language of the ARPAnet. RFC 801 describes

how and why the transition from NCP to TCP was to take place. On January 1, 1983,
ARPAnet switched over to TCP/IP and the network continued to grow exponentially.

Transmission Control Protocol/ Internet Protocol (TCP/IP) The suite of protocols that

when combined create the
"language of the Internet."

In 1990, the ARPAnet ceased to exist. The Internet has since grown from ARPAnet's roots,
and TCP/IP has evolved to meet the changing requirements of the Internet.

Design Goals of TCP/IP

TCP/IP has evolved to its current state. The protocols within the TCP/IP suite have been
tested, modified, and improved over time. The original TCP/IP protocol suite had several
design goals that intended to make it a viable protocol for the large, evolving internetwork.
Some of these goals included:

• Hardware independence A protocol suite that could be used on a Mac, PC,
mainframe, or any other computer.

• Software independence A protocol suite that could be used by different software
vendors and applications. This would enable a host on one site to communicate with a
host on another site, without having the same software configuration.

• Failure recovery and the ability to handle high error rates A protocol suite that
featured automatic recovery from any dropped or lost data. This protocol must be able
to recover from an outage of any host on any part of the network and at any point in a
data transfer.

• Efficient protocol with low overhead A protocol suite that had a minimal amount of
"extra" data moving with the data being transferred. This extra data, called overhead,
functions as packaging for the data being transferred and enables the data
transmission. Overhead is similar to an envelope used to send a letter, or a box used to
send a bigger item-having too much overhead is as efficient as using a large crate to
send someone a necklace.

• Ability to add new networks to the internetwork without service disruption A
protocol suite that enabled new, independent networks to join this network of
networks without bringing down the larger internetwork.

• Routable Data A protocol suite on which data could make its way through an
internetwork of computers to any possible destination. For this to be possible, a single
and meaningful addressing scheme must be used so that every computer that is
moving the data can compute the best path of every piece of data as it moves through
the network.

The TCP/IP porotocol suite has evolved to meet these goals. Throughout this book, you will
learn how TCP/IP has met and surpassed these original design goals.

Moving Data across the Network

Creating this new "super network" introduced many new concepts and challenges for the
pioneering engineers. One of the most critical issues was how to move data across the
network. Older communications protocols relied on a circuit-switched technology. TCP/IP,
however, introduced a new way of moving data across a network. The protocol suite set a new
standard for communications and data transport by using a packet-switched network.

TCP/IP's method of moving data and information helped the protocol suite fulfill several of
the requirements for the growing ARPAnet supernetwork. In the following sections, you'll
learn about how circuit-switched and packet-switched communications methods work.

Moving Data on a Circuit-Switched Network

Historically, data has moved through a circuit-switched network. In a circuit-switched
network, data moves across the same path throughout the entire communication. An example
of a circuit-switched network is the telephone system. When you make a telephone call, a
single path (also called a circuit) is established between the caller and the recipient. For the
rest of the conversation, the voice data keeps moving through the same circuit. If you were to
make a call and get a very staticky connection, you would hang up and try again. This way
you could get a different circuit, hopefully one with less static. Early network data
transmissions followed this type of pathway.

circuit-switched network A network on which all data in a communication takes the same
path.

In the illustration below, notice that although the data could take multiple routes, all the data
moves from the source to the destination along the same path. In a circuit-switched network,
data communication moves along a single, established route.

Moving Data on a Packet-Switched Network

A circuit-switched network was unacceptable for both the ARPAnet and the Internet. Data
had to be able to move through different routes so that if one circuit went down or got
staticky, it didn't affect communication on the rest of the network. Instead, data simply would
take a different route.

The Internet uses a packet-switched network. On a packet-switched network, the computer
that is sending the data fragments the data into smaller, more manageable chunks. These
chunks are called packets. Each packet is then individually addressed and sent to its intended
recipient. As the several packets make their way through the network, each packet finds its
own way to the receiver. The receiving computer reassembles the packets into the original
message.

packet-switched network A network on which the data in a communication takes several
paths.

packet A unit of data that is prepared for transmission onto a network.

The illustration below shows how TCP/IP moves data. Notice that there are several routes that
the data packets can follow from the source to the destination. Unlike the illustration on the
preceding page, the data packets here use a variety of routes-some follow the same path, while
others follow different paths. Each packet follows its own route, and data is reassembled at
the destination. This is how information moves on a packet-switched network.

Understanding How a Packet-Switched Network Functions

To help you understand how a packet-switched network moves data, let's look at a similar
real-world situation.

Let's say that I take my son's soccer team to an arcade and restaurant for a team party. I have
the whole team outside of the arcade. My task is to get the team to the other side of the
arcade, to my wife who is waiting for them in the restaurant. In this analogy, the team
represents the complete file on one host, and each child represents a data packet. One of my
goals is to lose as few of the kids as possible.

While we are standing outside, it is easy to put the team in order; all the children are wearing
numbered jerseys. I tell the kids that we will meet on the other side of the arcade in a
restaurant for pizza and that they should all move as fast as possible through the arcade and to
the restaurant.

After I open the door and say, "go," the kids enter one at a time. Entering the arcade one at a
time represents the fragmenting and sending of the file. Just as each of the kids has a
numbered jersey, each packet has a number so that the receiving host can put the data back
together.

Now picture a dozen six-year-olds moving through the arcade. Some of the children will take
a short route; others will take a long route. Possibly, they'll all take the same route, though it
is much more likely that they will all take different routes. Some will get hung up at certain
spots, but others will move through faster. My wife is in the restaurant waiting to receive the
team. As they start arriving at the restaurant, she can reassemble the children (packets) in the
correct order because they all have a number on their backs. If any are missing, she will wait
just a bit for the stragglers and then send back a message that she is missing part of the team
(file).

After I receive a message that she is missing a child (a packet), I can resend the missing part. I
do not need to resend the entire team (all the packets), just the missing child (packet or
packets).

Please note, however, I would not go look for the lost child, I would just put the same
numbered jersey on a clone of the lost child and send him into the arcade to find the
restaurant.

Why Use TCP/IP?

TCP/IP offers many advantages over other network protocols and protocol suites. Here is a
summary of some of the benefits of using the TCP/IP protocol suite:

• Widely published, open standard TCP/IP is not a secret. It is not proprietary or
owned by any corporation. Because it is a published protocol with no secrets, any
computer engineer is able to improve or enhance the protocol by publishing an RFC.

• Compatible with different computer systems TCP/IP enables any system to
communicate with any other system. It is like a universal language that would enable
people from any country to communicate effectively with people from any other
country.

• Works on different hardware and network configurations TCP/IP is accepted and
can be configured for virtually every network created.

• Routable protocol TCP/IP can figure out the path of every piece of data as it moves
through the network. Because TCP/IP is a routable protocol, the size of any TCP/IP
network is virtually unlimited.

• Reliable, efficient data delivery TCP/IP can guarantee that the data is transferred to
another host.

• Single addressing scheme TCP/IP uses a single and relatively simple addressing
scheme. You will learn about TCP/IP's addressing in Chapter 6. An administrator can
transfer knowledge of TCP/IP to any TCP/IP network without relearning the
addressing scheme.

The Internet has become a necessity for business, and it soon will be a necessity at home.
Many businesses, large and small, are connected to the Internet and are using TCP/IP as the
protocol of choice for their internal networks. As more and more homes connect to the
Internet, those computers will also use the TCP/IP protocol suite. The commercial
implications of the Internet have changed the dynamic of every business model that has ever
been taught.

TCP/IP is the standard for a communications protocol on the Internet. You cannot connect to
the Internet without using TCP/IP. Whether you build a network at home with two hosts or
you manage an internetwork at your business with 100,000 hosts, TCP/IP is a
communications protocol that will work effectively. TCP/IP can scale to any size environment
and is robust enough to connect different types of LANs.

internetwork Several smaller networks connected together.

These are a few of the many reasons why network administrators choose to use TCP/IP as the
protocol on their networks.

Review Questions
1. The Internet was originally called:
2. List three requirements that the military mandated of this new network.
3. Another name for a computer on a TCP/IP network is:
4. Describe packet-switched and circuit-switched networks.
5. What is an RFC?
6. What protocol did TCP/IP replace?
7. True or False: TCP/IP is one protocol.
8. What is IETF?
9. List four benefits of using TCP/IP.
10. What year was the change made from NCP to TCP/IP?

Answers

1. ARPAnet

2. Any three of the following: No one point can be more critical than any other; it needs on-
the-fly rerouting of data; it needs redundant routes to any destination; it can connect
different types of computers over different types of networks; it cannot be controlled by a
single corporation.

3. Host
4. A packet-switched network sends packets of data across the network independent of one

another; each of the packets takes its own route. A circuit-switched network uses the same
path, or circuit, for all data.

5. Request for Comments, a paper thoroughly describing a new protocol or technology
6. NCP
7. False; TCP/IP is a suite of protocols.
8. Internet Engineering Task Force, a governing body of the Internet
9. Any four of the following: It is a widely published, open standard; it is compatible with

different computer systems; it works on different hardware and network configurations; it
is a routable protocol; it has reliable, efficient data delivery; it has a single addressing
scheme.

10. 1983

Terms to Know

• protocols
• network administrator
• host
• ARPAnet
• NCP
• RFC
• IETF
• TCP
• TCP/IP
• circuit-switched network
• packet-switched network
• packet
• internetwork

Chapter 2: Protocols
In the first chapter, you learned how the Internet grew from the ARPAnet and how TCP/IP
was developed. As the computer network industry has grown, rules and standards have
evolved. These rules and standards have formed the TCP/IP protocol into a popular and robust
standard used by computers to communicate. This chapter examines why protocols are
important and how they enable communication between hosts.

What Are Protocols?

A protocol is a rule or a set of rules and standards for communicating that computers use
when they send data back and forth. Both the sender and receiver involved in data transfer
must recognize and observe the same protocols.

To exchange data, the sending and the receiving computers, also called hosts, must agree on
what the data will look like. When one host is sending another host a whole bunch of 1s and
0s, both hosts have to agree on the meaning and placement of each 1 and each 0. Part of the
information that is sent represents addresses and part is data-each host has a unique address,
just as you have a unique address on your street. And just like a letter being delivered to your
address, data is delivered to the appropriate host based on its address. The hosts that send the
information must understand how to find the correct address among the data so that the data
can be routed to its destination.

When hosts begin communicating with each other, they first must agree on what protocols to
use. This is similar to two people who are going to have a conversation: They have to agree
on which language to use and what the rules for the conversation will be. They must agree on
who will talk first, how to address the other, how to acknowledge that the information is
understood, and how to finish or close the conversation. In the following illustration, Harry
the Host is trying to set up communication with another host. The first thing that they need to
agree on is the language, or protocols, to use.

A group of protocols is called a protocol suite or a protocol stack. A single protocol
addresses one particular issue that helps to enable communication-for example, defining what
an address looks like. When combined with other protocols, the protocol group that results is
called a protocol suite. TCP/IP, for example, is a protocol suite. At a computer that is
communicating on a network, the software that packages the data and prepares it for
transmission is called a protocol stack. When a computer is receiving data, the data moves up
through the protocol stack.

protocol suite A combination of protocols.
protocol stack Protocols that send and receive data.

Protocol suites are typically referred to by just a couple of the protocols in the suite. Rather
than refer to a suite by a name that might include as many as 20 protocols, you can simply
reference it by an easier-to-use and more friendly name. Many protocol suites are in use
today. Some are proprietary protocols that have limited use. These are developed for specific
purposes to meet some particular need of the hardware or software involved.

Some of the popular protocol suites in today's network communications include:

• IPX/SPX This is the protocol suite that Novell has implemented with its operating
system. The acronym stands for Internetwork Packet Exchange/Sequenced Packet
Exchange.

• AppleTalk This is the protocol suite that Apple has implemented with its operating
system.

• TCP/IP This is the protocol suite that has been made a standard of the Internet.
Anyone who would like to use the Internet must use the TCP/IP suite.

Some of the questions that a protocol might answer include:

• What type of cable or transmission media is used to connect hosts on the network?
• How is data transmitted on the transmission media?
• How do the hosts on the network know when to transmit data?
• How does each host know how much data can be transmitted at a time?
• How can hosts using different operating systems communicate?
• How can a host check the data received for transmissions?

Protocols Move Packets of Data

When data is sent from one host to another, the Transmission Control Protocol of TCP/IP
divides the data into more manageable "chunks." As explained in Chapter 1, these chunks are
called packets. The protocol determines how the packets are formed and addressed-the
packets are like crates that are used to ship the data.

Each of the packets has a set of headers applied to it. The headers usually include addressing
and routing information, which makes it possible to reassemble the packets and have the
original data at the destination. The headers are applied to the packets for the same reason that
you'd apply labels to a package that you are sending. Several headers may be applied to each
packet.

headers Bits of information attached to each packet that usually include addressing and
routing details; the information acts like a little sticky note on the packet.

A host sending data to another host is like me sending a package to somebody else -for
instance, sending a bicycle to my sister in another state. The bicycle represents data that is
going to be transferred to another host. To send the bicycle, I have to follow certain rules, or
protocols. I put the bicycle into a package, or maybe more than one package if it doesn't fit
into a single package. In this example, the packages represent packets.

Even after the bicycle is inside the packages, it is not going anywhere until I put some
addressing information on it. There are protocols for putting addresses on the packages: I
must use my sister's correct name as well as her correct address. The address label must
include the pieces of information necessary to get the packages to the correct destination-for
example, her street address, city, state, and zip code. This is similar to TCP/IP putting
addressing information headers on the packets that are being transmitted. I also put my return
address on the labels, which is similar to a data packet including its source information. There
is a proper place for all this addressing information, and I must correctly fill it in on every
package or it will not get there. Finally, I indicate the order in which to open the packages by

writing "1 of 6," "2 of 6," etc. on them. This will let my sister know which package to open
first, second, and so on so that she can easily reassemble the bike.

After the packages are ready to go, I need to decide which delivery service to use. The
packages' format depends on the delivery service I choose: If I use Federal Express, I will put
the packages into FedEx boxes; if I use United Parcel Service, I will put the packages into a
UPS format. Similarly, packets are encapsulated into a format that is appropriate for the
physical network that the sending host is located on. If the host is on an Ethernet network, the
packet must be in the appropriate format to travel on an Ethernet network. If it's on a Token
Ring network, it must be in the Token Ring format. Encapsulation is a fancy word for
wrapping up the packet into the appropriate package or format.

encapsulation The wrapping of a packet into the appropriate package or format.

Because I'm on a UPS route, I call Mike, the UPS man, and ask him to pick up the packages.
Neither Mike nor I actually deliver the packages. Instead, the data, packaged in the
appropriate format, moves through the transport system, being transferred from one location
to the next. The packages might take different routes, but they will get to the same destination.
They are delivered to the destination based on the address that I put on the labels. If there is a
problem with the delivery, the system will let me know because I put my return address on the
packages.

After the packages arrive, my sister opens them. She can reassemble the bicycle based on the
information that was on the labels. Similarly, the recipient of the data packet can assemble the
data based on the information in the packets' headers.

My sister discards the packing material after she uses the pertinent information from the
labels. All she really wants is the bicycle; the packaging was used only to send the bicycle to
the correct destination and in the correct order. When using TCP/IP to transport data, a packet
is built with several headers, which are discarded after the important information has been
used and the data has been delivered to the requesting application.

The illustration below shows Harry the Host sending data to Sally the Host. Notice that the
data has been fragmented into several packets and that each packet includes sequence
numbers. As the receiving host, Sally reassembles the data back to its unfragmented format.

Why We Need Protocols and Standards

Rules-or protocols and standards-are important to ensure compatibility between different
kinds of things. As more and more hardware and software vendors began joining the
technology explosion, there was no guarantee that any of their products would be able to work
with one another. A system had to be put in place so that hardware and software consumers
would not get burned by buying incompatible systems.

For example, let's say that I own a small business and I want to buy some new computer
equipment. I go out and find some hardware and software that will make my business run
smoother and more effectively. All the vendors tell me how great their hardware and software
is, so I buy it. I've been sold the dream of how my new automated office will function and
how I'll have nothing but spare time. I've been told that everything works together and that my
small business will be successful as a result.

However, I bought some hardware from one vendor, some software from another, some other
hardware from another vendor, and more software from yet another. And guess what? None
of the stuff works together. I just spent a ton of money, and now I'm spending all my time
calling for support. All the nice support people are telling me it's the other vendor's software
or hardware that is causing the problem.

To keep this scenario from happening, standards and protocols were developed. If the
hardware and software vendors were all working with the same guidelines-the same standards
and protocols-then their hardware and software should all work together. The hardware
vendor would continue to make money selling his hardware, the software vendor would
continue to make money selling his software, and I would make money in my small- to
medium-sized automated business. I would be happy to buy more hardware and software
because it works and it serves my purposes.

Developing protocols is an ongoing, ever changing science. New protocols are constantly
under development and testing, and they are improved as the need arises. As the industry is
increasing so dynamically and rapidly, more protocols are unleashed to handle the boom.
However, before a protocol is accepted and widely implemented, it has to pass rigorous
testing. A standard framework is used to help design, compare, test, and evaluate protocols.

The OSI Reference Model

For network communications to take place, hundreds of questions must be answered by a set
of protocols. Evaluating and working with these hundreds of questions would be
unmanageable. So, in 1977 the International Organization for Standardization (ISO)
adopted the Open Standards Interconnection (OSI) model. The OSI model breaks down the
many tasks involved in moving data from one host to another. Now instead of having
hundreds of questions to answer, the OSI model gives us a reference to work with. The
hundreds of questions are divided into seven smaller, more manageable groups of questions.
The seven groups are called layers.

International Organization for Standardization (ISO) The organization that ratified the
OSI model.

Open Standards Interconnection model (OSI) A seven-layer model used to break
down the many tasks involved in
moving data from one host to
another.

layer A portion of the OSI model that is
used to categorize specific
concerns.

The OSI reference model is exactly that; it is only a model. If we continue to think of the
model as a set of questions that have to be answered, then the protocols are the answers. Any
one protocol may answer only a few of the questions or, in other words, address specific
layers in the model. By combining multiple protocols into a protocol suite, we can answer all
the questions posed by the model.

The OSI model was created by first making a list of most computer networking topics, such as
routing, reliability, and sequencing. From this list, all of the topics were categorized by how
they are used in network communications. Within each layer, several topics are discussed.
Breaking down this huge task of data communication into seven layers makes the task more
manageable.

 Note The seven layers of the OSI model are explained in the following sections.

The OSI reference model functions as a baseline for comparison to any protocol suite. As
such you can use the OSI model-or the DoD model, which you'll learn about later in this
chapter-to help you understand how the parts of TCP/IP work.

This baseline function of the OSI model is similar to a model home. When designing your
new home, a model can be used as a baseline. Everyone in the neighborhood also uses the
model home as reference to help make the choices in the new homes that they are building.
All the homes will vary slightly from the model, but the model provides a means for
comparison. In the same way, you can compare any protocol suite to the OSI reference model
because protocols are designed from this model. The OSI model acts as a baseline for creating
and comparing networking protocols.

The Seven Layers of the OSI Model

The goal of the OSI model is to break down the task of data communication into simple steps.
These steps are called layers, and the OSI model is made up of seven distinct layers. Each
layer has certain responsibilities.

The seven layers of the OSI model are:

• Application
• Presentation
• Session
• Transport
• Network
• Data-Link
• Physical

You will learn about the responsibilities of each of these layers in the following sections. The
OSI model is a method of compartmentalizing data-communication topics in a way that can
help a network administrator when troubleshooting.

What's Your Favorite Layer of the OSI Model?

Here's an interesting party topic and excellent conversation starter. Recently I had a heated
discussion with a colleague that lasted almost an hour. We were arguing about which is our
favorite layer of the OSI model, and I was amazed at how fast we dug in our heels to defend
which layer and why. I found myself deeply loyal to the Physical layer, while my colleague
had the opinion that the Presentation layer is best. My point was that all of the important
"blue-collar" stuff happens at the Physical layer. The Physical layer works down in the
trenches getting bits onto the wire and taking them off. He pointed out that the Presentation
layer is so important because it uses compression and encryption. As the discussion got more
heated, I found myself thinking of the Presentation layer as a wimpy layer while building up
the many important tasks that the Physical layer handles!

Since this discussion, I teach that this is actually a tremendous way to learn the OSI model.
Find another network administrator and defend your favorite layer. Come up with valid
reasons why you like and don't like each layer. Then take turns defending different layers.

Responsibilities of Each Layer

The purpose of each layer in the OSI model is to provide services to the layer above it while
shielding the upper level from what happens below. The higher layers do not need to know
how the data got there or what happened at the lower layers.

The following illustration shows how data moves through the seven layers of the OSI model.
Here, Harry the Host is transmitting data onto a network. He could be saving a file from his
word processing application to a file server, for example. As the data moves down the seven

layers toward the network, each layer puts a little bit of information called a header on the
packet. The exact contents of each header depend on the protocols enabled at each layer of the
protocol suite.

The Application Layer

The top layer of the OSI model is the Application layer. The purpose of the Application layer
is to manage communications between applications. A standard Application layer program
such as FTP or SMTP interacts with a program that is running at the local workstation. The
programmer who has written a word processing application writes the program to interact
with a standard application that exists at the Application layer. The word processor uses the
standard network application to save, copy, or delete files. This is the layer where the
applications receive data and request data. All other layers work for this layer. Think of the
Application layer as the CEO of the OSI model.

The Presentation Layer

The Presentation layer is the layer below the Application layer and above the Session layer.
The Presentation layer adds structure to packets of data being exchanged. The primary job of
the Presentation layer is to ensure that the message gets transmitted in a language or syntax
that the receiving computer can understand. The protocols at the Presentation layer may
translate the data into an understandable syntax and then compress and maybe encrypt the
data before passing it down to the Session layer. Some people may choose this as their
favorite layer because it presents the data to the Application layer and the Application layer is
so important.

The Session Layer

The Session layer is below the Presentation layer. It controls the dialog during
communications. The Session layer protocols set up sessions, or connections. These protocols

cover such topics as how to establish a connection, how to use a connection, and how to break
down the connection when a session is completed. After a connection is established, the
Session layer protocols check for transmission errors. The Session layer also adds control
headers to the data packets during the exchange of data.

The Transport Layer

Below the Session layer is the Transport layer. The Transport layer can guarantee that packets
are received. The Transport layer also can establish a connection and send acknowledgments
as packets are received. The protocols in this layer provide the means to establish, maintain,
and release connections for the hosts involved in communication.

The Network Layer

The Network layer, which is below the Transport layer, is responsible for routing the packet
based on its logical address. The Network layer fragments and reassembles packets if
necessary. It also moves the packets of data from the source to the destination and across
networks if necessary. Many people may choose this layer of the OSI model as their favorite
because this is where routing happens.

The Data-Link Layer

Below the Network layer is the Data-Link layer, which is where the data is prepared for final
delivery to the network. The packet is encapsulated into a frame (which is a term used to
describe the bundle of binary data). Protocols at this layer aid in the addressing and error
detection of data being transferred.

The Data-Link layer is made up of two sublayers: the Logical Link Control (LLC) sublayer
and the Media Access Control (MAC) sublayer. Each sublayer provides its own services. The
LLC sublayer is the interface between Network layer protocols and the media access method,
for example, Ethernet or Token Ring. The MAC sublayer handles the connection to the
physical media, such as twisted-pair or coaxial cabling.

The Physical Layer

At the bottom of the OSI model is the Physical layer. The topics at this layer determine how
the sending and receiving bits of data move along the network's wire. Think of the actual bits
moving from the network card on your computer to the wire on the network. I call this the
"John Madden layer," because this is truly a blue-collar layer. This layer works down in the
trenches putting the bits on the wire and taking them off of the wire. At this layer we talk
about the data in bits and packets.

Mnemonics to Help You Remember the Seven Layers

Remembering the order of the OSI model's seven layers will be helpful in any discussion of
any protocol or protocol suite. Some mnemonics that might help you remember the seven
layers are:

From top to bottom:

• All People Seem To Need Data Processing
• Aunt Paula Says To Never Drink Poison

From bottom to top:

• Please Do Not Throw Sausage Pizza Away
• Please Do Not Take Sales Persons' Advice
• Paul Dumped Nancy To See Paula Abdul

How the OSI Model Is Used

Packet creation starts at the top of the OSI model. The Application layer gets the data to be
transmitted and passes the packet down to the Presentation layer, where another header is put
on the packet. The Presentation layer passes the packet down, and each layer puts a header on
the packet until the Physical layer gets the packet. The Physical layer merges the packet onto
the network wire, and the data continues on its way to the destination.

At the destination, the packet moves in the opposite direction, from the bottom of the model
to the top. The Physical layer at the destination protocol stack takes the packet off of the wire
and passes it up to the Data-Link layer. The Data-Link layer examines the header that the
sending Data-Link layer put on the packet. If this is not the destination for this packet, the
packet is discarded. If this is the destination for this packet, the Data-Link layer protocols strip
off the Data-Link header that the sender had put onto the packet and pass the rest of the
packet up to the Network layer. This continues at every layer until the data reaches the top of
the stack.

In this way, each layer of the sending host communicates with the same layer of the receiving
host. This is called peer-layer communication.

peer-layer communication A type of communication in which each layer of the sending
host communicates with the same layer of the receiving host.

The illustration below depicts peer-layer communication. Each layer in the sending host
communicates with its peer layer in the receiving host. Notice that each layer has specific
responsibilities that aid in communicating with the other host.

TCP/IP and the DoD Model

The TCP/IP protocol suite was developed before the OSI model was published. As a result, it
does not use the OSI model as a reference. TCP/IP was developed using the Department of
Defense (DoD) reference model. It's important to be familiar with the OSI model, though,
because OSI is used to compare the TCP/IP suite with other protocol suites.

Department of Defense (DoD) The branch of the United States military maintaining national
defense.

Unlike the OSI model, the DoD reference model has four layers. Still, the DoD model
answers the same questions about network communications as the OSI model. In the
following chapters, you will learn about each of the layers in the DoD model.

The four layers of the DoD model are

• Application Covers the same topics as the Application, Presentation, and Session
layers in the OSI model. The Application layer is covered in detail in Chapter 5.

• Transport Covers the topics of Transport from the OSI model. The Transport layer is
covered in detail in Chapter 4.

• Internet Covers the topics of Network from the OSI model. The Internet layer is
examined in detail in Chapter 3.

• Network Interface Layer Covers the topics of Data-Link and Physical from the OSI
model. The Network Interface layer is examined in detail in Chapter 3.

The following table compares the OSI and DoD models. Notice how some of the layers in the
DoD model encompass several layers of the OSI model.

Review Questions
1. What is a protocol?

2. What is a packet?
3. Why was the OSI model created?

4. List the seven layers of the OSI model.

5. List the four layers of the DoD model.

6. List three protocol suites.

7. Data is moved across the network in manageable chunks of data called

8. Labels on a package are analogous to _______ on a packet.

9. Which layer of the OSI model has been divided into two sublayers, and what are

they?

10. What is your favorite layer of the OSI model and why?

11. What is your least favorite layer of the OSI model and why?

Answers

1. A protocol is a set of rules for communicating that the sending and receiving hosts use
when they send data back and forth.

2. A packet is a unit of data that is sent from an originating host to a destination host on a
network.

3. The OSI model was created to break down the many tasks involved in moving data from
one host to another.

4. Application, Presentation, Session, Transport, Network, Data-Link, and Physical
5. Application, Transport, Internet, and Network Interface
6. IPX/SPX, TCP/IP, AppleTalk
7. Packets
8. Headers
9. Data-Link; LLC (Logical Link Control) and MAC (Media Access Control)
10. Answers will vary.
11. Answers will vary.

Terms to Know

• protocol suite
• protocol stack
• headers
• encapsulation
• ISO
• OSI
• layers
• peer-layer communication
• DoD

Chapter 3: The Network Interface and
Internet Layers
The Network Interface layer and the Internet layer address and route packets. These layers
interact with the network by defining how the packets are moved to and from the network.
Protocols place headers onto the packet like labels being placed on a package that is being
mailed. As each packet is received at a host, it is examined to see if it needs to be processed or
discarded.

The Network Interface Layer

The lowest layer in the TCP/IP stack is the Network Interface layer. The primary
responsibility of the Network Interface layer is to define how a computer connects to a
network. This is an important part of the data delivery process because data must be delivered
to a particular host through a connection to a network, and data leaving a host has to follow
the rules of the network that it is on.

Network Interface layer Lowest layer of the DoD model, it acts as a host's connection, or
interface, to the network.

The TCP/IP Network Interface layer does not regulate the type of network that the host is on,
but the network that the host is on dictates the driver that the Network Interface layer uses.
The host can be on an Ethernet, Token Ring, or Fiber Distributed Data Interface (FDDI), for
instance, or on any other network topology. The host has to follow the rules for transmitting
and receiving data according to the topology of the network.

network topology Describes how a network is connected and how each host knows when
and how to transmit and receive data.

One way to understand how the host interacts with the Network Interface layer is to compare
it to a similar real-life example. For instance, say you are going to send a get-well-soon card
and a chocolate cake to your grandmother in the hospital. You are in charge of packaging and
addressing the cake and card, but then you turn it over to another system for delivery. You
might use one of the private companies offering overnight services or you might use the
United States Postal Service; that is not the critical component of this transaction. You must
follow the rules established by the service you are using, such as how to address the package,

how much to pay for postage, and how to include your return address. When Grandma
receives the package, it doesn't really matter how it got there, she is just pleased that it did.
How the Network Interface layer at a host interacts with the network that it is connected to is
analogous to how you would interact with the postal service.

 Note The Network Interface layer is sometimes referred to as the Data-Link layer.

The Network Interface layer is like the receiving department of the hospital. Employees there
receive many packages and must decide which to pass up to patients. After they see that your
package is addressed correctly, they pass it up to your grandmother. She processes the
package by opening it to eat the cake and read the card that you sent.

Similarly, the Network Interface layer is used to receive packets and to send packets. As a
packet is received by a network card, the Network Interface layer acts like the receiving
department at the hospital and determines whether to pass the packet up the protocol stack for
processing based on the hardware address. As a packet is being created, it eventually gets
passed down to the Network Interface layer to be put onto the network.

At the Network Interface layer, a header is applied that contains addressing information.
Contained within the header is an address called a hardware address, which you will learn
about in the next section. The following graphic shows several hosts on a network. Each host
has a mailbox through which it sends packets out onto the network and receives packets from
the network.

Hardware Address

Within every packet of data is a header that contains addressing information. This header
enables the packet to arrive at the correct location. This addressing information comes from a
physical address that is burned into every network interface card when the card is
manufactured. This address will not change for the life of the card. This burned-in address can
be called any of the following:

• Hardware address
• Media Access Control (MAC) address
• Ethernet address
• Physical address
• Network Interface Card (NIC) address

network interface card A piece of hardware that is used to connect a host to a network;
every host must have one in order to connect to a network.

The hardware address is unique to all the network cards ever manufactured. It is a 12-
character hexadecimal address. A hardware address looks similar to this:

00:A0:C9:0F:92:A5

 Note The three most common numbering systems used in the computer industry are binary,
decimal, and hexadecimal. The hexadecimal numbering system uses the same 0 to 9
digits as decimal, then uses A, B, C, D, E, and F to represent 10, 11, 12, 13, 14, and 15.
The decimal 16 is represented in hexadecimal as 10.

binary The base-2 numbering system that computers use to represent data; it
consists of only two numbers, 0 and 1.

decimal A numbering system that uses 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
hexadecimal A base-16 numbering system containing 16 sequential numbers

(including 0) as base units before adding a new position for the next
number; the hexadecimal system uses the numbers 0-9 and then the letters
A-F.

The first six of these hexadecimal characters represent the manufacturer and are unique to the
network card's manufacturer. The last six characters form a unique serial number that the
card's manufacturer has assigned to it.

Therefore, if a network card manufacturer doesn't use the same serial number twice, and no
two manufacturers use the same manufacturer ID, no two network cards will ever have the
same hardware address. In the same way that a Social Security number uniquely identifies a
person, a hardware address uniquely identifies a network card.

 Tip For all TCP/IP communication to occur, the sender/builder of the packet must know the
destination hardware address.

For a TCP/IP packet to be delivered, it must contain the destination's hardware address. As
each packet arrives at the network interface card, the portion of the packet that contains the
target hardware address is examined to see whether the packet is intended for that host. If the
target hardware address matches that of the receiving network interface card, or if the packet
was broadcast, the packet is passed up the stack for processing. If the packet's target hardware
address is different, then the packet is discarded.

This process is similar to going to the mailbox to check the mail. You may look through the
mail while you are still standing at the mailbox. As you are looking at the pieces, you check to
see to whom each letter is addressed. If it is addressed to you, you begin to process it; if it is
not to you, you ignore it. If an envelope is addressed to "resident," you also start to process it

and see whether it applies to you. The address of "resident" is like a broadcast address in a
packet: The broadcast mail is sent out hoping to find someone that it applies to.

Broadcast Packets

Every packet must be addressed to a host. As the packets move through the network, every
host will examine every packet to see if each is addressed to that host's unique hardware
address.

A packet may be intended for all hosts on a network. This type of packet is called a broadcast
packet. A broadcast packet contains the target hardware address of FF:FF:FF:FF:FF:FF.

broadcast packet A packet that is addressed to all hosts; the broadcast address is a universal
address enabling all hosts to receive the packet.

The Internet Layer

The Internet layer of the TCP/IP model lies between the Network Interface layer and the
Transport layer. (The Transport layer is discussed in Chapter 4.) The Internet layer contains
the protocols that are responsible for addressing and routing of packets. The Internet layer
contains several protocols, including:

• Internet Protocol (IP)
• Address Resolution Protocol (ARP)
• Internet Control Message Protocol (ICMP)
• Internet Group Message Protocol (IGMP)

Internet layer Layer between the Network Interface and Transport layers of the DoD model;
protocols at the Internet layer focus on addressing.

routing The process of determining which is the next path to send a packet so that it
gets to its destination.

In the following sections, you will learn about each of these protocols.

In the preceding section, you learned that for TCP/IP communication to be successful, the
packet examined by the Network Interface layer must have a hardware address in its header.
As the packet moves up to the Internet layer, it also needs to contain an IP address. Using the
IP address, the Internet layer provides the necessary protocols to determine the hardware
address for routing the packet to the destination.

IP address An address that IP uses to identify a unique network and host.
 Note IP addressing is covered in detail in Chapter 6.

The illustration below shows the protocols at the Internet layer. Each of these protocols is
discussed in the following sections.

Internet Protocol (IP)

The Internet Protocol is the primary protocol at the Internet layer of the TCP/IP stack. This
protocol is responsible for determining the source and destination IP addresses of every
packet.

The network administrator assigns every host on a network a unique IP address. Whereas the
hardware address refers to the physical network card, the IP address refers to a logical
address that the network administrator has assigned to the host. Every host on a TCP/IP
network has a unique IP address. An example of an IP address is:

192.168.2.51

logical address This address can be modified; it refers only to the host.

This logical address is assigned by the administrator to the host and must be unique on its
network. A portion of the IP address describes the TCP/IP network that the host is on, and a
portion describes the unique host address on that network.

The street address where you live is like a logical address. A letter that is addressed to you
will be delivered to your house because of this logical address. If you move to another house,
your address will change, and letters to you will have to be sent to this new address-but the
one who the letter is being delivered to, you, is still the same.

As a packet is being passed down the TCP/IP stack, a source and target IP address are put into
an IP header. IP determines whether the destination is local or remote as compared to the
source host. The target is local if IP determines that the target is on the same network, and it is
remote if the target is on another network. IP can make this determination based on the IP
address of the target and the subnet mask of the source host.

subnet mask A parameter included with every IP address that highlights the network portion
of the IP address.

The subnet mask is a required parameter of every TCP/IP address that is used to separate the
network and host portions of that address.

 Note Subnet masks are covered in Chapter 7.

Determining Whether the Destination is Local or Remote

IP needs to determine how to get a packet to the destination. If the destination is addressed to
a host on the local network, TCP/IP can communicate directly with the destination host. If the
host is on a remote network, TCP/IP needs to send the packet through the default gateway.

remote network A network other than the one that the host is on; a remote network is on the
other side of a router.

default gateway A parameter included with the router's IP address that packets are sent to en
route to a remote network.

A default gateway, also called a router, is the address of a host on the network that offers a
route off of the network. In other words, the default gateway is the door providing access off
of the network.

router A host that interfaces with other networks and can move packets from one network to
another.

TCP/IP's communication process is similar to mailing a package. If you want to send a
package to someone who lives on the same street that you do, you'd be able to deliver it
yourself. If you mail a package to someone who lives on any other street, the package would
go to the post office, and then the post office could figure out how to get the package to its
destination. The post office is like a default gateway.

In the illustration below, the router is like a post office that routes the packets to the correct
network.

The next illustration shows Harry the Host sending a packet to Sally the Host. The IP protocol
in Harry's TCP/IP stack will examine the destination address (Sally's) and determine that

Sally is local to Harry. The destination host is local when IP determines that both the sending
and destination hosts have the same network portion in their IP addresses.

If the target host is local, IP needs to get the hardware address for the target. If the target host
is remote, IP looks in its routing table for an explicit route to that network. If there is an
explicit route, IP needs to get the hardware address of the gateway listed in the routing table.
If there is no explicit route, IP needs to get the hardware address for the default gateway.

routing table A table that contains the addresses indicating the best routes to other networks.

Determining the Hardware Address

The following flowchart outlines the decision process that TCP/IP uses to decide whose
hardware address is required to send a packet.

When assigning the IP address of the host, a network administrator will type in the address of
the default gateway as one of the TCP/IP parameters. (The packet will be sent to the default
gateway's hardware address if the packet is destined for another network.) The default
gateway then determines whether the target IP address is on one of its other interfaces or
whether the default gateway needs to forward the packet to another router.

Using another analogy, this is similar to going to an airport and trying to get to a destination.
If there is a direct route from the airport to your destination, you are sent to your destination.
If no direct route exists, you are sent on a route that will get you closer to your destination. If
the target is on one of the other interfaces, IP can send the packet through that interface onto
the destination network. IP on the gateway strips off the original IP header and puts a new IP
header on the packet. The gateway is now the source, and the destination of the packet is
either the actual target or the next gateway on its way to the target network.

In the next step, IP uses the Address Resolution Protocol (ARP) to get the hardware address
of the destination host. ARP is like a detective who will find the hardware address of the
destination host based on the IP address that the Internet Protocol is asking for.

Address Resolution Protocol (ARP) A protocol used to translate an IP address to a
hardware address.

Address Resolution Protocol (ARP)

ARP is a protocol that can resolve an IP address to a hardware address. After the hardware
address is resolved, ARP maintains that information for a short time. Because the host wants
to communicate with another host, but only has the IP address, ARP will ask, "Hey, what is
your hardware address?" and wait for an answer.

resolve To translate a logical to a physical address.

The first place that ARP looks to resolve an IP address to a hardware address is in ARP
cache. ARP cache is an area in random access memory (RAM) where ARP keeps the IP and
hardware addresses that have been resolved. If ARP can find the IP and hardware addresses in
ARP cache, the packet is addressed to the hardware address with no further resolution. If the
IP address is not in ARP cache, ARP will initiate an ARP request broadcast.

ARP cache An area in RAM that holds recently resolved IP-to-hardware address
resolutions.

ARP request A broadcast packet that seeks to resolve an IP address to a hardware address.

After an IP address is resolved to a hardware address, it is stored in ARP cache for two
minutes. If IP requests resolution again to the same IP address within those two minutes, the
entry will stay in ARP cache another two minutes. An entry can stay in ARP cache for a
maximum of ten minutes; then it will be removed from cache regardless of whether it has
been referenced within the last two minutes.

The screen capture below shows the ARP cache. The cache contains three types of entries: the
IP address in the first column, the hardware address in the second column, and an indication
of how the entry got into ARP cache in the third column. An entry in ARP cache is dynamic

when an address has been discovered through broadcast, and static when the address has been
manually added.

Using Broadcast to Resolve a Hardware Address

If ARP does not find the IP address in ARP cache, the ARP protocol initiates an ARP request.
This request is broadcast on the local network. In the following illustration, Harry's ARP is
trying to get resolution for the IP address of 209.132.94.101. ARP broadcasts a packet onto
the network that basically says:

"HEY, WHOEVER IS 209.132.94.101, I NEED YOUR HARDWARE ADDRESS!"

The ARP broadcast is addressed to every host by setting the destination hardware address to
FF:FF:FF:FF:FF:FF. The ARP broadcast contains the IP address of the requested destination
so that the intended recipient is identified. The ARP broadcast also contains the source's
hardware address. Including the source's hardware address expedites the reply from the

destination host. After the destination receives and recognizes that the ARP broadcast is
intended for it, the destination puts the source IP address and hardware address into its own
ARP cache. Because the source's hardware address is in ARP cache, the address will already
be known when the ARP reply is sent back to the original source.

As the ARP packet is received at each host, the network interface card takes the packet off of
the wire and passes it up through the Network Interface layer to the Internet layer and ARP.
ARP at the destination examines the packet to see whether the packet is asking for that host's
hardware address. If the ARP request is not for that host, the packet is discarded. If it does
have that host's hardware address, the IP and hardware address of the source is put into ARP
cache and an ARP reply to the source is created. The target's hardware address is included in
the ARP reply. When the ARP reply is received, the IP and hardware addresses are placed
into ARP cache for two minutes.

ARP reply A packet that is returned to the sender of the ARP request and that includes the IP
address and hardware address that was requested.

In the illustration below, Sally the host responds to the ARP request with a packet that
contains her IP address and hardware address. This ARP reply is sent directly to Harry
because the ARP request had his IP and hardware addresses.

ARP Packets

The following screen shot shows two ARP packets that were captured from a network. The
first packet says that it is an ARP request and the target IP is 209.132.94.101.

The bottom portion of the graphic shows the contents of the first packet. You can see that the
ARP request packet was broadcast to all hosts (destination FFFFFFFFFFFF) in the
ETHERNET section. This ARP request came from a source host whose hardware address is
00104B749112. In the ARP section of this packet, the sender's hardware and protocol
addresses and the target's protocol address are filled in, but not the target's hardware address.
The purpose of this packet is to request that the host with the protocol address of
209.132.94.101 reply and fill in the hardware address section.

The following screen shot shows the contents of the ARP reply. The reply is a new packet and
is sent from the target host. The target host is now the sender because it is sending back the
requested information. In this reply packet, the source lets the destination know the source's
hardware address.

Internet Control Message Protocol (ICMP)

ICMP is a protocol used primarily for sending error messages, performing diagnostics, and
controlling the flow of data. An example of an error message and of flow control is an ICMP
source-quench packet sent by a router to a source host to tell the host to slow down because
the router is overloaded.

source-quench An ICMP packet that is sent to slow down the transmission at the source.

Routers let hosts send data as fast as possible-unless traffic at the router is getting too heavy.
Then, a router will send the host a source-quench message as an ICMP packet, requesting that
the host slow down. After the host receives a source-quench message, the host will slow down
and then slowly increase the speed again until another source-quench message is sent.

The router's action is similar to a real-life situation you might be familiar with. When driving
in the car with the kids in the back, I will let them play and get louder until finally I will send
back a source-quench message. The message says, "You'd better quiet down; you're getting
too loud!" The kids will immediately quiet down. Then they will slowly start ramping up
again until I have to send back another source-quench message. The kids will make as much
noise as they can get away with in the same way that the hosts will constantly be trying to
send data as fast as the router can handle it.

Performing Diagnostics with ICMP and Ping

As stated earlier, the ICMP protocol is used for performing diagnostics. An example of using
ICMP as a diagnostic tool is with the Ping utility. Ping stands for Packet InterNet Groper.

Ping Packet InterNet Groper; a software utility that tests connectivity between two TCP/IP
hosts.

An administrator uses the Ping utility to send four ICMP echo request packets to the
destination host and to ask that the destination host reply to these packets. ICMP places a
small amount of data and requests that the data get sent back. If the data returns, the
administrator can assume successful connectivity to the destination. If the ICMP packet does
not return, then a connectivity problem exists.

To ping another host from a command prompt, type:

Ping ip address

Examining Ping Packets

In the screen shot below, the source host (209.132.94.100) pinged the destination host
(209.132.94.101).

The screen shot shows:

1. (Frame 1) An ARP request is broadcast for the target 209.132.94.101.
2. (Frame 2) An ARP reply is sent to the source at 209.132.94.100 with the target's

hardware address.
3. (Frame 3) An ICMP packet is sent from the source 209.132.94.100 to the destination

209.132.94.101 requesting an "echo."
4. (Frame 4) An ICMP echo reply is sent from the destination 209.132.94.101 to the

source 209.132.94.100.
5. (Frames 5-10) Steps 3 and 4 are repeated three more times.

Looking at captured packets is like eavesdropping on the hosts' conversation. Sending a little
ICMP packet to another host is an excellent method of testing connectivity. It takes virtually
no overhead for the destination to respond with an ICMP reply.

Although almost no overhead is required, some sites, such as www.microsoft.com, will not
respond to ICMP request packets. The enormous amount of ping-request traffic Microsoft was
receiving caused the overhead to get excessive, and so their servers no longer reply to such
requests. A network administrator has set up a filter as well so that ICMP echo packets are
filtered or dropped at the firewall for security purposes. A company may not want outsiders
pinging or "groping" inside their network.

firewall An application that prevents certain types of data from passing from a public
network to an internal, private network.

Internet Group Management Protocol (IGMP)

IGMP is a protocol that enables one host to send one stream of data to many hosts at the
same time. Most TCP/IP connections consist of one host sending data to one other host, or
possibly to all hosts via a broadcast. In contrast, IGMP packets are directed to a reserved IP
address, and any hosts that would like to receive the data stream have to listen at the address.
In other words, the host does not wait to receive data at its own address-it has to actively
request the data that is sent to the reserved IP address.

stream A series of packets sent without waiting for acknowledgments.
reserved IP address An IP address that cannot be used as a valid host address.

The destination IP address used by IGMP is called a multicast address. These reserved IP
addresses cannot be assigned to a host. With special software, a TCP/IP host can "listen" for
data that is being sent to a multicast address. When several hosts are listening for data at a
specific address and data is sent to that address, all the hosts receive the data. All these
packets contain an IGMP header.

multicast address A reserved IP address that IGMP uses for streaming data.
 Note Multicast addresses are covered in detail in

Chapter 6.

Many devices on a network use IGMP packets to exchange data. Some routing protocols use
IGMP to exchange routing tables. Windows Internet Naming Service (WINS) can use IGMP
to exchange databases. Across the Internet, many sites are using IGMP packets to move
streams of data to many hosts concurrently.

The concept of multicast is similar to a garden hose that has a bunch of small pinholes in it.
As a stream of water gushes down the hose, the water is received by many. The water
represents the one stream of data and the pinholes represent the hosts that receive it. In this
way, the stream is sent only once, but many can receive it.

Sending Streaming Audio and Video with IGMP

IGMP can be used as the protocol for sending streaming audio or streaming video when the
data needs to go from one source to many receivers. Rather than address and track each

packet to every host, which would be impossible, the data is streamed to a multicast address,
and the recipients listen and receive at that address.

Again, multicasting is like a garden hose with several small holes in it: The water is not
directed to any one place, but it is dispersed to many. The following illustration shows a
server sending some IGMP audio packets. The host "sings" the broadcast. Some of the other
hosts listen and some don't. Whether Harry gets the data is not important to the sender.

Some of the largest multimedia files that get transferred through the Internet include audio
and video files. Streaming is a technique for transferring such data in a way that enables it to
be processed as a steady and continuous flow. Without streaming, large multimedia files get
broken up into smaller packets and reach end users in a hit-or-miss order. As the application is
trying to display the data, the out-of-order pattern results in an unacceptable, choppy
presentation.

Because of the growing popularity of the Internet and the demand for these large multimedia
files to arrive in a smooth, orderly fashion, streaming technologies are becoming increasingly
important. Most users do not have fast enough access to download large multimedia files
quickly. With streaming, Web browsers can start displaying the data before the entire file has
been transmitted.

In the streaming process, the host receiving the data collects the data and sends it up the
protocol stack to the application that is processing the data. The application converts the data
to sound or pictures and presents it as one smooth flow of information. If the host receiving
the stream receives the data faster than it can be processed, that host needs to temporarily save
the excess data in a buffer so that it can be presented by the application in a smooth manner. If
the data isn't received quickly enough, though, the presentation of the data will not be smooth;
it will be choppy and staticky.

Review Questions
1. List three other names for hardware address.

2. What hardware address is a broadcast packet addressed to?

3. List four protocols at the Internet layer.

4. List two responsibilities of IP.

5. What protocol resolves an IP address to a hardware address?

6. How long will IP-to-hardware address resolution stay in ARP cache?

7. What hardware address is an ARP request sent to?

8. What hardware address is an ARP reply sent to?

9. What software utility uses ICMP?

10. What information is contained in an ARP request?

11. What information is contained in an ARP reply?
12. List three examples of a network topology.
13. When is the hardware address assigned to the network interface card?
14. How many characters does the hardware address contain?

Answers

1. Any three of the following: MAC, Ethernet, physical, or NIC
2. FF:FF:FF:FF:FF:FF
3. IP, ARP, ICMP, IGMP
4. Logical addressing and routing
5. ARP
6. 2 minutes, and up to 10 minutes if used again
7. Broadcast, FF:FF:FF:FF:FF:FF
8. The hardware address of the host that sent the ARP request
9. Ping
10. Source IP address, source hardware address, destination IP address, and destination

hardware address (set to FF:FF:FF:FF:FF:FF)
11. Source IP address, source hardware address, destination IP address, and destination

hardware address
12. Ethernet, Token Ring, FDDI
13. The manufacturer "burns in" the address to a chip on the card when the card is

manufactured.
14. 12 hexadecimal characters

Terms to Know

• Network Interface layer
• network topology
• network interface card
• binary
• decimal
• hexadecimal

• broadcast packet
• Internet layer
• routing
• IP address
• logical address
• subnet mask
• remote network
• default gateway
• router
• routing table
• ARP
• resolve
• ARP cache
• ARP request
• ARP reply
• source-quench
• ping
• firewall
• stream
• reserved IP address
• multicast address

Chapter 4: The Transport Layer
The Transport layer determines whether the sender and the receiver will set up a connection
before communicating and how often they will send acknowledgments of that connection to
each other.

The Transport layer has only two protocols:

• Transmission Control Protocol (TCP)
• User Datagram Protocol (UDP)

Whereas TCP sets up a connection and sends acknowledgments, UDP does not. UDP can
move data faster, but TCP guarantees delivery. Both are explained in this chapter.

Understanding the Transport Layer

The protocols at the Transport layer deliver data to and receive data from the Transport layer
protocols of other hosts. The other host can be on the local network or on a network thousands
of miles away. In some documentation, the Transport layer is also called the Host-to-Host
layer.

The Transport layer of the TCP/IP protocol suite consists of only two protocols, TCP and
UDP. TCP provides connection-oriented, reliable communication, and UDP provides
connectionless, unreliable communication. TCP is slower and typically used for transferring
large amounts of data to ensure that the data won't have to be sent again. UDP is faster and
typically used for transferring small amounts of data.

Connection-oriented means that a connection is established as the communication begins.
During this connection, certain information is exchanged to set the parameters of the main
communication. Questions such as the following are answered:

• How much data can each host receive at a time?
• What sequence numbers should the hosts use in this connection?
• What acknowledgment numbers should be used in this connection?
• How long should each host wait for acknowledgments before resending data?

Reliable means that an acknowledgment will be sent back to the sending host throughout the
communication to verify receipt of the packets. As each segment of data is received at the
destination, an acknowledgment is sent to the sender within a specified period. If an
acknowledgment is not sent within that time, the sender resends the data. If the receiver of the
data gets the data in a damaged condition, the damaged packet is simply discarded. The
recipient sends no acknowledgment for the damaged packet, and because the sender receives
no acknowledgment, the data is re-sent.

The screen capture below shows the TCP portion of a packet. Notice the sequence and
acknowledgment numbers: Frame 1 is sent from Harry to the FTP server to establish the
connection; the sequence numbers are 2714368-2714371. Frame 2 is sent from the FTP server
(and delivered by Harry's default gateway) and displays an acknowledgment for 2714369.

Unlike TCP, UDP provides connectionless, unreliable communication. Connectionless means
that no connection is established before data transfer begins. The sending host does not send
any setup packets to the destination; it just starts sending. This process is similar to the service
that has an operator announcing the correct time when you call a designated telephone
number. The operator continually sends out the current time; if nobody gets it, that's okay.
The communication is considered unreliable because there will be no acknowledgments that
the data was received at the destination. In addition, this type of packet contains a small
header at the Transport layer, and because there is no connection to establish and no
acknowledgment to wait for, data can be transferred faster.

The screen capture below shows the UDP portion of a packet. Notice that the UDP header is
very small compared to the TCP portion of the packet shown above. The UDP portion has no
sequence numbers nor acknowledgments. The packet is simply sent out, and hopefully the
recipient gets it.

Understanding Transmission Control Protocol

Transmission Control Protocol (TCP) is the protocol that connects the sending host and the
receiving host to each other. TCP is a connection-oriented protocol, which means that the
two hosts that are communicating know about each other. One of the first aspects they
determine is how to communicate with each other, where to send data, and how it will be
received. The protocol guarantees delivery of packets by sending acknowledgments after
each packet is received.

Transmission Control Protocol (TCP) Protocol at the Transport layer that is connection
oriented and guarantees delivery of packets. TCP is
responsible for ensuring that a message is divided
into the packets that IP manages and for
reassembling the packets into the complete message
at the other end.

connection-oriented A type of protocol in which a connection is
established and maintained until the message or
messages to be exchanged by the application
programs at each end have been exchanged.

acknowledgments A packet sent by a host to confirm receipt of a
packet. The sending host waits for an
acknowledgment packet before sending additional
data. The destination host sends acknowledgments
as packets are received.

Before a sender begins sending data to a receiver, a short conversation takes place. The
conversation is initiated by the TCP protocol at the Transport layer of the sending host. The
protocol sends a packet to the receiving host to set up the communication for transferring
data.

TCP is similar to the protocol for using a walkie-talkie. The first person tries to set up a
connection by asking, "Hello, are you there?" The other person responds with, "Yes, I'm here,
go ahead." Then a conversation begins, and every time one person gives some information,
the other needs to respond with an acknowledgment that the information was received.
Several times in the walkie-talkie conversation, the one receiving the information says,
"Okay, got it, keep going."

Using a Three-Way Handshake

A conversation is started with a three-way handshake. In the first step of this process, the
initiator of the conversation sends a packet to the other host requesting that they start a
conversation. In the second step, the destination host sends back an acknowledgment that
agrees to set up the communication and sets some parameters. In the final step, the initiator
sends back one more packet that is a confirmation of the connection.

three-way handshake A three-step conversation initiated by TCP to set up a connection
between hosts.

A good analogy for the three-way handshake is a secretary placing a call for an executive. The
secretary acts like TCP when initiating the call for the executive. The secretary sets up the call
with the destination executive and possibly lays down some guidelines. After the destination
executive and the secretary have agreed, the "real" conversation begins between the
executives.

The three-way handshake is used to set up TCP/IP communication, for example, when
requesting a Web page. In the following dialog, Harry the Host is setting up a conversation
with Wally the Web Server. The Web server is a host on the Internet that listens for requests
and responds by sending Web pages. This is a sample of the process used to set up a
conversation between any two hosts so that TCP/IP communication can occur.

Harry: "Hello, I would like to connect to you and make some requests from you. Please send
a packet to me to acknowledge that you received this. Please send it to my port 1076; that's
where I'll be listening for your response."

Wally: "Hi, I am acknowledging receipt of a packet from you. I would be happy to set up a
connection with you. Please acknowledge that you received this packet."

Harry: "All right, I'm acknowledging receipt of a packet from you. Thanks for
acknowledging me. Let's get started."

In the illustration below, Harry the Host sets up communication with Wally the Web Server.

Then the conversation continues like this:

Harry: "Hi, it's me. I'd like you to send me your home page."

Wally: "Here's some of it. Let me know when you've got it, and I'll send you more."

Harry: "Got it; let me have more."

Wally: "Here's some more; let me know when you've got it."

Organizing Data and Guaranteeing Delivery

TCP is a connection-oriented protocol because the connection is set up and used for the entire
conversation. As packets are moved between the hosts having the conversation, TCP provides
the connection. Each packet has a TCP header that includes sequence numbers,
acknowledgment numbers, addresses, and other pieces of connection information.

sequence numbers Numbers in a header that indicate the order of packets. If packets get out
of order en route to the destination host, this numbering system enables
packets to be rearranged in order at the destination host.

TCP is also responsible for dividing the data into smaller packets if the data is too large to fit
into a single packet. TCP on the destination host reassembles the packets so that the data is
presented to the Application layer all put back together.

After a packet is sent, the sending host waits for an acknowledgment before sending more
data. This is the feature of TCP that guarantees delivery of packets. If an acknowledgment is
not received at the sending host, the sender resends the packet.

Every TCP packet that is received by the receiver triggers TCP to send back an
acknowledgment packet. If the sending host does not receive the acknowledgment, then
something must have gone wrong. Rather than send out a search-and-rescue party to try to
find the packet, TCP on the host simply retransmits the missing packet.

Many times my wife tells me that she would like me to at least respond to something she is
saying. I listen to her talk and instead of immediately responding, I think through what she's
saying. Or maybe I just pretend to listen while I think about a baseball game, and I forget to
respond. She says, "Are you listening to me?" What she wants is a response before she sends
me more information. I could respond with a grunt or a nod of my head, and that would let her
know that I received the data and I'm ready for more. Likewise, TCP would just like an
acknowledgment before sending more data.

Understanding User Datagram Protocol

User Datagram Protocol (UDP) is the protocol used at the Transport layer for
connectionless, non-guaranteed communication. Unlike TCP, UDP does not set up a
connection and does not use acknowledgments.

User Datagram Protocol (UDP) A protocol offering a limited amount of service when
messages are exchanged between hosts. No connection is
set up and no acknowledgments are expected.

connectionless Communication that occurs without a connection first
being set up.

Instead, UDP just blasts out the packets. If the receiver gets the packet, great; if not, oh well.
If a UDP packet gets lost or never arrives at the destination, the sender doesn't know nor care
about it. When an application uses UDP, no connection gets set up before a conversation
starts-the sender just sends.

In other words, UDP is similar to me teaching a class on television. I send out the data but I'm
not waiting for you to acknowledge any of the data. It is not specifically going to anyone, but
I'm hoping that you're watching. This communication method is much faster than teaching
you in my classroom. In my classroom, I'd be looking for your acknowledgments before
continuing to the next topic. On television, I don't have to wait; I'm hoping that you get it, but
I don't know. As a matter of fact, you may have left the room to get a soda and a sandwich.
Still, I keep on sending the data because I'm not waiting for your acknowledgments.

UDP is useful when TCP would be too complex, too slow, or just unnecessary.

UDP provides a few details in the UDP header that are used to get the packet to the right port
at the destination host. One of the parameters in the small UDP header is the port number. The
16-bit UDP port number indicates the location of the service that the host is looking for.

Another value that is placed into the UDP header is a checksum. The sending host calculates
the checksum by using a special algorithm and then places the checksum into the UDP
header. The algorithm applies an equation to the data that is being sent (all the 1s and 0s). The
checksum is used by the receiving host to verify that the packet was received intact. The
recipient applies the same algorithm to the received packet, and if the value matches the UDP
checksum value, the packet was received intact. If the values are different, the packet is
simply discarded and ignored.

UDP Communication

In terms of computers, a host may use UDP to make a request of some service, not knowing
where that service is located. A UDP conversation is similar to one Harry the Host might have
when looking for a Dynamic Host Configuration Protocol (DHCP) server. He doesn't send a
request to the DHCP server because he doesn't know where it is. There is no acknowledgment
that anyone received the packet. However, Donna the DHCP server does hear his request and
responds.

The short conversation would be like this:

Harry: "Hey, I'm looking for a DHCP server."

Donna: "I am a DHCP server."

When Harry sends out the UDP packet, no connection is set up nor does Harry wait for an
acknowledgment of packet receipt. Harry waits for the answer to the request, but not for an
acknowledgment.

When UDP is used, the connection and guarantee of the packets are usually the responsibility
of a higher layer. The application that resides at a higher layer is responsible for making sure
that the UDP packets are getting to their destinations correctly.

Throughout this chapter you have learned the differences between TCP and UDP. One of the
most striking comparisons is the size of the header at the Transport layer.

The screen capture below is the layout of the TCP header from the actual RFC in which TCP
is described. RFC 761 details TCP; here is the author's header description:

Notice how large and complicated this header looks.

Compare the TCP header to the simple, relatively small header of UDP, which is detailed in
RFC 768.

Review Questions
1. List the two protocols at the Transport layer.

2. List two important characteristics of each protocol.

3. What is the name of the process that TCP uses to set up a connection?

4. What does TCP at the destination host send back to the sending host after receiving

data?
5. How long will UDP on the sending host wait for an acknowledgment before

sending more data?
6. When UDP is used, what is responsible for the guarantee of packet delivery?

7. What is the benefit of UDP?

8. What is the benefit of TCP?
9. Which RFC describes TCP?

10. Which RFC describes UDP?
11. Which protocol uses a larger header, TCP or UDP?
12. What is the purpose of a checksum?

Answers

1. TCP (Transmission Control Protocol) and UDP (User Datagram Protocol)
2. TCP: Connection-oriented and guaranteed; UDP: Connectionless and not guaranteed
3. Three-way handshake
4. An acknowledgment
5. UDP does not wait for acknowledgments.
6. The application
7. UDP can transfer data faster.

8. TCP guarantees delivery of data.
9. 761
10. 768
11. TCP
12. It verifies that the packet was received correctly.

Terms to Know

• TCP
• connection-oriented
• acknowledgments
• three-way handshake
• sequence numbers
• UDP
• connectionless

Chapter 5: The Application Layer
At the top of the TCP/IP stack is the Application layer. The Application layer contains
applications that process requests from other hosts. Ports and sockets are used to receive and
send data. To best describe the Application layer, this chapter closely examines the following
topics:

• Ports and sockets
• File Transfer Protocol (FTP)
• Hypertext Transfer Protocol (HTTP)

Understanding the Application Layer

The Application layer is the part of the TCP/IP where requests for data or services are
processed. Applications at this layer are waiting for requests to process and they are all
listening at their respective ports.

Application layer The top layer of the DoD and OSI models where applications listen for
and respond to requests.

ports Numbered addresses where requests are sent and where applications listen
for requests. Ports are numbered 1-65,536.

The Application layer is not where your word processor, spreadsheet, or Internet browser
application is running. Applications that are running at the Application layer interact with the
word processor, spreadsheet, or Internet browser application. Two examples of applications
that run at the Application layer are FTP and HTTP. Both are detailed later in this chapter.

Understanding Ports and Sockets

As a packet is moving up through the stack on its way to the Application layer, the Transport
layer directs the packet to the appropriate port. A port is a number that the application at the
Application layer uses as a send-and-receive address. A port is like a stereo speaker, and

applications are set up to listen at a particular speaker. The application puts its ear to the
speaker and waits for a request to be passed through it.

Imagine that the application is listening for requests to process. As a request makes its way up
the TCP/IP stack, either TCP or UDP at the Transport layer hands the request up to the
application. Remember, the application is set up to listen at a specific port number, and TCP
or UDP sends the request to the appropriate port based on information in the packet's header.

As a good analogy, imagine a local fast-food restaurant, which is a combination of a popular
hamburger franchise and a popular seafood franchise. When I order the Number 1 Value
Meal, how do the employees know which Number 1 Value Meal I mean? Do I mean the
hamburger or seafood Number 1? What kind of burger or fish is the Number 1?

I specify that I want the hamburger restaurant's Number 1 Value Meal when I place the order.
The employee behind the counter documents the order and passes it to the appropriate cook.
Both the hamburger and the seafood cooks have a different meaning for Number 1 Value
Meal, and depending on which cook the order is passed to, I get a burger or fish. Based on it
being a Number 1 Value Meal, the cook knows which burger to cook or fish to fry.

Note that when I order a Number 1 Value Meal, instead of saying the name of the burger,
fries, and soda, I just say "Hamburger Number 1." The employee at the counter then knows
which cook to pass my order to so that it can be processed. Similarly, rather than specify the
name of an application to get passed to, the packet specifies the port number to get passed to.

TCP and UDP have use of 65,536 ports each. A packet, for example, may specify that it is
bound for TCP port 80. TCP port 80 is the standard port for Web servers to listen for HTTP
requests. As another example, a packet may specify that it is bound for UDP port 69, which is
the standard for TFTP requests. The Internet layer passed this packet to either TCP or UDP
and now TCP or UDP at the Transport layer passes the packet to the appropriate port where
the application is listening for requests.

Think of this port information forming a funnel through the TCP/IP stack. As soon as a packet
is delivered to a particular IP address, it is passed up through the stack to make sure it is
addressed to the host that received it. Then it is passed up to TCP or UDP and then to the
appropriate port so that the application at the Application layer can process the request. This
funnel is called a socket.

socket IP address : TCP or UDP : port number.

A socket combines three pieces of information: the IP address, TCP or UDP, and the port
number. The TCP or UDP indicates which protocol is to be used. A socket is written like this:

131.107.2.200:TCP:80 or 131.107.2.200:UDP:69

The illustration below shows the TCP/IP protocol stack with 65,536 TCP ports and 65,536
UDP ports at the Application layer. Notice that as a packet moves up the stack, IP will direct
the packet to the either a TCP port or a UDP port. The applications are listening at their
appropriate ports so that when data arrives, it can be processed accurately.

Well-Known Ports

Well-known ports are port numbers that the Internet Assigned Number Authority (IANA)
has reserved for specific applications to use. For example:

Port Reserved For
TCP:80 HTTP
TCP:21 FTP
TCP:20 FTP-Data
UDP:69 Trivial File Transfer Protocol (TFTP)
UDP:161 Simple Network Management Protocol

(SNMP)
well-known ports Port numbers 1-1,024, which are

reserved for certain applications.
Internet Assigned Number Authority (IANA) An organization responsible for

overseeing several aspects of the
Internet.

The port numbers between 1 and 1,024 are considered well-known port numbers and are
reserved for specified applications, just as 911 and 411 are reserved and well-known
telephone numbers. Port numbers between 1,025 and 65,536 have no specified use.
Programmers use these ports for new applications they are writing. Well-known ports were
originally documented in RFC 1060 and were updated in RFC 1700.

The illustration below shows Harry the Host sending a request to Wally the Web Server, who
is listening to requests from a few different ports. Harry sends a request to TCP port 80,
requesting that Wally send him a Web page.

File Transfer Protocol (FTP)

File Transfer Protocol (FTP) is the protocol that defines how a file can be transferred from
one host to another. For a file to be transferred from one host to another, the FTP on the
initiating host creates the request for a file, and FTP on the FTP server processes the requests
for a file. A programmer who would like to learn all of the idiosyncrasies of FTP should read
RFC 959.

File Transfer Protocol (FTP) An application used to transfer files from one host to another
and to store the files on the requesting host.

Two hosts are involved in an FTP session. One host requests a file, and the other host has a
copy of the file and transfers a copy to the requesting host. Files can be transferred in either a
text or binary format.

binary format A compressed file format.

The host that is requesting the service is called a client and the host that provides the service
is called a server. These two hosts establish a client/server relationship, which is simply one
host making requests of another.

The requesting host uses an application to request the file. The application may be a word
processor, an FTP command line utility, or an FTP command interpreter. The FTP
command line utility enables a host to connect to an FTP server without using a fancy
interface by having the user simply enter FTP commands at the command line. FTP connects
to the FTP server, and the user is requested to log in. The user must supply a username and a
password. In the screen capture below, a connection was made to an FTP server at
ftp.microsoft.com. In this FTP session, the user logged in with the account name ftp and no
password.

FTP command line utility A non-mouse and non-fancy interface used to access an FTP

server.
FTP command interpreter A nice looking, easy-to-use application used to access an FTP

server.
FTP server Server on which an FTP server application is running to

transfer files out to clients.
 Tip Most FTP sites will allow an anonymous user to log in with no

password. When prompted for a username, you can type
anonymous. However, because anonymous is so difficult to spell,
you might want to log in by typing ftp as your anonymous
username. Although no password is required, using your e-mail
address as a password is considered "good FTP etiquette" when
using the anonymous account.

anonymous Account set up so that anyone can access files on an
FTP server without a secret password.

How FTP Works

The first packet that is sent from the requesting host to the FTP server is a TCP/IP packet
requesting to set up a connection. In this example, the packet was sent to TCP port 21 on the
FTP server. The requesting host chose a non-well-known port to listen for the reply. In this
case, the requesting host chose 1177 as the return port and will be listening for a response sent
to that port number. In the next screen capture, the first TCP/IP packet is shown as the
requesting host makes a request from the source port of 1177 to destination port of 21.

The FTP application was listening at port 21. Upon receiving the request, the application sent
back an FTP/TCP/IP packet to set up the connection and ask that the client send back the
username to log in. In this return packet, the FTP server is the source, and the FTP client is
the destination. The FTP server sends this reply to port 1177, where the FTP client said it
would be listening. In the FTP header that the FTP server built, the FTP server is passing FTP
information to the FTP client.

FTP/TCP/IP A packet that has an FTP header on top of a TCP header on top of an IP
header.

Notice in the screen capture that the source port labeled src:is set to port 1177. Harry, the
requesting host, has decided that the FTP server should send data back to this port.

The following screen capture shows the next packet in the sequence, where the FTP server
replies to the FTP client.

This dialog continues as the FTP server responds to the FTP client's requests. The client will
be able to see a list of files that are available and request either one or more server files be
transferred.

The command-line FTP client application requires that the user know the FTP commands and
how to use them. Another way that the user can connect to an FTP server-without knowing
how to use the commands-is to use an FTP command interpreter. Several of these interpreter
applications are available on the Internet; some are shareware and some can be downloaded
and used for a trial period. An example of one that can be downloaded for a 30-day trial
before you buy it is CuteFTP. CuteFTP has an easy-to-learn and easy-to-use interface. This
client application interprets the user's clicks, translates them to FTP commands, and passes
those commands to the FTP server. Another example of an FTP command interpreter
available on the Internet is FTP Voyager.

CuteFTP An easy-to-use FTP command interpreter application that turns your mouse clicks
into FTP commands.

 Tip For FTP to work, the server must be running an FTP server application, and the
client must be using an FTP client application.

Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol (HTTP) is a set of rules for exchanging files on the Internet.
This is the protocol that your Web browser uses when surfing the Internet. Unlike FTP, HTTP
is designed so that very little user intervention is required. HTTP transfers preformatted files
that are displayed in their browser instead of just saved to disk. The HTTP application runs on
a Web server and listens for requests, and then responds by sending files back to the
requestor. A Web server is a server that has the HTTP service application running on it.
HTTP listens at a TCP port, usually port 80 for requests, and then transfers the requested file
back to the requestor. The requesting host displays the file in a Web browser application.

Hypertext Transfer Protocol (HTTP) An application used to transfer files from one host to
another and to display the files at the requesting host.

Web server Server on which an HTTP server application is
running that users can surf to and request files be
transferred and displayed.

Web browser application A client application used for surfing the Web.
Examples are Netscape Navigator and Microsoft
Internet Explorer.

The client makes the HTTP request by issuing a command to their Web browser. The
command is initiated by typing a Uniform Resource Locator (URL), (such as
www.sybex.com) in the address line of the Web browser or by clicking a hyperlink on a page

that is being displayed by the Web browser. The Web browser formats the client's request into
an HTTP/TCP/IP request packet with a destination port of 80.

Uniform Resource Locator (URL) The address of the Web site that the user is surfing to.
hyperlink Underlined word on a Web site that links to another

document on that Web server or possibly another.
HTTP/TCP/IP A packet with an HTTP header on top of a TCP header

on top of an IP header.

At the Web server, the HTTP application is listening at port 80 for any requests. After the
packet is received, the appropriate file is retrieved and packaged for delivery to the client. The
packets leave the Web server, and upon arrival at the client, the Web browser decodes the
Hypertext Markup Language (HTML) file and displays it onscreen with the proper
formatting.

Hypertext Markup Language (HTML) The file format of Web pages housed on a Web
server that can be displayed in a useful format by a
Web browser.

So, let's look at what is really happening when you connect to a Web site:

1. You open your Web browser and type in the URL www.sybex.com.
2. Your Web browser creates the TCP/IP packet and sends it to a Web server somewhere

on the Internet. In other words, little ol' you makes a request of a big Web server to set
up a connection.

3. The Web server hears your request at port 80 and sends back a packet to you that says,
"Okay, I'll set up a connection with you."

4. Now that you have a connection with the Web server, you request that the Web server
send you its default page.

5. The Web server receives your response and gets the file that you requested. The file is
put into one or more packets, depending on how big the file is, and it is sent to you.

6. Your Web browser receives the packets and sends back an acknowledgement that they
were received. If the Web server does not get an acknowledgement from you, the
packet is re-sent.

7. Your Web browser displays the information that you requested on your screen as the
packets are received.

Below is a screen capture of Harry communicating with a Web server. Harry sends a GET
request to port 80. The Web server is listening at port 80 and will answer Harry's GET request
with a response that you can see in the next frame.

Several applications run at the Application layer. You have looked at FTP and HTTP as
examples of how applications operate. Some other common applications that run at the

Application layer include Simple Network Management Protocol (SNMP), Telnet, Simple
Mail Transfer Protocol (SMTP), and Trivial File Transfer Protocol (TFTP).

Review Questions
1. Where do applications listen for requests?

2. How many ports are there?

3. Which are the well-known ports?

4. Describe how FTP works.

5. Describe how HTTP works.

6. List some TCP/IP applications other than FTP and HTTP that may be running at

the Application layer.

7. Why do the screen captures in this chapter show that Harry the Host is
communicating with his default gateway instead of the actual FTP server or Web
server?

8. Can a server be both an FTP server and a Web server?
9. Why would an administrator change the HTTP port on the Web server to a port

number other than 80?

10. Which agency controls the well-known port assignments?
11. What is the standard HTTP port?
12. What are the three pieces of information that make up a socket?
13. What is an FTP command line interpreter?

Answers

1. At ports
2. 65,536
3. 1-1024
4. An FTP client logs into the FTP server and requests files by using TCP/IP. The FTP

server sends the requested files back to the client by using TCP/IP.
5. An HTTP client sends a request to an HTTP server by using TCP/IP. The HTTP server

sends the requested files back to the client by using TCP/IP, and the files are displayed
with a Web browser application.

6. SNMP, Telnet, SMTP, and TFTP
7. A host can send packets only to the gateway, and the gateway then has the responsibility

of sending on the packets to their destination.
8. Yes, a server can be running several services and listening at different ports for requests.
9. The standard for HTTP requests is port 80. To "hide" a Web site, an administrator can set

the Web server to listen to any other port where standard requests are not made (the
administrator can set it to listen only to port 8080 or port 8090, for example). In this way,
only someone who knows that the Web server is listening at the hidden port can access
the Web server.

10. Internet Assigned Number Authority (IANA)
11. 80

12. IP address, Transport layer protocol (TCP or UDP), and port number
13. A nice looking, easy-to-use application used to access an FTP server.

Terms to Know

• Application layer
• ports
• socket
• well-known ports
• IANA
• FTP
• binary format
• FTP command line utility
• FTP command interpreter
• FTP server
• anonymous
• FTP/TCP/IP
• CuteFTP
• HTTP
• Web server
• Web browser application
• URL
• hyperlink
• HTTP/TCP/IP
• HTML

Chapter 6: IP Addressing
This chapter covers Internet Protocol (IP) addresses. You will learn what an IP address is,
how to distinguish valid from invalid IP addresses, and how all the available IP addresses are
divided into categories called classes.

What Is IP Addressing?

Every host on a TCP/IP network needs to have a unique address, similar to you needing a
unique address for your house. With this unique address, it is possible to send data from host
to host. Every packet contains addressing information in the header, and the IP address in the
header is used to route packets. If several people on your street had the same address, the post
office would have a difficult time sorting mail. For a similar reason, IP addresses are unique
on each network.

IP addressing is simply configuring each TCP/IP host with a valid IP address. For access to
the Internet, a host must have an IP address that identifies not only the host address (like a
house number) but also identifies the network address (like a street number). An administrator
needs to be aware of proper addressing techniques so that the hosts on the network will
function correctly.

Numbering Systems

An IP address uniquely identifies every host on a network. Just as your mailing address
uniquely identifies your home, an IP address uniquely identifies a host.

Consider that your mailing address is made up of two parts. Part of it tells the postal carrier
what street you live on and part of it tells which house you live in on that street. All addresses
on your street include the same street name but have a unique number for each house. IP
addresses are similar: They can be broken down into two parts. One part of the IP address
represents the network that the host is on, and the other part represents that unique host on
that network.

TCP/IP looks at IP addresses in binary form, but as humans, we prefer to see IP addresses in
decimal form. Because the protocol is seeing only binary, working with IP addresses makes
more sense when you also look at the IP addresses in binary. To do so, you need to
understand the two numbering systems and be able to convert from one to another.

binary The base-2 number system that computers use to represent data. It consists of only
two digits: 0 and 1.

decimal The base-10 number system that people use to represent data. It consists of 10 digits:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

The decimal numbering system uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In the binary
numbering system, the only digits that exist are 0 and 1.

To better understand the binary numbering system, let's take a closer look at the decimal
numbering system that you are already familiar with. When you analyze the decimal
numbering system, it is clear that the numbers represent a specific value depending on which
place, or column, the number is in. For example, the number 27 has a 2 in the tens column and
a 7 in the ones column. The resulting value is (2 × 10) + (7 × 1).

As you scan across a decimal number, the value of the digit in each column increases from
right to left. The value of the digit in the rightmost column results from multiplying the
number by 1. The value of the digit in the next column to the left is found by multiplying the
number by 10, the next column to the left by 100, and the next by 1,000. The value of the
columns continues to increase by a factor of 10 as you move to the left. After you have found
the value of each of the columns, you add the values together to obtain the value of the overall
number.

You increase numbers in the decimal and binary systems in the same way. In either system,
you continue to increase the rightmost digit by 1 until you reach the highest value in the
numbering system (that is, until you reach 9 in the decimal system or until you reach 1 in the
binary system). After you have reached the highest value, add 1 to the digit immediately to
the left and start the rightmost digit from the lowest value again.

For example: In the decimal number 321, 1 is the rightmost digit. To increase 321
incrementally, add 1 to the rightmost digit to get 322. Continue increasing the rightmost digit
by 1 until the rightmost digit holds the highest value: 329. Now increase the digit to the left
and start the rightmost digit over from the lowest value: 330. After the highest digit is reached

in the rightmost column, increase the digit in the next left column by 1. Then begin again,
increasing the rightmost digit starting from 0.

 Note The octal and hexadecimal numbering systems are also used often in the computer
industry. Octal is base-8 and hexadecimal is base-16.

Reviewing Binary and Decimal Numbering Systems

In the chart of decimal numbers below, notice that each number is represented by four digits.
In the left column of the chart, the number 0000 is increased by one until the value of 0009 is
reached. At this point, the ones place has reached the highest value of the numbering system
so the digit in the tens place is increased, and the value in the ones place begins again from
0010. Each of the chart's columns shows the four-digit number being increased incrementally
by 1 until the 9 is reached.

Each group of three columns represents a point in the decimal numbering system where
increasing the rightmost value causes the next column to be increased.

0000 0010 0020 … 0090 0100 0110 … 0990 1000 1010
0001 0011 0021 0091 0101 0111 0991 1001 1011
0002 0012 0022 0092 0102 0112 0992 1002 1012
0003 0013 0023 0093 0103 0113 0993 1003 1013
0004 0014 0024 0094 0104 0114 0994 1004 1014
0005 0015 0025 0095 0105 0115 0995 1005 1015
0006 0016 0026 0096 0106 0116 0996 1006 1016
0007 0017 0027 0097 0107 0117 0997 1007 1017
0008 0018 0028 0098 0108 0118 0998 1008 1018
0009 0019 0029 0099 0109 0119 0999 1009 1019

The binary numbering system works the same way except that you can use only 1s and 0s.
Therefore, every time that you increase by an increment of 1, you have reached the highest
value in the binary numbering system. The following chart shows four binary digits being
increased by 1.

0000 1000
0001 1001
0010 1010
0011 1011
0100 1100
0101 1101
0110 1110
0111 1111

Converting Binary Numbers to Decimal

TCP/IP always uses binary IP addresses. But people tend to use decimal IP addresses because
they can more easily work with this familiar form. Converting binary to decimal and decimal
to binary is an important skill enabling network administrators to know the exact values that
TCP/IP uses.

Test It Out: Convert from Binary to Decimal

To convert binary to decimal, first examine the binary digits. For each column that has a 1,
note its decimal value, and then add those values together to get the decimal equivalent. The
decimal values for each column remain constant:

• The rightmost column has a decimal value of 1.
• The second column from the right has a decimal value of 2.
• The third column from the right has a decimal value of 4.
• The fourth column from the right has a decimal value of 8.

So, for example, in the binary number 0011, you have 1s in two columns. You know that the
rightmost column has the decimal value of 1, and the second column from the right has the
decimal value of 2. Add 1 and 2 and you get 3. Therefore, the decimal equivalent of 0011 is 3.

Now try the following examples:

1. Convert the binary number 0001.

The decimal equation for the conversion is 0 + 0 + 0 + 1

= 1 decimal

2. Convert the binary number 0110.

The decimal equation for the conversion is 0 + 4 + 2 + 0

= 6 decimal

3. Convert the binary number 1110.

The decimal equation for the conversion is 8 + 4 + 2 + 0

= 14 decimal

4. Convert the binary number 1111.

The decimal equation for the conversion is 8 + 4 + 2 + 1

= 15 decimal

Each of these columns represents a bit (binary digit). The greatest decimal number that can be
represented by 4 bits is 15.

Converting Decimal Numbers to Binary

Several simple methods can be used to convert decimal numbers to binary. Find one that you
are comfortable with, practice it, and you'll get the hang of it. Presented in this section are a
few methods that you might find useful.

Using the Bit Value Method

One method of converting a decimal number to binary is the opposite of converting binary to
decimal. First, you find the binary position with the greatest decimal value that is still less
than the number that you are converting. Give a value of 1 for that binary position, subtract
the bit value from the original decimal number, and repeat the process for the remainder.

Test it Out: Convert from Decimal to Binary

To convert the decimal value 9 to binary by using the bit value method, start with a binary
chart like the following:

x x x x
8 4 2 1

You can see that the binary position with the greatest decimal value that is still less than 9 is
the 8-bit. So you put a 1 in the 8-bit, subtract the bit value (8) from the original number (9),
and you have a remainder of 1.

1 x x x = 8, and 9 - 8 leaves a remainder of 1
8 4 2 1

You repeat the process with the remainder: The largest binary position that has a value less
than 1 is the 1-bit. Put a 1 in the 1-bit. Because you have no remainder, the rest of the bits are
0s and you are finished.

1 0 0 1 = 9, and 9 - 9 leaves a remainder of 0
8 4 2 1

So, the decimal value 9 is 1001 in binary.

Now, try these examples:

1. Convert the decimal value 6 to binary.

 x x x x
 8 4 2 1
Result: 0 1 1 0 = 6 (0 + 4 + 2 + 0)

2. Convert the decimal value 11 to binary.

 x x x x
 8 4 2 1
Result: 1 0 1 1 = 11 (8 + 0 + 2 + 1)

3. Convert the decimal value 3 to binary.

 x x x x
 8 4 2 1
Result: 0 0 1 1 = 3 (0 + 0 + 2 + 1)

4. Convert the decimal value 15 to binary.

 x x x x
 8 4 2 1
Result: 1 1 1 1 = 15 (8 + 4 + 2 + 1)

5. Convert the decimal value 8 to binary.

 x x x x
 8 4 2 1
Result: 1 0 0 0 = 8 (8 + 0 + 0 + 0)

6. Convert the decimal value 9 to binary.

 x x x x
 8 4 2 1
Result: 1 0 0 1 = 9 (8 + 0 + 0 + 1)

7. Convert the decimal value 5 to binary.

 x x x x
 8 4 2 1
Result: 0 1 0 1 = 5 (0 + 4 + 0 + 1)

8. Convert the decimal value 13 to binary.

 x x x x
 8 4 2 1

Result: 1 1 0 1 = 13 (8 + 4 + 0 + 1)

Using the Division Method

Another method of converting decimal numbers to binary is called the division method. The
division method uses a series of simple divide-by-2 problems to complete the conversion.
Every time you divide by 2, the remainder will be either 1 or 0. It is important to list the
remainders (whether a 1 or a 0) in an orderly fashion because the binary result will be
comprised of these remainders.

The process is as follows:

1. Divide the decimal number by 2 and write the remainder, 1 or 0.
2. Divide the quotient (answer) by 2 and write that remainder, 1 or 0.
3. Repeat steps 1 and 2 until the quotient is 0.
4. Write the remainders in reverse order for the binary equivalent.

Test It Out: Convert from Decimal to Binary Using the Division Method

Follow this example step-by-step and then try using the division method to complete the next
conversion problems. To convert the decimal value 6 to binary:

1. Divide 6 by 2 (6/2 = 3 with a remainder of 0). Write 0 as the first remainder.
2. Divide the quotient, 3, by 2. (3/2 = 1 remainder of 1). Write 1 as the second remainder.
3. Divide the quotient, 1, by 2. (1/2 = 0 remainder of 1). Write 1 as the third remainder.

The quotient is now 0 so you don't have to repeat the previous steps.
4. Note that the remainders are 011. Reverse them to get the binary number 110.

Now try the following examples:

1. Convert the decimal value 11 to binary.

11/2 = 5 remainder of 1

5/2 = 2 remainder of 1

2/2 = 1 remainder of 0

1/2 = 0 remainder of 1

Result: 1011

2. Convert the decimal value 15 to binary.

15/2 = 7 remainder of 1

7/2 = 3 remainder of 1

3/2 = 1 remainder of 1

1/2 = 0 remainder of 1

Result: 1111

3. Convert the decimal value 4 to binary.

4/2 = 2 remainder of 0

2/2 = 1 remainder of 0

1/2 = 0 remainder of 1

Result 100

4. Convert the decimal value 10 to binary.

10/2 = 5 remainder of 0

5/2 = 2 remainder of 1

2/2 = 1 remainder of 0

1/2 = 0 remainder of 1

Result 1010

5. Convert the decimal value 7 to binary.

7/2 = 3 remainder of 1

3/2 = 1 remainder of 1

1/2 = 0 remainder of 1

Result 111

Using a Calculator

One other method of converting either decimal to binary or binary to decimal is to use a
calculator. It is important that you understand the math behind converting numbers between
the numbering systems, but most administrators end up using a calculator because it is quicker
and easier to avoid mistakes.

The most common calculator is the electronic calculator that is installed with all the Microsoft
desktop operating systems. The calculator has not changed much from Windows 95, 98, or

NT. You can access the calculator by clicking Start Programs Accessories
Calculator. A screen shot of the calculator is shown below.

 Tip Be sure the calculator is in the Scientific mode by clicking View Scientific.

After you are sure the calculator is in Scientific view, notice the row of radio buttons on the
upper-left side. The Dec button puts the calculator into decimal mode, and the Bin button puts
the calculator into binary mode. To do any conversions, type in the number that you would
like to convert, then click the radio button that is not selected. The number displayed is the
converted number.

 Warning When using a calculator to convert decimal numbers to binary, pay close attention to
leading 0s getting dropped. For example, the decimal number 7 is displayed as 111
on a binary calculator. But when working with IP addresses, you'll generally want to
use 4 or 8 bits. The number 7 expressed with 4 bits is 0111 and with 8 bits is 0000
0111. A calculator does not display the leading 0s because they are considered
insignificant.

IP Addresses

TCP/IP addresses are based on 32-bit addresses. But rather than working with 32 ones and
zeros, people use decimals to represent IP addresses-specifically, they use four decimal
numbers separated by periods. These four decimal numbers represent the 32 binary digits
separated into four equal parts called octets. An octet is 8 bits.

An IP address expressed in decimal is referred to as dotted decimal notation because it has
four decimal numbers, each separated by a period, or a dot. As I've stated, each of the four
decimal numbers represents 8 binary digits, or bits. In the preceding conversion examples,
you looked only at 4-bit binary numbers. In 8-bit numbers, the decimal values of the bits
continue increasing from right to left:

• The fifth bit has a decimal value of 16.
• The sixth bit has a decimal value of 32.
• The seventh bit has a decimal value of 64.
• The eighth bit has a decimal value of 128.

128 64 32 16 8 4 2 1
x x x x x x x x

So, for example, the binary number 0101 0101 is equal to the decimal 85:

0 + 64 + 0 + 16 + 0 + 4 + 0 + 1 = 85

The binary number 1001 0101 is equal to the decimal 145:

128 + 0 + 0 + 16 + 0 + 4 + 0 + 1 = 145

The binary number 1111 1111 is equal to the decimal 255:

128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

octet Eight bits of data.
dotted decimal notation An IP address presented as four decimal numbers, each separated

by a period, or dot.

The highest decimal number that an octet can contain is 255. The decimal number 256 cannot
be represented with 8 bits; therefore, no IP address has a number greater then 255 in any octet.

TCP/IP uses all 32 bits; therefore, it is important when you look at the four decimal numbers
to understand that there are really 32 bits that TCP/IP is using. For example, the IP address
131.107.2.200 can be translated into the following binary octets:

131 = 1000 0011
107 = 0110 1011
2 = 0000 0010
200 = 1100 1000

Therefore, TCP/IP will see 131.107.2.200 as this:

10000011011010110000001011001000

To humans, seeing all 32 bits is a little overwhelming, so obviously using the decimal
equivalent is easier. When looking at the binary, most people separate each set of 4 bits so
that all the 1s and 0s don't run together.

For example, the IP address 209.132.95.62 would be:

209 = 1101 0001
132 = 1000 0100
95 = 0101 1111
62 = 0011 1110

TCP/IP will see 209.132.95.62 as this:

1101 0001 1000 0100 0101 1111 0011 1110

Some sample IP addresses are:

15.231.25.115

1.26.251.32

221.26.0.1

209.132.95.3

IP Address Classes

IP addresses are divided into five classes: Class A, Class B, Class C, Class D, and Class E.
All addresses are placed in a particular class based on the decimal values of their first octets.
In the first octet, an IP address can start with a decimal value between 1 and 255.

The system of class addresses has been set up to help ensure assignment of unique IP
addresses. Let's take a look at how these classes are divided and who gets the IP addresses in
each category.

Class A Addresses

Class A addresses have first octets with a decimal number between 1 and 127. For example:

1.x.y.z

10.x.y.z

27.x.y.z

102.x.y.z

In binary, a Class A address always starts with 0 as the leftmost bit. For example:

1.x.y.z = 0000 0001.x.y.z
10.x.y.z = 0000 1010.x.y.z
27.x.y.z = 0001 1011.x.y.z
102.x.y.z = 0110 0110.x.y.z
127.x.y.z = 0111 1111.x.y.z

Notice that 127 has a 1 in every bit of the octet except the first bit. The next higher binary
value will put a 1 in the leftmost bit, and the resulting address will not be a Class A.
Therefore, 127.x.y.z is the highest Class A address.

Class A addresses use the first octet to represent the unique network address and leave three
octets to develop unique host addresses on that network. Because there is a 0 in the first bit,
the following 7 bits in the first octet are used to distinguish the network from all other
networks, and 24 bits are used by each host to make itself unique on the network. An
important rule to note here is that a network address cannot have all 0s.

This means that there are only 127 Class A networks available. At first glance, it seems
obvious that there are 127 networks, but the following equation proves the number:

27 - 1 = 127

where 2 is the number of possible values that each bit can contain (a 1 or a 0), 7 is the number
of bits used, and 1 is the address where all 7 bits are 0 (you cannot have a network address of
all 0s).

On each of those 127 networks, each address uses the other 24 bits to make itself unique. All
possible combinations of these 24 bits make up the number of unique host IP addresses that
can be on each of those 127 networks. There are 16,777,214 possible unique IP addresses on
each of the 127 Class A networks. Similar to the rule that the network portion of the address
cannot be all 0s, the host portion of the address cannot be all 0s and it cannot be all 1s. A host
portion with all 1s refers to an IP broadcast address, which you learn about in a later chapter,
and the host portion with all 0s is a reference to the network. Therefore, the equation for the
number of hosts on each Class A network is:

224 - 2 = 16,777,214

You subtract 2 because addresses with all 0s and all 1s are invalid.

Of the 127 Class A networks available, one address was reserved for testing: The network
address 127.x.y.z was reserved as a loopback address. No host can ever use 127-dot-anything
as its address because it has been reserved for diagnostic purposes. When testing a TCP/IP
installation, 127-dot-anything refers to that TCP/IP installation. Therefore, for example, as a
network administrator is testing a TCP/IP installation, testing 127.0.0.1 refers to the host that
is being tested.

Addresses Reserved for Private Use

Certain addresses have been set aside by the InterNIC and reserved for private use only. If
you would like to use TCP/IP on your internal network (intranet), and not use the Internet, the
following addresses are suggested:

Class A 10.0.0.0 through 10.255.255.255

Class B 172.16.0.0 through 172.31.255.255

Class C 192.168.0.0 through 192.168.255.255

Routers on the Internet will not route data from or to these addresses; they are for internal,
private use only. To use these addresses on an intranet and have access to the Internet, you
must use a proxy server or Network Address Translation (NAT).

loopback An address that is used for diagnostic purposes, to
test the TCP/IP stack of a TCP/IP host.

proxy server An application that relays TCP/IP traffic from one
network to another while changing the IP address of

the sending host.
Network Address Translation (NAT) An application that translates the IP address of the

sending host to another IP address while relaying the
TCP/IP data to another network.

Class B Addresses

Class B addresses have first octets with a decimal number between 128 and 191. For example:

128.x.y.z

151.x.y.z

165.x.y.z

191.x.y.z

In binary, a Class B address always starts with 10 as the 2 leftmost bits. For example:

128.x.y.z = 1000 0000.x.y.z
151.x.y.z = 1001 0111.x.y.z
165.x.y.z = 1010 0101.x.y.z
191.x.y.z = 1011 1111.x.y.z

Notice that 191 has a 1 in every bit of the octet except the second leftmost bit. The next higher
binary value will put a 1 in the second leftmost bit, and the resulting address will not be a
Class B. Therefore, 191.x.y.z is the highest Class B address.

Class B addresses use the first two octets to represent the unique network address and leave
only two octets to develop unique host addresses on that network. Because there is a 10 in the
first 2 bits, the following 6 bits in the first octet and all 8 bits in the second octet are used to
distinguish this network from all other networks. Sixteen bits are used by each host to make
itself unique on the network. The equation that proves the number of Class B networks is:

214 = 16,384

This means that there are 16,384 Class B networks available. On each of these 16,384
networks, each address uses the other 16 bits to make itself unique. All possible combinations
of these 16 bits make up the number of unique host IP addresses that can be on each of those
16,384 networks. There are 65,534 possible unique IP addresses on each of the 16,384 Class
B networks:

216 - 2 = 65,534

Class C Addresses

The Class C addresses have first octets with a decimal number between 192 and 223. For
example:

192.x.y.z

200.x.y.z

210.x.y.z

223.x.y.z

In binary, a Class C address always starts with 110 as the 3 leftmost bits. For example:

192.x.y.z = 11000000.x.y.z
200.x.y.z = 11001000.x.y.z
210.x.y.z = 11010010.x.y.z
223.x.y.z = 1101 1111.x.y.z

Notice that 223 has a 1 in every bit of the octet except the third leftmost bit. The next higher
binary value will put a 1 in the third leftmost bit, and the resulting address will not be a Class
C. Therefore, 223.x.y.z is the highest Class C address.

Class C addresses use the first three octets to represent the unique network address and leave
only one octet to develop unique host addresses on that network. Because the first 3 bits in the
first octet are 110, the network portion of a Class C address includes the remaining 5 bits in
the first octet, all 8 bits in the second octet, and all 8 bits in the third octet, for a total of 21
bits. That leaves only 8 bits to be used by each host to make itself unique on this network.

The equation for Class C networks is:

221 = 2,097,152

This means that there are 2,097,152 Class C networks available. On each of these 2,097,152
networks, each address uses the other 8 bits to make itself unique. All possible combinations
of these 8 bits make up the number of unique host IP addresses that can be on each of those
2,097,152 networks. There are 254 possible unique IP addresses on each of the 2,097,152
Class C networks:

28 - 2 = 254

Class D Addresses

Class D Addresses have decimal values between 224 and 239 in the first octet. In the first
octet, the first 4 bits are 1110.

Class A, B, and C are the only address classes that are available for TCP/IP host IP addresses.
In contrast, no one host can have a Class D address. These addresses are called multicast
addresses, and they are invalid for any workstation or host to use.

multicast A communication between a single sender and multiple receivers on a network. No
one host can have this address, but several can receive data by listening to it.

The purpose of a multicast address is to enable a server somewhere to send data to a Class D
address that no one host has so that several hosts can listen to that address at the same time.
When you are watching TV on the Internet or listening to the radio on the Internet, your
computer is listening to a Class D address. No server is sending data directly to your
workstation; instead, a server is sending data to the multicast address. Any host can use
software to listen for data at that address, and many hosts can be listening at once.

Class E Addresses

The last class of addresses is Class E. Class E addresses range from 240-255 in the first octet,
and the 4 leftmost bits are 1111.

Class E addresses are reserved addresses and are invalid host addresses. They are used for
experimental purposes by the IETF.

Classless Inter-Domain Routing (CIDR)

Classless Inter-Domain Routing (CIDR) is an IP addressing scheme that was developed
after the class system of A, B, C, D, and E. The traditional class system considers an IP
address as four octets with the network portion of the address highlighted by a subnet mask.
The standard network portion is the first octet, the first two octets, or the first three octets.
CIDR addressing still represents IP addresses in the traditional dotted decimal notation, but
highlights the network portion with a slash followed by a number. For example:

192.168.3.15/26

172.21.165.1/19

Classless Inter-Domain Routing (CIDR) An IP addressing scheme that uses a slash
followed by a number to highlight the network
portion of an address instead of using a subnet
mask.

The number after the slash is the number of bits that represent the network portion of the IP
address. CIDR was developed to increase the efficiency of address allocation and to alleviate
overloaded Internet routers. Using CIDR addressing, fewer and shorter addresses/routes need
to be entered into the routing tables.

IP Address Class Summary

It is important to understand the overall scheme of addresses. Then, as you make decisions
about the TCP/IP addressing scheme for your network, you will use a network address that
enables you to address all the hosts on the network and that allows room for growth.

To summarize the rules and equations for Class A, B, and C addressing:

• A host ID cannot be all 0s.
• A host ID cannot be all 1s.
• To determine the number of networks that can be created, use the formula 2N where N

is the number of bits in the network portion of the address.
• To determine the number of hosts that can be created, use the formula 2N - 2 where N

is the number of bits in the host portion of the address.

Following is a chart summarizing the classes of addresses:

Class Range Leftmost
Bits

of
Network
Bits

of
Networks

of Host
Bits

of Hosts

A 1-127 0 8 126 24 16,777,214
B 128-191 10 16 16,384 16 65,534
C 192-223 110 24 2,097,152 8 254
D 224-239 1110 INVALID
E 240-255 1111 INVALID

Review Questions
1. Convert the following binary numbers to their decimal equivalents:

a. 1100 0011
b. 1010 0101
c. 1001 1011
d. 1110 0111

2. Convert the following decimal numbers to their binary equivalents:

a. 10
b. 57
c. 127
d. 255

3. What is the range of first octet addresses for the following classes?

a. Class A
b. Class B
c. Class C

4. What is a Class D address used for?

5. How many hosts can be on a Class C network?

6. How many Class B networks are there?

7. How many hosts can be on a Class A network?

8. What does a host address with all 1s represent?

9. What does a host address with all 0s represent?
10. When is a host address of all 0s or all 1s invalid?
11. What is the equation used to find the number of hosts that a network can have?

Answers

1. a. 195
b. 165
c. 155
d. 231

2. a. 0000 1010
b. 0011 1001
c. 0111 1111
d. 1111 1111

3. a. 1-127
b. 128-191
c. 192-223

4. A Class D address is used for multicasting. A Class D address is illegal as a host IP
address, but is used for sending data to several hosts at the same time.

5. 254
6. 16,384
7. 16,777,214
8. An IP broadcast address
9. The network address
10. A host cannot have an address of all 0s or all 1s; such an address is always invalid.
11. 2N - 2

Terms to Know

• binary
• decimal
• octet
• dotted decimal notation
• loopback
• proxy server
• NAT

• multicast
• CIDR

Chapter 7: Addressing IP Hosts
In this chapter, you are going to look at the different ways of assigning IP addresses to each
host. There are two methods of assigning IP addresses: manual configuration and automatic
configuration.

Installing and Assigning IP Addresses

Because every host has to have a unique IP address, somebody needs to assign an IP address
to each host. Other optional pieces of configuration information might also need to be
assigned to a host, such as a default gateway, a Domain Name System (DNS) server, a
Windows Internet Naming Service (WINS) server, and many other options.

Two methods are used to assign IP addresses: manual configuration and automatic
configuration. Both are discussed in this section.

There are several operating systems and procedures for installing and configuring an IP
address. The instructions and screen captures in this section will guide you through installing
and manually configuring TCP/IP in several of the most popular operating systems: Windows
XP, 2000, NT, and 95/98.

Manual IP Address Configuration

An administrator with only a few hosts on a network may determine that the best method of
assigning IP addresses is to do so manually. An administrator who has 10 hosts on a network,
for example, might sit in front of each of the 10 hosts and input the IP address, subnet mask,
and possibly some other optional addresses. This may be the preferred method because there
are only a few hosts to address.

However, an administrator with 254 hosts on a network would have to type in all the
information at each of the 254 hosts. While inputting this information 254 times, chances are
the administrator would make a couple of typos here and there. Those typos might be difficult
to troubleshoot. An administrator with 2,540 hosts would have a lot more typing to do and
probably would make a lot more typos and face a lot of extra troubleshooting.

Therefore, manually configuring IP addresses is efficient for only a few hosts. To assign IP
addresses to the majority of their hosts, however, most administrators choose to use Dynamic
Host Configuration Protocol (DHCP), which is discussed in this section.

Installing TCP/IP on Windows XP

During the installation of Windows XP, TCP/IP is installed automatically. There is no option
to remove it; therefore, there is no option to install it. All that can be done with TCP/IP in
Windows XP is to modify and configure its settings. If any new network cards or devices are
added to a machine that has XP installed, the operating system will install TCP/IP as it is
being configured.

Manually Assigning an IP Address for Windows XP

To manually configure an IP address on a Windows XP client, take the following steps:

1. Click Start Control Panel. Control Panel will be in either Classic view or Category
view.

If Control Panel is in Classic view, double-click the Network Connections icon.

If Control Panel is in Category view, click Network and Internet Connections.

Then choose Network Connections.

2. Right-click the connection that is being modified, and choose Properties. (Notice that
when you click the connection, XP displays the details of the connection in the left
margin.)

3. On the Local Area Connection Properties page, choose Internet Protocol (TCP/IP) and
click Properties.

4. In the Internet Protocol (TCP/IP) Properties dialog box, click the radio button that is
labeled Use the Following IP Address. Type in the IP address and the subnet mask for
this host. If the network that this host is on connects with another network, type in the
default gateway.

 Note When you click the radio button labeled Use the Following IP Address, the radio
button labeled Use the Following DNS Server Addresses is selected
automatically.

5. Type the address of a DNS server for this host to use. On this page, you have the
choice of entering two DNS server addresses, so that if the first doesn't respond, this
host will consult the second. Then click OK. Windows XP does not always require a
reboot at this point. If prompted to reboot, however, TCP/IP will not function properly
until the host has been rebooted.

Installing TCP/IP on Windows 2000

To install TCP/IP in Windows 2000, follow these steps:

1. Access the network and dial-up connection settings by first clicking Start Settings
 Control Panel, and then double-clicking Network and Dial-Up Connections. Or, on

the Windows 2000 Desktop, right-click My Network Places and then click Properties.
Either way, the following Network and Dial-Up Connections window appears. An
icon will be available for every component that Windows 2000 can use to connect to
other devices. Right-click the connection on which to install TCP/IP.

2. TCP/IP will not be listed as already installed. Click Install.

3. Choose Protocol and then Add.

4. Choose Internet Protocol (TCP/IP) and click OK.

5. Be patient while TCP/IP is being installed; it may take several seconds after you've
clicked OK before anything appears to be happening. Once TCP/IP is installed and
listed on the General tab in the Local Area Connection Properties dialog box, click
Close.

 Note Windows 95/98 is installed set to use DHCP. After rebooting, you can modify the
configuration if desired.

Manually Assigning an IP Address for Windows 2000

To manually assign an IP address for a Windows 2000 host, take the following steps:

1. Access the network and dial-up connection settings by clicking Start Settings
Control Panel, and then double-clicking Network and Dial-Up Connections. Or, on the
Windows 2000 Desktop, right-click My Network Places and then click Properties.

Either way, the Network and Dial-Up Connections window appears. An icon will be
available for every component that Windows 2000 can use to connect to other devices.
Right-click the connection on which to configure TCP/IP, and choose Properties.

2. In the Local Area Connection Properties dialog box, highlight Internet Protocol
(TCP/IP) and choose Properties. The Internet Protocol (TCP/IP) Properties dialog box
will appear. By default, TCP/IP is set to Obtain an IP Address Automatically.

3. In the Internet Protocol (TCP/IP) Properties dialog box, click the radio button that is
labeled Use the Following IP Address. Type in the IP address and the subnet mask for
this host. If the network that this host is on connects with another network, type in the
default gateway.

 Note When you click the radio button labeled Use the Following IP Address, the radio
button labeled Use the Following DNS Server Addresses is selected
automatically.

4. Type the address of a DNS server for this host to use. On this page, you have the
choice of entering two DNS server addresses, so that if the first doesn't respond, this
host will consult the second. Then click OK. Windows 2000 does not always require a
reboot at this point. If prompted to reboot, however, TCP/IP will not function properly
until the host has been rebooted. (Please refer to the graphic on page 106.)

Installing TCP/IP on Windows NT

To install TCP/IP on Windows NT, follow these steps:

1. Access the network settings by clicking Start Settings Control Panel and then
double-clicking Network. Or, on the Windows NT Desktop, right-click Network
Neighborhood and then click Properties. The following dialog box appears.

2. Begin adding TCP/IP by clicking the Protocols tab and then clicking the Add button.
3. In the Select Network Protocol dialog box that appears next, choose the TCP/IP

Protocol option. Then click OK, as shown below.

4. In the TCP/IP Setup dialog, choose to use DHCP or to manually assign an IP address
by clicking Yes or No. If you choose No, you are prompted later to fill in all TCP/IP
information. If you choose Yes, a DHCP server will supply all TCP/IP configuration
information.

5. In the Windows NT Setup dialog shown below, supply a path to the Windows NT
system files. System files are needed to complete the protocol installation. Depending
on your installation, the system files may already be on the hard drive, or you may
need the NT installation CD. Click Continue.

6. Several files are copied, and the installation stops at the Network Settings page. Click
Close. More files are copied, and then you are prompted to type the IP address
information if you chose No in step 4. Reboot if you are prompted to.

Manually Assigning an IP Address for Windows NT

To manually assign an IP address for Windows NT, take the following steps:

1. Access the network settings by clicking Start Settings Control Panel and then
double-clicking Network. Or, on the Windows NT Desktop, right-click Network
Neighborhood and then click Properties. The following dialog box appears.

2. Access the TCP/IP properties by clicking the Protocols tab, the TCP/IP option, and
then the Properties button, as shown below.

3. You are now viewing the Microsoft TCP/IP Properties dialog box shown below. This
is where you can choose either to put in the address manually or obtain an address
from a DHCP server. Choose to enter the IP address manually by clicking the radio
button labeled Specify an IP Address.

4. Enter the configuration information: the IP address, the subnet mask, and the default
gateway. The default subnet mask will appear after the IP address is supplied; you
must overwrite it if you want to modify it. Although the default gateway is an optional
parameter, it is usually configured. You need to specify a default gateway if this host
will be sending data to a host on another network.

5. Save the configuration by clicking OK on the TCP/IP Properties page and then
clicking OK on the Network Protocols page. Reboot if prompted.

Installing TCP/IP on Windows 95/98

To install TCP/IP for Windows 95/98, take the following steps:

1. Access the Network settings by clicking Start Settings Control Panel and
double-clicking Network. Or, on the Windows 95/98 Desktop, right-click Network
Neighborhood and then click Properties. The following dialog box appears.

2. Begin adding the TCP/IP protocol by ensuring that you are on the Configuration page
and then clicking Add.

3. In the Select Network Component Type dialog box shown below, select the Protocol
option as the type of network component to install. Then click Add.

4. On the Select Network Protocol page, select the TCP/IP protocol: On the
Manufacturers side of the screen, click Microsoft, and on the Network Protocols side
of the screen, click TCP/IP. Then click OK.

5. To complete the installation, click OK and then reboot.

 Note Windows 95/98 is installed set to use DHCP. After rebooting, you can modify the
configuration if desired.

Manually Assigning an IP Address for Windows 95/98

To manually assign an IP address for Windows 95/98, take the following steps:

1. Access the network settings by clicking Start Settings Control Panel and then
double-clicking Network. Or, on the Windows 95/98 Desktop, right-click Network
Neighborhood and click Properties.

2. Access the TCP/IP properties by clicking the Configuration tab. Then scroll to TCP/IP
and click that option. Finally, click Properties. If there is more than one TCP/IP line,
choose the one that corresponds to the name of the network card in the computer.

3. You are now viewing the TCP/IP Properties dialog box. This is where you can choose
either to enter the address manually or obtain an address from a DHCP server. Click
the radio button labeled Specify an IP Address to enter the IP address manually.

4. Enter the configuration information: the IP address and the subnet mask.
5. Configure the default gateway by clicking the Gateway tab, typing in the default

gateway, and clicking Add. Although the default gateway is an optional parameter, it
is usually configured. You need to specify a default gateway if this host will be
sending data to a host on another network. Click OK on the Gateway page and again
on the Configuration page, and reboot if prompted.

Dynamic Host Configuration Protocol (DHCP)

DHCP is the automatic IP-address giver. In essence, an administrator configures a DHCP
server with a pool of addresses to lease out to hosts. The administrator may configure the
server to lease out addresses to different networks by creating several pools of addresses.

DHCP server A host running a service to lease IP addresses to other hosts. The DHCP
server is configured by an administrator with the pool, or scope, of addresses
to be leased.

Each pool of addresses contains the information that a TCP/IP host needs to build a TCP/IP
stack. The pool is sometimes referred to as a scope, or range, of addresses. As a DHCP client
is building its TCP/IP stack, it requests an IP address, and the DHCP server looks in the pools
of addresses to see whether there are any IP addresses that can be leased out to the network
that the host is on.

scope A pool of IP addresses that a DHCP server leases to DHCP clients.

The client doesn't already have an IP address because the administrator did not type one in.
Instead, the administrator determined that the client should get its IP address automatically
from a DHCP server. So the client broadcasts a packet out onto the network; the packet says
something like, "Hey! Who's the DHCP server?"

After a DHCP server receives a packet indicating that a DHCP client is looking for a DHCP
server, the server examines its pools of addresses and possibly offers an IP address to the
client. If the DHCP server is not configured with a pool of addresses for the network where
the DHCP client is located, the request is ignored.

The DHCP client might receive offers from several DHCP servers. The client selects the first
one that it receives and sends back a packet that says, "Yeah, I would like that IP address."
That packet goes back to the DHCP server, and the DHCP server responds with a packet that
says, "All right, you can have that IP address."

In the following sections, you will examine the four-step process that a DHCP client goes
through to obtain an IP address from a DHCP server.

The DHCP Process

The four-step process of DHCP can easily be remembered by using the mnemonic of DORA:

• Discover
• Offer
• Request
• Acknowledgment

Obtaining an IP Address from a DHCP Server

There are four steps in getting an IP address from a DHCP server: DHCP discover, DHCP
offer, DHCP request, and DHCP acknowledgment.

Let's walk through these steps and examine the packets at each.

DHCP Discover

The first step is the broadcast of a DHCP discover packet. As the client is building its TCP/IP
stack, it broadcasts a message that says, "Hey! I need a DHCP server!" The client broadcasts
this packet so that no configuration is necessary. No administrator needs to type in the address
of the DHCP server. Also, the client that is looking for a DHCP server has to broadcast the
discover packet so that all hosts on the network will receive it-one of which is hopefully a
DHCP server.

DHCP discover The first step in using DHCP to lease an IP address. A DHCP discover
packet is broadcast saying, "Hey, who is a DHCP server?"

In the illustration below, Harry the Host represents a DHCP client. The first thing that Harry
needs to do is find a DHCP server. Because Harry doesn't know where one is, nor does he
have an address yet, he broadcasts a DHCP discover packet to help find one.

Below is a screen capture of a DHCP discover packet. Inside the packet, the source Ethernet
(hardware) address contains the MAC address of the DHCP client that is requesting the
address (005004818D42). The IP source address is all 0s (0.0.0.0) because the client does not
yet have an IP address. The destination Ethernet (hardware) address is set to FFFFFFFFFFFF,
which is the broadcast hardware address, and the IP destination address is set to
255.255.255.255 because it's the broadcast IP address.

The DHCP client puts its hardware address in the DHCP discover packet because that address
distinguishes that client from any other host on the network.

If a DHCP discover packet is broadcast and no DHCP offers are returned, the DHCP client is
going to have a problem. The DHCP client needs to have an IP address to use any TCP/IP
communications and applications. The DHCP client will send out several DHCP discover
packets before showing the user an error message. (The error message usually states that a
DHCP server cannot be found.) The DHCP client will try again in about five minutes by
sending out another volley of DHCP discover packets. Without an IP address, the user can
still use local applications; only the network functionality is unavailable.

DHCP Offer

The DHCP server monitors every incoming packet to check whether or not it is a DHCP
discover packet. When a DHCP discover packet is received, the DHCP server examines its
pools of IP addresses to see whether any of those addresses correspond to the network that the
request is coming from.

If the DHCP server has an available address for the network where the DHCP discover packet
originated, the server creates a DHCP offer packet. The DHCP offer packet includes the IP
address that the server is offering to the client. Also included in this packet is the subnet mask,
the length of the lease, and a few other parameters.

DHCP offer The second step in using DHCP to lease an IP address. A DHCP offer packet is
broadcast saying, "I'm a DHCP server, how would you like this fine address?"

The server broadcasts the DHCP offer packet back onto the network because the DHCP client
does not yet have an IP address that the server could use to send the packet directly to the
client. The client will know that the packet is intended for it because the DHCP discover
packet included the client's hardware address, and the DHCP offer packet also contains the
same address.

The following illustration shows Donna the DHCP Server responding to Harry's DHCP
discover packet. Donna broadcasts a DHCP offer packet back to the network so that Harry
will receive it.

The following screen capture shows a DHCP offer packet. Notice that the Ethernet destination
address is FFFFFFFFFFFF, which is the broadcast hardware address. The Ethernet source
address is 005004744FFF, which is the hardware address of the DHCP server.

The last line of the screen capture above is not expanded to show the contents of the DHCP
offer section. This section includes the IP address that is being offered, as well as other
parameters such as the subnet mask and the length of the lease.

Since the DHCP client sent out the DHCP discover packet, the client has been closely
monitoring the network, waiting for a DHCP offer.

It's possible that the network administrator has set up more than one DHCP server. Therefore,
the DHCP client might receive more than one DHCP offer. If the DHCP client receives more
than one offer, the client will take the first offer that is received-it's not like shopping around
for the best car you can find. The client doesn't look at the different IP address offers and say,
"Hey! Now this IP address looks really nice. It's got power windows, power brakes, and a
really good lease length on it." The client will request an IP address from the first offer that it
receives.

DHCP Request

After the DHCP client receives a DHCP offer, the client sends back a DHCP request packet.
This packet lets the DHCP server know that the offer is being accepted.

DHCP request The third step in using DHCP to lease a new IP address and the first step in
renewing an IP address lease. A DHCP request packet is broadcast for new
IP address leases and sent directly to the DHCP server for renewals. The
packet says, "Yes, I would like to have this IP address."

The DHCP client broadcasts the DHCP request packet onto the network. This packet is
broadcast for a couple of reasons. First, the client still does not have a valid lease on the
address, which means the DHCP client still does not have a valid IP address needed to address
a packet for direct delivery. The lease deal is invalid because it has not yet been completed-no
driving the car until all the papers are signed.

Second, several DHCP servers might have broadcast DHCP offers after receiving the DHCP
discover packet. When the DHCP servers sent out the offers, any IP addresses offered were
marked as reserved and would not be offered to any other host. By broadcasting the DHCP
request, the client enables all DHCP servers to hear the request and then examine their
reserved addresses to see whether any were offered to the client's hardware address. If a
DHCP request comes from a hardware address that is in the DHCP server's reserved pool, and

the request is not for the IP address that this DHCP server offered, the DHCP server's offer is
considered denied. The DHCP server can put that IP address back into the pool and offer it to
another client.

The following illustration shows Harry the Host requesting the IP address that Donna offered.
Harry must broadcast the DHCP request packet because he still doesn't have a bona fide and
confirmed IP address.

The following screen capture shows the Ethernet portion of the DHCP request packet. The
Ethernet destination address is FFFFFFFFFFFF because that is the broadcast hardware
address. The Ethernet source address is 005004818D42, which is the hardware address of the
DHCP client.

The following screen capture shows the remainder of the DHCP request packet. In the DHCP
portion of the packet, the client's Ethernet address is listed again. In the DHCP Option Field,
the DHCP requested address is listed, which in this packet is 192.168.2.171. The DHCP
server's address is also listed, which is 192.168.2.254. As the packet is broadcast, the DHCP
server with the address 192.168.2.254 will know that the DHCP client is requesting the
offered IP address. All other DHCP servers that had offered an IP address to the client with
the hardware address of 005004818D42 will put the IP address offered back into the pool of
available addresses.

DHCP Acknowledgment

Now the deal is almost done. A DHCP client was looking for a DHCP server to lease an IP
address from, and a DHCP server heard the discover packet and sent an offer. The offer was
received, and a request to use that address was made. Now all that needs to be done is to sign
the lease papers and the deal is closed.

The DHCP server receives the DHCP request and prepares a packet to close the deal. This
packet is called a DHCP acknowledgment (ack) packet. Like the other packets, this one is
also broadcast because the DHCP client still does not have a valid IP address. The DHCP ack
packet simply says, "I received your request for the IP address that I offered you, and yes, you
can have that address. By the way, here are all the options that come with that address."

DHCP acknowledgment (ack) The final step in using DHCP to lease a new IP address or to
renew an IP address lease. A DHCP ack is broadcast for new
IP address leases and sent directly to the DHCP client for
renewals. The packet says, "It's a done deal! You can have
this IP address, and here are some extra parameters that you
can have."

The following illustration shows the final packet in the DHCP sequence. Donna broadcasts a
DCHP ack, which is the acknowledgment packet. After Harry receives this, he knows that the
deal is done and he has a valid lease on his new IP address.

The next screen capture shows the Ethernet portion of the DHCP ack packet. The Ethernet
destination address is FFFFFFFFFFFF, which is the broadcast hardware address, and the
Ethernet source address is 005004744FFF, which is the hardware address of the DHCP server.

The DHCP portion of the DHCP ack packet contains information about the IP address and the
lease parameters. The following screen capture shows the DHCP portion with all the DHCP
options. After the DHCP client receives this acknowledgment, then the client has an IP
address. Now that the client has a valid lease on an IP address, the client finishes building its
TCP/IP stack.

DHCP Leases

Because IP addresses are leased from the DHCP server, the DHCP client must renew the lease
on the address at a specified time. If the lease were to expire, the host would cease to be able
to communicate using TCP/IP.

When half of the time to live (TTL) value has expired, the DHCP client will send a DHCP
request to the DHCP server asking for a new lease. For example, if the IP address is leased for
24 hours, after 12 hours the DHCP client will send a DHCP request directly to the DHCP
server. The DHCP request is not broadcast this time because the DHCP client has a valid IP
address and a valid lease, and the client knows the IP address of the DHCP server. Notice in
the previous DHCP acknowledgment packet that an option field specifies an IP address lease
time. This is the way that the DHCP server informs the client of the length of the lease. The
length of lease was also specified in the offer packet.

time to live (TTL) The amount of time that the lease on an IP address is valid.

In the next screen capture, a DHCP client is sending a DHCP request to renew the lease on an
IP address. In the Ethernet portion of the DHCP request packet, both the Ethernet destination
and source addresses are filled in with the appropriate hardware addresses. This is not a
broadcast. In the IP portion of the DHCP request, the IP addresses of the client and of the
server are filled in. Including the server's IP address enables the packet to be routed to the
correct network (and therefore the DHCP client does not have to broadcast the request).

The DHCP server receives the DHCP request and sends back a DHCP ack. This packet is sent
directly to the client requesting the IP address. The DHCP ack includes all the options and a
new TTL. The following screen capture shows the DHCP ack with the DHCP parameters that
are being sent back to the client.

The process of renewing the IP address lease after only half of the TTL keeps the DHCP
clients coming back often, and well before the expiration time. If there are any problems
renewing the address, plenty of time remains to rectify them. For example, if the DHCP client
sends a DHCP request after half of the TTL and the DHCP server does not respond, it is not
yet a problem because the client still has a valid lease.

If 7⁄8 of the TTL has expired, and the client has not successfully renewed the lease, the DHCP
client will broadcast a DHCP request so that any DHCP server can respond with a DHCP ack.
A DHCP server may also respond with a DHCP nack (negative acknowledgment). A DHCP
nack says that the client cannot use that IP address any longer. If the DHCP client receives a
DHCP nack or the TTL expires, the client will cease using any TCP/IP communication. If the
user is working with locally installed applications and is not using any networked
applications, the user can continue working. If the user is using networked applications when
the lease expires, those applications will terminate.

DHCP IP Address Renewal

When a DHCP client is restarted and still has a valid lease on its IP address, a DHCP request
containing the leased IP address is broadcast onto the network. The DHCP server sends a
DHCP ack to the client, which renews the lease on the IP address. If the DHCP client does not
get a DHCP ack and the TTL has not expired, the client will continue to use the IP address.

Another DHCP server on the network may send a DHCP nack, which will cause the DHCP
client to cease using that IP address and start all over again by broadcasting a DHCP discover
packet.

When a DHCP client shuts down, it does not release the IP address that it has leased. There
are times when an administrator would like a DHCP client to release the IP address back to
the DHCP server, however. This may be because the administrator is troubleshooting or
because the DHCP client will not need an IP address anymore, for example, when it's leaving
the network. Most implementations of the DHCP client software allow the user to release the
IP address at any time.

 Note Recent implementations of Microsoft's TCP/IP include a special feature called

Automatic Private IP Addressing (APIPA), which generates an IP address for a DHCP-
configured host that cannot obtain a lease from a DHCP server. APIPA randomly
generates an address from the Microsoft-reserved IP address range of 169.254.0.1-
169.254.255.254, and broadcasts an ARP request to make sure that no other host on the
network has generated the same address. Using this address, the host can communicate
with other hosts on the network that are also using an APIPA-generated address.

Reserving DHCP IP Addresses

A DHCP server randomly assigns IP addresses to clients on the network. But a network
administrator might prefer some hosts to always have the same IP addresses. These hosts can
use a manually assigned IP address. A manual configuration requires the administrator either
to type in the IP address configuration information or to make a reservation.

An IP address reservation is set at the DHCP server. The administrator sets up a reservation
for the host by entering the host's hardware address and the IP address into a reservation list.
Whenever a DHCP request is received, the DHCP server sees the hardware address and
matches it to the IP address that has been reserved for it. The DHCP offer that is sent back out
will include the reserved IP address.

Some examples of hosts that an administrator will want to always have the same IP addresses
are:

Servers Applications may be mapped to use a particular IP address.

Printers Hosts may be configured to print to a printer with a particular address.

Routers Hosts are configured with an address for their router (default gateway).

An administrator might also need to reserve IP addresses when the number of addresses for a
network is limited. If an administrator has 254 valid IP addresses and 300 hosts on the
network, there could be a problem: If all hosts need an IP address at the same time, some will
fail to get one and therefore will not be able to communicate on the network. Probably not all
the hosts will be turned on and using an IP address at the same time. So, chances are that this
scheme will work fine, but the administrator will want to make sure that the CEO always gets
an IP address. To do so, the administrator should get the hardware address of the CEO's
workstation and reserve one IP address on the DHCP server for the CEO's computer. Then the
CEO is always guaranteed an IP address. The administrator had better be sure to type in the
hardware address correctly or the CEO will never get the IP address that has been reserved.

Setting the Lease Duration

Setting the length of the TTL is up to the administrator. A long TTL means that the DHCP
clients will not have to renew their IP addresses for a long time. It also means that the IP
addresses will not be available to any other host for a long time.

Let's say that a user from our New York office is visiting the San Diego office and has a
DHCP-enabled laptop. When the user plugs into the network in San Diego, the laptop
broadcasts a DHCP discover. A DHCP server responds and a lease is consummated with the
laptop. If the lease is for 30 days, the DHCP server will not lease that address to any other
DHCP client for that time period.

If the laptop leaves the San Diego network later that same day, the DHCP server does not
know that the laptop has left and doesn't need the IP address anymore. The IP address is gone
for 30 days even though it is not being used; the DHCP server will not return it to the
available pool of addresses until the lease has expired. Meanwhile, the DHCP clients on the
San Diego network have one less IP address to use.

If the administrator had set the TTL to 24 hours, the IP address would be available the next
day to be leased to another DHCP client. However, every 12 hours all the DHCP clients
would be renewing their leases. This would cause some added network traffic that might be
unnecessary.

Many Internet Service Providers (ISPs) use DHCP with a short TTL. A TTL of two hours will
cause the DHCP clients to renew their lease every hour, but IP addresses are returned to the
available pool more frequently. Therefore, the ISP can have fewer IP addresses than clients
because they will not all be in use at the same time and are reused within two hours.

When IP addresses are at a premium and there aren't many available in the pool, an
administrator should set a short TTL. This way, leases are expiring sooner, and the DHCP
server will have the address back sooner to re-lease. An administrator should also set a short
lease when the options are undergoing frequent changes (for example, when the address of the
DNS server, WINS server, or default gateway is going to change). A shorter TTL requires the
DHCP clients to renew their leases more often, and their associated options can be updated
then. However, if the pool is rich with addresses and a tremendous amount of unused
addresses are in the pool, an administrator can set the TTL for much longer.

Setting DHCP Scopes and Options

An administrator must configure the DHCP server with the appropriate scopes, or pools, of
addresses and DHCP options. After the server is set up correctly, DHCP clients will begin
getting IP addresses, and no further setup is required.

As stated earlier in this chapter, the range of IP addresses is referred to as a scope of
addresses. Besides the IP address, the scope includes the subnet mask, a TTL, and possibly
other options such as a default gateway. As DHCP discover packets are received, the DHCP
server randomly offers IP addresses starting from the lower end of the scope.

The administrator needs to enter the scope options. The options include any addressing
information that should be included with the IP address. Some common options included with
an address from a DHCP server are:

• IP address of one or more DNS servers
• IP address of the WINS server
• IP address of the default gateway

If the administrator has manually assigned an IP address, it must be excluded from the scope
of addresses. For example, if the administrator has manually configured a server with the IP
address of 192.168.2.5, it is important that the DHCP server not offer that address to any
DHCP clients. If the DHCP server has been set up to offer addresses in the range of
192.168.2.1 through 192.168.2.150, then the administrator must make an exclusion for the
address 192.168.2.5.

exclusion An IP address that falls into a range of addresses to be leased, but that has been set
by an administrator not to be leased.

A DHCP option that is set for all scopes that a DHCP server services is called a global
option. A DHCP option that is set for just one scope is called a scope option. If any options
are set for just one particular address, that is done as part of the reservation for that IP address.

global option A parameter that is set at the DHCP server and that applies to all scopes of IP
addresses that this DHCP server serves.

scope option A parameter that is set at the DHCP server that applies to only one scope of IP
addresses.

One of the benefits of DHCP is that the DHCP clients come back to renew the leases on their
addresses. If any option needs to be changed, an administrator has to change it only at the
server, and when the DHCP clients come back to renew their leases, all the new options get
sent out with the DHCP ack. The administrator has to manually update those options at the
hosts if their IP address was manually configured.

Review Questions
1. What are two ways to assign IP addresses to hosts?

2. What are the four steps of using DHCP?

3. Which of the four steps uses a broadcast packet?

4. What information is included in a discover packet?

5. What information is included in an offer packet?
6. Why would an administrator use a reservation?
7. When should an administrator use DHCP instead of manually configuring IP

addresses?

8. When does a DHCP client renew the lease of an address?
9. When a DHCP offer is sent on the network, how does the client know which host

the packet is intended for?

10. List some hosts for which a network administrator should consider using manually
assigned IP addresses.

Answers

1. Manually and automatically
2. Discover, offer, request, and acknowledgment
3. All four
4. Hardware address of the client
5. Server address, offered IP address, client hardware address
6. To reserve an IP address for a particular hardware address. That host will always get the

same IP address.
7. Most of the time. Only in a few situations-for example, when only a few hosts are on a

network-should the administrator use manually configured addresses.
8. After 50 percent of the lease has expired
9. The DHCP client's hardware address is included in the offer.
10. Servers, printers, routers

Terms to Know

• DHCP server
• scope
• DHCP discover
• DHCP offer
• DHCP request
• DHCP ack
• TTL
• exclusion
• global option
• scope option

Chapter 8: Introduction to Subnet Masks
Subnet masks are one of the most interesting aspects of TCP/IP. Subnet masks point out to IP
which bits of the 32-bit IP address refer to the network. A good network administrator
understands how to determine and use subnet masks.

What Is a Subnet Mask?

A subnet mask is a number that looks like an IP address. It shows TCP/IP how many bits are
used for the network portion of the IP address by covering up, or "masking," the IP address's
network portion. As you learned in Chapter 6, an IP address is made up of two parts: the
network portion and the host portion.

subnet mask A 32-bit address that looks like an IP address but actually points out to IP
which part of the IP address is the network portion.

For every outgoing packet, IP has to determine whether the destination host is on the same
local network or on a remote network. If the destination is local, then IP uses an ARP
broadcast to find out the hardware address of the destination host. If the destination host is not
on the local network, then ARP broadcasts a request for the hardware address of the router.
Therefore, IP sends packets that are bound for a remote network directly to the router, which
is also known as the default gateway. The router then sends the packet to the next network on
its journey to the correct destination network.

local network Hosts that are on the same side of a router are considered to be on the same
local network. Two hosts on the same local network have the exact same bit
values in the network portion of their IP addresses.

remote network Hosts that have a router separating them are considered to be on a remote
network from each other. Two hosts on remote networks have different bit
values in the network portion of their IP addresses.

Just as the telephone system uses an area code to determine whether a number is local or long
distance, TCP/IP uses the subnet mask to determine whether the destination of a packet is a
host on the local network or a host on a remote network. In the same way that every U.S.
telephone number must have an area code, every IP address must have a subnet mask.

If, for example, your telephone number is (619) 555-1212, and you call someone whose
telephone number is (619) 345-1111, it is a local call. You know that because you can look at
the numbers between the parentheses and see that they have the same value. If, on the other
hand, your number is (619) 555-1212 and you call someone whose number is (213) 888-8146,
it's a long distance call. You know that because the numbers inside of the parentheses are
different. You can think of the subnet mask as the area code in the parentheses of a telephone
number. Just as an area code determines a phone call's destination, a subnet mask tells IP how
many bits to look at when determining if the destination IP address is local or remote.

The following graphic shows Harry calling Amber. Since Amber has a different area code, the
phone call will have to go through the router. When Harry calls Sally, however, it is a local
call and does not need to go through the router.

When determining if the packet is bound for the local network or a remote network, IP
compares the network portion of the sender's IP address with the same number of bits from
the destination's IP address. If the bit values are exactly the same, the packet's destination is
determined to be local. If there are any differences in the bit values, the packet's destination is
determined to be remote.

To know how many bits to compare, IP evaluates the subnet mask of the sending host. In the
subnet mask, there is a series of 1s, and then the rest of the bits are set to 0. When IP evaluates
the subnet mask, it is looking specifically for the answer to the question, "How many bits are
set to 1?" Once IP determines how many bits are set to 1, it knows how many bits of the
source host's IP address and the destination host's IP address will be compared.

You can think of the number of bits that are set to 1 in the subnet mask as the number of digits
inside the parentheses in a telephone number-if that number could change (in other words, if
it's variable). If, for example, a telephone number has 10 digits, imagine if the parentheses
include 4, 5, or 6 digits. You would then evaluate the number to be local or long distance
based on the digits that are in the parentheses. If there are 8 bits set to 1 in the subnet mask, IP
will compare the first 8 bits of the host with the first 8 bits of the destination. If there are 16
bits in the subnet mask that are set to 1, IP will compare the first 16 bits of host and
destination.

A subnet mask is a required element of every IP address. When you want to type in the IP
address for a host, the only two required elements are the IP address itself and the subnet
mask. Likewise, when you want to call someone, it is required that you know the correct area
code for the phone number. You then compare the first three characters of your phone number
(your area code) with the first three characters of their phone number (their area code). If the
area codes are the same, you don't need to dial the area code, nor do you have to pay for a
long distance call, because it is a local call. If the area code is not the same, however, you'll
have to dial their area code so that the telephone system can route your call to their city.

You'll see over the next several pages that IP looks at everything in binary. Subnet masks and
routing will become clearer if you think about the IP addresses and subnet masks in binary, so

begin now to think of IP addresses and subnet masks as 32 bits. When thinking in binary, do
not pay attention to the periods that we use in the decimal representation. IP does not pay
attention to the periods; neither should we. Just consider the addresses as 32 1s and 0s.

Impress Your Friends with a New Party Trick

In this trick, you will count to 15 in binary with just 4 fingers. Let four of your fingers
represent 4 bits. Your thumb represents the 1's place; your index finger represents the 2's
place; your middle finger, the 4's place; and your ring finger the 8's place.

Start by making a fist for a binary 0, and then say out loud, "Zero." Then raise your thumb (1)
and say out loud, "One." Put your thumb back into your fist, raise your index finger (2), and
say out loud, "Two." Now raise both your thumb and your index finger. This represents a
decimal value of 2 + 1, so say out loud, "Three." Put your thumb and your index finger back
into your fist and raise your middle finger (4). This finger represents the 4's place. Apologize
for the gesture, and say, "Four." Raise your middle finger and thumb (4 + 1) and say, "Five."
Now put your thumb back, raise your middle finger and index finger (4 + 2), and say, "Six."
Raise your middle finger, index finger, and thumb (4 + 2 + 1) and say, "Seven." Continue
counting all the way up to 15 with just 4 fingers. For added fun, use 4 fingers on your other
hand and you have a whole octet! You can also count all the way to 255 with just 8 fingers.

Network and Host

Applying a subnet mask is like looking through a set of "subnet goggles." Imagine wearing a
set of goggles as you look at an IP address; you see all 32 bits, each in its own slot. When you
ask the question, "How many bits are used for the network portion of this IP address?" the
subnet mask lights up the slots that are in the network portion of the address.

subnet goggles A fictional set of goggles that IP wears when looking at an IP address to
determine whether an address is local or remote. The goggles "light up" the
network and subnet bits with 1s as the bit values in the subnet mask.

Through subnet goggles, 255.0.0.0 looks like this:

NNNN NNNN.HHHH HHHH.HHHH HHHH.HHHH HHHH

The goggles light up the first 8 bits as the network portion (N), and the remaining 24 bits are
used for the host portion (H).

Through subnet goggles, 255.255.0.0 look like this:

NNNN NNNN.NNNN NNNN.HHHH HHHH.HHHH HHHH

The goggles light up the first 16 bits as the network portion.

The subnet mask simply provides a means to light up the correct slots so that IP can figure out
the number of bits used for the network portion of the address. After IP figures this out, it can
compare the address to that of another host to determine whether that host is local or remote.
Using our telephone number and area code example, we can say that the subnet goggles are
illuminating the area code of a telephone number. With subnet masks, the subnet goggles are
illuminating the network portion of the source and destination IP addresses.

Identifying a Local or Remote Network

With every packet that is sent across a network, the big question is: Is the destination address
local or remote? The destination is local if the network portion of the source's IP address is
the same as that of the destination's IP address.

If any bits of the network portions differ from each other, then the destination is remote. This
is similar to figuring out whether someone lives on the same street as you do. If you look at
the person's street name and it is the same as yours, the person lives on the same street as you
do. If any part of the street name is different, the person is remote to your street.

But, as stated earlier, before IP can figure out whether the destination address is remote, IP
has to determine how many bits are in the network portion of the source IP address. IP uses
the subnet mask to determine which bits of the IP address represent the network portion of the
address.

The subnet mask is 32 bits long, but you use dotted decimal notation to represent it, just as
you do with an IP address. A subnet mask, in binary, is made up of several contiguous 1s,
which represent the network portion of the address, and then the rest of the bits are 0s. When
determining how many of the 32 bits are in the network portion of an IP address, IP looks at
the subnet mask for the contiguous 1s.

dotted decimal notation The decimal representation of an IP address or subnet mask. Four
decimal numbers separated by periods (or dots) is the preferred
way to represent an address or mask.

When you look at a subnet mask in binary, imagine that the 1s represent the beginning and
end of an area code. The number of bits set to 1 in the subnet mask is the number of bits that
will be compared to determine if the destination is local or remote. This is similar to
evaluating two telephone numbers by comparing the values that are inside the parentheses.
The 1s in the subnet mask will act like the number of digits within the parentheses in an area
code; these are the only values that are compared to determine if the destination is local or
remote. When someone gives you their telephone number, you can tell if it is a long distance
number just by looking at the digits in the parentheses. Likewise, the subnet mask's only

purpose is to determine how many bits are used to identify if the destination host of every
packet is local or remote.

For example, if the first 16 bits are set to 1, then IP compares the first 16 bits of the source IP
address with the first 16 bits of the destination IP address. If these 16 bits are exactly the
same, the destination host is local; if any of the bits are different, the destination host is
remote. If the first 24 bits are set to 1, then IP compares the first 24 bits of the source IP
address with the first 24 bits of the destination IP address. If these 24 bits are exactly the
same, the destination host is local; if any of the bits are different, the destination host is
remote.

It is called a subnet "mask" for a good reason: It indicates or "masks" the network bits. Think
of it as a shadow covering up some of the bits. The subnet mask shows us how big the
shadow, or mask, is.

Finding a Local Address

A subnet mask of 255.0.0.0 in decimal converts to this binary number:

1111 1111.0000 0000.0000 0000.0000 0000

This binary number tells IP that the first 8 bits are used in the network portion of the address
and the last 24 bits are used in the host portion of the address.

For example, if the source IP address is 10.1.2.3 with a subnet mask of 255.0.0.0, and the
destination address is 10.3.4.5, then IP examines the addresses like this:

 Decimal Binary
Subnet
Mask

255.0.0.0 1111 1111.0000 0000.0000 0000.0000 0000

Source 10.1.2.3 0000 1010.0000 0001.0000 0010.0000 0011
Destination 10.3.4.5 0000 1010.0000 0011.0000 0100.0000 0101
RESULT Same = Local

Based on the subnet mask having the first 8 bits set to 1, IP compares the first 8 bits of the
source to the first 8 bits of the destination. In this case, the first 8 bits of both addresses are the
same, so the destination is local. Knowing that the destination host has a local address, IP can
broadcast an ARP to get the hardware address.

Finding a Remote Address

In another example, if the source IP address is 10.1.2.3 with a subnet mask of 255.0.0.0, and
the destination address is 11.3.4.5, then IP examines the addresses like this:

 Decimal Binary
Subnet
Mask

255.0.0.0 1111 1111.0000 0000.0000 0000.0000 0000

 Decimal Binary
Source 10.1.2.3 0000 1010.0000 0001.0000 0010.0000 0011
Destination 11.3.4.5 0000 1011.0000 0011.0000 0100.0000 0101
RESULT Different = Remote

Based on the subnet mask having the first 8 bits set to 1, IP compares the first 8 bits of the
source to the first 8 bits of the destination. In this case, the first 8 bits of both addresses are
not the same, so the destination is remote. Knowing that the destination host has a remote
address, IP cannot broadcast an ARP to get the hardware address because a router will stop
the broadcast. Instead, IP broadcasts an ARP for the router, which is where IP must send the
packet to move it off of the local network and on its way to the remote network.

In another example, suppose that the source address is 176.16.2.3 and the destination address
is 176.16.4.5. If I ask you the question, "Is the destination local or remote?" the answer you
should give is "I don't know; I don't have enough information." Without the subnet mask, you
can only guess if the destination is local or remote. So, I'll tell you what the subnet mask is:
255.255.0.0.

Now you can answer that the destination is local because we are going to evaluate the first 16
bits of both the source and the destination. Just by looking at the first 2 octets (16 bits), it's
obvious that these addresses are on the same network. There is no difference between any of
those 16 bits. It doesn't even matter if we change the source address to 176.16.200.200; they
are still on the same network because the first 16 bits did not change.

But what if I change the subnet mask to 255.255.255.0? Now IP needs to compare the first 24
bits. Just by looking at the first 3 octets, you can tell that the destination is on a remote
network. It should be simple to see that there is a difference in the first 24 bits.

Standard Subnet Masks

In Chapter 6, you looked at the five classes of IP addresses. For each class of address, there is
a standard, or default, subnet mask. Each is discussed in the following sections.

Class A Addresses

The standard subnet mask for a Class A address is 255.0.0.0. This tells IP that the first 8 bits
are used for the network portion of the IP address, and the remaining 24 bits are used for the
host portion. IP looks at the 32 bits and uses the subnet mask to mask out the network portion
of the address:

NNNN NNNN.HHHH HHHH.HHHH HHHH.HHHH HHHH
standard subnet mask Also called a default subnet mask. Class A = 255.0.0.0, Class B =

255.255.0.0, and Class C = 255.255.255.0.

Because 24 bits are left for the host portion of the address, there are almost 17 million unique
host IP addresses for each Class A network address.

Class B Addresses

A Class B address has a standard subnet mask of 255.255.0.0. This mask tells IP that the first
16 bits are used for the network portion of the address, and the remaining 16 bits are used for
the host portion:

NNNN NNNN.NNNN NNNN.HHHH HHHH.HHHH HHHH

The 16 bits that are used for the host portion of the address can uniquely address more than
16,000 hosts on each Class B network.

Class C Addresses

A Class C address has a standard subnet mask of 255.255.255.0, which masks out the first 24
bits as the network portion and leaves the remaining 8 bits for the host portion:

NNNN NNNN.NNNN NNNN.NNNN NNNN.HHHH HHHH

The 8 bits used for the host portion can uniquely address 254 hosts on each of the Class C
networks.

In summary:

Class Standard
Mask
(Decimal)

Standard Mask (Binary)

A 255.0.0.0 1111 1111.0000 0000.0000 0000.0000 0000
B 255.255.0.0 1111 1111.1111 1111.0000 0000.0000 0000
C 255.255.255.0 1111 1111.1111 1111.1111 1111.0000 0000

You can remember the standard masks this way:

1 octet = Class A (1st letter in the alphabet)

2 octets = Class B (2nd letter in the alphabet)

3 octets = Class C (3rd letter in the alphabet)

In most cases, however, using the standard subnet mask is not the optimal solution for
designing a TCP/IP addressing plan. Most implementations use a variation of the standard
subnet mask called a custom subnet mask, which is explained in Chapter 9.

The following screen capture shows a custom subnet mask being used. Because the IP address
has "10" in the first octet, this is a Class A address, and the standard subnet mask is 255.0.0.0.
However, the administrator has defined a custom subnet mask of 255.255.255.240, which
enables him to create more networks with fewer hosts on each network.

Review Questions
1. An IP address is really made up of two portions. What are they?

2. What is IP trying to determine when the subnet mask is examined?

3. When IP evaluates the IP addresses of the source host and the destination host, on

which portion does IP focus?
4. True or False: The subnet mask is an optional part of the IP address.

5. What is the standard subnet mask for a Class A address?

6. If a source IP address is 10.1.2.3 and the destination address is 10.3.4.5, are these

two hosts on the same network?
7. What is the standard subnet mask for a Class B address?
8. If a source IP address is 176.16.2.3 with a subnet mask of 255.255.0.0, and the

destination address is 176.16.4.5, are these two hosts on the same network? List the
network and the host value of each.

Source address:

Network: __________ Host: __________

Destination address:

Network: __________ Host: __________

9. If a source IP address is 176.16.2.3 with a subnet mask of 255.255.255.0, and the
destination address is 176.16.4.5, are these two hosts on the same network? List the
network and the host value of each.

Source address:

Network: __________ Host: __________

Destination address:

Network: __________ Host: __________
10. What is the standard subnet mask for a Class C address?
11. If a source IP address is 192.168.1.3 with a subnet mask of 255.255.255.0, and the

destination address is 192.168.2.3, are these two hosts on the same network? List
the network and the host value of each.

Source address:

Network: __________ Host: __________

Destination address:

Network: __________ Host: __________

12. If an IP address is 192.168.1.37 with a subnet mask of 255.255.25.5.0, what is the
value of the host portion?

13. If an IP address is 176.16.1.37 with a subnet mask of 255.255.0.0, what is the
value of the host portion?

14. If a source IP address is 10.1.2.3 with a subnet mask of 255.255.255.0, and the
destination address is 10.1.3.4, are these two hosts on the same network? List the
network and the host value of each.

Source address:

Network: __________ Host: __________

Destination address:

Network: __________ Host: __________

Answers

1. Network portion and host portion
2. Whether the destination is local or remote
3. Network portion
4. False; it is required.
5. 255.0.0.0
6. Not enough information was given to answer this question; you must know the subnet

mask.
7. 255.255.0.0
8. Yes

Source address-Network: 176.16, Host: 2.3

Destination address-Network:176.16, Host: 4.5
9. No

Source address-Network: 176.16.2, Host: 3

Destination address-Network: 176.16.4, Host: 5
10. 255.255.255.0
11. No

Source address-Network: 192.168.1, Host: 3

Destination address-Network: 192.168.2, Host: 3
12. The host portion is 37.
13. The host portion is 1.37.
14. No

Source address-Network: 10.1.2, Host: 3

Destination address-Network: 10.1.3, Host: 4

Terms to Know

• subnet mask
• local network
• remote network
• subnet goggles
• dotted decimal notation
• standard subnet mask

Chapter 9: Using Custom Subnet Masks
A network is divided into two subnets by using a router. The router looks at every packet,
compares the destination address to its routing table, and determines which subnet to forward
the packet on to. A router is at the edge of every network, connecting it to other networks.

Most medium to large companies would like to be able to create several subnets within their
company's network. As soon as they begin adding routers, however, they're going to need a
new network IP address on each side of the router so that the router will know which subnet
to send it to.

As a network administrator, you will need to understand how to create custom subnet masks
so that you can put routers into your network and create subnets without paying for several
network addresses.

Custom Subnet Masks

On most networks, the network administrator uses an IP addressing scheme that includes a
custom subnet mask. Because the routers that are in the physical Local Area Network (LAN)
define each network, a network administrator must use a different network address for each
side of a router. When a router is used to create smaller networks, the smaller network is
called a subnet.

custom subnet mask A non-standard subnet mask used by a network administrator to make
more efficient use of a network address by creating more subnets.

subnet A smaller network created by dividing a larger network.

A Class A address can have close to 17 million hosts on a network. However, no network has
17 million hosts on one side of a router; it would not be physically possible. A large network
is divided into several smaller networks by routers, and every time that a router is used, a new
network address is required. Rather than obtain a new network address for each network, the
network administrator can create more network addresses by using a custom subnet mask.

A Custom Subnet Mask Analogy

Let's say that I win the lottery and suddenly have more money than I know what to do with.
So the first thing I do is buy a huge new house. This enormous home has 50 bedrooms, 50
bathrooms, and 50 kitchens. This is a pretty big house for a family of four, so pretty soon we
figure out that it is just too big. A better use of this house would be to subdivide it into
apartments. I decide to put up a few walls and make 50 smaller homes, each with a bedroom,
bathroom, and kitchen. To make the most efficient use of this huge home, I will have 50
families live in the apartments. This is a similar idea to subnetting an IP address.

The concept of a custom subnet mask is simple: Use the subnet mask to "take" some bits for
the network portion of the IP address and use fewer bits for the host portion.

For example, a standard Class A subnet mask is 255.0.0.0, which uses 8 bits to mask the
network portion of the IP address. If an administrator is using a Class A address with this
mask, then only 8 bits can be used for the network portion of the address, and those 8 bits are
already set by which address is being used. In this scheme, 24 bits are left for the host portion,
which means almost 17 million unique host addresses.

255.0.0.0 =

1111 1111.0000 0000.0000 0000.0000 0000

NNNN NNNN.HHHH HHHH.HHHH HHHH.HHHH HHHH

A subnet mask of 255.255.0.0 masks 16 bits of the IP address for the network portion and
leaves 16 bits for the host portion. If the administrator is using the same Class A address as
before, but with a custom subnet mask of 255.255.0.0, then IP will use 16 bits as the network
portion of the IP address. In this scheme, 8 bits mask the Class A network address portion that
was assigned as the network address. The first 8 bits are the standard portion of the mask, the
second 8 bits mask the subnet portion (S), and 16 bits are still left for unique host addresses.

255.255.0.0 =

1111 1111.1111 1111.0000 0000.0000 0000

NNNN NNNN.SSSS SSSS.HHHH HHHH.HHHH HHHH

The following screen capture shows the display of the IP Subnet Calculator available from
WildPackets, Inc., a company that conducts network analysis in the areas of consulting,
training, and value-added software. The IP Subnet Calculator figures out the correct subnet
mask, network addresses, and valid host IP addresses based on the parameters that you
supply. Notice that 6 subnet bits are requested. The Subnet Mask field in the center portion of
the calculator shows that the subnet mask is 255.255.255.252. A couple of fields below that,
the Subnet Bit Map field shows the significance of every bit in the subnet mask. The
significance of each bit is displayed as either:

• n for network
• s for subnet
• h for host

Creating Additional Networks

With a custom subnet mask, the administrator still cannot change the first 8 bits, which
represent the assigned IP network address, but now can use the next 8 bits to create more
networks. This scheme still leaves 16 bits for the host portion of the address. Using the 8
subnet bits, an administrator can create 254 subnets; and using the remaining 16 host bits, an
administrator can address 65,534 hosts on each network.

subnet bits Bits used in the subnet mask to extend the number of bits available for the
network portion of the IP address.

To create the 254 subnets, simply use every binary variation of the 8 subnet bits. For example:

Decimal Binary
255.255.0.0 1111 1111.1111 1111.0000 0000.0000 0000
Subnet
Goggles

NNNN NNNN.SSSS SSSS.HHHH HHHH.HHHH HHHH

10.1.0.0 0000 1010.0000 0001.HHHH HHHH.HHHH HHHH
10.2.0.0 0000 1010.0000 0010.HHHH HHHH.HHHH HHHH
10.3.0.0 0000 1010.0000 0011.HHHH HHHH.HHHH HHHH
10.4.0.0 0000 1010.0000 0100.HHHH HHHH.HHHH HHHH
10.5.0.0 0000 1010.0000 0101.HHHH HHHH.HHHH HHHH
10.6.0.0 0000 1010.0000 0110.HHHH HHHH.HHHH HHHH
10.7.0.0 0000 1010.0000 0111.HHHH HHHH.HHHH HHHH

Notice in the table above that the 8 network (N) bits stay the same while the 8 subnet (S) bits
are incrementing. This is how to create several unique networks. I've taken some bits from the
host (H) portion of the address and given them to the network/subnet portion. In doing this, I
am now able to create more networks that have fewer hosts on each of the networks. On each
of these networks, 16 bits are still left for the host portion of the address, which can make up
the 65,534 unique host addresses.

Subnetting Rules

If an administrator has a Class A address and needs to create more than 254 networks, then
the appropriate subnet mask will extend to the next octet. An administrator needs to determine
the number of networks to be addressed and the maximum number of hosts to be addressed on
those networks, and then create the proper subnet mask. Sometimes the subnet mask will use
an entire octet and sometimes it won't. An administrator can use any number of subnet bits to
create the correct subnet mask.

However, there are some rules to subnetting:

• The subnet bits in the IP address cannot be all 1s.
• The subnet bits in the IP address cannot be all 0s.
• The host bits in the IP address cannot be all 1s.

When all of the host bits are set to 1, the IP address becomes a broadcast address.
This means that every host on that network will accept the packet for further
processing. No host can have a broadcast IP address because it is like a community
mailbox address.

broadcast A packet that is intended to go to all hosts on a network. Routers will
generally stop broadcasts from moving on to another network.

• The host bits in the IP address cannot be all 0s.

When all of the host bits are set to 0, the IP address refers to the network and not to
any of the hosts. An address with all 0s in the host portion of the address is invalid,
and no host can use it.

These rules are easy to follow when using the subnet goggles. Always check out binary IP
addresses with the subnet goggles and confirm that neither the Ss nor the Hs are all 1s or all
0s.

 Note RFC 1878 describes a means of subnet addressing that allows for all 1s and all 0s in the
subnet bits. Most hardware and software do not support RFC 1878 addressing; check the
documentation of the hardware or software that you are using.

Creating a Custom Subnet Mask

The easiest way to create valid subnet masks is to use a subnet calculator, like the one
mentioned earlier. Several subnet calculators are available for free on the Internet. To be able
to create subnet masks without a subnet calculator is a skill. This skill is useful for
certification tests that don't allow calculators. Network administrators also need this skill to
set up, troubleshoot, and understand their TCP/IP addressing scheme.

subnet calculator A software calculator that figures out subnet masks, valid networks,
number of hosts, and host ranges. Several are available for download from
the Internet.

 Tip Appendix D references the companion website for this book. At this
website, you will find links for downloading some free subnet calculators.

In lieu of using a subnet calculator, an administrator can determine the custom subnet mask
by using a simple procedure. The procedure presented in this section is relatively popular and
easily understandable. I have found that the more examples I do, the closer I get to mastering
this procedure.

First get out some paper and a pencil; you'll find that what seems at first difficult will be easy
after several repetitions. There are only six steps to follow in creating a custom subnet mask:

1. Determine how many subnets are needed.
2. Determine the maximum number of hosts on each network.
3. Determine the subnet mask.
4. Determine the valid network addresses.
5. Determine the range of valid host IP addresses on each subnet.
6. Confirm that you met the requirements for the number of networks and maximum

number of hosts.

Each of the steps is outlined in the following sections.

Determining How Many Subnets Are Needed

The first step is to determine how many unique subnets are going to be required. A unique
subnet address is required on each side of a router where there is not another router on that
segment. For example, look at these networks:

In this example, five unique subnet addresses are required-each on its own side of a router.
Notice that although network B connects to three routers, only one network address is
required. Also notice that a unique subnet address is needed for a Wide Area Network (WAN)
connection. A WAN connection consists of two routers that connect two segments of a
WAN.

WAN connection A connection between two LANs (Local Area Networks) is a WAN (Wide
Area Network) connection.

Determining the Maximum Number of Hosts on Each Network

The second step in figuring out the subnet mask is to find the maximum number of hosts on
any of the subnets. For example, if your network has 10 workstations and a router, you'll need
11 host addresses. If your network has 1,000 workstations, 150 TCP/IP printers, and 8 routers,
you'll need to plan for 1,158 host addresses on that network. Remember to count the interface
to the router as a host.

For the networks illustrated in the previous example, the following number of host IP
addresses is required on each network:

Network Number of Hosts
A 5
B 8
C 2
D 5
E 3

This table shows that the most host addresses needed on any network is 8 on Network B.

Determining the Subnet Mask

In this step, you first determine the number of bits you need to take from the host portion of
the address to use in the subnet portion; you then determine the correct subnet mask. You can
use either of two methods to figure out how many bits are needed:

Method 1: Calculate

Method 2: Memorize/use a chart

Both are explained in the following sections.

Method 1: Calculate

To calculate the number of bits needed to create the proper subnet mask:

1. Add 1 to the number of subnets you need. If you need 8, figure that you need 9. If you
need 30, figure 31. If you need 900, figure 901.

2. Convert this decimal number to binary.

Decimal Binary
9 1001
31 11111
901 11 1000 0101

3. Determine the number of subnet bits that you need: This number is the same as the
number of bits that it takes to form the binary number.

Binary # of Bits
1001 4
11111 5
11 1000 0101 10

4. Add this number to the network portion of the standard subnet mask.

of Bits Class A Binary Subnet Mask and Subnet Goggles
4 1111 1111.1111 0000.0000 0000.0000 0000

NNNN NNNN.SSSS HHHH.HHHH HHHH.HHHH HHHH
5 1111 1111.1111 1000.0000 0000.0000 0000

NNNN NNNN.SSSS SHHH.HHHH HHHH.HHHH HHHH
11 1111 1111.1111 1111.1110 0000.0000 0000

NNNN NNNN.SSSS SSSS.SSSH HHHH.HHHH HHHH

5. Converted into decimal, these subnet masks are:

of Bits Decimal Subnet Mask
4 255.240.0.0
5 255.248.0.0
11 255.255.224.0

Method 2: Memorize/Use Chart

You can use the following table to determine the correct subnet mask:

Max # of
Networks
Needed

Mask for Subnetted Octet

2 192
3-6 224
7-14 240
15-30 248
31-62 252
63-126 254
127-254 255

Knowing that you will always use contiguous bits in the subnet mask, there are only eight
possible subnet masks:

of Bits Subnetted Octet in Binary Subnet
Mask

1 1000 0000 128
2 1100 0000 192
3 1110 0000 224
4 1111 0000 240
5 1111 1000 248
6 1111 1100 252
7 1111 1110 254
8 1111 1111 255

contiguous bits One bit following another.

If you are subnetting more than 8 bits, the first 8 bits will be set to all 1s, or decimal 255, and
the subnetted octet will use this same chart with the remainder of the subnet bits.

Consider this subnet mask:

255.192.0.0 = in binary,

1111 1111.1100 0000.0000 0000.0000 0000

There are 2 subnet bits. This means that IP will look at 10 bits (8 network and 2 subnet) to
determine whether another host is local or remote. The number of networks that can be
created with this subnet mask is determined by the number of unique combinations that these
2 bits can form in the IP address. All possible combinations of these 2 bits are:

00

01

10

11

According to the subnetting rules that you looked at earlier, however, the subnet bits cannot
be all 1s or all 0s. Therefore, only two networks can be created with a subnet mask of
255.192.0.0.

Now consider this subnet mask:

255.128.0.0 = in binary,

1111 1111.1000 0000.0000 0000.0000 0000

This subnet mask isn't going to work out because there is only 1 subnet bit. The possible
combinations of the 1 bit to create unique subnets are:

0

1

Both of these are invalid, because the first is all 0s and the second is all 1s.

Finally, consider the next possible subnet mask:

255.224.0.0 = in binary,

1111 1111.1110 0000.0000 0000.0000 0000

Now you have 3 subnet bits to work with. The possible combinations of these 3 bits to create
unique subnets are:

000

001

010

011

100

101

110

111

This list shows eight unique combinations; however, you have to discard the first and last
because of the subnetting rules. This leaves you with six unique subnet addresses.

Determining the Valid Network Addresses

All hosts on each network have to use the same network address, and each network must use a
unique network address. The next step in determining an IP addressing scheme is to determine
the valid network addresses based on the subnet mask that you decided to use. For every
subnet mask, only certain network addresses are valid. In this step, you determine the first
valid network address, and then from that you determine the next valid network addresses.

There is a simple way to determine the valid network addresses for a given subnet mask. For
example, 192 in binary is 1100 0000. The decimal value of the rightmost bit that is a 1 is 64.
Therefore, the first network address is 64, and the next network address is 128.

 Tip The decimal value of the subnet mask's rightmost bit that is a 1 is the first network
address and the incremental value.

The following chart illustrates this point:

 128 64 32 16 8 4 2 1
SNM = 192 1 1 0 0 0 0 0 0

The next chart continues this illustration. Note the rightmost bit in each subnet mask that is set
to 1 (this bit is bold). The rightmost bit in each number corresponds to a decimal value at the
top of the chart; this decimal value is the first network number and the incremental value. In
this chart's first example, 224 in binary is 1110 0000. The decimal value of the rightmost bit
that is a 1 is 32. Therefore, the first network address is 32.

 128 64 32 16 8 4 2 1
SNM = 224 1 1 1 0 0 0 0 0
SNM = 240 1 1 1 1 0 0 0 0
SNM = 248 1 1 1 1 1 0 0 0
SNM = 252 1 1 1 1 1 1 0 0
SNM = 254 1 1 1 1 1 1 1 0
SNM = 255 1 1 1 1 1 1 1 1

For example, say that with the address 131.107.0.0, you would like to create four networks.
Following the steps you learned earlier:

1. Add 1 to the number of subnets you need: 4 + 1 = 5.
2. Convert 5 to binary: 101.
3. Because 101 has 3 bits, you need 3 bits for the subnet mask. The subnet mask is

255.255.224.0.
4. The rightmost bit set to 1 in 224 has a decimal value of 32. This is the first network

number.

Therefore, to create four subnets from 131.107.0.0, you use a subnet mask of 255.255.224.0,
and the four networks will be:

131.107.32.0

131.107.64.0

131.107.96.0

131.107.128.0

Why are some network addresses invalid? What about the 131.107.31.0 network? Let's look
at the math:

The subnet mask 255.255.224.0 in binary is the following:

1111 1111.1111 1111.1110 0000.0000 0000

Using subnet goggles, you have this:

 NNNN NNNN.NNNN NNNN.SSSH HHHH.HHHH HHHH

131.107.31.0 = 1000 0011.0110 1011.0001 1111.0000 0000

Notice that the subnet bits in the IP address are set to all 0s. This goes against the subnetting
rules; therefore, 131.107.31.0 with a subnet mask of 255.255.224.0 is invalid. In this example,
this rule applies to all numbers less than 32 in the third octet.

Determining the Range of Valid Host IP Addresses

Only certain addresses will be valid on each of the networks that is created. Therefore, you
have to determine the valid IP addresses for each network. In the IP addressing scheme, you
must also list the range of valid IP addresses. Finding the range of IP addresses is simple
when using the subnet goggles. Simply apply the subnet mask and identify the valid addresses
that can be created with the remaining bits. For example, the subnet mask 255.255.224.0 in
binary is

1111 1111.1111 1111.1110 0000.0000 0000

Using subnet goggles, you see:

 NNNN NNNN. NNNN NNNN.SSSH HHHH.HHHH HHHH

131.107.32.0 = 1000 0011. 0110 1011.0010 0000.0000 0000

The valid, unique host IP addresses on this network are going to be formed from every
combination of the last 13 bits. Remember that IP uses the subnet goggles and does not look
at the periods.

You start with the first address:

131.107.32.0 = 1000 0011. 0110 1011. 0010 0000.0000 0000

This is invalid because it has all 0s in the host.

And then you increase the value of the hosts:

131.107.32.1 = 1000 0011. 0110 1011. 0010 0000.0000 0001

131.107.32.2 = 1000 0011. 0110 1011. 0010 0000.0000 0010

131.107.32.3 = 1000 0011. 0110 1011. 0010 0000.0000 0011

Continue increasing the value of the hosts, and jump ahead to consider:

131.107.32.255 = 1000 0011. 0110 1011. 0010 0000.1111 1111

Is this a valid host IP address? Yes, IP looks at all 13 host bits to see if the host bits are all 1s
or all 0s (0000011111111). It can be tricky, but just use the goggles and ignore the periods.

The next IP address in the network can be figured out by again incrementing the 13 host bits
by 1, which gives you:

131.107.33.0 = 1000 0011. 0110 1011. 0010 0001.0000 0000

Is this a valid host IP address? Yes, don't forget that IP looks at all 13 host bits
(0000100000000), and this address does not have all 1s nor all 0s. So, 131.107.33.0 is a valid
host IP address on the 131.107.32.0 network!

Let's continue incrementing the 13 host bits by 1:

131.107.33.1 = 1000 0011. 0110 1011. 0010 0001.0000 0001

131.107.33.2 = 1000 0011. 0110 1011. 0010 0001.0000 0010

131.107.33.3 = 1000 0011. 0110 1011. 0010 0001.0000 0011

Continue to increment the 13 host bits and soon you'll run up to:

131.107.33.255 = 1000 0011. 0110 1011. 0010 0001.1111 1111

Is this a valid host IP address? Absolutely. Look at all 13 host bits (0000111111111). Are
they all 1s or all 0s? No, so this is a valid host IP address on the 131.107.32.0 network. Notice
that the 3 subnet bits have not changed.

Continue incrementing the 13 host bits by 1 until you get to:

131.107.63.254 = 1000 0011. 0110 1011. 0011 1111.1111 1110

This is still a valid host IP address on the 131.107.32.0 network. Look at all 13 host bits
(1111111111110). Then increment by 1 and get:

131.107.63.255 = 1000 0011. 0110 1011. 0011 1111.1111 1111

Is this a valid host IP address? No, it's not. Look at the 13 host bits (1111111111111). Having
all 1s is invalid.

From this exercise, you can conclude that the range of valid host IP addresses on the
131.107.32.0 network with a subnet mask of 255.255.224.0 is 131.107.32.1-131.107.63.254.

The next network starts when you increment the 3 subnet bits. The next network is going to
be:

131.107.64.0 = 1000 0011. 0110 1011. 0100 0000.0000 0000

Now you go through the whole range of unique combinations of the 13 host bits. The range of
valid host IP addresses for the 131.107.64.0 network with a subnet mask of 255.255.224.0 is
131.107.64.1-131.107.95.254.

To summarize the example of creating four networks from 131.107.0.0: The subnet mask is
255.255.224.0. The valid networks and host IP address ranges are:

Network Range of IP Addresses
131.107.32.0 131.107.32.1-131.107.63.254
131.107.64.0 131.107.64.1-131.107.95.254
131.107.96.0 131.107.96.1-131.107.127.254
131.107.128.0 131.107.128.1-131.107.159.254

Test It Out: Putting It All Together, Class A

In the following exercise, you will be guided through the process of solving a subnetting
problem for a Class A address.

Problem:

Create 1,101 subnets with the Class A address of 10.0.0.0 and find:

1. The subnet mask
2. The first three valid network numbers

3. The range of host IP addresses on those three networks
4. The last valid network and range of IP addresses

Solution:

1. Determine the subnet mask:

Add 1 to the number of subnets needed: 1,101 + 1 = 1,102

Determine how many bits are needed for the binary equivalent of the decimal 1,102

10001001101 is the binary representation of 1,102 =

11 bits are needed in the subnet mask

Standard Class A uses 8 bits + 11 bits = 19 bits needed in subnet mask

NNNN NNNN.SSSS SSSS.SSSH HHHH.HHHH HHHH

Subnet mask = 255.255.224.0

2. Determine the first three valid networks:

The rightmost subnet bit that equals 1 has a decimal value of 32; therefore, 32 is the
first network address and the incremental value.

First network = 10.0.32.0

0000 1010.0000 0000.0010 0000.0000 0000

Second network = 10.0.64.0

0000 1010.0000 0000.0100 0000.0000 0000

Third network = 10.0.96.0

0000 1010.0000 0000.0110 0000.0000 0000

3. Determine the range of hosts on those three networks:

For 10.0.32.0 = 10.0.32.1-10.0.63.254

0000 1010.0000 0000.0010 0000.0000 0001

0000 1010.0000 0000.0011 1111.1111 1110

For 10.0.64.0 = 10.0.64.1-10.0.95.254

0000 1010.0000 0000.0100 0000.0000 0001

0000 1010.0000 0000.0101 1111.1111 1110

For 10.0.96.0 = 10.0.96.1-10.0.127.254

0000 1010.0000 0000.0110 0000.0000 0001

0000 1010.0000 0000.0111 1111.1111 1110

4. Determine the last valid network and range of addresses:

NNNN NNNN.SSSS SSSS.SSSH HHHH.HHHH HHHH

0000 1010.1111 1111.110H HHHH.HHHH HHHH

The last network = 10.255.192.0

Range of hosts are:

0000 1010.1111 1111.1100 0000.0000 0001 = 10.255.192.1

0000 1010.1111 1111.1101 1111.1111 1110 = 10.255.223.254

In summary:

1. Subnet mask: 255.255.224.0
2. First three valid networks:

10.0.32.0

10.0.64.0

10.0.96.0

3. Range of host IP addresses:

For 10.0.32.0, 10.0.32.1-10.0.63.254

For 10.0.64.0, 10.0.64.1-10.0.95.254

For 10.0.96.0, 10.0.96.1-10.0.127.254

4. Last valid network and host IP address range:

10.255.192.0 and 10.255.192.1-10.255.223.254

Test It Out: Putting It All Together, Class B

In the following exercise, you will be guided through the process of solving a subnetting
problem for a Class B address.

Problem:

Create 315 subnets with the Class B address of 172.20.0.0 and find:

1. The subnet mask
2. The first three valid network numbers
3. The range of host IP addresses on those three networks
4. The last valid network and range of IP addresses

Solution:

1. Determine the subnet mask:

Add 1 to the number of subnets needed: 315 + 1 = 316

Determine how many bits are needed for the binary equivalent of the decimal 316

100111100 is the binary representation of 316 =

9 bits are needed in the subnet mask

Standard Class B uses 16 bits + 9 bits = 25 bits needed in subnet mask

NNNN NNNN.NNNN NNNN.SSSS SSSS.SHHH HHHH

Subnet mask = 255.255.255.128

2. Determine the first three valid networks:

The rightmost subnet bit that equals 1 has a decimal value of 128; therefore, 128 is the
first network address and the incremental value.

First network = 172.20.0.128

1010 1100.0001 0100.0000 0000.1000 0000

Second network = 172.20.1.0

1010 1100.0001 0100.0000 0001.0000 0000

Third network = 172.20.1.128

1010 1100.0001 0100.0000 0001.1000 0000

3. Determine the range of hosts on those three networks:

For 172.20.0.128 = 172.20.0.129-172.20.0.254

1010 1100.0001 0100.0000 0000.1000 0001

1010 1100.0001 0100.0000 0000.1111 1110

For 172.20.1.0 = 172.20.1.1-172.20.1.254

1010 1100.0001 0100.0000 0001.0000 0001

1010 1100.0001 0100.0000 0001.0111 1110

For 172.20.1.128 = 172.20.1.129-172.20.1.254

1010 1100.0001 0100.0000 0001.1000 0001

1010 1100.0001 0100.0000 0001.1111 1110

4. Determine the last valid network and range of addresses:

NNNN NNNN.NNNN NNNN.SSSS SSSS.SHHH HHHH

1010 1100.0001 0100.1111 1111.0HHH HHHH

The last network = 172.20.255.0

Range of hosts are:

1010 1100.0001 0100.1111 1111.0000 0001 = 172.20.255.1

1010 1100.0001 0100.1111 1111.0111 1110 = 172.20.255.254

In summary, the answers are:

1. Subnet mask: 255.255.255.128
2. First three valid networks:

172.20.0.128

172.20.1.0

172.20.1.128

3. Range of host IP addresses:

For 172.20.0.128, 172.20.0.129-172.20.0.254

For 172.20.1.0, 172.20.1.1-172.20.1.254

For 172.20.1.128, 172.20.1.129-172.20.1.254

4. Last valid network and host IP address range:

172.20.255.0 and 172.20.255.1-172.20.255.254

Valid Hosts for Class C Addresses

Finding the range of valid hosts with a Class C address is the same process, except that there
are so few host bits available that some of the addresses may seem strange. The network
portions look like real IP addresses, and the range of valid addresses is as obvious as in the
previous examples.

Let's consider the address 192.168.2.0. Say, for example, that you need 11 networks from this
address. You'd take the following steps to find the range of valid hosts:

1. Add 1 to the number of subnets you need: 11 + 1 = 12.
2. Convert the result to binary: 1100.
3. Because 1100 has 4 bits, you need 4 bits in the subnet mask:

1111 0000 = 240

Subnet mask 255.255.255.240 =

1111 1111.1111 1111.1111 1111.1111 0000

Using subnet goggles:

NNNN NNNN.NNNN NNNN.NNNN NNNN.SSSS HHHH

The first network address is 192.168.2.16 =

1100 0000.1010 1000.0000 0010.0001 0000

The valid unique host IP addresses on this network are going to be every combination of the
last 4 bits. Remember that IP uses the subnet goggles and does not look at the periods.

The first address is invalid because it has all 0s in the host:

192.168.2.16 =

1100 0000.1010 1000.0000 0010.0001 0000

The next addresses are:

192.168.2.17 =
1100 0000.1010 1000.0000 0010.0001 0001

192.168.2.18 =
1100 0000.1010 1000.0000 0010.0001 0010

192.168.2.19 =
1100 0000.1010 1000.0000 0010.0001 0011

192.168.2.20 =
1100 0000.1010 1000.0000 0010.0001 0100

Continue increasing the value of the hosts, and jump ahead to consider:

192.168.2.29 =
1100 0000.1010 1000.0000 0010.0001 1101

192.168.2.30 =
1100 0000.1010 1000.0000 0010.0001 1110

192.168.2.31 =
1100 0000.1010 1000.0000 0010.0001 1111

This last address is invalid because it has all 1s in the host portion.

So the first network and range of addresses are:

192.168.2.16 with an IP address range of 192.168.2.17-192.168.2.30

Some of the next networks and their address ranges are:

192.168.2.32 with an IP address range of 192.168.2.33-192.168.2.46

192.168.2.48 with an IP address range of 192.168.2.49-192.168.2.62

192.168.2.64 with an IP address range of 192.168.2.65-192.168.2.78

Using this scheme, 14 subnets can be built, of which you need only 11.

 Tip To find valid hosts for a Class C network: Find the first network address, and the first
valid IP address on that network is one more than the network address. The last valid IP
address on that network is the next network address minus 2.

To determine the last valid network that can be created with the address of 192.168.2.0 and a
subnet mask of 255.255.255.240, let's look at the numbers in their binary representations.

192.168.2.225 = 1100 0000.1010 1000.0000 0010.1110 0000

With an IP address range of

192.168.2.225 = 1100 0000.1010 1000.0000 0010.1110 0001

through

192.168.2.238 = 1100 0000.1010 1000.0000 0010.1110 1110

The IP address 192.168.2.239 would be invalid because it is the broadcast address on the
192.168.2.224 network:

192.168.2.239 = 1100 0000.1010 1000.0000 0010.1110 1111

If you were to try to create one more network by incrementing the subnet bits by one, you
would have:

192.168.2.240 = 1100 0000.1010 1000.0000 0010.1111 0000

Notice that the subnet bits are all 1, thus making this an invalid network address. Always
consider the binary representation when determining the validity of addresses.

Test It Out: Putting It All Together, Class C

In the following exercise, you will be guided through the process of solving a subnetting
problem for a Class C address.

Problem:

Create 12 subnets with the Class C address of 192.168.2.0 and find:

1. The subnet mask
2. The first three valid network numbers
3. The range of host IP addresses on those three networks
4. The last valid network and range of IP addresses

Solution:

1. Determine the subnet mask:

Add 1 to the number of subnets needed: 12 + 1 = 13

Determine how many bits are needed for the binary equivalent of the decimal 13

1101 is the binary representation of 13 =

4 bits are needed in the subnet mask

Standard Class C uses 24 bits + 4 bits = 28 bits needed in subnet mask

NNNN NNNN.NNNN NNNN.NNNN NNNN.SSSS HHHH

Subnet mask = 255.255.255.240

2. Determine the first three valid networks:

The rightmost subnet bit that equals 1 has a decimal value of 16; therefore, 16 is the
first network address and the incremental value.

First network = 192.168.2.16

1100 0000. 1010 1000.0000 0010.0001 0000

Second network = 192.168.2.32

1100 0000. 1010 1000.0000 0010.0010 0000

Third network = 192.168.2.48

1100 0000. 1010 1000.0000 0010.0011 0000

3. Determine the range of hosts on those three networks:

For 192.168.2.16 = 192.168.2.17-192.168.2.30

1100 0000. 1010 1000.0000 0010.0001 0001

1100 0000. 1010 1000.0000 0010.0001 1110

For 192.168.2.32 = 192.168.2.33-192.168.2.46

1100 0000. 1010 1000.0000 0010.0010 0001

1100 0000. 1010 1000.0000 0010.0010 1110

For 192.168.2.48 = 192.168.2.49-192.168.2.62

1100 0000. 1010 1000.0000 0010.0011 0001

1100 0000. 1010 1000.0000 0010.0011 1110

4. Determine the last valid network and range of addresses:

NNNN NNNN.NNNN NNNN.NNNN NNNN.SSSS HHHH

1100 0000. 1010 1000.0000 0010.1110 HHHH

The last network = 192.168.2.224

Range of hosts are:

1100 0000. 1010 1000.0000 0010.1110 0001 = 192.168.2.225

1100 0000. 1010 1000.0000 0010.1110 1110 = 192.168.2.238

In summary:

1. Subnet mask: 255.255.255.240
2. First three valid networks:

192.168.2.16

192.168.2.32

192.168.2.48

3. Range of host IP addresses:

For 192.168.2.16 = 192.168.2.17-192.168.2.30

For 192.168.2.32 = 192.168.2.33-192.168.2.46

For 192.168.2.48 = 192.168.2.49-192.168.2.62

4. Last valid network and host IP address range:

192.168.2.224 and 192.168.2.225-192.168.2.238

Calculating the Number of Networks and Hosts

Now let's look at some of the interesting math solutions of subnetting.

1. To solve for how many networks you can create, use the equation:

(2N) - 2 where N is the number of subnet bits

For example: A Class B address with a subnet mask of 255.255.240.0 will create (24) -
2 = 14 networks.

2N - 2 Equation used to figure out the number of subnets and hosts per subnet that can
be created with a subnet mask. N is the number of bits that you are using for the
subnet portion or the host portion of the address.

 Tip When using the calculator program that is installed with Windows to solve an
exponential equation, click the View option and choose Scientific. Type 2, click
the x^y button, type 4 (or however many subnet bits), type -, type 2.

2. To solve for how many host IP addresses are on each network, use the same equation:

(2N) - 2 where N is the number of host bits

For example: A Class B address with a subnet mask of 255.255.252.0 will allow (210)
- 2 = 1022 hosts on each network.

3. To figure out the range of IP addresses on each network, use this two-part equation:

The first part, or start of the range = (the network address + 1)

The second part, or end of the range =

For Class A, B: (the next network address - 1)

For Class C: (the next network address - 2)

For example, for the network 131.107.2.0 with a subnet mask of 255.255.255.0, the
range of IP addresses is 131.107.2.1-131.107.2.254 because:

(the network address + 1) = 131.107.2.1

through

(the next network address, which is 131.107.3.0 - 1) = 131.107.2.254

Test It Out: Number of Networks and Hosts

In the following exercise, you will determine the number of networks and hosts given a Class
A address and a subnet mask.

Problem:

With the Class A address of 10.0.0.0 and a subnet mask of 255.255.224.0, find:

1. How many subnets can be created?
2. How many hosts on each subnet?

Solution:

1. To determine how many subnets can be created:

Determine how many bits are set to 1 in the custom subnet mask

255.255.224.0 has 11 bits set to 1 in the custom portion

(Standard Class A has 8 bits set to 1)

Use the 2N - 2 equation where N = 11

211 - 2 = 2,046

2,046 unique subnets can be created

2. To determine how many hosts can be on each of those 2,046 subnets:

Determine how many bits are set to 0 in the subnet mask

255.255.224.0 has 13 bits set to 0

Use the 2N - 2 equation where N = 13

213 - 2 = 8,190

8,190 unique hosts can be addressed on each of the 2,046 subnets

Class A Subnet Masks

The table below summarizes all of the Class A subnet masks, the number of valid networks,
and the number of hosts on each network.

Subnet Mask # of Unique Valid Networks # of Hosts On Each Network
255.0.0.0 1-standard subnet mask 16,777,214
255.128.0.0 Invalid-only 1 bit for subnet

portion
-

255.192.0.0 2 4,194,302
255.224.0.0 6 2,097,150
255.240.0.0 14 1,048,574
255.248.0.0 30 524,286
255.252.0.0 62 262,142
255.254.0.0 126 131,070
255.255.0.0 254 65,534
255.255.128.0 510 32,766
255.255.192.0 1,022 16,382
255.255.224.0 2,046 8,190
255.255.240.0 4,094 4,094
255.255.248.0 8,190 2,046
255.255.252.0 16,382 1,022
255.255.254.0 32,766 510
255.255.255.0 65,534 254
255.255.255.128 131,070 126
255.255.255.192 262,142 62
255.255.255.224 524,286 30
255.255.255.240 1,048,574 14
255.255.255.248 2,097,150 6
255.255.255.252 4,194,302 2
255.255.255.254 Invalid-only 1 bit left for host

portion
-

255.255.255.255 Invalid-no bits left for host
portion

-

You can memorize this table, or just use the equation (2N) - 2 to figure out any of the entries.
The variable N in the equation is the number of subnet bits or the number of host bits.

Class B Subnet Masks

The table below summarizes all of the Class B subnet masks and the number of networks and
hosts.

Subnet Mask # of Unique Valid Networks # of Hosts On Each
Network

255.255.0.0 1-standard subnet mask 65,534
255.255.128.0 Invalid-only 1 bit for subnet portion -
255.255.192.0 2 16,382
255.255.224.0 6 8,190
255.255.240.0 14 4,094
255.255.248.0 30 2,046
255.255.252.0 62 1,022
255.255.254.0 126 510
255.255.255.0 254 254
255.255.255.128 510 126
255.255.255.192 1,022 62
255.255.255.224 2,046 30
255.255.255.240 4,094 14
255.255.255.248 8,190 6
255.255.255.252 16,382 2
255.255.255.254 Invalid-only 1 bit left for host

portion
-

255.255.255.255 Invalid-no bits left for host portion -

Class C Subnet Masks

This table summarizes the Class C subnet masks and the number of networks and hosts.

Subnet Mask # of Unique Valid Networks # of Hosts On Each
Network

255.255.255.0 1-standard subnet mask 254
255.255.255.128 Invalid-only 1 bit for subnet portion -
255.255.255.192 2 62
255.255.255.224 6 30
255.255.255.240 14 14
255.255.255.248 30 6

Subnet Mask # of Unique Valid Networks # of Hosts On Each
Network

255.255.255.252 62 2
255.255.255.254 Invalid-only 1 bit left for host

portion
-

255.255.255.255 Invalid-no bits left for host portion -

Review Questions
1. You need to create 652 networks with the Class B address 150.150.0.0.

a. What is the subnet mask?
b. List the first three valid network numbers.
c. List the range of host IP addresses on those three networks.
d. List the last valid network and range of IP addresses.
e. How many subnets does this solution allow?
f. How many host addresses can be on each subnet?

2. You need to create 506 networks with the Class B address 151.151.0.0.

a. What is the subnet mask?
b. List the first three valid network numbers.
c. List the range of host IP addresses on those three networks.
d. List the last valid network and range of IP addresses.
e. How many subnets does this solution allow?
f. How many host addresses can be on each subnet?

3. You need to create 223 networks with the Class B address 152.152.0.0.

a. What is the subnet mask?
b. List the first three valid network numbers.
c. List the range of host IP addresses on those three networks.
d. List the last valid network and range of IP addresses.
e. How many subnets does this solution allow?
f. How many host addresses can be on each subnet?

4. You need to create 12 networks with the Class C address 200.200.200.0.

a. What is the subnet mask?
b. List the first three valid network numbers.
c. List the range of host IP addresses on those three networks.
d. List the last valid network and range of IP addresses.
e. How many subnets does this solution allow?
f. How many host addresses can be on each subnet?

5. You need to create five networks with the Class C address 201.201.201.0.

a. What is the subnet mask?
b. List the first three valid network numbers.

c. List the range of host IP addresses on those three networks.
d. List the last valid network and range of IP addresses.
e. How many subnets does this solution allow?
f. How many host addresses can be on each subnet?

6. You need to create 110 networks with the Class C address 202.202.202.0. What is
the subnet mask?

7. You need to create 140,000 networks with the Class A address 10.0.0.0. What is
the subnet mask?

8. You need to create 54 networks with the Class B address 155.155.0.0. What is the
subnet mask?

9. You need to create 110 networks with the Class B address 131.107.0.0. What is the
subnet mask?

10. You need to create 425 networks with the Class A address 15.0.0.0. What is the
subnet mask?

11. Using the subnet mask of 255.255.0.0 and the Class A address of 10.0.0.0,

a. How many unique networks can be created?
b. How many host IP addresses can be on each network?

Answers

1. a. 255.255.255.192
b. 150.150.0.64, 150.150.0.128, 150.150.0.192
c. 150.150.0.65-150.150.0.126150.150.0.129-150.150.0.190150.150.0.193-

150.150.0.254
d. Network: 150.150.255.128

Range of IP addresses: 150.150.255.129-150.150.255.190

e. 1,022
f. 62

2. a. 255.255.255.128
b. 151.151.0.128, 151.151.1.0, 151.151.1.128
c. 151.15.10.129-151.151.0.254151.151.1.1-151.151.1.126151.151.1.129-

151.151.1.254
d. Network: 151.151.255.0

Range of IP addresses: 151.151.255.1-151.151.255.126

e. 510
f. 126

3. a. 255.255.255.0
b. 152.152.1.0, 152.152.2.0, 152.152.3.0
c. 152.152.1.1-152.152.1.254152.152.2.1-152.152.2.254152.152.3.1-152.152.3.254

d. Network: 152.152.254.0

Range of IP addresses: 152.152.254.1-152.152.254.254

e. 254
f. 254

4. a. 255.255.255.240
b. 200.200.200.16, 200.200.200.32, 200.200.200.48
c. 200.200.200.17-200.200.200.30200.200.200.33-200.200.200.47200.200.200.49-

200.200.200.62
d. Network: 200.200.200.224

Range of IP addresses: 200.200.200.225-200.200.200.238

e. 14
f. 14

5. a. 255.255.255.224
b. 201.201.201.32, 201.201.201.64, 201.201.201.96
c. 201.201.201.33-201.201.201.62201.201.201.65-201.201.201.94201.201.201.97-

201.201.201.126
d. Network: 201.201.201.192

IP address range: 201.201.201.193-201.201.201.222e.6f.30>

e.
f.

6. Trick question; the address is invalid.
7. 255.255.255.192
8. 255.255.252.0
9. 255.255.254.0
10. 255.255.128.0
11. 1. 254

2. 65,534

Terms to Know

• custom subnet mask
• subnet
• subnet bits
• broadcast
• subnet calculator
• WAN connection
• contiguous bits
• 2N - 2

Chapter 10: Supernetting and CIDR
IP address allocation has undergone some changes and modifications over the last 20 years.
As Internet architects looked at ways to extend the life of the IP-addressing system and
responsibly administer any remaining public network addresses, some interesting and useful
addressing schemes have been developed.

Two addressing schemes that delve a bit deeper into subnetting are supernetting and Classless
Inter-Domain Routing (CIDR). These addressing schemes are used in large TCP/IP networks
that have many subnets to make routing simpler and more manageable. Understanding
subnets and subnet masks is critical to understanding these addressing schemes, and
understanding these addressing schemes will give you a better and more simplistic
understanding of subnetting.

IP Address Allocation

The Internet has grown at a rate that no one anticipated. The designers of this network could
not have possibly foreseen this kind of growth-a growth that has been described as
exponential and explosive-and this is obvious in some of the initial assessments and decisions
about address allocations that the designers made. Some people have compared the address
allocation structure with the initial PC DOS operating systems; these early systems were
written to never use more than a whopping 640K of RAM. In both of these cases, the pioneers
of these fields could not have forecasted the unbelievable expansion of the systems they were
designing.

PC DOS PC operating system used with early PCs that could only address up to 640K of
RAM. This limitation led to severe issues, as more RAM was needed.

The initial decision was made to use an IP address of 32 bits. Within those 32 bits, a portion
of that address referred to the network on which the host belonged, and the other portion of
the address referred to its unique host address on that network. A major question that the
designers of the Internet were faced with was, "How should the addresses be allocated?" The
decision was therefore made to use a classful addressing system.

classful addressing system System of assigning IP network addresses in which addresses are
allotted in well-defined blocks. The blocks of addresses in the
classful system are Class A, B, C, D, and E.

Limitations of the Classful System

By separating the pool of addresses into five distinct classes, allocating these addresses should
be pretty simple. First, within these five classes, Class D and Class E would be reserved for
purposes other than host addresses. Therefore, companies needing IP addresses would receive
Class A, Class B, or Class C addresses based on the number of hosts that needed to be
addressed.

In Chapter 6, you learned that in the classful addressing system:

Class A yields 126 networks with 16,777,214 hosts each.

Class B yields 16,382 networks with 65,534 hosts each.

Class C yields 2,097,152 networks with only 254 hosts each.

An element of this address allocation system that limited its scalability was the strictness of
using an explicit 8, 16, or 24 bits to represent the network portion of the address. A company
with fewer than 254 hosts would obviously need the smallest class of address possible, a
Class C. If that network had only 100 hosts, 154 addresses were wasted. Therefore, many
Class C host addresses have never been used. In a similar situation, a company with 5,000
hosts was given a Class B. This wasted over 60,000 host addresses, because a Class B can
address up to 65,534 hosts.

The Trouble with Class B

Class B address allocation was where the Internet faced its greatest challenge. In May 1992,
49 of the 126 Class A networks had already been allocated-that meant that 38 percent of these
addresses were already gone. Furthermore, 45 percent of the Class B networks had been
allocated, or 7,354 of the 16,382. The Internet designers projected that at the rate the Internet
was growing and network numbers were being assigned, all Class B addresses would be gone
within 15 months. (Class Cs were not yet an issue, since only 2 percent or 44,014 of the
2,097,152 networks had been allocated.)

The Internet Assigned Numbers Authority (IANA) decided to hold on to Class B addresses a
little tighter, so they created a new set of criteria to make sure that a company would
effectively use a Class B before the IANA assigned it to them. The new guidelines to get a
Class B included that the organization applying for the Class B must submit a subnetting plan
and a document justifying the need for a Class B. The company had to submit an engineering
plan to detail the deployment of addresses. The plan needed to include a 24-month forecast of
the network and its anticipated growth. If it was possible for the company to manage their
network effectively with several Class Cs, the application was rejected. All other requests
were subject to the following Class C assignments.

If a company needed fewer than… The Class C assignment would be…
256 addresses 1 Class C network
512 addresses 2 contiguous Class C networks
1,024 addresses 4 contiguous Class C networks
2,048 addresses 8 contiguous Class C networks
4,096 addresses 16 contiguous Class C networks
8,192 addresses 32 contiguous Class C networks
16,384 addresses 64 contiguous Class C networks

With this plan, the Class B addresses were no longer allocated in a reckless manner. The
Internet, however, still faced some pretty significant addressing issues. The two major
challenges were:

• Class B addresses would eventually be exhausted, even with the tighter control of
Class B allocation.

• Internet routing tables were getting too large, which affected delivery, reliability,
etc.

Internet routing tables Tables that are maintained by Internet authorities and
Internet Service Providers (ISPs) that provide the
information for routing packets on the Internet.

Because Class B addresses would eventually run out, the focus shifted to the second issue.
This issue was growing into a big problem, especially with the assignment of contiguous
Class C network addresses.

Internet Routing Tables

Internet routing tables contain network addresses and the best route to get to that network.
They list the network number, the subnet mask, and the route to take to get to that network.
For example, a routing table may contain the following routes:

Network Subnet Mask Route
192.168.0.0 255.255.255.0 192.168.0.1
192.168.1.0 255.255.255.0 192.168.1.1
176.16.0.0 255.255.0.0 176.16.0.1
10.1.0.0 255.255.0.0 10.1.0.1

This routing table contains only four routes. Imagine how huge a table would be that contains
thousands of routes!

As these routing tables grew in size, two methods of compacting the routing tables were
created: supernetting and CIDR. Both of these techniques made routing tables smaller and
routing entries more efficient.

Supernetting

Supernetting is used in routing tables to compact contiguous Class C networks. Suppose that a
company needs to address 1,024 hosts. The table from earlier in this chapter states that a
company this size does not need a Class B; instead it requires four contiguous Class C
addresses. This will conserve the Class B addresses; however, it will tax the Internet routing
tables.

The company is assigned the four contiguous Class C addresses of 192.168.0.0 through
192.168.3.0, and it sets up its router to the Internet with the address of 192.168.0.1. The routes
in the ISP routing table will contain the following:

Network Subnet Mask Route
192.168.0.0 255.255.255.0 192.168.0.1
192.168.1.0 255.255.255.0 192.168.0.1
192.168.2.0 255.255.255.0 192.168.0.1

Network Subnet Mask Route
192.168.3.0 255.255.255.0 192.168.0.1

Notice that all of the routes point to the same IP address of 192.168.0.1. These routes
therefore seem redundant. The subnet mask tells IP at the router to examine 24 bits of every
packet to determine the route that each packet will take. IP then examines 24 bits of the
destination address of each packet and finds that the only difference in any of these four
routes is in the third octet (specifically the 23rd and 24th bit):

Network Third Octet
192.168.0.0 0000 0000
192.168.1.0 0000 0001
192.168.2.0 0000 0010
192.168.3.0 0000 0011

Any packet that is bound for any of these contiguous networks has the same first 22 bits; the
only difference is in the 23rd and 24th bits. Since all of the networks are routed to the same IP
address, supernetting can tell IP to look at only 22 bits. Using supernetting, the same routing
table would include only one route instead of four.

Network Subnet Mask Route
192.168.0.0 255.255.252.0 192.168.0.1

Now if a packet is bound for 192.168.1.12, 192.168.2.115, 192.168.3.5, or 192.168.0.10, the
subnet mask of 255.255.252.0 tells IP to look only at the first 22 bits. All of these addresses
have the same first 22 bits:

Destination First 22 Bits Last 10 Bits
192.168.1.12 1100 0000. 1010 1000.0000

00
01.0000 1100

192.168.2.115 1100 0000. 1010 1000.0000
00

10.0111 0011

192.168.3.5 1100 0000. 1010 1000.0000
00

11.0000 0101

192.168.0.10 1100 0000. 1010 1000.0000
00

00.0000 1010

By supernetting the network in the routing table, the routes to this company's Class C
addresses are reduced to just one entry.

In another example, suppose that a company needs 4,096 host addresses. Rather than using a
Class B address, the company would use 16 contiguous Class C addresses. Without a
supernetted route, the routing table contains the following 16 routes:

Network Subnet Mask Route
192.168.0.0 255.255.255.0 192.168.0.1
192.168.1.0 255.255.255.0 192.168.0.1
192.168.2.0 255.255.255.0 192.168.0.1
192.168.3.0 255.255.255.0 192.168.0.1
192.168.4.0 255.255.255.0 192.168.0.1
192.168.5.0 255.255.255.0 192.168.0.1
192.168.6.0 255.255.255.0 192.168.0.1
192.168.7.0 255.255.255.0 192.168.0.1
192.168.8.0 255.255.255.0 192.168.0.1
192.168.9.0 255.255.255.0 192.168.0.1
192.168.10.0 255.255.255.0 192.168.0.1
192.168.11.0 255.255.255.0 192.168.0.1
192.168.12.0 255.255.255.0 192.168.0.1
192.168.13.0 255.255.255.0 192.168.0.1
192.168.14.0 255.255.255.0 192.168.0.1
192.168.15.0 255.255.255.0 192.168.0.1

Using a supernetted route, the entries in the routing table can be reduced to one route:

Network Subnet Mask Route
192.168.0.0 255.255.240.0 192.168.0.1

To create the right supernetted subnet mask, an administrator must look at the binary and
determine the last bit where all of the networks are the same. This number depends on how
many contiguous Class C addresses are being subnetted. Below is a simple table showing the
correct supernetted subnet mask that should be used:

of Networks Being Supernetted Mask
2 255.255.254.0
4 255.255.252.0
8 255.255.248.0
16 255.255.240.0
32 255.255.224.0
64 255.255.192.0
128 255.255.128.0
256 255.255.0.0
512 255.254.0.0
1024 255.252.0.0

of Networks Being Supernetted Mask
2048 255.248.0.0
4096 255.240.0.0
8192 255.224.0.0
16384 255.192.0.0
32768 255.128.0.0
supernetted subnet mask A subnet mask that uses a

supernet notation.

Classless Inter-Domain Routing (CIDR)

From Chapter 8, you know that subnet masks use a dotted decimal notation to describe to IP
how many bits represent the network portion of the address. Very simply stated, CIDR
addresses replace the subnet mask and state the number of bits that IP should use to determine
the network portion of an IP address. For example, a subnet mask of 255.255.255.0 tells IP
that 24 bits determine the network portion of the address, so CIDR simply uses the notation of
/24. In other examples, instead of 255.255.0.0, CIDR uses a /16 notation, and a subnet mask
of 255.255.255.240 is replaced with /28.

From earlier in this chapter, you know about the two serious challenges facing address
allocation on the Internet. The first is the depletion of Class B networks, and the second is the
large routing tables. CIDR is a mechanism to temporarily assist in alleviating both issues.

A great deal of space can be saved in a routing table by using CIDR notation instead of the
traditional subnet mask dotted decimal notation. For example, if you replace 255.255.240.0
with /20, space is saved and the exact same information is conveyed. When you multiply this
saved space by the number of routes in a routing table, which could be thousands, a
tremendous amount of space is saved.

Another enormous benefit of using CIDR is the flexibility in assigning network addresses.
Instead of using the "classful" system of addressing, CIDR uses a "classless" system. There is
no default mask with CIDR. A network address can be allocated with any number of bits
representing the network portion of the address. CIDR addresses can be allocated based on the
number of hosts; using this addressing system can suit a company better than using the
classful system, which can waste addresses. Table 10.1 lists the appropriate CIDR notation for
different networks.

Table 10.1: Summary of CIDR Address Notation
CIDR Notation # of Hosts # of Class Cs
/27 32 1/8
/26 64 1/4
/25 128 1/2
/24 256 1
/23 512 2
/22 1024 4

Table 10.1: Summary of CIDR Address Notation
CIDR Notation # of Hosts # of Class Cs
/21 2048 8
/20 4096 16
/19 8192 32
/18 16384 64
/17 32768 128
/16 65536 256 (1 Class B)
/15 131072 512
/14 262144 1024
/13 524288 2048

As you've already learned in this chapter, two major issues faced the growing Internet: the
depletion of Class B addresses and the large routing tables. Supernetting and CIDR are two
initiatives that have assisted in the impact of these major issues. As you'll see in Chapter 15,
the next version of TCP/IP is currently being deployed. The address allocation scheme has
undergone intense scrutiny so the issues that faced this version of IP will be avoided in the
future.

Review Questions
1. List the two major problems that have challenged the growth of the Internet.

2. Rather than assigning a company one Class B, what did the IANA begin doing?

3. If your company is assigned the four contiguous Class C addresses of 192.168.0.0-

192.168.3.0, what is the supernet mask?
4. If your company is assigned the 16 contiguous Class C addresses of 192.168.0.0-

192.168.15.0, what is the supernet mask?
5. If you use the supernet mask 255.255.248.0, how many bits is IP going to

examine?

6. Instead of having 48 entries in a routing table, how many entries would there be if
you use a supernet mask?

7. What is the address 192.168.1.0 with a subnet mask of 255.255.255.224 when
converted to CIDR notation?

8. What is the address 192.168.1.0 with a subnet mask of 255.255.255.240 when
converted to CIDR notation?

9. What is the address 10.0.0.0 with a subnet mask of 255.255.128.0 when converted
to CIDR notation?

10. What is the address 176.16.0.0 with a subnet mask of 255.255.128.0 when
converted to CIDR notation?

Answers

1. Class B address exhaustion and overloaded routing tables.
2. It began assigning contiguous Class Cs.

3. 255.255.252.0
4. 255.255.240.0
5. 21
6. 1
7. 192.168.1.0/27
8. 192.168.1.0/28
9. 10.0.0.0/17
10. 176.16.0.0/17

Terms to Know

• CIDR
• classful addressing system
• Internet routing tables
• PC DOS
• supernetted subnet mask
• supernetting

Chapter 11: Name Resolution
Rather than remember IP addresses, humans find it easier to remember names. Administrators
give meaningful names to computers-for example, APPSRVR, ROUTERC, or HARRY. On
the Internet, Web sites are given easy-to-remember names such as www.sybex.com. In this
way, we can remember names of hosts on our network and of Web sites that we would like to
visit.

But TCP/IP cannot find or connect to another computer with just words; TCP/IP needs an IP
address. Therefore, the names that we use must be resolved to an IP address before TCP/IP
can do anything with them. Resolving-or translating-the name to an IP address is called name
resolution. After a name is resolved to an IP address, the host can then figure out whether the
destination is local or remote and can continue with the communication. This is similar to
finding a phone number when all you know is a name.

In this chapter, you will explore two methods of name resolution:

• Host name resolution
• NetBIOS name resolution

Understanding Name Resolution

Name resolution is the process of figuring out the IP address that corresponds to a given
name. Because we like to use words for machines, but TCP/IP needs to use IP addresses, we
must have a mechanism or method for making the exchange.

name resolution The process of finding the IP address for the name of a computer.

For example, the URL for the Sybex Web site is www.sybex.com. This Web site has an IP
address of 206.100.29.83. When using a Web browser, it is easier for me to remember

www.sybex.com than it is to remember the IP address 206.100.29.83. If I type 206.100.29.83
in my browser, name resolution will not need to take place. I will have already provided the
IP address of the Web server that is hosting the Web site that I am trying to connect to. If I
use www.sybex.com instead, TCP/IP will need to translate these meaningful words into the IP
address.

As an analogy, consider placing a telephone call to a friend. If you want to call a friend and
have only his name, the phone call cannot be placed. You need some mechanism to translate
his name to a phone number. When translating a friend's name to a telephone number, you
have several methods available. You can call the information operator or look in the phone
book. Or maybe you have it written down on a piece of paper somewhere, and you just need
to find that piece of paper. Which mechanism are you going to use first? Depending on
information that you already have, you will use the method that gives you resolution fastest.
How many times have you said, "I'll look in this phone book, and if it's not there, I'll call
information"?

Similarly, there are several ways to resolve a name to an IP address. Depending on the
application that is asking for resolution, the order of these methods that TCP/IP uses is
different.

The applications that are going to be asking TCP/IP for resolution fall into two categories.
Based on which type of application is asking for resolution, TCP/IP uses either of these two
methods:

• Host name resolution
• NetBIOS name resolution

Each method has several steps. TCP/IP shuffles the order of the name resolution steps for the
same reason that you shuffle the order of resolution steps when trying to translate a friend's
name to a phone number: speed and efficiency. TCP/IP uses the steps within each of the two
categories of name resolution so that the names are resolved to TCP/IP addresses as quickly
as possible.

In the same way, you will try all methods that you can think of to match a friend's phone
number before giving up-no matter how ridiculous the methods might be.

If you try to get to the Web site ww.sybex.com (notice the typo), TCP/IP will go through the
entire host name resolution process before letting you know that there is an error. Resolving
www.sybex.com will usually take a maximum of three steps. Depending on the contents of
files, resolution might take fewer steps.

If you were a detective trying to find the phone number of a missing person, you would take
steps in a particular order to solve the mystery. The order depends on how you think you
would get the best results. Similarly, when resolving a name to an IP address, TCP/IP uses the
order of steps that has the best chance of resolving the name quickest.

What Is Host Name Resolution?

The most common method of resolving common names (such as the host name Harry) to IP
addresses is host name resolution. Most TCP/IP utilities and programs use this method. Host

name resolution has seven steps to resolving an IP address. Before reporting an error, TCP/IP
will complete each step.

host name resolution The process of resolving a host name to an IP address.

The steps of host name resolution include:

1. Local host
2. HOSTS file
3. DNS
4. NetBIOS name cache
5. WINS
6. Broadcast
7. LMHOSTS file

 Note You will learn about each of these steps later in this chapter.

Some of the common utilities and programs that follow the host name resolution method
include Ping, FTP, and Web browsers (HTTP).

What Is NetBIOS Name Resolution?

Some Microsoft network applications are written to an Application Programming Interface
(API) called NetBIOS. This means that the programmers used a common interface to help the
applications better communicate with the other computers on the network. These programs
are referred to as NetBIOS applications.

Application Programming Interface (API) A common interface that enables programmers
to write programs to a standard specification.

NetBIOS Network Basic Input Output System; a program
that enables applications on different computers
to communicate within a local area network.

NetBIOS applications use NetBIOS names, which are also called computer names. By
default, the NetBIOS name and host name are the same. To better understand this, imagine
that you have a friend who owns a company and you want to look up her telephone number.
You can look up the name of the company or the name of your friend-both would reference
the same number. Depending on who (which application) is looking for her phone number, a
different name is being resolved. If your friend uses her name as the name of the company,
the two names would be the same-just as the NetBIOS name and the host name are the same.

The NetBIOS name of a Microsoft computer can be viewed and configured by clicking
Control Panel Network Identification. When a NetBIOS application needs resolution
from a NetBIOS name to an IP address, TCP/IP uses NetBIOS name resolution.

NetBIOS name resolution The process of resolving a NetBIOS name to an IP address.

The NetBIOS name resolution method has six steps that TCP/IP follows to resolve a NetBIOS
name to a TCP/IP address. If these six steps fail to resolve the NetBIOS name to a TCP/IP
address, then an error message is displayed to the user.

The steps of NetBIOS name resolution are:

1. NetBIOS name cache
2. WINS
3. Broadcast
4. LMHOSTS file
5. HOSTS file
6. DNS

 Note You will learn about each of these methods in this chapter.

Some applications that use the NetBIOS name resolution method include Windows Explorer,
NT Explorer, and Microsoft's Net application (which has the net use and net view
commands).

NetBIOS Name Resolution vs. Host Name Resolution

When troubleshooting TCP/IP configuration issues, it is critical to know which method of
resolution the application uses. This helps the administrator figure out where resolution is
succeeding and failing.

The NetBIOS name resolution and host name resolution methods are basically the same. They
include similar steps-but the order that the steps are applied is different. Each method takes a
distinct path to resolve names to IP addresses.

The following table lists the order in which the steps are applied in each method.

Host Name Resolution NetBIOS Name Resolution
Local host (HOSTNAME) NetBIOS name cache
HOSTS file WINS
DNS Broadcast
NetBIOS name cache LMHOSTS file
WINS HOSTS file
Broadcast DNS
LMHOSTS file

Some of the steps listed in the table are applied only when the computer that is trying to get
resolution is using Microsoft's TCP/IP client. Most workstations today have Microsoft's
TCP/IP client software installed. There is also a possibility that a TCP/IP client will not be set
up to use some of the resolution steps. For example, a client may not be set up to use WINS as
a method of resolution. If the client is not set up to use WINS, this step is bypassed.

The orders of resolution are the maps to solving TCP/IP resolution problems. An
administrator must be aware of which cycle of resolution to follow when troubleshooting.

Understanding Host Name Resolution

The first category of name resolution to explore is host name resolution. Host name resolution
occurs with most TCP/IP utilities and programs. This is the most common method of
resolving names to IP addresses.

All TCP/IP hosts have a host name that is configured in the TCP/IP properties of the host. On
a Microsoft TCP/IP client, the host name can be viewed and configured by clicking Control
Panel Network Protocol TCP/IP DNS. Only Microsoft clients have a NetBIOS
name. Remember, the NetBIOS name and the host name are the same by default.

In this section, you will examine each step in the host name resolution process. Let's use the
example of pinging www.sybex.com.

The Ping utility is used to confirm that you can use TCP/IP to communicate with another
host. The Ping utility uses TCP/IP to send a Ping packet to another host and request that the
other host send a response. Before TCP/IP can send a Ping packet, TCP/IP needs an IP
address. The TCP/IP stack needs to figure out the IP address of www.sybex.com.

In the illustration below, Harry the Host is going to ping www.sybex.com. Using the Ping
utility and a friendly name instead of an IP address will illustrate the need to use host name
resolution.

The TCP/IP stack running on the host must resolve the friendly name (www.sybex.com) to an
IP address. There are several steps that Harry the host will use to achieve successful
resolution. As soon as resolution is successful, the IP address will be passed to the Internet
layer of the TCP/IP stack so that IP can determine whether the destination host is local or
remote, and communication can commence.

Because Ping falls into the host name resolution category, the steps that the TCP/IP stack
running on Harry will follow are:

1. Local host (HOSTNAME)
2. HOSTS file
3. DNS
4. NetBIOS name cache
5. WINS
6. Broadcast
7. LMHOSTS file

Some of these steps refer to Microsoft-specific implementations. Many hosts that today's
administrators work with are Microsoft hosts. Any steps that would be skipped by a non-
Microsoft host are mentioned as each step is described in the pages that follow.

As you follow the steps involved in host name resolution, keep in mind that all TCP/IP is
doing is trying to find the IP address for www.sybex.com. This is similar to trying to find the
phone number for somebody when all you have is a name.

As you are learning about host name resolution, also keep in mind the speed with which
resolution takes place. You'll be amazed that resolution takes place as fast as it does.

Local Host (HOSTNAME)

The first step in the host name resolution process is to determine whether the local computer
(the one that is being used as the source) is also the one that you are trying to reach. This
process is known as local host. Local host is a method wherein TCP/IP checks to see whether
the name of the host that it is on is the same as the host name that it's resolving. Maybe the
host that you are sitting at is the host that you are trying to get resolution to. Never overlook
the obvious or easiest answer; first check to see whether you are the answer.

local host A step in name resolution wherein a host examines its TCP/IP configuration to see
whether the name being resolved is its own.

In our example, TCP/IP wants to find out whether Harry's name is really www.sybex.com.
Harry looks in a mirror to see whether his name is www.sybex.com.

The HOSTNAME utility can help answer this question. HOSTNAME is used to discover
your host's host name. From a command prompt, type HOSTNAME and press Enter. The
next line will show you what your host thinks its host name is.

HOSTNAME utility A simple utility that determines the host name of the computer you are
at.

Test it Out: HOSTNAME Utility

Here you will use the HOSTNAME utility to find out the name of your local host. Follow
these steps:

1. Go to the command prompt by selecting Start Run, typing CMD (Windows NT,
2000, or XP) or COMMAND (Windows 95/98), and then pressing Enter.

2. At the command prompt, type HOSTNAME, and then press Enter.
3. The screen displays the name of the local computer, as shown below.

Notice that in this example, the name of the local computer is Harry. This host now knows
that it is not www.sybex.com; this host's name is Harry.

If TCP/IP realizes that the host name shown by using the HOSTNAME utility is the same as
the one that it is trying to get resolution to, the job is done. TCP/IP can use this host's IP
address as the destination address.

In most cases, the two host names being compared are different, so TCP/IP moves on to the
next step to try to resolve the host name.

 Tip As an administrator, you can use the HOSTNAME utility as a tool when troubleshooting.
To determine the name of a host without having to click through several dialog boxes,
you can simply use the HOSTNAME utility.

The HOSTS file

The second step that TCP/IP uses to resolve the host name is referred to as the HOSTS file. In
this step, TCP/IP uses the HOSTS file to try to get resolution.

HOSTS file A file of host names and IP addresses.

The HOSTS file is a simple ASCII text file that contains host names and IP addresses. The
file can contain local and remote names and IP addresses. Because this step occurs so early in
the host name resolution process, the file should contain frequently accessed host names and
TCP/IP addresses.

ASCII text file A file that is stored as text only-no fancy characters. It can be edited with any
text editor such as Notepad or Edit.

The HOSTS file functions in a way that is similar to your personal phone book. You put in
names, addresses, and phone numbers of the people that you contact most often. You can
enter them anywhere and with any name that makes sense to you. You may put your friend
Kevin Sullivan in the Ks because you call him Kevin more often. You may enter Bret
Stateham in the Ps because you call him "Pony." You put in their names however you like and
can look them up anytime by using the name that you have given to them. If they change their
addresses or phone numbers, you can easily update the information.

The illustration below shows Harry looking in a personal phone book. Harry checks his
personal phone book early in the resolution process, just like TCP/IP looks in the HOSTS file.

The HOSTS file is named exactly with the word HOSTS. There is no file extension and no
variation on the name. The location of the HOSTS file depends on the local operating system
in use. The following table shows the directory where the HOSTS file is located on the most
common local operating systems.

Operating System Directory
Windows 95, 98 \SYSTEMROOT\SYSTEM
Windows NT, 2000, XP \SYSTEMROOT\SYSTEM32\DRIVERS\ETC
NetWare SYS:\ETC
Unix /etc

The HOSTS file contains IP addresses followed by a Tab or space, and then the name that you
would like resolution to. For example, to get resolution to www.sybex.com, you would edit
the HOSTS file to include the line:

206.100.29.83 www.sybex.com

This line in your HOSTS file will provide resolution to the Sybex Web site. However, if you
would like to include an alias, something that would be easier to type or easier to remember
than the full URL, just put in whatever alias you would like. When TCP/IP is parsing the
HOSTS file, as soon as the word that was used in the Web browser is found, resolution is
successful.

alias A simpler or alternative name for a host.
parsing Reading through a file looking for specific data.

The following three examples show what this line might look like in the HOSTS file:

206.100.29.83 www.sybex.com books

206.100.29.83 books
206.100.29.83 sybex

Any of these lines will give resolution to the Sybex Web site by using one of the names listed
in the HOSTS file.

As an administrator, you can use the HOSTS file to provide resolution for clients by putting
frequently used host names and IP addresses into the file. If the IP address changes for any of
the hosts that you typed into the HOSTS file, you must manually edit the file. The HOSTS
file can be as large as you like or does not have to exist if you choose not to use it. After the
file is in the proper directory and its name is HOSTS, TCP/IP will use that file for host name
resolution.

The HOSTS file provides a simple and effective way to resolve the most commonly used host
names. To quickly test the HOSTS file, edit it on your home computer by adding one of the
lines above with the IP address and a word that references the Sybex Web site. Now you need
to enter only one word in your Web browser to get to that Web site.

If TCP/IP has still not successfully resolved the host name, the quest will move to the next
step, which is DNS.

Domain Name System (DNS)

Domain Name System (DNS) is the Internet's mechanism for linking all the host names and
IP addresses on the Internet. In other words, DNS is a distributed and linked system of
resolving names to IP addresses. The DNS system is similar to an environment in which all
telephone information operators are linked together so that your request can get passed to the
appropriate operator.

Domain Name System (DNS) Distributed system used on the Internet to resolve host names
to IP addresses.

All the URLs that you need to get resolution for on the Internet are in a DNS database
somewhere. A DNS database administrator has entered the name and IP address into the
database. When you use a browser and request www.sybex.com, www refers to a service, and
sybex refers to the host name. The .com refers to the portion of the domain space where this
host is found. A URL is a combination of the service, host name, and domain where the host
can be found.

A DNS database is like a phone book of host names. All these databases are linked so that
when you are trying to get resolution, the DNS server that tries to get resolution for you might
get directed from one DNS server to another until you either get resolution or you find out
you can't get resolution.

In the graphic below, Harry is calling a long-distance operator to try to get resolution to
www.sybex.com, just as TCP/IP will use DNS.

If TCP/IP fails at this point to resolve the address, chances are getting slimmer that resolution
will be successful. The next couple of methods refer only to Microsoft TCP/IP clients that are
trying to get host name resolution.

NetBIOS Name Cache

The next step in host name resolution is called NetBIOS name cache, which is used by
Microsoft's version of TCP/IP. When using a Microsoft TCP/IP client, TCP/IP looks in
NetBIOS name cache. This is a list in the local host's RAM of the recently resolved
NetBIOS names to IP addresses. It's possible that the host name that TCP/IP is trying to get
resolution for is also the NetBIOS name of a machine that has recently been resolved.

Microsoft TCP/IP client Any TCP/IP host that has installed and configured Microsoft's
TCP/IP client software. This accounts for most TCP/IP hosts.

NetBIOS name cache Temporary cache storage for NetBIOS names and IP addresses that
have been resolved.

NetBIOS names that are in cache are like phone numbers that are listed on a scratch piece of
paper around the telephone. These pieces of scratch paper have names and numbers that you
have recently resolved. They are only temporary and may get thrown away soon.

The following illustration shows Harry checking for the www.sybex.com address on scratch
pieces of paper, just like TCP/IP will look in the NetBIOS name cache.

NetBIOS names that have been resolved are placed into NetBIOS name cache for a short
amount of time. Before TCP/IP continues with other steps toward resolution, Microsoft's
TCP/IP client will stop to see whether this host name is also a NetBIOS name that has already
been resolved.

If TCP/IP does not get resolution from NetBIOS name cache, the search continues by using
WINS.

Scope ID

A NetBIOS scope ID can be configured as a parameter of a Microsoft TCP/IP host. The scope
ID segments a physical network into logical networks. If it is important for two hosts on the
same network to use the same NetBIOS name, or for two hosts on the same network to be
isolated from each other, the scope ID can be used. It is an optional parameter of a NetBIOS
and TCP/IP configuration.

When configuring TCP/IP on a Microsoft host, the scope ID field is seldom used. However,
in troubleshooting any TCP/IP issues, the scope ID may become an issue if it is in use. When
two hosts have different scope IDs, they cannot use NetBIOS to communicate.

On a TCP/IP network, the NetBIOS names are the unique identifiers used by NetBIOS for
name resolution. Therefore, no two hosts can have the same NetBIOS name. The scope ID
segments the NetBIOS network into different logical networks. For example, in the scope ID
field for the host computers in the accounting department, an administrator might type ACCT.
These hosts can be identified as HOST1.ACCT or HOST2.ACCT. In another department, the
NetBIOS hosts might have a scope ID of SALES. These hosts can be identified as
HOST1.SALES or HOST2.SALES.

In these examples, an administrator has created two logical NetBIOS networks, although they
are physically on the same network.

However, hosts with a scope ID of SALES cannot access a host with a scope ID of ACCT.
Scope IDs must be the same for NetBIOS communication to occur on the same network. Most
administrators leave this field blank.

The following screen capture shows the TCP/IP Properties dialog box where the scope ID is
set. You set the scope ID in the Network applet of the Control Panel. You access the scope ID
from the Control Panel by clicking Network TCP/IP Properties WINS Address.

Windows Internet Naming Service (WINS)

The next step in host name resolution is performed only if the host that needs resolution is
configured to use Windows Internet Naming Service (WINS). A host that is not configured
to use WINS will skip this step. WINS is the implementation of a Microsoft NetBIOS name
server.

Windows Internet Naming Service (WINS) Microsoft's NetBIOS name server that keeps
NetBIOS names and IP addresses in a database
and later gives name resolution.

The WINS server keeps a database of all the NetBIOS names and IP addresses of hosts that
either register with this WINS server or have been entered into the database manually by an
administrator. The administrator configures Microsoft computers on an internetwork to
dynamically register their NetBIOS names with the same WINS server. As machines come
online, they register with the central WINS server. Now any time another client needs
resolution to that NetBIOS name, they ask the special-purpose information operator-WINS-
and the operator either returns a positive response with the IP address or a negative response
that that name can't be found.

To continue with the analogy, the WINS server acts as a special-purpose telephone
information operator. In the illustration below, Harry is asking the local telephone operator for
assistance, just like TCP/IP uses WINS.

 Note For more information on setting up and using WINS, see Chapter 14.

If TCP/IP still has not resolved the name to an IP address, TCP/IP starts getting anxious and
tries an almost last-ditch effort.

Broadcast

Broadcast is another method of name resolution that a TCP/IP client uses. Sometimes the
computer name that you are trying to get resolution to is on the same network that you are.
The TCP/IP stack will send out a packet that is addressed to all hosts, requesting a response
from the host that it is trying to find. The broadcast will go only as far as the router and will
not continue to other networks. Therefore, this is a way for TCP/IP to check the local network
for resolution. Any response will include the requested host's IP address.

broadcast When broadcasting to get name resolution, the host "hollers" the name to be
resolved onto the network.

Consider another analogy: If I want to know the phone number of a restaurant, I could open
the front door and yell, "Hey Denny's, if you can hear me, what is your phone number?" It's
possible that Denny's will respond, but chances are I just wasted my time. Denny's is probably
not on a residential street; Denny's is on a different street and people there probably can't hear
me. By broadcasting, I also wasted bandwidth. Everyone in the neighborhood had to hear me
yelling. The broadcast disturbs them momentarily until they realize that the broadcast was not
for them. Chances of the broadcast succeeding are better if I yell out the front door for the
phone number of one of my neighbors. They live close enough to hear my broadcast and
would respond. (They might also decide to move if I did this too often.)

After checking for remote networks, host name resolution is finally checking the local
network for resolution. In the following graphic, Harry is broadcasting out the door to try to
get resolution.

Broadcasting is an excellent method of name resolution when the computer that you need
resolution to is on your local network. If it is not on your local network, the yelling of the
broadcast ties up the whole network. The more broadcasts there are on a network, the less
bandwidth is available for communication. Imagine everyone in your neighborhood
constantly broadcasting out their front door to find phone numbers of people and places that
don't exist locally. It would just get out of control.

bandwidth The amount of data that can move through the cabling.

If even after broadcasting TCP/IP cannot get host name resolution, there is one last place to
look.

In the screen capture below, notice that Harry sent several DNS queries to his DNS server,
through his default gateway. When Harry did not hear back from his DNS server, Harry
broadcast three times onto his own network to see if www.sybex.com was on his network.

The LMHOSTS file

The LMHOSTS file is much like the HOSTS file. It is an ASCII text file that has IP
addresses, but instead of containing a host name, the LMHOSTS file contains NetBIOS

names. The LMHOSTS file does not contain any aliases; it can include only the real
NetBIOS name of the computer that you would like resolution to.

LMHOSTS file A file containing NetBIOS names and IP addresses that is used for name
resolution.

NetBIOS names The name given to a computer that is running a Microsoft operating system.

The LMHOSTS file is used only on Microsoft's TCP/IP clients that are configured to check
the LMHOSTS file. If the client is not a Microsoft TCP/IP client or if the client is not
configured to check the LMHOSTS file, this step is skipped.

The LMHOSTS file is similar to a special-purpose phone book that you have at home. For
example, in addition to a personal phone book at home, I also have a phone book of all the
kids in my son's Little League Baseball team. When I need a number for one of the kids from
Little League, I look in the special Little League phone book.

In the following graphic, Harry is looking in a smaller, more specialized phone book, just like
TCP/IP looks in the LMHOSTS file.

The LMHOSTS file is located in the same directory as the HOSTS file. To locate the proper
directory, see the table in the previous HOSTS file section.

 Note The LM in LMHOSTS stands for LAN Manager. Because Windows NT has its roots in
a product called LAN Manager, several of the configuration files from LAN Manager
are still in use. This is one of those files.

LAN Manager A networking product that was the predecessor of Microsoft's Windows
NT.

The LMHOSTS file is built with the IP addresses and NetBIOS names of remote computers.
Following is an example of an LMHOSTS file:

131.107.2.200 INSTRUCTOR #PRE
131.107.5.22 ACCT SRV #PRE
131.107.3.19 FS1

Some entries in the LMHOSTS file have switches on the end to enhance their use. The first
and second lines above, for example, have a switch of #PRE. As the computer boots up and
TCP/IP is initializing, TCP/IP will look in the LMHOSTS file for any entries that have #PRE.
When TCP/IP finds an entry with #PRE, that entry is immediately pre-loaded into NetBIOS
name cache and will stay there indefinitely.

switch A character or set of characters used to further enhance a command.

When this TCP/IP stack is trying to resolve a NetBIOS name to an IP address, a name in
NetBIOS name cache will be immediately resolved. Therefore, the quickest resolution will
always take place if the NetBIOS name and IP address are already in NetBIOS name cache.

The #PRE switch is analogous to me writing some names and numbers on a piece of paper
that permanently stays by the phone so that I won't have to go digging through any books to
find the number.

The nbtstat command is used to view the contents of NetBIOS name cache. There are a few
important switches used with the nbtstat command that you should know about. The
following table explains the most important switches and their functions.

nbtstat A utility used to monitor the names that are in NetBIOS
name cache.

Switch Function
-c Lists what is currently in cache
-R Purges all entries from name cache and reloads entries that are in the

LMHOSTS file that have a #PRE
-n Lists the NetBIOS names that this machine is known by

Test It Out: Examining NetBIOS Name Cache

In this exercise, you will use the nbtstat utility to view the NetBIOS name cache. Follow these
steps:

1. Go to the command prompt by selecting Start Run and typing CMD (Windows NT,
2000, or XP) or COMMAND (Windows 95/98).

2. At the command prompt, type nbtstat -c and then press Enter.
3. The screen displays the contents of NetBIOS names and IP addresses that have already

been resolved.

Notice in this example that several NetBIOS names have been resolved and are in NetBIOS
name cache. TCP/IP examines these for www.sybex.com and will not find it; therefore, name
resolution will not be successful at this step.

The nbtstat command can also be used to display the NetBIOS names that this host is
currently using. For example, examine the following screen capture. By using the nbstat
command with the -n switch, the local NetBIOS names are displayed.

NetBIOS name cache looks like this:

Notice in the screen shot above that the life remaining for these entries in cache varies. As
soon as a NetBIOS name is resolved to an IP address, that entry and its IP address are placed
into NetBIOS name cache temporarily. The default is 660 seconds, or 11 minutes. That way,
if that machine is used again in the next 11 minutes, name resolution does not need to begin
again; the name is already resolved to an IP address. The entry for the machine with the
NetBIOS name of ACCT SRV is -1. Because the entry for ACCT SRV in the LMHOSTS file
includes the switch #PRE, as the TCP/IP stack was loading, ACCT SRV was placed into
NetBIOS name cache with an infinite life, which is represented by -1.

As an administrator, you may add an entry to the LMHOSTS file with the #PRE switch and
want to test that it is getting pre-loaded into name cache. Instead of rebooting to reinitialize
the TCP/IP stack, a nice shortcut is to use the nbtstat command with the -R switch. When you
enter the command nbtstat -R, name cache is purged and all the #PRE-loads are Reloaded.

If after all these methods, TCP/IP still cannot resolve the host name to an IP address, an error
message is displayed:

The Host Name Resolution Cycle

You have examined the seven steps that TCP/IP uses to resolve a name to an IP address. This
cycle occurs every time a user tries to connect to another host by using a name instead of an
IP address.

When the user of a TCP/IP client uses the name of another host to try to connect, TCP/IP
cannot connect with just these words. TCP/IP must have an IP address. If the application uses
the host name resolution cycle, which most of them do, the TCP/IP stack will try to resolve
the name to an IP address through the seven steps explained earlier. The following illustration
depicts a summary of the host name resolution methods.

Understanding NetBIOS Name Resolution

Because NetBIOS names are used almost exclusively by a few Microsoft products, the
NetBIOS name resolution cycle occurs infrequently. An application that uses NetBIOS names
follows essentially the same steps that a TCP/IP application does when using host names to
try to get resolution. However, the order in which the steps are tried is different.

The sequence that NetBIOS name resolution uses is as follows:

1. NetBIOS name cache
2. WINS
3. Broadcast
4. LMHOSTS file
5. HOSTS file
6. DNS

As an example, instead of Harry trying to ping www.sybex.com, let's have Harry use a
Microsoft network application that would cause the NetBIOS name resolution cycle to take
place. In this example, the user that is sitting at Harry the Host types in the following
command:

net view \\instructor

This command can be issued when using a Microsoft networked computer, so that the user
can view the shares that are available on the host with the NetBIOS name instructor. The
shares are directories on the machine where the contents are shared.

shares A feature of several operating systems that is used to designate local resources that
will be accessible across the network.

A Microsoft host has a NetBIOS name of 16 bytes, or characters. The first 15 characters are
the name of the host. If the computer name is Harry, then the first 5 characters are completed
by the name Harry. If the computer name is Instructor, then the first 10 characters are
completed by the name Instructor. The 16th character represents the NetBIOS service that the
host is advertising. The characters between the name and the 16th character are padded with
special characters, usually spaces.

The NetBIOS Name Resolution Cycle

The following illustration shows a summary of the NetBIOS name resolution methods.

Steps in the cycle occur as follows:

1. Because this application uses NetBIOS names, the first place to look for name
resolution is NetBIOS name cache. It's possible that the name has been resolved
recently or that it was placed into NetBIOS name cache using the LMHOSTS file.

2. If the NetBIOS name is not in cache, TCP/IP asks the WINS server. If the hosts on
this network are set up to use WINS, chances are good that WINS has a listing for the
NetBIOS name that this host is trying to get resolution for.

3. If WINS is unsuccessful, or this host is not set up to use a WINS server, TCP/IP
broadcasts on the local network to try to get resolution.

4. If the NetBIOS name that is broadcast still does not get resolved, TCP/IP looks in the
LMHOSTS file.

5. If the name is not in the LMHOSTS file, maybe it is in the HOSTS file. TCP/IP looks
in the HOSTS file next.

6. Finally, if the NetBIOS name is still not resolved, TCP/IP tries DNS.

If any of these methods are successful, the shares on the machine named instructor are
displayed. The following screen capture shows the command and the successful display:

If none of these methods successfully resolved the NetBIOS name to an IP address, then an
error is displayed for the user. The following screen capture displays the unsuccessful error
message because of the misspelling of instructor.

Review Questions
1. What are the two types of name resolution?

2. In the correct order, list the steps of host name resolution.

3. In the correct order, list the methods of NetBIOS name resolution.

4. What is wrong with the following entry in the HOSTS file?

www.sybex.com 206.100.29.83

5. What would be the fastest way to get host name resolution to www.sybex.com?

6. What would be the fastest way to get NetBIOS name resolution to ACCT SRV?

7. What directory are the LMHOSTS and HOSTS files stored in on a Windows NT
workstation?

8. Can you put an alias in the LMHOSTS file?

9. What file and switch are used to place a NetBIOS name into NetBIOS name cache
permanently?

10. Write the command you would type to purge NetBIOS name cache and to reload
the LMHOSTS file.

11. Which type of name resolution does FTP use?
12. Which type of name resolution does HTTP use?
13. Which type of name resolution will net view use?
14. What is the utility used to check the local host name?

Answers

1. Host name resolution and NetBIOS name resolution
2. Local host, HOSTS file, DNS, NetBIOS name cache, WINS, broadcast, LMHOSTS file
3. NetBIOS name cache, WINS, broadcast, LMHOSTS file, HOSTS file, DNS
4. The IP address needs to be on the left.
5. Put an entry in the HOSTS file for www.sybex.com.
6. Add #PRE to the ACCT SRV entry in the LMHOSTS file to have the name and IP

address of ACCT SRV always in NetBIOS name cache.
7. \SYSTEMROOT\SYSTEM32\DRIVERS\ETC
8. No, only NetBIOS names can be in the file.
9. The #PRE switch and the LMHOSTS file are used.
10. nbtstat —R
11. Host name resolution
12. Host name resolution
13. NetBIOS name resolution
14. HOSTNAME

Terms to Know

• name resolution
• host name resolution
• API
• NetBIOS
• NetBIOS name resolution
• local host
• HOSTNAME utility
• HOSTS file
• ASCII text file
• alias
• parsing
• DNS
• Microsoft TCP/IP client
• NetBIOS name cache
• WINS
• broadcast
• bandwidth
• LMHOSTS file
• NetBIOS names
• LAN Manager
• switch
• nbtstat

• shares

Chapter 12: Domain Name System (DNS)
In the preceding chapter, you learned about resolving names to TCP/IP addresses. The top-
notch step in resolving host names to TCP/IP addresses is using DNS. The Domain Name
System (DNS) is a way to resolve meaningful and easy-to-remember names to IP addresses.
Because millions of sites are connected to the Internet, maintaining one central list of the
name-to-IP-address relationships across the Internet is unrealistic. The DNS system was
designed to coordinate and distribute the resolution load.

The two major tasks that DNS provides are:

• IP address resolution to hosts on the Internet, for local hosts
• IP address resolution to hosts on the local network, for other hosts on the Internet

What Is DNS?

As you learned in Chapter 11, Domain Name System (DNS) is a distributed database of host
names and IP addresses on the Internet. If all the hosts on the Internet were in one big
database, that database would be enormous and inefficient. But when the Internet was getting
started, the initial idea was to keep a file with all host names and their IP addresses in a single
file.

Domain Name System (DNS) A system used to resolve names to IP addresses across the
Internet.

In the early days of the Internet, the host names of the sites that were connected to the Internet
and their IP addresses were kept in a single file called HOSTS.TXT. This file was maintained
by the Stanford Research Institute Network Information Center (SRI-NIC). As new hosts
were added to the growing network, a simple entry was added to the HOSTS.TXT file with
the name and IP address of the new host. If you were one of the hosts on the network, you'd
dial into the server at SRI-NIC and download the latest version of the HOSTS.TXT file.
When you wanted to connect to another host, you could use the host's name, and TCP/IP
would examine the HOSTS.TXT file to translate the name to an IP address.

HOSTS.TXT The original file that contained name-to-IP
address relationships.

Stanford Research Institute
Network Information Center (SRI-NIC)

 The site of early Internet growth and host name
maintenance.

This is a similar idea to the first phone book that was created. There was only one phone
book, and as people hooked up their telephones, their names and numbers were added to the
phone book. Everyone who had a phone had to keep getting the updated copy of the phone
book. Your phone book was good only if you had a recent copy. Likewise, the HOSTS.TXT
file was constantly being updated, and your HOSTS.TXT file was good only if you had a
recent copy. An entry was added to or removed from the HOSTS.TXT file only a couple of
times a week, so you'd need to download the file only that often to have the latest resolution
file.

But as the Internet began to grow, this file became unmanageable. The number of updates to
the file and the number of hosts that needed to download the file were growing exponentially.
The system was becoming a bottleneck in the name resolution process. Several RFCs were
written trying to solve the problem (read RFC 849). In November 1987, the Domain Name
System was presented as a solution to the bottleneck; it was outlined in RFCs 1034 and 1035.

DNS on the Internet

Rather than keep all the host names and IP addresses in one unmanageable file, DNS
distributes the task across the Internet. All the host names on the Internet are divided into
different domains, or categories. The top-level domains are categories of host names—for
example, commercial organizations are in the .com domain, and educational institutions are in
the .edu domain. These top-level domains are further divided into second-level domains, and
so on. Examples of second-level domains include sybex.com and microsoft.com.

domain A unique portion of the name space in which an administrator creates an
authoritative database of records to give resolution of names within the zone to an IP
address.

Each top-level domain maintains a database of the second-level domains. The second-level
domains maintain the next layer, and so on. An easy way to get a handle on what the Internet
looks like is to view a map of the domain name space. Domain name space is the term used
to reference how the Internet is subdivided. The top of the domain name space is the root. The
root of the domain name space is represented by a period (.).

domain name space The entire inverted tree of Internet names.

The illustration below shows a portion of the Internet domain name space. The root is at the
top of the domain tree and is represented by a period. The top-level domains contain
databases that point to DNS servers for the next layer. For example, the .com DNS server
contains entries indicating where to find all the .com DNS servers. The Sybex DNS server
contains a database with the host names and IP addresses of hosts and services that the Sybex
DNS administrator would like others to get resolution to. For example, it might include
entries for www, ftp, and any other names that DNS should provide resolution to.

Name Resolution Using DNS

Building a DNS database is similar to building a phone book. When you get a new phone
number, you would like people to be able to look up your name in a phone book and get your
number. So when you order your phone, you make sure to tell the phone company how you

want your name to appear in the phone book. You might also order a second phone line and
not want that to be advertised. Your entry appears in a local phone book; putting everyone's
name and number in one book would be impossible. Then, if someone wants to resolve your
name to a phone number, all they have to do is look in the correct phone book. Because
people don't keep a copy of every phone book at home, they don't have access to all phone
books, but the information operator does. Information operators can reference all telephone
books and resolve names to telephone numbers for a small fee.

DNS provides that special service for its clients on the Internet. When was the last time you
saw a commercial advertising the IP address of a Web site? When you sit at a Web browser,
rather than type in the IP address of a Web site that you would like to get resolution to, you
can type in the name of the Web site and TCP/IP will try to translate that name to an IP
address.

When TCP/IP uses DNS as a method of resolution, the host that is trying to get resolution is
called a resolver. The term resolver comes from the Unix world. The resolver sends a
message to its DNS server asking for help. The packet says, "Hey, DNS server, can you tell
me the IP address for www.sybex.com?"

resolver A client that is trying to resolve a host name to an IP address.

Imagine, for example, that a user sitting at Harry the Host typed into a Web browser that
they'd like to go to www.sybex.com. But with only the words www.sybex.com, Harry cannot
get to a Web site. Harry has to have an IP address to send the HTTP request to. He needs to
ask Diane, his DNS server, for help.

Querying a DNS Server

Harry knows to ask Diane the DNS Server for resolution help because the administrator who
configured Harry's IP address also configured Harry with the IP address of his DNS server.
The DNS server can be on the same network or it can be at an ISP. In the illustration below,
Harry the Host is the resolver and Diane is the DNS server.

Diane the DNS Server acts as a universal information operator. She receives Harry's request
for the IP address of www.sybex.com and first examines what she knows. Diane looks in her

database to see whether she can answer Harry's question with no outside assistance. If Diane
can answer his question, she'll send the IP address to Harry, and resolution is complete. Harry
will then send an HTTP request to the IP address given to him by Diane the DNS Server.

If Diane does not know the answer, she will need to get some outside assistance. She asks a
root name server. There are 13 root name servers. These are strategically placed name
servers that contain the IP addresses of the top-level domain name servers. Every DNS server
has the IP addresses of all these root name servers automatically installed to their local
database. Therefore, every DNS server can ask any of the 13 root name servers for resolution.

root name servers Powerful name servers that contain addresses of the top-level name
servers.

Querying Name Servers

Since Diane the DNS Server has the IP address of the root name servers, she can start the
process of name resolution. The first thing that little ol' Diane, a DNS server from some little
network that nobody knows about, will do is ask one of these enormous and powerful root
name servers if they know the IP address of www.sybex.com. See the illustration below.

The root name servers have IP addresses of the top-level domain name servers. So the root
name server responds to Diane and says "No, I don't know www .sybex.com, but I do have
the address for .com." The root name server sends back the best information it has.

Now Diane has the address of a .com server. She takes that information and caches it. Diane
will keep this information in cache as long as was specified by the DNS administrator of the
DNS server that provided the information. Diane caches that address of .com because
sometime soon she may be asked again for resolution to a URL that is in the .com domain.
With the address cached, she won't have to bother the root name server with the same
question.

cache Temporary storage of information that is accessed quickly.

Using the address she obtained, Diane sends a request to the .com name server and asks for
resolution to www.sybex.com. The .com name server does not have the IP address of
www.sybex.com, but does have the IP address of sybex.com. The .com name server sends a

response to Diane that says, "I don't know the IP address of www.sybex.com, but I do know
the address of sybex.com."

In the illustration below, Diane the DNS Server sends a request to the .com name server
asking for resolution to www.sybex.com. The .com name server responds with the IP address
of sybex.com.

When Diane the DNS Server receives the response from the .com server, she caches the IP
address of sybex.com. Diane then sends a request to the IP address of sybex.com asking for
resolution to www.sybex.com.

The DNS server at sybex.com has the address of www.sybex.com. The sybex.com name
server responds, "Yes, I do have the IP address for www.sybex.com; here it is." See the
illustration below.

Completing Resolution

Now that Diane the DNS Server has the IP address for www.sybex.com, she caches the IP
address and then sends a packet to Harry. In this response to Harry, Diane sends the IP

address of www.sybex.com. Now that Harry has the address, Harry's TCP/IP stack sends an
HTTP request to the IP address sent by Diane.

With all these pieces of resolution cached, Diane has part of the work (or possibly all of the
work) already completed if another resolver asks her for resolution to anything in .com, or
anything at sybex.com, or at www.sybex.com.

The screen capture below shows a packet that is sent from a host named Harry to a DNS
server. The packet is a DNS query for www.sybex.com. In the DNS question section of the
packet, which is highlighted, you can see the question being asked is "What is the IP address
of www.sybex.com?"

Understanding Recursive and Iterative Queries

After a query has been sent from the resolver to the DNS server, the DNS server responds
with either the IP address or an error. The DNS server hides the work that has to take place to
get name resolution. The query that the resolver sends to the DNS server is called a recursive
query. A recursive query means: Give me the answer or give me an error, but don't give me
anything in between.

recursive query A question asked with the expectation that the response will be either the
complete answer or an error, nothing less.

The DNS server then asks other name servers to help with resolution. The query that a DNS
server sends to another name server is called an iterative query. An iterative query asks for
the best you've got: If you don't have the answer to the whole question, please give me any
resolution that you can help with. The iterative queries may be repeated several times while
the DNS server just keeps asking other name servers, "Help me as much as you can." That is
why other name servers will respond with the best that they do know. The iterative queries are
hidden from the resolver; the resolver wants resolution but does not care how many name
servers are helping with resolution.

iterative query A question asked with the expectation that the best information available will
be returned so that more queries can be sent based on that information.

The screen capture below shows the packet that is returned to Harry with resolution to
www.sybex.com accomplished. Based on this response, Harry the resolver does not know
how resolution occurred; he just gets the resolution he asked for—the IP address shown at the
bottom of the screen capture. The packet shows both the question that was asked and the
answer.

The DNS server might not be able to resolve the request. For example, imagine that Harry
asks for resolution to fs1.sybex.com. The DNS server can resolve sybex and .com but cannot
resolve fs1, so only an error is returned to Harry. The screen capture below shows the error
being returned to Harry from the DNS server. The response says that the name fs1.sybex.com
does not exist.

Maintaining a Database

One major task of the DNS server is to provide resolution for the resolvers that are configured
to use that DNS server. Another major task is to maintain a database of host names and IP
addresses. Then, when a query is made of the DNS server, it first looks in its database to see
whether it can help with resolution. The administrator of a DNS server has to type in the host
names and IP addresses in the database that the DNS server uses in resolving requests.

For example, an administrator for the sybex.com DNS server made an entry into a database at
that server that www.sybex.com has the IP address of 206.100.29.83. After my DNS server
got resolution to sybex.com, it queried the sybex.com DNS server for the IP address of
www.sybex.com. The sybex.com DNS server responded with the correct address.

The .com server has an entry in its database that points any query for anything.sybex.com to
the sybex.com DNS server. The sybex.com DNS server has the information needed to give
resolution to (anything the administrator wanted).sybex.com. The DNS administrator at Sybex
typed these entries in the sybex.com DNS server's database, which is stored as a zone file.
The administrator is in charge of the zone, and more specifically the zone file, for sybex.com.
A zone file contains the names and IP addresses for this particular part of the domain name
space. The administrator puts the records for sybex.com into a zone file called sybex.com.dns.

DNS is a service that can be run on different platforms and operating systems. The database
that each DNS server uses is made of several files. Most DNS versions and implementations
follow a standard called the Berkeley Internet Name Domain (BIND) implementation. The
BIND implementation describes what files are necessary and what information the records in
the DNS database must include.

Every DNS administrator maintains a DNS database. These databases are linked through the
Internet to create a network of DNS databases. The DNS servers then work together to
provide name-to-IP-address resolution and IP-address-to-name resolution. Because every
administrator is maintaining their own database, and all the databases work together,
successful DNS resolution is a collaborative effort.

Maintaining a DNS Server

A DNS administrator sets up and maintains the DNS database. DNS server software can be
run on several operating systems. Depending on the operating system that is chosen, the
administration methods differ slightly, but the basic concepts are the same. A server that the
DNS service is run on is called a name server. There are three types of name servers, which
are described in the following sections.

name server A server running the DNS service that can provide name resolution.

Primary Name Server

The primary name server holds the master DNS database. The administrator makes all
updates to the master DNS database. The primary name server holds a read/write copy of the
database. To add, delete, or modify any of the records in the DNS database, the administrator
accesses the primary name server and modifies the master DNS database.

primary name server The name server that holds the master DNS database.
master DNS database The authoritative DNS database containing DNS records, where the

administrator can modify records.
read/write A file that can be read from and written to.

A primary name server is like an information operator with the master phone listing for her
area. All modifications are made to this master phone listing. With just one copy of the DNS
database on the primary name server, name resolution will take place just fine. However, an
administrator has the option to assist the primary name server by setting up a secondary
name server.

secondary name server A name server that has a copy of the master DNS database.

Secondary Name Server

A secondary name server holds a copy of the DNS database. This server provides resolution
in the same way that the primary name server does.

Secondary name servers assist the primary name servers. Administrators set up secondary
name servers for the following reasons:

• Fault tolerance If one server goes down or is unavailable, the other name server will
be able to handle name resolution queries.

fault tolerance Taking into account any failures.

• Load balancing If a server becomes overloaded with name resolution requests,
another name server will lighten the load.

load balancing Spreading the workload across servers.

• Remote resolution If you need to resolve an IP address from a remote site, a
secondary name server can be placed at the remote location so that resolution can take
place at that location without having to continually send traffic across WAN links.

DNS Zone Transfer

The secondary name server receives a copy of the master DNS database from the primary
name server. The administrator does not make changes to the database on the secondary
server; all updates must be made at the primary name server only. The secondary name
servers hold a read-only copy of the DNS database. When the primary name server is
updated, a copy of that database (zone file) is transferred to the secondary name servers.

read-only A file that can be read but cannot be modified.

Continuing the analogy of the information operator, the secondary name server is like another
information operator. The second information operator gets a copy of the master phone list
and can use it but can't update it. The second information operator helps with resolution just
like the primary operator does.

The transfer of the database is called a zone transfer. A zone transfer moves the database
from the primary name server to the secondary. Whenever a secondary name server comes
online, it automatically initiates a zone transfer. The administrator also can set up a zone
transfer to occur from a secondary to another secondary. The first transfer has to be from the
primary name server to a secondary; then that secondary may transfer the database to another
secondary.

zone transfer The sending of a DNS database from one name server to another.

The illustration below is an example of a DNS database being transferred. The primary name
server performs a zone transfer to two secondary name servers, and one of the secondary
name servers performs a zone transfer to a third secondary.

Caching-Only Server

A caching-only server contains no database. When the caching-only server comes online, it
knows nothing. When the first query comes to it for resolution, the caching-only server must
start at the root and work out all the levels of resolution. After it has resolved a URL, it has
some information cached for the next query. The caching-only server quickly learns and
caches the most commonly resolved queries. The caching-only server requires little setup and
virtually no maintenance. When any DNS server is initially installed, it is essentially a
caching-only server until you add the zone database.

caching-only server A name server that does not have a copy of a DNS database.

A caching-only server is like an information operator not having a phone book. When the
operator starts working, she must ask other operators for assistance on every query. As she
resolves numbers, she jots notes to herself and gradually builds her own Rolodex. Soon she
has the most frequently asked for names already resolved and handy.

Caching-only servers are excellent choices for remote offices connected by WAN links.
Because there is no zone transfer when the caching-only server comes online, there is no
initial bandwidth consumption.

Record Types in DNS

The DNS database is a collection of records. Several types of records can be included in the
DNS database. The records are like cards in a Rolodex file. The first card describes the data in
the Rolodex; it might contain the information about whose Rolodex it is and when it was
created. Most cards in the Rolodex have a name, address, and phone number. The Rolodex
might also include some other cards with various functions.

records The information in the DNS database.

Some of the most common record types are:

• Start Of Authority (SOA) record
• A record

• CNAME record
• NS record
• PTR record
• MX record

Each is described in the following sections.

Start Of Authority (SOA) Record

A DNS database starts with a record called an SOA record. SOA stands for Start Of
Authority, and there is only one SOA record in each zone database file. This record describes
the zone in the domain name space that a particular database is authoritative over. In the
Rolodex example, this would be the card that describes the card file, who it belongs to, when
was it last updated, and other information about the data. In the Sybex DNS database, the
SOA record describes the sybex.com zone, which is the zone that the Sybex database is
authoritative over.

Start Of Authority (SOA) record The first record in a DNS database; it describes the
database.

A Record

An A record is also called a Host record. This is the most common record type in a DNS
database. The A record contains host names and IP addresses. This is like the cards in a
Rolodex that have the actual names, addresses, and phone numbers.

A record Also called a Host record, it contains the names and IP addresses of hosts.

CNAME Record

The term CNAME stands for Canonical name. Even though it has a fancy name, the record is
simply a code name for an A record. Canonical names are aliases that have been entered into
the DNS database. These records provide different ways to reference host records that are
already in the database.

Canonical Name (CNAME) record An alias or code name for a host that already has an A
record.

For example, say an administrator wants people to be able to get resolution to both
fs1.sybex.com and www.sybex.com. Both have the same IP address. The DNS database
already has an A record for www.sybex.com. So the administrator simply puts a CNAME
record into the database for fs1 that points to the www A record.

In the Rolodex example, a card might be added for someone, and the card simply has a name
and a note to go look at another card for the address or phone number. If my friend's
nickname is "Pony," I can have a card that says "Pony" that points to the original card with his
real name and number.

NS Record

An NS record indicates this and other name servers that are being used by this name server.
An NS record exists for every name server that services the domain. Using the information
operator analogy, an NS record has the phone number of all the operators that are using a
copy of a particular phone book. This information will help them to contact each other.

Name Server (NS) record A record that lists the IP address of a name server.

PTR Record

A PTR record is used so that a query for the host name, not the IP address, can be resolved.
If a query comes to the DNS server that says, "Here is the IP address; what is the host name?"
the PTR record provides resolution. Every time an A record is added to the DNS database, a
PTR record should also be added.

Pointer (PTR) record A record that aids with IP address-to-host-name resolution.

This would be similar to looking at a phone book and asking, "I have this phone number;
whose number is it?" Or a modern example is the caller-ID feature that is available for your
telephone. This service displays the name of the person who is calling as well as their phone
number. If all it displayed were a telephone number, it would be an almost useless feature. It's
when a reverse lookup is done and the name is displayed that the benefits of this call
screening feature are realized.

Few applications are written that request a host name (the application knows the IP address,
but would like to know the host name). The query that these applications send to the DNS
server is called a reverse, or inverse, query. The DNS server examines the PTR records and
responds with the host name that corresponds to the IP address. These PTR records are in a
special zone called the IN-ADDR.ARPA zone. When a query comes to the DNS server
requesting an inverse lookup, the DNS server can look in the IN-ADDR.ARPA zone for quick
resolution.

IN-ADDR.ARPA Inverse Address from the ARPAnet; a zone used to keep PTR records.

MX Record

An MX record is a Mail eXchanger record. This record has the IP address of the server
where e-mail should be delivered. For example, when e-mail is sent to andy@sybex.com, the
DNS server at Sybex is queried for the address of the mail server at sybex.com. The DNS
server looks for any MX records for sybex.com and returns the IP address of the mail server
to where the mail should be transferred.

Mail eXchanger (MX) record A record that contains the address of the mail server.

Other Record Types

An administrator could use other record types for their DNS database. Examples of such
records include a WKS record which points to a WellKnown Service, or an RP record which

indicates the Responsible Person for the database. The most common records, however, are
those that were presented in this chapter.

Review Questions
1. What is the name of the original file used to store host names and IP addresses?

2. What RFCs describe DNS?

3. What character represents the root of the domain name space?

4. What is the client called when asking for resolution?

5. How does the client know the IP address of the DNS server?
6. What type of query does the client send to the DNS server?
7. What type of query does the DNS server send to other name servers?

8. List three types of name servers.
9. What is the term used when a DNS database is copied from one name server to

another?
10. Can a secondary name server copy the DNS database to another secondary name

server?

11. Can a secondary name server copy the DNS database to a caching-only name
server?

12. What is the most common record type in a DNS database?
13. What is the process of resolving an IP address to a host name called?

Answers

1. HOSTS.TXT
2. RFCs 1034 and 1035
3. A period
4. A resolver
5. IP address configuration has the address of the DNS server.
6. A recursive query
7. An iterative query
8. Primary, secondary, and caching-only
9. Zone transfer
10. Yes
11. No, caching-only servers do not have a copy of the database.
12. An A record
13. Inverse or reverse lookup

Terms to Know

• DNS
• HOSTS.TXT
• SRI-NIC

• domain
• domain name space
• resolver
• root name servers
• cache
• recursive query
• iterative query
• name server
• primary name server
• master DNS database
• read/write
• secondary name server
• fault tolerance
• load balancing
• read-only
• zone transfer
• caching-only server
• records
• SOA record
• A record
• CNAME record
• NS record
• PTR record
• IN-ADDR.ARPA
• MX record

Chapter 13: Dynamic DNS
Over the last couple of years, Dynamic DNS has become a standard method of updating
resource records in a DNS database. Just as it makes sense to use DHCP for automatic IP
address allocation, it makes sense to use Dynamic DNS. Recall that in Chapter 7, you learned
how DHCP works. In this chapter, you will explore a technique that enhances DNS using
DHCP.

What Is Dynamic DNS?

A DHCP server is set up to assign IP addresses automatically. This means that the
administrator does not have to go to every desk and type in the IP address, subnet mask,
default gateway, and other options. Instead, every time a DHCP client powers on or comes on
to a network, this client broadcasts a request to find the DHCP server and get its IP address.
This relieves the administrator of doing the tedious and error-prone work of typing in all the
IP addresses.

In contrast, you learned that DNS is statically updated. This means that the administrator has
to actually access the DNS server to update DNS. To update DNS, the administrator must add
the host name and IP address for a host name to get resolved in the DNS server's zone. The
administrator updates the DNS database by adding an A record, which is the host record, and
a PTR record, which is the reverse-mapping record. Now the DNS server can provide both
name-to-IP-address resolution and IP-address-to-name resolution.

Dynamic DNS is very similar to the idea of an old-fashioned switchboard operator. No matter
where you moved around in the company, as people called in and wanted to talk to you, the
switchboard operator could switch that call to your current telephone line. The person on the
other end didn't need to know which telephone line because it was the operator who switched
the call to the correct line.

Dynamic DNS The process that allows the DHCP server to update the DNS database with
new record information.

Likewise, Dynamic DNS allows the DHCP server and the DHCP clients to send updates to
the DNS server. Updates to the DNS database are made without administrator intervention,
and users don't need to know if an IP address changes or moves. As users get host-name-to-
IP-address resolution, DNS will provide current and accurate information.

When DNS was originally designed (RFC 1034 and 1035), changes to the DNS database were
expected, but not very often. The entries in the DNS database referred to hosts whose IP
addresses were static. The designers of DNS could not have foreseen the incredible growth
that the Internet has experienced or the increase in corporate and home networks. Many
administrative tasks became automated, but DNS remained static. DHCP evolved to become
the standard way of assigning IP addresses, and DNS needed to be enhanced to benefit from
automated IP address assignment. Without Dynamic DNS, a DHCP server gave a dynamic IP
address to a host, but other hosts couldn't get name-to-IP-address resolution to that host until
the administrator updated DNS. In the past, there was no easy way around this for the
administrator. Now, using Dynamic DNS, when a DHCP server gives out an IP address, it
also updates DNS with this new information.

 Note Dynamic DNS is described in RFC 2136, and the security for Dynamic DNS is
described in RFC 2137.

Dynamic DNS uses the automation of DHCP to automate updates to the DNS database. The
DHCP server is the key player in Dynamic DNS. The two pieces of information about a host
that DHCP needs in order to update DNS are the IP address of the host and the fully qualified
domain name (FQDN). Since the DHCP server has just assigned the IP address, the DHCP
server knows the IP address of the host. To find the FQDN, the DHCP server looks inside the
DHCP request packet. Remember that when a DHCP client is coming on to a network, the
host uses broadcasts to find and lease an IP address from a DHCP server. The DHCP server
knows the host name from looking in these packets, but the domain name is one of the options
that the DHCP server assigns. Since the DHCP server assigns the domain, the DHCP server
already knows the domain of the client. The DHCP server puts this information together and
computes the fully qualified domain name.

For example, if the client's machine name is Harry, and a DHCP server in the SYBEX.COM
domain is serving Harry the Host an IP address, the DHCP server computes the FQDN to be
HARRY.SYBEX.COM. Now the DHCP server can register this information with the DNS
server.

Notice the host name "Harry" in the DHCP option portion of the packet. This will be the first
part of the FQDN. Also notice the Dynamic DNS update information.

After the DHCP server has finished leasing the address to the client, a DNS update record is
sent to the DNS server. How much updating the DHCP server does and how much the client
helps will vary. Dynamic DNS can be set up a couple of different ways. Remember, there are
two records that will be updated, the A record and the PTR record. The options for Dynamic
DNS include the following:

• DHCP server sends the PTR record, and the client sends the A record.
• DHCP server sends both PTR record and A record.

At the end of the IP address lease duration, the DHCP server will send another update request
to the DNS server to remove both the PTR and the A records.

Harry the Host volunteers to send the A record, so Donna the DHCP Server only needs to
send the PTR record. In the graphic below, the DNS server has been upgraded to a Dynamic
DNS server—Debbie the Dynamic DNS Server in our example. The DHCP server must be
configured to work with this new Dynamic DNS server.

Configure Windows 2000 Server for Dynamic Update

With Windows 2000 Server, the default setting is to have the DHCP server send the update
request for the PTR record, and the Windows 2000/XP client to send the update request for
the A record. If the administrator does not want the client to do the extra work of updating the
DNS database, or would just prefer that the DHCP server do more of the processing, the
default settings can be modified.

To modify the default settings in Windows 2000 Server, right-click the DHCP server entry in
DHCP Manager and click Properties.

Click the DNS tab; this will show you the settings for using Dynamic DNS. The first choice,
Automatically Update DHCP Client Information in DNS, must be selected to enable Dynamic
DNS and for any of the other options to be available. The available options are:

• Automatically Update DHCP Client Information in DNS
o Update DNS Only If DHCP Client Requests
o Always Update DNS

• Discard Forward (Name-to-Address) Lookups When Lease Expires
• Enable Updates for DNS Clients That Do Not Support Dynamic Update

Each of these options will be discussed in the following sections.

Update DNS Only If DHCP Client Requests

This option is the default. During the lease negotiation, the client will request that it update its
own A record and that the DHCP server update the PTR record. Therefore, the DHCP server
has been "requested" to update the DNS database.

By choosing the Update DNS Only If DHCP Client Requests option,

• The DHCP server sends the PTR record update request.
• The client sends the A record update request.

Always Update DNS

If this option is selected, the DHCP server sends the update requests for both the A and the
PTR records. An administrator may choose this option when the DHCP client is on a remote
network and the local DHCP server can more conveniently send the update.

By choosing the Always Update DNS option,

• The DHCP server sends PTR and A record update requests.
• The client does nothing.

Discard Forward (Name-to-Address) Lookups When Lease Expires

This option is enabled by default, and it's a good idea for administrators to leave it checked. It
sets the DHCP server to be in charge of removing the DNS entries when the lease expires.
With this set, even if the client is not online when the lease expires, the DHCP server will
request that both the A and PTR records are removed from DNS.

Enable Updates for DNS Clients That Do Not Support Dynamic Update

Before Dynamic DNS, DHCP clients did not negotiate to update DNS. Since there are still
some legacy DHCP clients that were not written to use Dynamic DNS, having this option
selected will force the DHCP server to update DNS for any clients that do not offer to. This
option should be selected.

Statically-Assigned IP Addresses and Dynamic Update

Every time a Windows 2000 or XP client that has a statically-configured IP address comes
onto a network, the client will register both its A and its PTR record. If an administrator
changes the IP address, the client will send the update requests for the A and PTR records.

Configuring a Novell Netware Server for Dynamic DNS

A Novell NetWare DHCP server can be configured to update a Dynamic DNS server. The
NetWare DHCP server sends the request for both the A and the PTR record to the DCHP
server. Once configured, the NetWare DHCP server leases an IP address to a client and then
sends the update requests to the DNS server.

To enable a NetWare DHCP server to send Dynamic DNS updates, the administrator has to
configure the subnet address range. Using the DNS/DHCP Manager, there are three
parameters that must be set. The first parameter to set is the range type. The range type must
be set to either Dynamic BOOTP and DHCP or Dynamic DHCP.

The second parameter that must be configured is the DNS update option, which must be set to
Always Update.

The last parameters involve choosing the subnet object that will activate Dynamic DNS and
specifying the DNS zone for dynamic update. The NetWare DHCP server will also send the
requests to remove the A and the PTR records when the lease has expired.

Configuring the Client for Dynamic DNS

Windows 2000 and Windows XP clients are set to update DNS by default. To modify this
setting, the administrator must launch the Network and Dial-Up Connections applet by right-
clicking My Network Places and then choosing Properties. Then right-click the network
connection that should be modified, and choose Properties.

Then select TCP/IP on the Local Area Connection page, and choose Properties. From the
TCP/IP Properties page, click the Advanced option. In the Advanced TCP/IP Settings page,
choose DNS.

From this screen, choose whether to register the connection's address in DNS or use this
connection's DNS suffix in DNS registration. If the Register This Connection's Addresses in
DNS option is selected, then Dynamic DNS is enabled on the client, and the client will send
the DNS update request for the A record using the FQDN and the IP address. If this option is
not selected, the client will not send an update request.

If the Use This Connection's DNS Suffix in DNS Registration option is selected, the client
will send the DNS update request using the first label of the computer name (like "Harry")
and the DNS suffix (like "Sybex.com") for this connection. This option is useful if the DNS
suffix differs from the domain name.

Another option that is available with Windows 2000 Server is secured dynamic updates,
which lets the DNS server only accept registration requests from a computer that has an
account in Active Directory. Once the A and the PTR records are in the DNS database, only
the computer that sent the original registration request can send an update. The secure update
feature will reject any updates sent from a DHCP server or client that are not encrypted. This
option protects the zone and resource records against modification by unauthorized

computers, and provides the ability to specify users and groups that are authorized to modify
zones and resource records. To configure this option, open the Properties dialog box for the
DNS server. On the General tab, set the Allow Dynamic Updates field to Only Secure
Updates.

This option is only available when DNS is set to the Active Directory–integrated type. More
information about secure Dynamic DNS is in RFC 2137.

Most DNS server's today support Dynamic DNS; some applications rely on Dynamic DNS.
For example, Active Directory can use only a DNS server that supports Dynamic DNS.
Active Directory dynamically registers services (SRV records), and then Active Directory
clients query DNS for the SRV records to find the IP address of a service that it needs. A
domain controller is an example of a service that the client will need the IP address for.
During installation of Active Directory, the installation programs search out and confirm that
the DNS server to be used supports Dynamic DNS. If the DNS server that was to be used does
not support Dynamic DNS, the installer is given the option to install and begin using
Microsoft's DNS.

Dynamic DNS on the Internet

Many ISPs use DHCP to deliver IP addresses to their customers. This makes it difficult for
the home user to set up a Web site or FTP site on their home computer and to make it easily
accessible to friends and family. It is difficult because every time the user connects to the ISP,
their IP address may change. This makes it difficult for anyone to connect to a host when the
IP address can change on any given day.

Rather than notify all of the family and friends of the new IP address, a home user can now
subscribe to a Dynamic DNS server on the Internet. There are several of these DNS servers
available that will allow Dynamic DNS updates from a home user when the host gets an IP
address from their ISP's DHCP server. The home Web master can give the name of their site
to friends and family, and each time the Web site comes online, a dynamic update is sent to a
DNS server.

Benefits of Dynamic DNS

The benefits of using Dynamic DNS are realized by both administrators and users. The
administrator no longer has to make constant and error-prone updates to the DNS database.
Users will get resolution to information that is more current and accurate than what was
possible with the old manual DNS database. Once configured, the Dynamic DNS transactions
take place transparently. The users don't know about them, the users don't need to know about
them, and the users don't need to do anything about them. As often as a host's IP address
changes, the name of the host will be available in DNS. The users on the network will then be
able to get name resolution to that host, even if that machine got a dynamic IP address just
minutes ago that is different from the IP address it received several hours ago.

Review Questions
1. What are the two services that are necessary for Dynamic DNS?

2. What makes Dynamic DNS dynamic?

3. What is FQDN?

4. What resource records are added to the DNS database automatically?

5. In the default Dynamic DNS arrangement, which host sends which resource record

update request?
6. When a lease expires on an IP address, which requests the resource records

removed, the DHCP server or the client?

7. What happens if a client is using an older operating system that wasn't written to
use Dynamic DNS?

8. When a Windows 2000 client comes onto the network and has a statically-assigned
IP address, how does dynamic update occur?

Answers

1. DHCP and DNS
2. Resource records are updated in the DNS database automatically as the IP addresses are

being allocated by DHCP.
3. FQDN stands for fully qualified domain name; it is the host's name combined with the

domain name that the host is a member of (for example, HARRY.SYBEX.COM).
4. The A and the PTR records
5. The host sends the A record, and the DHCP server sends the PTR record.
6. The DHCP server
7. The DHCP server will request the update of both A and PTR records.
8. The Windows 2000 client sends the update requests to the DNS server.

Terms to Know

• Dynamic DNS
• dynamic update

Chapter 14: Windows Internet Naming
Service (WINS)
In the previous chapters, you learned that most applications are written to use host names and
host name resolution. You also learned that some applications are written to use NetBIOS
names and NetBIOS name resolution. In this chapter, you will learn more about a NetBIOS
name resolution service provided by Microsoft called Windows Internet Naming Service, or
WINS.

WINS is a local database of NetBIOS names and IP addresses. The WINS service provides
resolution from the WINS database to its clients when a NetBIOS name-to-IP-address
resolution is needed.

NetBIOS Applications

Many networks today are made up of a combination of workstations that use Windows 95/98,
Windows NT, or Windows 2000 as their desktop operating system. A handful of applications
have been written that use the NetBIOS names of these hosts instead of their host name. For
example, a user on a network can open an application called Network Neighborhood and see
the names of other workstations and servers. Network Neighborhood displays the NetBIOS
names of other hosts.

When a Microsoft host is starting and building its TCP/IP stack, several NetBIOS services
begin. These NetBIOS services will provide a service either to the local host or to other hosts
in the network. Some of the NetBIOS services that a host may provide include the
workstation service and the server service.

workstation service A NetBIOS service that performs workstation activities such as using
the local operating system.

server service A NetBIOS service that performs server activities such as file sharing.

These services are like applications that are running on the host. The host automatically starts
these services and offers them to other hosts. For example, the server service enables other
hosts to connect to and share files from the host that is offering the service. The NetBIOS
name and the service that are being offered must be unique on the network; no other host can
be offering the same NetBIOS name and service.

NetBIOS Name Resolution Process without WINS

A computer's NetBIOS name needs to be resolved to an IP address for TCP/IP to
communicate with that host. If the host cannot resolve the NetBIOS name to an IP address,
communication will not occur. NetBIOS name resolution was developed many years ago for
use without WINS. Microsoft TCP/IP clients can still use NetBIOS name resolution without
WINS. However, WINS offers several improvements that you will learn about later in this
chapter.

Name Registration

Before NetBIOS name resolution can take place, the NetBIOS hosts must go through a
process of registering their NetBIOS names. The process of NetBIOS name resolution begins
when a TCP/IP host that is running NetBIOS services starts; the host broadcasts a NetBIOS
name registration packet that includes its NetBIOS name and the service that it offers. If any
other host on the network receives the broadcast and has the same name, it sends back a
negative acknowledgment. The registering host listens for any negative acknowledgments,
and if none are received, the host assumes that it has a unique name. However, if a negative
acknowledgment is returned, an error message is displayed telling the user that the NetBIOS
name is already in use.

negative acknowledgment An acknowledgment sent from a host or server that says, "I
received your request and the answer is no."

In the following screen capture, a name registration packet is being broadcast onto the
network to register the NetBIOS name Harry. Notice that the name registration packet is
broadcast from Harry.

As all the hosts come online and broadcast their NetBIOS names and services, there will be
no duplicates. The host may be offering several NetBIOS services and will broadcast each.
On a network, the second host that wants an existing NetBIOS name would not be able to
start any NetBIOS services that already existed on the network. When a host powers down, or
leaves the network, that NetBIOS name becomes available because another host can then
come online and broadcast that name and the original name holder will not be online to
generate a negative acknowledgment.

Suppose there is a conference and a requirement of the conference is that no two people have
the same name. As new members walk into the conference room, they broadcast their names.
Harry walks in, and in a very loud voice broadcasts, "I am Harry." All the other conference
attendees examine their name tags to see whether their name is Harry. If someone else named
Harry is already in the room, he'd yell back, "Sorry, Harry, I'm already here." Harry the
newcomer would not be allowed to participate in the conference. As more people enter the
conference room, they continue broadcasting their names, and the other attendees examine
their name tags to make sure that there are no conflicts.

The Conference—Name Registration without WINS

The illustration below shows Harry walking into a conference room and broadcasting that his
name is Harry. The others check their name tags for any conflicts. Again, this is analogous to
NetBIOS name registration.

Name Resolution

Now you have learned how NetBIOS name registration takes place, the next issue is name
resolution. When a host on a network wants to communicate with another host that is using a
NetBIOS application, the initiating host uses the NetBIOS name resolution methods as
described in Chapter 11.

The first place to look for NetBIOS resolution is in the NetBIOS name cache. Possibly the
name was recently resolved or was configured with the LMHOSTS file to be permanently in
NetBIOS name cache. If the NetBIOS name is not in NetBIOS name cache, and the host is
not configured for WINS, a NetBIOS name query is broadcast.

NetBIOS name cache Recently resolved NetBIOS names and IP addresses stored in RAM
for rapid resolution.

NetBIOS name query A packet asking for the IP address of a host with a particular
NetBIOS name.

The NetBIOS name query packet contains the NetBIOS name in question and the IP address
of the originator. The name query is broadcast to the network asking for the owner of the
name to respond with an IP address.

The screen capture below shows a host named Sally broadcasting a name query request
(Query Req) for a node named Harry. Notice that the packet source is Sally and the
destination is addressed to "Broadcast."

Each host examines itself as the name query broadcast is received. When the owner of the
name recognizes itself as a match, a name query response is sent back to the originator of the
query. The response includes the NetBIOS name and IP address of the destination. Now that
the originator has the IP address of the destination, TCP/IP will begin the communication
process with the destination.

The following screen capture shows the positive response that Harry sends back to Sally with
his IP address in the last line of the screen capture. The source of the packet is Harry, and the
destination is Sally.

To continue with the example of the conference, suppose that everyone in the conference has
a separate telephone. When one person wants to talk to another at the conference, the only
way to get the other person's number is to broadcast for the person. If Sally wants to have a
communication with Harry, she just shouts in the conference room, "Hey Harry, what's your
number? My number is x531." As everybody in the room hears that name query broadcast,
they examine their name tags. When Harry recognizes that Sally must be talking about him,
Harry picks up his phone and calls x531. He says, "This is Harry. I understand that you want
to talk with me; my number is x220." Now Sally, the originator of the name query, has
Harry's telephone number and is able to begin communicating.

The Conference—Name Resolution without WINS

The following illustration shows Sally shouting for Harry in the same way that NetBIOS
name queries are broadcast.

This process of NetBIOS name resolution is efficient and works fine on a small network. As
the network grows, however, this method becomes unacceptable. Imagine the conference in
the preceding example with 10 people in the conference room. The number of broadcasts in
the room would be acceptable and probably an efficient method of name-to-number
resolution. If the coordinators of the conference decided to give free food and suddenly 1,000
people attended, the number of broadcasts would be out of control. Broadcast would then be
an unacceptable and inefficient method of name resolution.

As networks got larger and it became obvious that broadcasting for NetBIOS name resolution
was inefficient and consuming a great deal of network bandwidth, a solution was developed
to rectify the problem. Imagine that conference room with 1,000 people and try to think of a
more efficient way for people to get name resolution to one another's numbers.

network bandwidth The amount of data that can be put onto a network based on other
communication traffic already using the wire.

NetBIOS Name Resolution Process with WINS

To decrease the inefficiency of using broadcasts to resolve NetBIOS names, the NetBIOS
name server was created. A NetBIOS name server contains a dynamic database of NetBIOS
names and IP addresses. WINS is a service that acts as a NetBIOS name server. The WINS
service can be installed on a Windows NT server.

NetBIOS name server A server that registers and resolves NetBIOS names.

The IP address of the WINS server must be configured for any hosts that will use that WINS
server. Since the administrator might not use a WINS server, the WINS IP address is an
optional parameter of the TCP/IP configuration. An administrator can manually enter the IP
address of the WINS server for every host, or if the network is set up to use DHCP, the WINS

server address can be set up as an optional parameter that is supplied with the automatic IP
address.

Name Registration

For a TCP/IP client that is configured to use WINS, the process of name registration changes
a bit. Now, as the host is connecting to the network, rather than broadcast a name registration
packet, the host sends a name registration packet directly to the WINS server. The name
registration packet includes the NetBIOS name, IP address, and the NetBIOS services that the
host is registering. The WINS server looks in the database to see whether another host has
already registered that NetBIOS name. If there are no other entries with that NetBIOS name,
the WINS server sends a positive acknowledgment back to the host.

Using WINS for name-to-IP-address resolution is similar to having a registrar at the
conference described earlier in this chapter. The illustration below shows Rita the Registrar at
the conference. Rita will handle registrations and resolutions.

Name Registration with WINS

The following screen capture shows a name registration request for the NetBIOS name Harry.
The name registration is not broadcast; it is sent directly to the WINS server. The registration
packet includes the name to be registered and Harry's IP address. Also in the screen capture,
the second captured packet (frame 10) is the WINS server's positive response to Harry.

If the WINS server finds that a host has already registered that NetBIOS name, the WINS
server sends a challenge. Three challenge packets are sent to the IP address of the host that

registered that name. The challenge packets are simply asking, "Hey, are you still there?" If
the host responds that it is still there and online, a negative acknowledgment is sent back to
the other host that is requesting the registration. That host will then get an error message that a
duplicate NetBIOS name exists. If the challenge goes unanswered, then the WINS server has
to assume that the original host is no longer there. The server then updates the WINS database
and sends a positive acknowledgment to the host requesting the registration.

If a host sends a name registration request to the WINS server and the WINS server does not
respond, the host will resend the request up to three times before giving up. If the host gets no
response from the WINS server after three tries, the host broadcasts the name registration
request and listens for other hosts to send a negative acknowledgment. Therefore, when the
new, better WINS service doesn't seem to be working, the client will go to the name
registration method as if WINS didn't exist.

When we apply the WINS server to our conference example, name registration becomes a
simple process. As people enter the conference room, they simply tell the registrar their
names. As Harry comes into the conference, the registrar looks through the conference
registration database and confirms that no one else in the conference is named Harry. If
someone already has registered that name, the registrar calls their number and confirms that
they are still at the conference. If no one answers at that number, the registrar will try two
more times to be absolutely sure that they are no longer at the conference. If after three tries
there is still no answer, the registrar updates the registration database with Harry's information
and welcomes the new Harry to the conference with a positive name registration
acknowledgment.

The illustration below shows Harry registering for the conference and the registrar looking at
the database for any conflicts. Again, this is similar to NetBIOS name registration with
WINS.

Name Resolution

When using WINS, NetBIOS name resolution is a simple process that begins by sending the
WINS sever a name query. Instead of broadcasting, a host that is trying to get NetBIOS name
resolution simply sends a name query to the WINS server. The WINS server examines the
WINS database and sends back either a positive or a negative response.

If the NetBIOS name being requested exists in the WINS database, the NetBIOS name and IP
address are returned to the originator of the name query. This is a positive name query
response. The host now has the IP address of the destination host and TCP/IP will begin
communicating with that host.

The screen capture below shows two packets. The first packet (frame 1) is Sally's name
resolution request being sent to the WINS server. The packet is not broadcast; it goes directly
to the WINS server. The second packet (frame 2), which is expanded, shows the WINS server
responding to Sally with the IP address for the NetBIOS name Harry.

If the NetBIOS name is not in the WINS database, the server sends a response to the
originator of the request stating that the NetBIOS name is not registered. This is a negative
name query response. When a negative name query response is returned to the originator of
the name query, that host will continue with the next method of NetBIOS name resolution,
which is to broadcast for name resolution.

In the conference room analogy, whenever someone wants to talk to someone else, they
simply call the registrar. When Sally wants to talk to Harry, she calls the registrar. The
registrar is able to look at the most current listing of attendees and give either a positive or
negative response. In a positive response, the registrar returns the name and number to the
originator of the name query. Sally can now contact Harry. If the registrar returns a negative
response, which means that she does not have an entry for Harry, Sally will politely say thank
you to the registrar, hang up the phone, and then broadcast for Harry. As long as the database
is current, the registrar will be able to resolve most queries.

The following illustration shows Sally asking the registrar for Harry's number, in the same
way that a host on the network will send a query to the WINS server to get NetBIOS name
resolution to another host.

Now imagine that instead of just a couple of people at the conference, there are 1,000. This
means there are 1,000 registrations and 1,000 people using the database for resolution. The
chore of being the registrar could be overwhelming as the number of attendees grows. Doing
both registrations and resolutions would be exhausting.

On a network, the WINS service consumes resources on the server on which it's installed. The
number of WINS clients and the number of NetBIOS applications determines the overall draw
on the server. It is estimated that one WINS server can service 10,000 clients. Although only
one WINS server is necessary, it is recommended that a second WINS server be used for fault
tolerance and redundancy. In any case, an administrator has to closely monitor the NetBIOS
name resolution drain on the server resources. WINS servers can also be configured to share
databases in a large internetwork.

Because WINS clients send registration and resolution requests directly to a WINS server,
one WINS server can service many subnets. The name registrations and requests are not
broadcast, so they will go through routers to the WINS server.

When a WINS client is properly shut down, the client sends a name release request to the
WINS server. This lets the WINS server know that that NetBIOS name is no longer in use by
that host. The WINS server marks that entry in the database as no longer in use. Now, when
another host wants to register that NetBIOS name, the WINS server knows that it is available.

WINS Manager

To administer the WINS database, an administrator uses the WINS Manager utility. On a
Windows NT server, the WINS service must be installed and the hosts configured to register
with the WINS server. The WINS Manager is located by clicking Start Programs
Administrative Tools WINS Manager.

Below is a screen capture of the WINS Manager utility. The entries in this WINS database
include several NetBIOS names and IP addresses. This database will be used for resolution
when any host that is configured to use it requests resolution. Some of the NetBIOS names
that you may recognize include a few entries for Sally and the NT domain named Jumpstart.

The entries include the NetBIOS name of the host, the IP address of the host, the expiration
date, and the time of the entry. Another column shows the version of each entry. This
hexadecimal version number starts at 1 and continues to increment as each entry is entered or
updated. This is how the WINS service knows the most recent changes to the database. Every
service that each NetBIOS host is registering must have a particular entry in the database; that
is why there are multiple entries for each NetBIOS name.

On an internetwork that has non-WINS clients, an administrator may decide to manually enter
the name of each non-WINS client into the WINS database. This is called a static entry. The
benefit of configuring a static entry in the WINS database is that no host that registers with
this WINS database can use the statically configured name. An additional benefit is that all
the WINS clients can now get resolution to the non-WINS host.

static entry A manual entry in the WINS database that is made by the administrator for a
non-WINS client.

To configure a static entry in WINS, enter the WINS Manager, click the Mappings menu, and
choose Static Mappings, as shown below.

Click the Add Mappings button, then fill in the dialog box and click Add to complete adding
an entry. In the Type field, you can specify the type of service that the non-WINS client is

configured for and needs to have entered in the WINS database. In the screen capture below, a
static mapping has been configured for the Administration server.

Now that the mapping has been configured, WINS will not let any WINS clients register with
the name of ADMIN SRV. If any WINS clients try to get resolution to ADMIN SRV, the
WINS database will be able to provide that resolution.

WINS provides an excellent service for automatically registering NetBIOS names and
performing NetBIOS name resolution. Many networks today use WINS and a responsibility
of many network administrators is to maintain WINS.

Review Questions
1. What does WINS stand for?

2. Without WINS, how does name registration take place?

3. List two NetBIOS services.

4. If WINS receives a NetBIOS name registration, and that name has already been

registered, describe what the WINS server does.
5. When a workstation not using WINS powers down, is a name release packet

broadcast?
6. When a workstation using WINS powers down, is a name release packet sent to the

WINS server?

7. If a WINS server replies to a host with a negative acknowledgment, what does the
host do next?

8. Where is the first place that TCP/IP looks to resolve a NetBIOS name?
9. Describe what a WINS server does when a registration comes in and there is

already an entry for the NetBIOS name in the database.

10. How does a TCP/IP host know where to find a WINS server?

Answers

1. Windows Internet Naming Service

2. Broadcast
3. Workstation service and server service
4. The WINS server sends three challenges to the IP address of the NetBIOS name currently

registered. If there is a response, the WINS server sends a negative acknowledgment to
the newcomer; if there is no response to the challenge, the database is updated and a
positive response is sent to the newcomer.

5. No
6. Yes
7. Broadcast
8. NetBIOS name cache
9. WINS sends a series of three challenges to the currently registered IP address. If there is a

response, the new host cannot have that name. If there is no response, the new host can
have the name.

10. The IP address of the WINS server is an optional parameter of the TCP/IP configuration.

Terms to Know

• workstation service
• server service
• negative acknowledgment
• NetBIOS name cache
• NetBIOS name query
• network bandwidth
• NetBIOS name server
• static entry

Chapter 15: IP Version 6
Throughout this book, you have looked at TCP/IP addresses used with Internet Protocol
version 4. Because of the enormous growth of the Internet and other factors that you will learn
about in this chapter, IP version 4 is going to be replaced by IP version 6.

Most of the principles you have learned in this book apply to IPv6; some have been updated
and some replaced. It will be useful in working with IPv6 to have a good foundational
knowledge of IPv4.

The Need for a New Version of TCP/IP

The Internet Protocol that is a standard today was created in the early 1970s. The current
version is Internet Protocol version 4 (IPv4). IPv4 has proven to be a stable and fully
developed protocol; however, due to the enormous growth of the Internet, IPv4 is no longer
viable. Internet Protocol version 6 (IPv6) will soon replace IPv4 as the Internet standard.
IPv6 is also called Internet Protocol, Next Generation (IPng).

Internet Protocol version 4 (IPv4) The current version of IP that has been in use
for over 20 years.

Internet Protocol version 6 (IPv6) The formal name of the new version of IP that
will be the new standard.

Internet Protocol, Next Generation (IPng) The informal name of IPv6.

IPng was proposed and recommended at an IETF meeting in July 1994 (in RFC 1752). The
proposal to replace IPv4 as the Internet Protocol was accepted by the Internet Engineering
Steering Group, and IPng became a proposed standard. In August 1998, the proposed standard
was upgraded to draft standard. Many RFCs have been written about IPv6 and are available
on the Internet for further examination.

The Name of the New Protocol

The reason that we are going from IPv4 to IPv6 and not IPv5 is that a protocol named IPv5
already exists and is referred to in RFC 1946 as ST2 and ST2+. IPv5 is not a replacement for
IPv4 and has very limited use.

The Next Generation references Star Trek, the Next Generation. This protocol suite will
replace IPv4 just as the Next Generation crew replaced the old crew of the USS Enterprise.

IPng is not just an IPv4 upgrade; it is an overhauled protocol. Many of the features are
similar, and the foundational methods of IPv4 are still the same. However, the addressing is
different, and the headers are more specialized and lighter. IPv6 provides more options,
including more flow control and enhanced security.

Since early 1998, a testing and preproduction network for IPv6 on the Internet has been
online. This network, called 6BONE, has grown to more than 400 sites and interconnecting
networks in 40 countries. With the 6BONE network stabilizing, a transition to IPv6 will begin
soon. The transition to a total IPv6 network is expected to take up to 10 years. Once
implemented, IPv6 should be the standard for decades. The transition is described later in this
chapter.

6BONE The IPv6 backbone that is currently being used to build and test the IPv6 network
infrastructure.

IPv6 Addressing

IPv4 is running out of network addresses, and routing tables are overflowing. In the early '90s,
it was evident that something had to be done. Committees and teams were formed among
many corporations and engineers. The result of the collaborative research and testing is IPv6.
The design engineers have focused their improvements in the areas of addressing, efficiency,
and enhanced security.

This section focuses on the addressing used in IPv6. The new protocol will provide many
more IP addresses than the present version. And these new addresses will be written in
hexadecimal form and will require a new type of notation.

IPv4 Addresses and IPv6 Addresses

In IPv4, there are 32 bits in every address. This means that there are approximately 4 billion
unique IP addresses. This would have been enough addresses to support the original purpose
of the ARPAnet. But as the ARPAnet grew into the Internet, and an enormous number of
hosts connected to the network, IP addresses have been depleted.

IPv6 uses 128-bit addresses, which are exponentially larger than the address size of IPv4.
Therefore, IPv6 supports a number of addresses that is 4 billion times the 4 billion addresses
of the IPv4 address space. This works out to be:

• IPv4 addresses (232):

4,294,967,296

• IPv6 addresses (2128):

340,282,366,920,938,463,463,374,607,431,768,211,456

This is an extremely large number of unique IP addresses. To put that number into an easier-
to-comprehend concept, assume the Earth's surface is 511,263,971,197,990 square meters.
Then, for every square meter of the sur-face of the Earth, there would be
665,570,793,348,866,943,898,599 unique IP addresses.

Harry—The Next Generation

The following illustration shows Harry the Host in the IPv4 world as one of a few hosts; but
with IPv6, Harry will be one of a huge number.

Why should we be able to use so many IP addresses? Did the designers go overboard? One
plan proposed 64-bit addresses. But the designers of IPv6 determined that that might limit the
growth of the network in the future.

Think of the future and the types of products that might need a unique IP address. It's possible
to imagine that every item in your house will be connected to the Internet. You will be able to
control air conditioning and heating through the Internet. Some other appliances that might be
accessible to the Web include lighting, microwave ovens, refrigerators, automobile parts, cell
phones, laptop computers, pagers, VCRs, and stereos. Because these appliances will be
connected to the Internet, they will have a unique IP address.

Use your imagination to continue the list. Your Web-enabled refrigerator will be available to
you and the manufacturer through the Web. Maybe you'll check the contents of the fridge
through a Web browser before you leave work. Before you leave work, you'll access any item
in your home over the Internet. You'll start dinner, adjust the temperature, and bring the car
around to the front of the building. Is this possible? We'll see, but in any case, we'll have an
addressing scheme that would provide enough addresses.

The New Hexadecimal IPv6 Addresses

In this book, you have looked at IPv4. These addresses are 32-bit addresses that look like this:

192.168.2.100

IPv6 addresses are 128-bit addresses and are written in hexadecimal form. You will recall
from Chapter 3 that the hexadecimal numbering system uses the same 0 to 9 digits as decimal,
then uses A, B, C, D, E, and F to represent 10, 11, 12, 13, 14, and 15. The decimal 16 is
represented in hexadecimal as 10. The address below is an example of an IPv6 address taken
from RFCs 1884 and 1924, which describe IPv6 addressing and encoding:

EFDC:BA62:7654:3201:EFDC:BA72:7654:3210

This is an example of the "full" IPv6 address wherein all 32 hex digits have a value that is
significant. An IPv6 address with many 0s can be as short as eight hex digits. Because the
IPv6 addresses are 128 bits in length, a new written standard has to be implemented. Using
the IPv4 style of addresses, a 128-bit address would be represented by as many as 63 decimal
numbers. Because that would be unreasonable, hexadecimal numbers are used to represent the
binary addresses. Each section of hex characters represents 16 bits of the address. These 32
hex characters use 7 colons as separators. This address is referred to as a 39-character address
(32 + 7). Some addresses will have several 0s within the address. For example:

1080:0000:0000:0000:0008:0800:200C:417A

To make notation of this address easier, the nonsignificant and leading 0s can be dropped. So
the above address can be written as:

1080:0:0:0:8:800:200C:417A

Even this shortened address seems too long. Fortunately, we can shorten it one more time.
Because the address has several consecutive 0s, we can drop those and just push the colons
together. The above address can be written using the double-colon notation method as:

1080::8:800:200C:417A

double-colon notation A shorthand method of writing IPv6 addresses without including
non-significant 0s.

Double-Colon Notation

Whenever you see an address that uses double-colon notation, it won't be instantly obvious
how many and which 0s are missing. Expanding an address that uses the double-colon
notation is a two-step process for humans. First, write eight xs separated by colons, and
replace the xs with values in the address that are to the left of the double-colon, moving from
left to right. For example:

1080:x:x:x:x:x:x:x

Then, starting from the furthest right side of the address, replace xs with values moving from
right to left. For example:

1080:x:x:x:x:x:x:417A

1080:x:x:x:x:x:200C:417A

1080:x:x:x:x:800:200C:417A

1080:x:x:x:8:800:200C:417A

Now that the given values have been exhausted, replace each of the remaining xs with a 0.

1080:0:0:0:8:800:200C:417A

 Tip An important rule in double-colon notation is that double colons can be used only once in
an address.

An IPv4 address can be used within the IPv6 addressing scheme. The hexadecimal IPv4
address is placed in the last 32 bits of the IPv6 address. For example, the IPv4 address of

192.168.2.100

within an IPv6 address is

::C0A8:0264

(which is using the double-colon notation for 0:0:0:0:0:0:C0A8:0264).

Test It Out: Converting IPv4 Addresses to IPv6 Addresses

To convert an IPv4 to an IPv6 address, you first convert each section of the decimal address
to hexadecimal. Then, because each hex value must be represented by two characters, you add
a 0 to any values that have only one digit. Next, simply put the converted first and second
octets together to form a four-character hex value. Finally, insert a colon and do the same for
the converted third and fourth octet.

As an example, try converting 10.153.92.151 to an IPv6 address. The solution is:

1. Using a decimal to hex calculator, convert decimal 10 to hex:

10 = A

2. Convert decimal 153 to hex:

153 = 99

3. Convert decimal 92 to hex:

92 = 5C

4. Convert decimal 151 to hex:

151 = 97

5. Each of these hex values must be represented by two characters. Add a 0 to any values
that have only one digit (A becomes 0A).

6. Put the hex digits together: 0A99:5C97

Now try this example: Convert 192.168.15.73 to an IPv6 address. The solution is as follows:

1. 192 = C0
2. 168 = A8
3. 15 = F
4. 73 = 49
5. F becomes 0F
6. Putting all the hex digits together, you have C0A8:0F49.

IPv6 Special Addresses

Many regulations apply to IPv6 addressing and many RFCs have been written about them. As
the roll-out of IPv6 continues, many of these regulations will become common practice for
administrators. Below are a couple of the more interesting regulations regarding special
addressing concerns of IPv6.

The Unspecified Address

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It must never be assigned to any
host. It indicates the absence of an address. An unspecified address is used, for example, when
an IPv6 host sends a packet seeking an address. The source address portion of the packet will
contain the unspecified address. This is similar to a host sending a DHCP packet trying to
discover an address.

The Loopback Address

The loopback address in IPv6 is 0:0:0:0:0:0:0:1. A host uses this address to send an IPv6
packet to itself. It can never be assigned to any host. This is similar to the IPv4 address of
127.0.0.1. Administrators use this address to aid in troubleshooting TCP/IP issues. As
discussed earlier, an administrator can ping the loopback address to confirm that TCP/IP is
bound correctly to the network card.

IPv6 Documentation

Many corporations and individuals are diligently working on the transition to IPv6. More than
180 RFCs have been published that reference this new standard. These RFCs cover
everything from the inception of IPv6 to the transition plans. They include issues about
addressing, header information, routing, and the organizations that will monitor IPv6.

These RFCs can be located by accessing the companion Web site for this book, which is
referenced in Appendix D. In the next decade, network administrators will be called upon to
aid in the transition to IPv6. The administrators who begin working in IPv6 soon will be in the
greatest demand mid-transition. Therefore, it is important that network administrators get a
handle on IPv6 as soon as possible. Training and hands-on experience will be invaluable.
Several Web sites have been set up to involve volunteers in the IPv4 to IPv6 transition.

Improvements of IPv6

You learned in an earlier section about the dramatic increase of potential addresses that IPv6
will offer. Some of the other key improvements in IPv6 include:

• Enhanced security (described in RFC 1827).
• New types of packet addressing with multicast and anycast addressing.
• New IPv6 RFCs for protocols that have been discussed in this book, including DHCP,

DNS, ICMP, IP, TCP and UDP. With the new IPv6 headers being streamlined, these
other TCP/IP protocols have been improved.

Some redundant IPv4 header fields have been eliminated or made optional. The amount of
resources used by every host and router to process a packet is reduced, which increases the
amount of available bandwidth. Even though the IPv6 address is four times larger than an
IPv4 address, the IPv6 headers are only twice as large. This means that packets are "slicker"
and tighter without much extra, useless padding to slow them down.

Packets in IPv6 can have labels indicating that they belong to a certain flow, or group, of
packets. Therefore, as the flow of packets moves through a router, the routers can keep certain

similar packet types moving together, while other packets with a lower priority wait. This
gives the sender the possibility of a real-time service. Such services include video
conferencing and other communications that need to move through the Internet with the
highest priority for almost immediate or real-time reception.

real-time A type of data that is available instantaneously. The term usually refers to video or
audio conferencing.

IPv6 describes rules for three types of addressing:

Unicast One host to one other host. This is similar to much of the addressing that you have
looked at in this book.

unicast A packet that is sent from one host to one other host.

Anycast One host to the nearest of multiple hosts. This type of address is used to send a
packet to a group of hosts, but only the nearest host processes the packet. The idea is that the
host that receives the packet can relay the information to the other hosts in the group. This
type of addressing did not exist with IPv4.

anycast A packet that is sent from one host to the nearest host within a group of hosts.

Multicast One host to multiple hosts. This type of address is similar to the multicast that you
learned about in this book.

multicast A packet that is sent from one host to many other hosts at the same time.

An IPv6 packet contains options that are specified as part of the header that is examined only
at the destination, thus speeding up overall network performance.

The Transition Plan to IPv6

RFC 1933 describes a plan to transition the existing IPv4 Internet to the new IPv6 Internet. A
major consideration is how to convert the Internet into IPv6 without disrupting the operation
of the existing IPv4 network. This proposal has a nickname of SIT (Simple IPv6
Transition).

Simple IPv6 Transition (SIT) The proposed plan to transition to IPv6.

The transition plan includes two phases. The first phase includes upgrading several
components to the IPv6 level so that at the end of phase 1, there will be a combination of both
IPv4 and IPv6 hosts and routers on the Internet. In the second phase of the transition, the
remaining IPv4 addresses and components will be replaced, so that by the end of phase 2,
there will be only IPv6 hosts and routers.

Some of the key objectives that SIT must comply with are detailed in the Simple IPv6
Transition proposal. These include:

• IPv6 and IPv4 hosts can coexist on the Internet during the transition. There will be no
"cut-over" date, so IPv4 hosts can continue to operate on the IPv6 network.

• IPv6 routers and hosts can be deployed across the Internet in an independent fashion.
Existing IPv4 hosts and routers may be upgraded to IPv6 at any time without being
dependent on any other hosts or routers being upgraded.

• The transition will be as easy as possible for end users, system administrators, and
network operators to understand and carry out. As existing IPv4 hosts or routers are
upgraded to IPv6, they will continue to use their existing addresses in the IPv6 form.

• IPv6 will have minimal upgrade dependencies. DNS servers will be the first
component to be upgraded to handle IPv6 addresses. There are no prerequisites to
upgrading routers.

• IPv6 will have low startup costs. Budget considerations are always an issue. There
must be little or no preparation work to upgrade existing IPv4 systems to IPv6, or to
deploy new IPv6 systems.

The following illustration shows the upgraded protocol. Harry is working in a leaner, meaner,
and more efficient network. Data transfer is faster, and security is enhanced.

Review Questions
1. IPv4 uses _______ bit addresses.

2. IPv6 uses _______ bit addresses.

3. Write the following IPv6 address with the least amount of characters:

109A:3210:0:0:0:0:0213:412B
4. Convert the following IPv4 address to an IPv6 address: 10.25.135.123

5. Convert the following IPv4 address to an IPv6 address: 192.168.31.4

6. Expand the following IPv6 address to display all 39 characters (colons count as a

character) that are compressed with the double-colon notation:
A013:1234:34::8:411A

7. List two reasons why a new protocol is needed.

8. What is the name of the proposed plan to transition IPv6?

9. Describe the phases of the IPv6 transition plan.

10. How long is the proposed transition expected to take?
11. Convert the following IPv4 address to an IPv6 address: 172.20.25.16
12. Convert the following IPv4 address to an IPv6 address: 127.0.0.1

Answers

1. 32
2. 128
3. 109A:3210::213:412B
4. ::0A15:877B
5. ::C0A8:1F04
6. A013:1234:0034:0000:0000:0000:0008:411A
7. More addresses, enhanced security, greater efficiency
8. SIT, Simple IPv6 Transition
9. There are two phases. The first phase will have IPv4 and IPv6 coexisting on the same

network, and the second phase will eliminate all of IPv4.
10. 10 years
11. AC14:1910
12. 7F00:0001

Terms to Know

• IPv4
• IPv6
• IPng
• 6BONE
• double-colon notation
• real-time
• unicast
• anycast
• multicast
• SIT

