
1

Lecture 3: MIPS Instruction Set

• Today’s topic:

� More MIPS instructions
� Procedure call/return

• Reminder: Assignment 1 is on the class web-page (due 9/7)

2

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

3

Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

…

Base address

4

Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

addi $s0, $zero, 1000 # the program has base address
1000 and this is saved in $s0
$zero is a register that always
equals zero

addi $s1, $s0, 0 # this is the address of variable a
addi $s2, $s0, 4 # this is the address of variable b
addi $s3, $s0, 8 # this is the address of variable c
addi $s4, $s0, 12 # this is the address of variable d[0]

5

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in brackets

6

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly: # addi instructions as before
lw $t0, 8($s4) # d[2] is brought into $t0
lw $t1, 0($s1) # a is brought into $t1
add $t0, $t0, $t1 # the sum is in $t0
sw $t0, 12($s4) # $t0 is stored into d[3]

Assembly version of the code continues to expand!

7

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal) � 0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

8

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt funct
opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant

9

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

10

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for large case statements and big jumps)

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

11

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for large case statements and big jumps)

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j Exit

f = g-h; Else: sub $s0, $s1, $s2
Exit:

12

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

13

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

14

Procedures

• Each procedure (function, subroutine) maintains a scratchpad of
register values – when another procedure is called (the callee), the
new procedure takes over the scratchpad – values may have to be
saved so we can safely return to the caller

� parameters (arguments) are placed where the callee can see them

� control is transferred to the callee

� acquire storage resources for callee

� execute the procedure

� place result value where caller can access it

� return control to caller

15

Registers

• The 32 MIPS registers are partitioned as follows:

� Register 0 : $zero always stores the constant 0
� Regs 2-3 : $v0, $v1 return values of a procedure
� Regs 4-7 : $a0-$a3 input arguments to a procedure
� Regs 8-15 : $t0-$t7 temporaries
� Regs 16-23: $s0-$s7 variables
� Regs 24-25: $t8-$t9 more temporaries
� Reg 28 : $gp global pointer
� Reg 29 : $sp stack pointer
� Reg 30 : $fp frame pointer
� Reg 31 : $ra return address

16

Jump-and-Link

• A special register (storage not part of the register file) maintains the
address of the instruction currently being executed – this is the
program counter (PC)

• The procedure call is executed by invoking the jump-and-link (jal)
instruction – the current PC (actually, PC+4) is saved in the register
$ra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress

• Since jal may over-write a relevant value in $ra, it must be saved
somewhere (in memory?) before invoking the jal instruction

• How do we return control back to the caller after completing the
callee procedure?

17

The Stack

The register scratchpad for a procedure seems volatile –
it seems to disappear every time we switch procedures –
a procedure’s values are therefore backed up in memory
on a stack

Proc A’s values

Proc B’s values

Proc C’s values

…

High address

Low address

Stack grows
this way

Proc A

call Proc B
…
call Proc C

…
return

return
return

18

Storage Management on a Call/Return

• A new procedure must create space for all its variables on the stack

• Before executing the jal, the caller must save relevant values in
$s0-$s7, $a0-$a3, $ra, temps into its own stack space

• Arguments are copied into $a0-$a3; the jal is executed

• After the callee creates stack space, it updates the value of $sp

• Once the callee finishes, it copies the return value into $v0, frees
up stack space, and $sp is incremented

• On return, the caller may bring in its stack values, ra, temps into registers

• The responsibility for copies between stack and registers may fall
upon either the caller or the callee

19

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

20

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Notes:
In this example, the procedure’s
stack space was used for the caller’s
variables, not the callee’s – the compiler
decided that was better.

The caller took care of saving its $ra and
$a0-$a3.

21

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

22

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.

23

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

24

Title

• Bullet

