
8086 Instruction Encoding-1

Encoding of 8086 Instructions

! 8086 Instructions are represented as binary numbers
Instructions require between 1 and 6 bytes

Note that some architectures have fixed length instructions
(particularly RISC architectures)

byte 7 6 5 4 3 2 1 0

1 opcode d w Opcode byte

2 mod reg r/m Addressing mode byte

3 [optional] low disp, addr, or data

4 [optional] high disp, addr, or data

5 [optional] low data

6 [optional] high data

! This is the general instruction format used by the majority of
2-operand instructions

There are over a dozen variations of this format

! Note that bytes 1 and 2 are divided up into 6 fields:
opcode
d direction (or s = sign extension)
w word/byte
mod mode
reg register
r/m register/memory

8086 Instruction Encoding-2

Instruction Format (Cont'd)

! Instruction may also be optionally preceded by one or more
prefix bytes for repeat, segment override, or lock prefixes

In 32-bit machines we also have an address size override
prefix and an operand size override prefix

! Some instructions are one-byte instructions and lack the
addressing mode byte

! Note the order of bytes in an assembled instruction:

[Prefix] Opcode [Addr Mode] [Low Disp] [High Disp]
[Low data] [High data]

- opcode and addressing mode are NOT stored "backwords"

8086 Instruction Encoding-3

Prefix Bytes

! There are four types of prefix instructions:

- Repetition
- Segment Overrides
- Lock
- Address/Operand size overrides (for 32-bit machines)

Encoded as follows (Each in a single byte)

! Repetition

REP, REPE, REPZ F3H
REPNE, REPNZ F2H

Note that REP and REPE and not distinct
Machine (microcode) interpretation of REP and REPE code
depends on instruction currently being executed

! Segment override

CS 2EH
DS 3EH
ES 26H
SS 36H

! Lock F0H

8086 Instruction Encoding-4

Details on Fields
Opcode Byte

! opcode field specifies the operation performed (mov, xchg,

etc)

! d (direction) field specifies the direction of data movement:

d = 1 data moves from operand specified by R/M
field to operand specified by REG field

d = 0 data moves from operand specified by REG
field to operand specified by R/M field

! d position MAY be replaced by "s" bit

s = 1 one byte of immediate data is present which
muct be sign-extended to produce a 16-bit
operand

s = 0 two bytes of immediate are present

! d position is replaced by "c" bit in Shift and Rotate
instructions
indicates whether CL is used for shift count

! w (word/byte) specifies operand size

W = 1 data is word

W = 0 data is byte

8086 Instruction Encoding-5

Address and Operand Size Overrides

! Our primary focus is 16-bit instruction encoding so we will not
discuss 32-bit encoding beyond this topic

We only have one bit (the w bit) for operand size so only two
operand sizes can be directly specified

16-bit machines: w=0 data is 8 bits; w=1 data is 16 bits
32-bit machines: w=0 data is 8 bits; w=1 data is 32 bits

! Operand and Address size override prefixes are used to
specify 32-registers in 16-bit code and 16-bit registers in 32-
bit code

66h = operand size override
67h = address size override

! Interpretation of an instruction depends on whether it is
executed in a 16-bit code segment or a 32-bit code segment

Instruction 16-bit code 32-bit code
mov ax,[bx] 8B 07 67 66 8B 07
mov eax,[bx] 66 8B 07 67 8B 07
mov ax,[ebx] 67 8B 03 66 8B 03
mov eax,[ebx] 67 66 8B 03 8B 03

8086 Instruction Encoding-6

Addressing Mode Byte (Byte 2)

! Contains three fields
Mod Bits 6-7 (mode; determines how R/M field is

interpreted
Reg Bits 3-5 (register) or SREG (Seg register)
R/M Bits 0-2 (register/memory)

! Specifies details about operands

! MOD
00 Use R/M Table 1 for R/M operand
01 Use R/M Table 2 with 8-bit displacement
10 Use R/M Table 2 with 16-bit displacement
11 Two register instruction; use REG table

! REG w=0 w=1 REG w=0 w=1
000 AL AX 100 AH SP
001 CL CX 101 CH BP
010 DL DX 110 DH SI
011 BL BX 111 BH DI

! SREG
000 ES 001 CS 010 SS 110 DS

! R/M Table 1 (Mod = 00)
000 [BX+SI] 010 [BP+SI] 100 [SI] 110 Drc't Add
001 [BX+DI] 011 [BP+DI] 101 [DI] 111 [BX]

! R/M Table 2 (Mod = 01) Add DISP to register specified:
000 [BX+SI] 010 [BP+SI] 100 [SI] 110 [BP]
001 [BX+DI] 011 [BP+DI] 101 [DI] 111 [BX]

8086 Instruction Encoding-7

Addressing Mode Byte

! In general is not present if instruction has no operands

! For one-operand instructions the R/M field indicates where
the operand is to be found

! For two-operand instructions (except those with an immediate
operand) one is a register determined by REG (SREG) field
and the other may be register or memory and is determined
by R/M field.

Direction bit has meaning only in two-operand instructions

Indicates whether "destination" is specified by REG or by R/M

Note that this allows many instructions to be encoded in two
different ways

8086 Instruction Encoding-8

Addressing Mode 00

! Specifies R/M Table 1 (with NO displacement)

000 [BX+SI] 010 [BP+SP] 100 [SI] 110 Drc't Add
001 [BX+DI] 011 [BP+DI] 101 [DI] 111 [BX]

! Note that the 110 case (direct addressing) requires that the
instruction be followed by two address bytes

There are then two possibilities:

1 Opcode Addressing Mode
2 Opcode Addressing Mode Offset-Low Offset-High

Examples:
MOV AX,[2A45]
MOV AX,[DI]

Addressing Mode 01

! Specifies R/M Table 2 with 8-bit signed displacement

000 [BX+SI+disp] 011 [BP+DI+disp] 110 [BP+disp]
001 [BX+DI+disp] 100 [SI+disp] 111 [BX+disp]
010 [BP+SI+disp] 101 [DI+disp]

All instructions have the form:
Opcode Addressing Mode Displacement

Examples
MOV AX,[BP+2]
MOV DX,[BX+DI+4]
MOV [BX-4],AX

8086 Instruction Encoding-9

Addressing Mode 10

! Specifies R/M Table 2 with 16-bit unsigned displacement

000 [BX+SI+disp] 011 [BP+DI+disp] 110 [BP+disp]
001 [BX+DI+disp] 100 [SI+disp] 111 [BX+disp]
010 [BP+SP+disp] 101 [DI+disp]

Opcode Addressing Mode Disp-Low Disp-High

Note that we cannot have negative displacements < -128!

Examples:
ADD AX,[BX+1000h]

Addressing Mode 11

! Specifies that R/M bits refer to REG table

All two operand register-to-register instructions use
addressing mode 11

EXAMPLES:
MOV AX,[BX]
MOV DX,CX
MOV AH,BL

8086 Instruction Encoding-10

Encoding Examples

! POP memory/register has the structure:

8FH MOD 000 R/M

! Note that w = 1 always for POP (cannot pop bytes)

! To POP into AX:
MOD = 11 (Use REG table)
R/M = 000

Encoding: 8FH C0H

To POP into BP:
MOD = 11
R/M = 101

Encoding = 8FH C3H

To POP into memory location DS:1200H
MOD = 00
R/M = 110

Encoding = 8F 06 00 12

To POP into memory location CS:1200H
MOD = 00
R/M = 110

Encoding = 2E 8F 06 00 12

8086 Instruction Encoding-11

POP General Register

! This one-byte opcode has the structure:
01011 REG

So
POP AX = 01011000 = 58H
POP BX = 01001011 = 5BH

! Note that there are two legal encodings of POP REG

Shorter form exists because POPs are so common

Most assemblers will use the shorter form

POP Segment Register

! This one-byte opcode has the structure:

00REG111 07 1f 17

POP ES = 0000 0111 = 07H
POP DS = 0001 1111 = 1FH
POP SS = 0001 0111 = 17H

! Note that both forms of POP REG do not follow the general

rules outlined above--registers are coded into the opcode
byte

! Note also that even though POP CS is illegal, DEBUG will
correctly assemble it as 0F -- but will not unassemble it.

8086 Instruction Encoding-12

Examples (Cont'd)

! MOV instruction has seven possible formats.
We will not discuss them all.

MOV reg/mem,reg/mem

! This instruction has the structure:

100010dw MOD REG R/M Disp1 Disp2

where displacements are optional depending on the MOD bits

! MOV AX,BX
- w = 1 because we are dealing with words
- MOD = 11 because it is register-register

- if d = 0 then REG = source (BX) and R/M = dest (AX)
= 1000 1001 1101 1000 (89 D8)

- if d = 1 then REG = source (AX) and R/M = dest (BX)
= 1000 1011 1010 0011 (8B C3)

! MOV [BX+10h],CL
- w = 0 because we are dealing with a byte
- d = 0 because we need R/M Table 2 to encode [BX+10h]
 therefore first byte is (1000 1000) = 88H

- since 10H can be encoded as an 8-bit displacement, we can
use MOD=01 REG=001 and R/M=111 = 0100 1111 = 4FH
and the last byte is 10H

result: 88 4F 10

Note: MOV [BX+10H],CX = 89 4F 10

8086 Instruction Encoding-13

! Can also encode MOV [BX+10h],CL with a 16-bit
displacement, (MOD 10) although there is no reason to do so:

88 8F 10 00

! Note that there is no way to encode a memory-memory move

MOV reg/mem, immediate

! This instruction has the structure:

1100 011w MOD 000 R/M disp1 disp2

Where displacement bytes optional depending on value of
MOD

MOV BYTE PTR [100H],10H
- w = 0 because we have byte operand
- MOD = 00 (R/M Table 1) R/M = 110 (Displacement)
- bytes 3 and 4 are address; byte 5 immediate data

C6 06 00 01 10

8086 Instruction Encoding-14

MOV accumulator,mem

! This instruction has the structure:
1010 000w disp1 disp2

MOV AX,[0100]
- w = 1 because we have word operand

A1 00 01

! Note special form for accumulator
Many other instructions have a short form for AX register

! Could also be assembled as:

1000 1011 0000 0110 0000 0000 0000 0001

8B 06 00 01

8086 Instruction Encoding-15

Immediate Operand Instructions

! Immediate mode instructions have only one register or
memory operand; the other is encoded in the instruction itself

The Reg field is used an “opcode extension”
The addressing mode byte has to be examined to determine
which operation is specified

add imm to reg/mem 1000 00sw mod000r/m
or imm to reg/mem 1000 00sw mod001r/m

! In many instructions with immediate operands the “d” bit is
interpreted as the “s” bit

When the s bit is set it means that the single byte operand
should be sign-extended to 16 bits

Example:
add dx, 3 ;Add imm to reg16

1000 00sw mod000r/m

w=1 (DX is 16 bits) mod = 11 (use REG table) r/m = 010 =DX

With s bit set we have
 1000 0011 11 000 010 operand = 83 C2 03
With s bit clear we have
 1000 0001 11 000 010 operand = 81 C2 03 00

8086 Instruction Encoding-16

Equivalent Machine Instructions

! The short instructions were assembled with debug's A
command

The longer instructions were entered with the E command

1822:0100 58 POP AX
1822:0101 8FC0 POP AX
1822:0103 894F10 MOV [BX+10],CX
1822:0106 898F1000 MOV [BX+0010],CX
1822:010A A10001 MOV AX,[0100]
1822:010D 8B060001 MOV AX,[0100]

! The above examples show inefficient machine language
equivalences.

There are also plenty of "efficient" equivalences where the
instructions are the same length

! Eric Isaacson claims that the A86 assembler has a unique
"footprint" that allows him to detect whether or not a machine
language program has been assembled with A86

Instruction Format Reference
Addressing Mode Byte

MOD Field (determines how R/M operand is interpreted)
00 Use R/M Table 1 for R/M operand
01 Use R/M Table 2 with 8-bit signed displacement
10 Use R/M Table 2 with 16-bit unsigned displacement
11 Use REG table for R/M operand
REG Field SegREG

w=0 w=1 w=0 w=1
000 AL AX 100 AH SP 000 ES
001 CL CX 101 CH BP 001 CS
010 DL DX 110 DH SI 010 SS
011 BL BX 111 BH DI 011 DS
R/M Table 1 (Mod = 00)
000 [BX+SI] 010 [BP+SI] 100 [SI] 110 Direct Addr
001 [BX+DI] 011 [BP+DI] 101 [DI] 111 [BX]
R/M Table 2 (Mod = 01 or 10)
000 [BX+SI+Disp] 101 [DI+Disp]
001 [BX+DI+Disp] 011 [BP+DI+Disp] 110 [BP+Disp]
010 [BP+SI+Disp] 100 [SI+Disp] 111 [BX+Disp]
Direction Bit: 0 means data moves from REG operand to R/M operand

1 means data moves from R/M operand to REG operand
(For some instructions with immediate operands, S-bit in place of D bit
means if s=1 data is sign extend 8-bit data for word operation)
Word Bit: 1 = word operands, 0 = byte operands

Repetition Prefix Codes Segment Override Prefix Codes
REP, REPE, REPZ F3h CS 2Eh DS 3Eh
REPNE, REPNZ F2h ES 26h SS 36h

Selected Instruction Formats
Instruction Opcode Addr.Mode
ADC reg/mem with reg 000100dw modregr/m [addr]
ADC immed to reg/mem 100000sw mod010r/m data
ADD reg/mem with reg 000000dw modregr/m [addr]
ADD immed to accumulator 0000010w data
ADD immed to reg/mem 100000sw mod000r/m [addr] data
OR reg/mem with reg 000010dw modregr/m
OR immed to reg/mem 100000sw mod001r/m [addr] data
OR immed to accumlator 0000110w data
INC reg16 01000reg
INC reg/mem 1111111w mod000r/m [addr]
MOV reg/mem to/from reg 100010dw modregr/m [addr]
MOV reg/mem to segreg 10001110 modsegr/m (seg = segreg)
MOV immed to reg/mem 1100011w mod000r/m [addr] data
MOV immed to reg 1011wreg data
MOV direct mem to/from acc 101000dw addr
XCHG reg/mem with reg 1000011w modregr/m [addr]
XCHG reg16 with accum. 10010reg
CMP reg/mem with reg 001110dw modregr/m [addr]
CMP immed to accumulator 0011110w data
CMP immed to reg/mem 100000sw mod111r/m [addr] data
POP reg 01011reg
POP segreg 00reg111
POP reg/mem 10001111 modxxxr/m (xxx = don’t care)
RCL reg/mem,CL/immediate 110100cw mod010r/m [addr] (if c=0 shift= 1,
RCR reg/mem,CL/immediate 110100cw mod011r/m [addr] if c=1 shift = CL)
STOS 1010101w
CMPS 1010011w
MUL reg/mem 1111011w mod100r/m [addr]

