

8086 Programming

Compiled by: Chandra Thapa

October 23, 2012

UNIT I
Concept (not important for exam and not in syllabus)

Instruction Encoding

How to encode instructions as binary values?

Instructions consist of:

 operation (opcode) e.g. MOV

 operands (number depends on operation)

 operands specified using addressing modes

 addressing mode may include addressing information

 e.g. registers, constant values

Encoding of instruction must include opcode, operands & addressing information.

Encoding:

 represent entire instruction as a binary value

 number of bytes needed depends on how much information must be encoded

 instructions are encoded by assembler:

 .OBJ file ! (link, then loaded by loader)

 instructions are decoded by processor during execution cycle

We will consider a subset of interesting cases

Instructions with No Operands (easy)

 encode operation only in a single byte

 examples:

RET C3 H NOP 90 H

 Are consistent � never change

Instructions with One Operand

 operand is a register (reg8/16) or a memory operand (mem8/16)

 always 2 bytes for opcode and addressing info

 may have up to 2 more bytes of immediate data

 opcode bits: some in both bytes! 10 bits total

 w = width of operand

0 = 8-bit

1 = 16-bit

 mod & r/m encode addressing info

 opcode w

7 1 0

mod opcode r/m

7 6 5 4 3 2 1 0

MOD / R/M TABLE

mod

 00 01 10 11

r/m w = 0 w = 1

000 [BX + SI] [BX + SI + d] [BX + SI + n] AL AX

001 [BX + DI] [BX + DI + d] [BX + DI + n] CL CX

010 [BP + SI] [BP + SI + d] [BP + SI + n] DL DX

011 [BP + DI] [BP + DI + d] [BP + DI + n] BL BX

100 [SI] [SI + d] [SI + n] AH SP

101 [DI] [DI + d] [DI + n] CH BP

110 direct ad [BP + d] [BP + n] DH SI

111 [BX] [BX + d] [BX + n] BH DI

d is 8-bit signed

value

n is 16-bit unsigned

value

register

direct address

mod = 01 is not used by

the assembler!

Example:

INC DH

opcode: 1st byte: 1111111 2nd byte: 000

w = 0 (8-bit operand)

operand = DH register: mod = 11 r/m = 110

 opcode w

1st byte: 1111111 0 = FE H

 mod opcode r/m

2nd byte: 11 000 110 = C6 H

What does following encoding represent?

 11111111 11000111 = FF C7 H

opcode = INC 1st byte: 1111111 2nd byte: 000

w = 1 16-bit operand

mod = 11 register operand

r/m = 111 DI register

encoding for INC DI !!!

Another Example: INC BYTE PTR [SI � 4]

 indexed addressing to an 8-bit memory operand

 will need extra byte(s) to encode the immediate value (4 = FFFC H)

from table!

opcode � same as last example: 111111 000

w = 0 8-bit destination (memory) operand

r/m = 100 (from table)

mod could be 01 or 10 depends on constant

 can use whichever mod value works

 can shorten encodings!

the assembler will use mod = 10

 16-bit constant (FFFCH) encoded into instruction

 little endian

resulting instruction encoding:

 byte 1 byte 2 byte 3 byte 4

1111111 0 10 000 100 11111100 11111111

 FE 84 FC FF H

Could also encode same instruction:

mod = 01 constant encoded as signed 8-bit value

therefore instruction encoding includes only

one byte for the encoding of � 4

resulting instruction encoding:

 byte 1 byte 2 byte 3

 1111111 0 01 000 100 11111100

FE 44 FC H

N.B. the 8-bit value (� 4 = FC H) is sign extended to 16-bits (FFFC H) before adding SI value

 why?

Another Example:

INC BYTE PTR [SI + 128]

 indexed addressing to an 8-bit memory operand

 everything the same as last example, except:

can�t encode +128 as 8-bit signed value!

 need 16-bits to encode 128

then must have mod = 10 !!

 instruction encoding would include

 two extra bytes encoding 128 = 00 80 H

resulting instruction encoding:

 byte 1 byte 2 byte 3 byte 4

 1111111 0 10 000 100

FE 84 00 80 H

Instructions with Two Operands (2 Forms)

 at most, can have only one memory operand

 can have 0 or 1 memory operands, but not 2

 limits max. instruction size to 6 bytes

little endian mod !

value of most signif. bit of byte is

copied to all bits in extension byte

 e.g. MOV WORD PTR [BX+ 500], 0F0F0H

 2 bytes opcode + addressing info

 2 bytes destination addressing constant 500

 2 bytes source constant F0F0 H

FORM 1: Two Operands And Source Uses Immediate Mode

 destination either register or memory

 encode dest using mod & r/m � as before

w (as before) = size of operand (8- or 16-bit)

if w = 1 (16-bit) then s is significant

s  indicates size of immediate value

= 0  all 16-bits encoded in instruction

 assembler always used s = 0

= 1  8-bits encoded � sign extend to 16-bits!

Example: SUB My_Var, 31H

 My_Var is a word (DW) stored at address 0200H

opcode bits: 1st byte: 100000 2nd byte: 101

w = 1 (16-bit memory operand)

s = 1 � can encode 31H in one byte

 sign extend to 0031H

 opcode s w

7 2 1 0

mod opcode r/m

7 6 5 4 3 2 1 0

mod = 00

r/m = 110

resulting encoding:

opcode

100000 1 1 00 101 110 2-bytes dest 1-byte

 address imm

 s w mod r/m

 83 2E 02 00 31

FORM 2: Two Operands And Source Does Not Use Immediate Mode

 at least one of destination or source is register!

 encode register operand

 encode other using mod & r/m � as before

d = destination

 = 0 source is encoded in REG

 = 1 destination is encoded in REG

 opcode d w

7 2 1 0

mod REG r/m

7 6 5 4 3 2 1 0

destination: direct addressing

stored little

endian

assembler uses

s = 0 & 16-bit immediate value

 = 31 00 (little endian)

Example: SUB My_Var , SI

opcode: 0010 10

 suppose My_Var is @ address 0020H

d = 0 � source is a register � encoded in REG

w = 1 � 16-bit operand

mod = 00 destination is memory � direct mode

r/m = 110

REG = 110 (SI)

encoding:

001010 0 1 00 110 110 addrs const

29 36 20 00

NOTE: different first-byte opcode bits for SUB when source is immediate (100000) vs. when

source is not immediate (001010)

The opcode bits for FORM 1 vs. FORM 2 instructions are different!

 MOV [BX], 200

 MOV [BX] , AX

 what if both source and destination are registers?

 should REG encode source or destination?

Example: SUB BX, CX

d w
mod

register encoding as in

mod = 11 column in table

different opcode

bits!

r/m

Case 1: Source (CX) is encoded in REG

opcode: 0010 10

d = 0 � source is encoded in REG

w = 1 � 16-bit operand

mod = 11 destination is register

r/m = 011 BX register is destination register

REG = 001 CX register is source register

encoding:

001010 0 1 11 001 011

29 CB

Case 2: Destination (BX) is encoded in REG

opcode: 0010 10

d = 1 � destination is encoded in REG

w = 1 � 16-bit operand

mod = 11 source is register

r/m = 001 CX register (source)

REG = 011 BX register (destination)

encoding:

001010 0 1 11 011 001

29 D9

d w
mod

r/m

 cases 1 & 2: two encodings for same instruction!

Some Special-Case Encodings:

 single-operand instructions & operand is 16-bit register � can encode in one byte

 instructions involving the accumulator:

AL or AX

 shorter encoded forms � often one byte

WHY? What use are these special cases?

Instruction Encoding (human perspective)

1. given instruction � how to encode ?

2. given binary � how to decode ?

Given instruction � how to encode ?

 decide on form & number of bytes

 find opcode bits from table

 decide on remaining bits

 individual bit values

 look up mod & r/m values if needed

 look up register encoding if needed

 fill opcode byte(s)

 add immediate operand data byte(s)

 words  little endian

 dest precedes source

Given binary � how to decode ?

 use first 6 bits of first byte to decide on form & number of bytes

 use opcode bits to find operation from table

 identify operands from remaining bits

 individual bits

Why might this be important? EXAM !!!!

 look up mod & r/m values if present

 look up register encoding if present

 add immediate operand data byte(s) if present

 words  little endian

 dest precedes source

Could you hand-assemble a simple program now?

 YES! recall previous control flow

 encoding discussions !!

What about an operation / opcode look-up table?

 many forms � some give:

 opcode bits only

 entire first instruction byte � including operand info encoded in first byte!

 list of info for each instruction will be posted!

 opcode bits

 forms

UNIT II

Overview of the 80x86

80x86 register model,

segmented memory model

instruction execution.

8086 Register Set

16-Bit General Purpose Registers

 can access all 16-bits at once

 can access just high (H) byte, or low (L) byte

AX
 BX

 CX

 DX

16-Bit Segment Addressing Registers

 CS Code Segment

 DS Data Segment

 SS Stack Segment

 ES Extra Segment

16-Bit Offset Addressing Registers

 SP Stack Pointer

 BP Base Pointer

 SI Source Index

 DI Destination Index

 AH AL

 BH BL

 CH CL

 DH DL

8-bit 8-bit

16-bit

only the General

Purpose registers allow

access as

8-bit High/Low sub-

registers

16-Bit Control/Status Registers

 IP Instruction Pointer (execution control)

FLAGS Status Flags � one bit/flag

 16-bit reg, but only 9 bits have meaning

 text: page 27

 ignore unused bits

 usually interested in individual flags

 not 16-bit value

Quick Overview of 80x86 Flag

Flag Name Description

C Carry

A Auxiliary Carry

O Overflow

S Sign

Z Zero

D Direction

I Interrupt

T Trap

 Flags are set and cleared as �side-effects� of an instruction

Part of learning an instruction is learning what flags is writes
 There are instructions that �read� a flag and indicate whether or not that flag is set or

cleared.

Other Registers in Programmer�s Model

 support the execution of instructions

 cannot be accessed directly by programmers

 may be larger than 16-bits:

temporary reg�s (scratchpad values)

IR Instruction Register

Segmented Memory Model:

Processor Design Problem: How can 16-bit registers and values be used to specify 20-bit

addresses?

Want to use 16-bit registers to refer to memory addresses (e.g. for indirect addressing modes),

then

 need more than one 16-bit register!

 need at least 2

How could/should/might two 16-bit values be combined to form a 20-bit value?

One way:

 0 0 0 x x x x x

bits: 4 4 4 4 4

16 16

could get by with one 16-bit register and

one 8-bit register, BUT ... if only 16-bit

registers are used, then need two!

20 bits

 not used (to easy to understand  , but
has some other poroblems )

Intel�s Solution:

Segmented Memory for a 20-bit Address Space as Viewed from the 8086 Processor�s

Perspective

 view memory as a set of overlapping �segments�

 each segment starts on an address that ends in 0 (hex)

 segment 0 starts at address 00000H

 segment 1 starts at address 00010H

 segment 2 starts at address 00020H

 etc.

 each segment consists of 64K consecutive locations

 segment 0 goes from 00000H to 0FFFFH

 segment 1 goes from 00010H to 1000FH

 segment 2 goes from 00020H to 1001FH

 etc.

 a new segment starts every 16 bytes, and each segment is 64K bytes long!

 segment i overlaps with segment i + 1

16-bit �offset�: 216 = 64K

Visualization
of Segmented

Memory

00000H

00010H

00020H

�

0FFFFh

1000Fh

1001F

�

�

Seg0

Seg1

Seg2

Segn

Software (Programmer�s) Perspective of Segmented Memory:

 addresses are NEVER specified as 20-bit values

 addresses are ALWAYS specified as two 16-bit values

 segment number (16-bits): SEG

 offset (16-bits): OFS

 denote address as � SEG : OFS �

 segment number is converted into the 20-bit start address of a segment:

 start address of segment = segment number * 1610

 recall 1610 = 10H

 multiplying a hex value by 10H is the same as shifting the value left one hex digit

(4 bits)

 e.g. if 16-bit segment number = 0002H

 segment start address = 0002 * 10H

= 00020H

 unique 20-bit address is formed by adding 16-bit offset to 20-bit start address of segment

Visualize: suppose given the 16-bit values

 SEG
 OFS

 Combine to form 20-bit address:

 +

Example: suppose

segment number = 6020H

 offset = 4267H

 s3 s2 s1 s0

 o3 o2 o1 o0

 o3 o2 o1 o0

 s3 s2 s1 s0 0
20-bit segment

start address

offset

 a4 a3 a2 a1 a0 20-bit address

determined by

segment number

Notation!

 seg * 10H  60200 H

 + ofs  4267 H

 64467 H

An Ugly Side Effect of Segmented Memory:

each memory byte can be referred to by many different

SEG : OFS pairs  

Example: the (unique) byte at address 00300 H

 can be referred to by:

 0 H : 300 H

 1 H : 2F0 H

30 H : 0 H

 (more too !)

Questions:

At most, how many different SEG : OFS pairs can refer to the same memory byte ?

At most, how many different segments can one memory byte be contained in ?

 (good midterm questions ! )

20-bit address

How is segmented memory managed by the 8086 ?

 8086 includes four 16-bit SEGMENT registers:

 CS :Code Segment Register

 DS : Data Segment Register

 SS : Stack Segment Register

 ES : Extra Segment Register

 Segment registers are used by default as the segment values during certain memory access

operations

 all instruction fetch: CS : IP

 �most� data access: DS : offset

(Since the processor uses contents of DS as the 16-bit segment value when fetching

operands, the programmer only needs to supply the 16-bit offset in instructions)

 BUT segments must be initialized before use (More on this later!!)

Segment registers seem straightforward, BUT . . . common source of confusion for students !

segment value offset value

depends how operand is

specified in instruction

(addressing modes!)

segment value

Execution Cycle:

 processor executes instruction by repeating:

do {

fetch instruction: IR := mem[CS:IP] & adjust

IP to point to next sequential instruction

execute instruction in IR

} until HLT instruction has been executed

 CS:IP contains address of next instruction to execute

 16-bit segment value (CS) is combined with 16-bit offset (IP) to create a 20-bit address

 IR holds instruction in processor

 instruction fetch from memory

 load 1st byte

 from encoding: decide how many more bytes are needed

 may need to consider 2nd byte to decide how many bytes in total

(more on encoding later)

 IP is adjusted as bytes are loaded into IR

some interrupt stuff

goes here ! more later!
inherently sequential behaviour!

Notation

:= �gets loaded from�

Suppose: Before Fetch

After Fetch

00000

13C08
13C09

13C0A
13C0B

13C0E

3 bytes of

instruction

4 bytes of

next

instruction

07 43 A6 12 IR

3C08 IP

4B
36
FF

00000

4B 36 FF IR

3C0B IP

4B
36
FF

FFFFF

FFFFF

Processor

Processor

1000 CS

1000 CS
13C08
13C09
13C0A
13C0B

13C0E

3 bytes of

instruction

4 bytes of

next

instruction

�previous� instruction

�fetched�

Program Development

Problem: must convert ideas (human thoughts) into an executing program (binary image in memory)

Need: DEVELOPMENT PROCESS

 people-friendly way to write programs

 tools to support conversion to binary image

 assembly language: used by people to describe programs

 syntax: set of symbols + grammar rules for constructing statements using symbols

 semantics: what is meant by statements  ultimately: the binary image

 assembler: program � converts programs from assembly language to object format

 object format: an intermediate format

 mostly binary, but may include other info

 linker: program that combines object files to create an �executable� file

 loader: loads executable files into memory, and may initialize some registers (e.g. IP)

Another Useful Tool: DEBUGGER

 allows:

 program to be loaded and executed

 control execution (e.g. start/stop)

 view state variables values

 modify state variable values

tool

tool

tool

Development Process

People create .ASM files using assembly language

.OBJ

.ASM

.OBJ

.EXE

.LST

Assembler

Linker

human readable results

(including assembly errors)

may link multiple OBJ

files

loader is part of

operating system (or

possibly debugger)

Editor

Computer System

Loader

memory

processor CS:IP

people

work

here

MASM Assembly Language

 Microsoft product

 free with copy of textbook

 syntax must account for all aspects of a program and development process:

 constant values

 reserve memory to use for variables

 write instructions: operations & operands

 specify addressing modes

 directives to tools in development process

Constants

 binary values: consist of only 0�s and 1�s

 ends with �B� or �b�

 e.g. 10101110b

 hexadecimal value: starts with 0 .. 9

 may include 0 . . 9, A .. F (a . . f)

 ends with �H� or �h�

 e.g. 0FFH (8-bit hex value)

 decimal value:

 default format � no �qualifier� extension

 consists of digits in 0 . . 9

 e.g. 12345

 string: sequence of characters encoded as ASCII bytes:

 enclose characters in single quotes

 e.g. �Hi Mom� � 6 bytes

 character: string with length = 1

Labels

 user-defined names � represent addresses

 lets programmer refer to addresses using logical names � no need for concern with exact

hexadecimal values

 leave assembler to:

 decide exact addresses to use

 deal with hexadecimal addresses

 labels are used to identify addresses for:

 control flow � identify address of target

 memory variables � identify address where data is stored

 labels serve in 2 roles: definition & reference

 label definition:

 used by assembler to decide exact address

 must be first non-blank text on a line

 name must start with alpha A .. Z a .. z

 then contain: alpha, numeric, �_�

If the label is a control flow target (other than procedure name � later) then must append �:�

 some control flow label examples:

 Continue:

L8R:

Out_2_Lunch:

 cannot redefine reserved words

 e.g. MOV:

 label represents address of first allocated byte that follows definition

 e.g. DoThis: MOV AX, BX

DoThis represents address of first byte of the MOV instruction

 label reference: use of label in an operand

 refers to address assigned by assembler

 does not include � : �

 control flow example:

; assume CX contains loop counter

DoWhile:

 CMP CX, 0

 JE DoneDoWhile

 .

 .

 .

 JMP DoWhile

DoneDoWhile:

 MOV AX, . . . etc.

Memory Declarations
 reserve memory for variables

 2 common sizes:

 specify target using
label

 assembler assigns
addresses AND
calculates relative
offsets

references definitions

illegal ! 

 DB reserves a byte of memory

 DW reserves a word (2 consecutive bytes) of memory

 may also provide an (optional) initialization value as an operand

Examples:

 DB ; reserves one byte

X DB ; reserves one byte � label X

 ; X is defined to represent

; the address of the byte

Y DB 3 ; reserve one byte � label Y etc.

; and initialize the byte to 3

 DW ; reserve 2 consecutive bytes

Z DW ; reserves 2 bytes � label Z is

 ; defined to represent the

; address of the first byte

W DW 256 ; reserve 2 bytes � label W etc.

; and initialize the bytes to

; 256 (little endian !!!)

HUH DW W ; reserve 2 bytes � label etc.

; and initialize the bytes to

label

definition

label

reference

label definition

no �:� on variable name

definitions!

comments start with �;� and run to the end

of the line

; contain the address of the

; variable W above

 DB �C� ; reserves 1 byte � initializes

; the byte to 43H

Tool Directives

 statements that are intended for other tools

 are not assembled directly into instructions or memory declarations

END Directive:

 directive to 2 tools: assembler & loader

 assembler: stop reading from .ASM file

 any subsequent statements are ignored

 optional operand

 if present, must be a label reference

 interpreted as specifying the address of the first instruction to be executed

 loader: load specified address into CS:IP after loading .EXE file

format:

END label-reference

Some �.� Directives:

 .8086

 limits assembler 8086 processor instruction set

 NOTE: a program only requires a fixed amount of memory

optional

 the tools (assembler, linker) can organize the program to fit memory as the tools see fit

 let the tools deal with segments as much as possible ! 

.model

 allows tools to make simplifying assumptions

 .model small

 at most: program will use one code and one data segment

 no intersegment control flow needed

 never need to modify DS once initialized

.code

 identifies the start of the code segment

 tools will ensure that enough memory is reserved for the encodings of the instructions

.data

 identifies the start of the data segment

.stack size

 reserves size bytes of memory for the run-time stack

 more on stack later

In this course:

 the actual amount of memory reserved for code will be less than 64K

 the actual amount reserved for data will be less than 64K

 the amount of memory used for the run-time stack will (not likely?) exceed 1K bytes (?)

Example:

 suppose that a program requires:

 20 bytes for data

 137 bytes for instructions (code)

 100 bytes for stack

 the tools can decide on segment use

 only use 120 bytes in the �data� segment (data plus stack) and 137 in the �code� � actual

segments used could overlap!

Loading:

 program must be loaded into memory

 loading done by loader (tool)

 loader decides which actual segments to be used

 loader initializes SS:SP (for stack use � later!) and CS:IP (to point to first instruction to be

executed

 what about DS?

 loader �knows� which segment it has loaded as the data segment

 as the program is loaded, loader replaces every occurrence of �@data� with the data

segment number

What does this mean for our program ?

For instruction operand access: DS must be initialized

 Recall : The processor uses contents of DS as the 16-bit segment value when fetching

operands, so the programmer only needs to supply the 16-bit offset in instructions

 Initialization is typically done dynamically

 It must be first thing program does !

 Specifically, no variable defined in the data segment can be referenced until DS is

initialized.

How do we initialize DS ?

MOV DS, @data 

 NO, we cannot load an immediate value directly into DS (limited addressing modes )

Correct initialization:

MOV AX, @data

MOV DS, AX

First Program:

; This program displays "Hello, world!"

.model small
.stack 100h
.data
message db "Hello, world!",0dh,0ah,'$'

.code
main proc
 mov ax,@data
 mov ds,ax

 mov ah,9
 mov dx,offset message
 int 21h

 mov ax,4C00h
 int 21h
main endp
end main

proc � like a function definition

UNIT III
Instructions:

 2 aspects: operation & operands

 operation: how to use state variable values

 operands: which state variables to use

e.g. C = A + B

 operations: addition (+) and assignment (=)

 operands: state variables A , B & C

 source operands: provide values to use (inputs)

 A & B in: C = A + B

 destination operands: receive results (outputs)

 C in: C = A + B

 same state variable can play multiple roles?

 A = A + A

 mnemonics: specify operations

 human-oriented short-forms for operations e.g.:

 MOV (move)

 SUB (subtract)

 JMP (jump)

 operands can be specified in a variety of ways

 addressing modes!!!!!

 simple modes: register, immediate, direct

 more powerful: indirect

 instruction encoding (as binary value) must account for both aspects of instructions:

operation and operand information

Types of Instructions

 data transfer: copy data among state variables

 do not modify FLAGS

 data manipulation: modify state variable values � including FLAGS

 control-flow: determine �next� instruction to execute � allow non-sequential execution

Data Transfer

MOV (Move) Instruction

 syntax: MOV dest , src

semantics: dest := src

 copy src value to dest state variable

 register and memory operands only (I/O ??)

Register Addressing Mode:

 allows a register to be specified as an operand

 as source: copy register value

 as destination: write value to register

E.G. MOV AX, DX

 AX := DX

 contents of DX is copied to AX

 register addressing mode for both dest and src

 dest and src must be compatible (same size)

MOV AH, CL 8-bit src and dest 

MOV AL, CX ????? 

destinatio
source

later!

Immediate Addressing Mode:

 allows a constant to be specified as source

 source value assembled into the instruction

 loaded into IR as part of instruction

 value obtained from IR as instruction executed

E.G MOV AL, 5

 AL is 8-bit dest

 instruction encoding includes 8-bit value 05h

 what about: MOV AX, 5

 16-bit dest

 encoding includes 16-bit value 0005h

 what about MOV 4, BH ????

Direct Addressing Mode:

 specify the address of a memory operand

 direct: specify address as a constant value

 address gets encoded as part of instruction

static: must be know at assembly-time and remains constant through execution

Example :

MOV AL, [5]

 Implicitly uses DS

 Reads contents of byte at address DS:5

dest as

immediate

value ? 

BEWARE :

Compare To Immediate Mode!!

MOV AL, 5

MOV X, AX
 Assumes a variable is declared in data segment

 Write contents of word at address DS:X

What about Operand Compatibilty for memory operands (eg. direct), consider

MOV [BC], AX

 MOV [1234h], AL

 MOV [BC], 1

 MOV [1234h], 0

 Need syntax to remove ambiguity

 Qualify off-processor access using

WORD PTR word pointer � 16-bit operand

BYTE PTR byte pointer � 8-bit operand

MOV BYTE PTR [0FF3E], 1

 8 bit destination, no ambiguity

MOV WORD PTR [1234h], 0

 16-bit destination, no ambiguity

Assembler Tip :

Incompatible Operands Example:

W DW

 . . .

MOV AL, W

Ambiguous : 8 or 16 bit moves?
Default ?

Clear and unambiguous. REGISTER operand

determinates size

16-bit memory

src operand

8-bit register
dest operand

Will give assembly error!

Summary of addressing modes so far :

 Register MOV AL, DL

 Immediate MOV AL, 5

 Memory

 Direct MOV AL, VARIABLE

 MOV AL, [1234]

 Indirect � Later

 Data Manipulation Instructions:

 use state variable values to compute new values

 modify state variables to hold results

 including FLAGS

 common flag results:

 ZF = zero flag set iff result = 0

 CF = carry flag reflect carry value

 SF = sign flag set iff result < 0

 assumes 2�s complement encoding!

 OF = overflow flag

 set iff signed overflow

 what about unsigned overflow?

ADD dest, src

 dest := dest + src (bitwise add)

specific use of �overflow� � not the same

as the general concept!

if-and-only-if

set = 1, clear = 0

 dest is both a source and destination operand

 also modifies FLAGS as part of instruction execution:

 ZF := 1 iff result = 0

 SF := 1 iff msbit of result = 1 (sign = negative)

 CF := 1 iff carry out of msbit

 OF := 1 iff result overflowed signed capacity

Example: Suppose that AL contains 73H, when

 execute: ADD AL, 40H

 73 H + 40 H

 = B3H carry?

 results: AL := B3H (= 1011 0011 B)

 ZF := 0 result  0

 SF := 1 result is negative (signed)

 CF := 0 (no carry out of msbit)

 OF := 1 +ve + +ve = ve

SUB dest, src

 dest := dest � src

 like ADD, but bitwise subtract

 modifies flags as in ADD, except:

CF := 1 iff borrow into msbit

CMP dest, src (Compare)

 like SUB, except dest is not modified

 modifies FLAGS ONLY ! (to reflect dest � src)

DIV src (Unsigned Integer Divide)

 src may be specified using:

 register, direct or indirect mode

 NOT immediate mode!

 size of divisor (8-bit or 16-bit) is determined by size of src

DIV src for 8-bit src:

 divide src into 16-bit value in AX

 AL := AX  src (unsigned divide)

 AH := AX mod src (unsigned modulus)

 flags are undefined after DIV

 (values may have changed, no meaning)

DIV src for 16-bit src:

divide src into 32-bit value obtained by concatinating DX and AX (written DX:AX)

 AX := DX:AX  src (unsigned divide)

 DX := DX:AX mod src (unsigned modulus)

 flags are undefined after DIV

 what if result is too big to fit in destination?

 e.g. AX  1 ?? AL = ??

 overflow trap � more later!

16-bit dividend

8-bit divisor

32-bit dividend

16-bit divisor

two 8-bit

results integer result

integer remainder

 in assignment 2: use 16-bit source form why?

Learning how to read a reference manual on assembly instructions

 We�ve seen that instructions often have restrictions � registers, addressing mode

For each instruction � whether in textbook or in processor�s programming manual - the permitted

operands and the side-effects are given

ADD

Instruction Formats :

 ADD reg, reg ADD reg, immed

 ADD mem, reg ADD mem, immed

 ADD reg, mem ADD accum, immed

Is this permitted : ADD X, Y ?

MOV

Instruction Formats :

 MOV reg, reg MOV reg,immed

 MOV mem, reg MOV mem, immed

 MOV reg, mem MOV mem16, segreg

 MOV reg16, segreg MOV segreg, mem16

 MOV segreg, reg16

Can you explain why we always initialise our data segment with the following sequence ?

 MOV AX, @data

 MOV DS, AX

O D I S Z A P C

* * * * * *

O D I S Z A P C

Multiple data declarations on one line:
 separate by a comma

 allocated to successive locations

Examples:

 DB 3, 6, 9

Array1 DW -1, -1, -1, 0

Array2 DB dup(0)
Array3 DW dup(?)

Strings

 enclose in quotes

 ASCII chars stored in consecutive bytes

Message DB �Hi Mom!�

MessageNullT DB �Hi Mom!�, 0

Any string to be printed out by DOS functions must be terminated by �$�

DOSMessage DB �Hi Mom!�, �$�

Some Instruction Syntax

 complete instruction on one line

 instruction mnemonic & operands

 immediate: state the constant

MOV BX, -1

MOV BX, 0FFFFH

MOV BX, 1111111111111111B

 register: register name

MOV BX, AX

which one is

easier to read?

 direct:

 state address of variable as a label reference

 assembled to include offset to variable (in data segment) as a constant value

 assembler worries about exact address that will be used

 assembler worries about compatibility issues (size of operands)

 When required, you may explicitly state the type of access required (WORD PTR

and BYTE PTR)

 language issues:

 how does the assembler know where the data segment is located?

Example:

W DW

 . . .

MOV AX, W

EQU directive

VAL EQU 0FFFFh

MOV BX, VAL

 CMP AX, VAL

EQU versus DW/DB

EQU and Direct Memory look the same but they are NOT !!

direct addressing

execution:

contents of

variable W are

loaded into AX

later!

later!

What is the

advantage of

defining a symbol

with EQU ?

A question of style !

 VAL EQU 0FFFFh

 VAR dw 0FFFFh

 MOV BX, VAL

 MOV BX, VAR

Just a thought about Data Alignment

80x86 has a 16+ data bus that allows the transfer of bytes, words, dwords, but �

 word+ transfers can only occur on even-address boundaries

MOV AH, [0000]
MOV AH, [0001]
MOV AX, [0000]

MOV AX, [0001]

As a programmer, you don�t have to change your program for even or odd locations
 Your program will work regardless of the even/odd alignment of your data

variables.
But �
 Why do we use assembly ? Efficiency !

What�s the

difference ??

A question of performance

11

22

33

44

0

1

2

3

20

Memory

cells 16

Incurs 1 data transfer

cycle

Incurs 2 data transfer cycles

In time-critical applications, you should consider the impact of data alignment on the
performance of your code.

1. Organise your data with words first, then bytes so that all words are automatically word-

aligned

status db ? value dw ?
 value dw ? status db ?

2. Use the ALIGN or EVEN directives to force the placement of your word variables at even

locations

status db ?
ALIGN 2

 value dw ?

Basic Coding Conventions

As in high-level languages, coding conventions make programs easier to read, debug and
maintain.

varName DB ?
MAX_LIMIT EQU 5

label:
 MOV AX, BX
 CMP AX, varName

Forces assembler to advance its location

counter to next address evenly divisible by 2

A question of style !

Indentation :

4. Label is left-justified
5. Instructions are lined up
one tab in.
6. Next instruction follows
label.

Naming Convention :

1. Labels are lower case, with
upper case for joined words
2. EQU symbols are UPPER_CASE
3. Keywords (mneunomics and
registers) are upper-case

varName DB ? ; Counter
MAX_LIMIT EQU 5 ; Limit for counter

; Test for equality
label:
 MOV AX, BX ; AX is current
 CMP AX,varName ; If current < varName

Control Flow Instructions:

 execution may change value of CS:IP

 changes address for fetch of next instruction

e.g.: C++ control flow

if (condition)

 { block T: do this if condition true; }

else { block F: do this if condition false;}

next_statement ;

 use data manipulation to decide condition

 if condition is true  continue sequentially into block T, at end of block T, must skip to

next_statement

 if condition false  skip past block T to block F, then continue sequentially through block F and

on to next_statement

Comments

1. Use them

2. Comments on the side to explain instruction

3. Comments on the left for highlight major sections of code.

need control flow instructions to �skip�

Why is C++ called a

structured language?

Control Flow Implications of Segmented Memory Model

 instruction execution determined by CS:IP

 if control stays in current code segment:

 intrasegment control flow

 only need to modify IP

 must supply (up to) 16-bits of info

 if control passed to address outside of current code segment:

 intersegment control flow

 must modify both CS and IP!

 must supply 32-bits of information

FOR NOW: we will only be concerned with intrasegment control flow (only modify IP)

Specifying Control Flow Targets

 must supply operand value used to modify IP

 absolute addressing:

 give 16-bit constant value to replace IP

 IP := new value

 relative addressing:

 give value to be added to IP (after fetch!)

 IP := IP + value

 positive value: jump �forward�

 negative value: jump �back�

 register/memory indirect addressing:

 specify a register or memory location that contains the value to be used to replace IP

 IP := mem[addrs]

 IP := register

JMP target Unconditional JUMP

 control is always transferred to specified target

Relative Addressing Example:

address contents

 0034H E9H

 0035H 10H

 0036H 00H

start of fetch: IP = 0034H IR = ????????

after fetch: IP = 0037H IR = E9 0010

after execute: IP = 0047H IR = E9 0010

Conditional Jump:

 specify condition in terms of FLAG values

 e.g. JZ Jump Zero: Jump iff ZF = 1

 if specified condition is true: then jump!

 if specified condition is false: then continue!

e.g.: looping example

 DoLoop:

 . . .

 SUB CX, 1

 JNZ DoLoop

 many possible conditions

 in many cases: condition and �not� condition are valid instructions

JMP 0010H

assembly language label:

identifies target address

16-bit relative offset

 e.g. JZ Jump Zero

 JNZ Jump Not Zero

 JC Jump Carry (JNC)

 More too!

Conditional Jump Following CMP

 used frequently! Example:

 CMP AL, 10

 JL LessThanTen

 . . . ; some code here

 LessThanTen:

 CMP dest, src

 performs dest � src and sets FLAGS

 often useful to think of combination as:

CMP dest, src

J*

 jump is taken if �dest * src� condition holds

 in above example, jump is taken if AL < 10

Some conditions for *:

 JE Jump Equal (JNE)

 JL Jump Less Than (JNL)

 JLE Jump Less Than or Equal (JNLE)

 JG Jump Greater Than same !?

* is <

 processor provides FLAGS to reflect results of (binary) manipulation under both signed and unsigned

interpretations

 instructions for different interpretations!

(tests different flags!)

Unsigned Signed

JA Above JG Greater

JAE Above or Equal JGE Greater or Equal

JB Below JL Less

JBE Below or Equal JLE Less or Equal

(instructions for Not conditions too!)

Is this an issue in Assignment 2 ? ()

Suppose AX contains 7FFFH:

 Unsigned Signed

Scenario Scenario

 CMP AX, 8000H CMP AX, 8000H

 JA Bigger JG Bigger

In each scenario, is the jump taken? Why?

Programmer MUST know how binary values are to be interpreted! (e.g. value in AX above)

Conditional jump limitation: uses 8-bit signed relative offset!

 IP := IP + (offset sign-extended to 16-bits)

 can�t jump very far! � 128  +127 bytes

example: JL Less

 Less:

 MOV . . .

One possible workaround if distance is greater than 127 bytes (but not the only one!):

JNL Continue
JMP Less

 Continue:

 Less:

 MOV . . .

LOOP instructions � A special case using a dedicated register

 Action repeated a given number of times
 C++ analogy

for (int =max; i > 0; i++)

MOV CX, max

DoLoop: . . .

 SUB CX, 1

 JNZ DoLoop

maximum possible

distance = 127 bytes

distance > 127 bytes same code

here: as before

some

code

16-bit relative offset
UGH! 

Functionally

equivlanet
Different performance

& code size

 MOV CX, max

DoLoop: . .

LOOP DoLoop

Memory Addressing Modes:

 specify the address of a memory operand

 Two types :

1. direct: specify address as a constant value

 address gets encoded as part of instruction

 static: must be know at assembly-time and remains constant through execution !

2. indirect: specify that a register holds the address

 dynamic! address depends on contents of register when instruction is executed

 may specify a constant value that gets added to address prior to accessing operand (later!)

(Register) Indirect Memory Addressing

 must specify register that holds operand offset

 may only use: BX, SI, DI, BP

 DS is default segment for: BX, SI, DI

 SS is default segment for BP (later!)

 syntax: [register]

Indirect Example:

W DW

 . . .

MOV BX, OFFSET W

LOOP
automatically

decrements CX
- only works

with CX

�[� & �]� differentiate from

register mode !

offset of variable is
treated as a constant

(text: page 78)

 . . .

MOV AX, [BX]

Why are the [] � brackets needed?

What is the difference?

 MOV AX, BX

 MOV AX, [BX]

Example : LEA

Calculates and load the 16-bit effective address of a memory operand.

MOV BX, OFFSET W

LEA BX, W

Example : Segment Override

Recall :

 DS is default segment for: BX, SI, DI

 SS is default segment for BP (later!)

MOV [BX], 3 MOV DS:[BX], 3

MOV [BP], 3 MOV SS:[BP], 3

At times, you may run out of registers and need to use either the index registers or the segment

registers outside of their assigned default roles

indirect addressing: value in BX is used as offset to
memory operand

 loads AX with contents of W

Functionally equivalent!

(eg. duplicating data structures),

MOV SS:[BX], 3

MOV ES:[BX], 3

MOV DS:[BP], 3

An Indirect Addressing Ambiguity :

Indirect addressing : A register holds the offset to the operand

 The offset points to a single memory location

In some cases : No ambiguity in the operand size

 eg. MOV AL, [BX]

 AL � 8-bit register

 Interpret [BX] as offset to byte of memory

In some cases, there is ambiguitiy :

eg . MOV [BX], 1

 Source is immediate value � 8 bit or 16 bit ?

 Move 01 to byte or 0001 to word ?



Use syntax to clarify :

 MOV BYTE PTR [BX], 1

 MOV WORD PTR [BX], 1

The Power of Indirect Addressing:

 direct mode: OK for static addresses

 indirect register mode: OK for dynamic addresses to access byte or word

 must have exact address in register

 need more powerful modes for data structures what is a data structure?

 composite structures: collections of elements

 array: elements are all of the same type

 access using []  selector, e.g. X[i]

 record (struct): may include elements of different types

 e.g. struct student {

string Name;

int ID; }

 access using �.� selector, e.g. X.Name

 can have:

 arrays of arrays: multidimensional array

 arrays of structs e.g. a306Class[i].Name

 arrays in structs

 structs in structs

 want dynamic access to elements of data structures

 typically know start address

 need dynamic specification of offset into structure

 direct addressing isn�t good enough 

Arrays:

 elements are stored sequentially

 all elements are of same type

 fixed memory requirement for each element

 constant offset (# or bytes) to start of next element

 2 relevant cases in programming:

1. address of array is static

 writing program for one specific array

2. address of array is dynamic

 writing program for �any� array

in high-

level

language

in high-level

language

 e.g. a function that processes an array and accepts the array as an

argument

 different invocations of the function may process different arrays

 8086 addressing modes exist to support both cases !

What we�ve looked at so far :

MOV [BX], AX
Is the most basic kind of indirect addressing.

 Will now be formally called �register indirect�

Let�s now look at other variations of indirect addressing �

(Indirect) Indexed or Based Addressing Mode:

 use when accessing array using static address

 like register indirect, except also specify a constant

 e.g. [BX + constant]

 during execution, processor uses a temporary register to calculate BX + constant

 accesses memory addressed by BX + constant

 restriction: may only use BX, SI or DI

 typical use in accessing an array:

 start address of array is the constant

 use register to hold index

 index = offset (in bytes) to specific element

e.g. suppose have array of integers declared:

X DW ; 1st element of array

 DW ; 2nd element of array

 . . . etc.

SizeOfX: DW ; number of elements in X

 each element is 2 bytes long!

same as register indirect

Code Fragment Example:

; sum the contents of array X into AX

 MOV AX, 0 ; initialize sum

MOV BX, 0 ; initialize array index

MOV CX, SizeOfX ; get # of elements

CheckForDone:

 CMP CX, 0 ; any elements left to sum?

 JE Done

 ADD AX, [BX + X] ; sum ith element

 ADD BX, 2 ; adjust index (offset)

 SUB CX, 1 ; one less element

 JMP CheckForDone

Done: ; at this point:

When Done:

AX = sum of elements

 BX = address of byte that follows

 array X in memory

 CX = 0

Some issues in example:

 overflow?

address X is static
dynamic! BX

holds offset to

element

why �2�?

 what if sum exceeds capacity of AX?

 what conditions should be tested? why?

JO vs. JC ???

could the control flow be more efficient ?

 ; set up AX, BX, CX as before

 CMP CX, 0 ; any elements left to sum?

 JE Done

SumElement:

 ADD AX, [BX + X] ; sum ith element

 ADD BX, 2 ; adjust index (offset)

 SUB CX, 1 ; one less element

 JNZ SumElement

Done:

 the revised control flow:

 eliminates 2 instructions from the execution of each loop iteration (CMP/JE)

 uses one byte less memory (JNZ vs. JMP)

 could the control flow be even more efficient ?

 adjust CX before executing loop?

 ; set up AX, BX, CX as before

CheckForDone:

 SUB CX, 1 ; any elements left to sum?

 JC Done

don�t do CMP � flags

already set after SUB!

only

adjust/test CX

at start of loop

execution

 ADD AX, [BX + X] ; sum ith element

 ADD BX, 2 ; adjust index (offset)

 JMP CheckForDone

Done:

 or what about:

; set up AX, BX, CX as before

 JMP CheckForDone

SumElement:

 ADD AX, [BX + X] ; sum ith element

 ADD BX, 2 ; adjust index (offset)

CheckForDone:

 SUB CX, 1 ; one less element

 JAE SumElement

Done:

(Indirect) Base-Indexed Addressing Mode:

 to access array using dynamic address

 like indexed, except use a register instead of a constant

 e.g. [BX + SI]

 during execution, processor uses a temporary register to calculate sum of register values

 accesses memory addressed by sum

 restrictions:

 one must be base register: BX (or BP  later!)

 one must be index register: SI or DI

only adjust/test CX at

end of loop execution

 the only legal forms:

[BX + SI] [BX + DI]

[BP + SI] [BP + DI]

 often, the start address of an array is supplied as an argument to a function

 put this value in one register

 use other register to hold offset (index) into array

Code Fragment Example:

; assume BX = start address of array

; and CX = number of array elements

; now ... sum the contents of array into AX

MOV AX, 0 ; initialize sum

MOV SI, 0 ; initialize array index

CheckForDone:

 CMP CX, 0 ; any elements left to sum?

 JE Done

 ADD AX, [BX + SI] ; sum ith element

 ADD SI, 2 ; adjust index (offset)

 SUB CX, 1 ; one less element

 JMP CheckForDone

Done: ; at this point:

AX = sum of elements

base = BX

base = BP

Default DS

Default SS

 (Indirect) Based-Indexed with Displacement Addressing Mode:

 like based, except include a constant too

 e.g. [BX + SI + constant]

 during execution, processor uses a temporary register to calculate sum of values

 accesses memory addressed by sum

 restrictions: same as based mode

 if start address of array of arrays is known:

 use start address as constant

 use one register as offset to start of sub-array

 use other register as index

 if start address is not known ???? wing it! 

 if array of structs:

 use one register for start address

 use one register as offset to start of struct

 use constant to select element

 that�s all for addressing modes! 

In summary :

Immediate Mode

Register

Memory Direct

Register Indirect

(Indirect) Indexed

(Indirect) Base-Indexed

(Indirect) Base-Indexed with Displacement

How �mechanics� of processor work is one thing � using them in programs is another 

Exercises:

Identify the addressing modes of each operand in each of the following instructions

 MOV AX, [DX]

 MOV list[SI], 00

 MOV [BX], [BP][DI]+name

 MOV variable, AX

Exercise : (mistake1.asm)

; This program is full of mistakes and/or timebombs.

.model small

.stack 100h

.data

x db ?

y dw ?

.code

main PROC

 MOV AX, @data

 MOV DS, AX

;1

 MOV AX, x

;2

 MOV [BX], 01

;3

 MOV [BX][BP], CX

;4

 CMP [BP][SI], [BX][SI]

main ENDp

END main

Exercise : Find the mistakes in Traversing an Array

.model small

.stack 100h

.data

students db 10*82 dup(?)

.code

main PROC

 MOV BP, students

 MOV CX, 10

next:

 MOV AX, [BP]

 INC BP

 LOOP next

main ENDp

END main

Exercise : Traversing an Array in different ways

Below, an array of student numbers is defined. Show how to traverse the array, ending when the

�magic� student number of 0FFFFh is reached.

.model small

.stack 100h

.data

NUM_STUDENTS EQU 2

students dw NUM_STUDENTS dup(0)

terminator dw 0FFFFh

.code

main PROC

 MOV AX, @data

 MOV DS, AX

 ; Traversal code

 MOV AX, 4C00h
 INT 21h

main ENDp

END main

Exercise : Accessing an array of structures

Suppose that we now have an array of student records where each record contains the student�s

name (up to 16 characters) and number (a word).

.data

s1 db "Albert$$$$$$$$$$"

 dw 1234

s2 db "Fengji$$$$$$$$$$"

 dw 2345

s3 db "Carol$$$$$$$$$$$"

 dw 3432

s4 db "anything$$$$$$$$"

 dw 0FFFFh

Write a program to traverse the list, printing out any student whose name begins with �C�. The
list ends with a student number = 0FFFFh

MOV BX, offset s1

MOV SI, 0

next:

 MOV AL, [BX][SI]+0

 CMP AL, 'C'

JNE testEnd

 MOV AH, 9

 MOV DX, BX

 ADD DX, SI

 INT 21h

testEnd:

 MOV AX, [BX][SI]+NAME_LEN

 ADD SI, NAME_LEN+2

 CMP AX, 0FFFFh

 JNE next �.

ASIDE :

MASM does offer higher-level support of structures with the STRUCT pseudo-op

 Pseudo means that it is not part of the processor�s instruction set

 Supports programming but ultimately will be translated by assembler into the indirect

addressing modes shown previously

student struct

 stname db 80 dup('$')

 stnum dw ?

student ends

.data

s1 student <"Albert$", 1234>

s2 student <"Fengji$", 2345>

s3 student <"Carol$", 3432>

s4 student <"anything$", 0FFFF>

.code

main PROC

 MOV AX, @data

 MOV DS, AX

 MOV SI, OFFSET s1

next:

 CMP (student PTR [SI]).stname, 'C'

 JNE testEnd

 MOV AH, 9

 MOV DX, SI

 INT 21h

testEnd:

 MOV AX, (student PTR [SI]).stnum

 ADD SI, SIZE student

 CMP AX, TERMINATOR

 JNE next

 MOV AX, 4C00h

 INT 21h

main ENDp

END main

Example: Stack

 a data structure

 often used to hold values temporarily

Concept:

 a �stack� is a pile of �things�

 e.g. a stack of papers

 one �thing� is on top

 the rest follow beneath sequentially

 can add or remove �things� from top of pile

 if add a new �thing�, it is now on top

 if remove a �thing� from the top, then �thing� that was below it in the pile is now on top

 can look at a thing in the stack if you know the position of the thing relative to the top

 e.g. 2nd thing is the one below the top

Stack implementation in a computer:

 stack holds �values�

 reserve a block of memory to hold values

 use a pointer to point to the value on top

General case of operation:

 pointer points to value on top of stack

 add:

1. adjust pointer to next free (sequential)

memory location

2. copy value to selected memory location

(becomes new top)

 remove:

1. copy value of current top

change

state !

 read

state !

recall from 202?

2. adjust pointer to point to value �beneath�

current top (becomes new top)

 read:

index from top pointer to ith item

Special Cases:

 empty stack (no items in stack)

 what should top pointer point to?

 implementation: usually points just outside the reserved block � next add will adjust

pointer before copying value � will copy into location in the block

top pointer item on top
next item

last item

unused locations

items in stack

block of

memory

next location for adding

a value

 full stack (no space to add more items)

 what should happen if an item added?

 implementation could:

 check for stack overflow (?)

 exception handling!  

 happily overwrite memory outside of reserved block (?)  

Issue: Should stack grow from high-to-low addresses (as drawn in picture), or vice versa ?

 conceptually: no difference

 implementation: typically grows high-to-low

(reasons later!)

Processor has built-in stack support:

 called hardware or run-time stack

 dedicated pointer register: SS : SP

 some instructions use run-time stack implicitly

 stack holds 16-bit values

 grows �down� in memory (high-to-low addresses)

(Built-In) Stack Operations:

PUSH adds a new item at top of stack

 must specify 16-bit source operand

 operand may be register or memory

 effective execution:

SP := SP � 2 // adjust pointer

mem[SP] := operand // copy value to top

POP removes item from top of stack

 must specify 16-bit destination operand

grows �down�

 operand may be register or memory

 effective execution:

operand := mem[SP] // copy value to top

SP := SP + 2 // adjust pointer

Read an item:

 must index from top

 [SP + constant]  illegal!!!

 common solution uses BP

 SS is default segment register for indirect memory access using BP !!

MOV BP, SP ; copy top pointer

access using [BP + constant]  legal!

Must initialize SP before using stack op�s:

 .stack size

 assembler reserved specified number of bytes as block of memory to use for stack

 directive in translated into instruction to loader to initialize SS and SP !!

 SP points at byte just above (high address!) last byte reserved for stack

Example: suppose need to save registers:

 PUSH AX

 PUSH BX

 PUSH CX

now � to access saved AX value

could POP values off until AX value reached, OR:

could use any

of BP, BX, SI,

DI

AX value
BX value
CX value

SP

 MOV BP, SP

 MOV � , [BP + 4] ; read saved AX

 Subroutines

 often need to perform the same program activity many times

 high-level language:

function, procedure, method

 assembly language:

subroutine

 want ability to:

 encapsulate program activity in program text

 invoke the activity from elsewhere in program

 control flow!

 pass control to the activity

 execute the activity

 return control to the invocation point

AX value

BX value

CX value

SP

BP

AX value
BX value
CX value

SP

BP

+4
+2

Parameters: increase generality of an activity

 allow invocations to behave differently

 allows caller (the code that invokes) and callee (the invoked activity) to communicate

information

Example:

 could have a dedicated subroutine that displays the value 245

void Display245(); nice, but

 could generalize by adding a parameter

 allow a 16-bit value to be displayed to be communicated at invocation

void DisplaySigned(word Value);

 could further generalize by adding a parameter

to communicate the base for displaying Value

control

flow SP old top

N.B. only works if

return address is

on top of stack

when RET is

executed !!!

responsibility of

subroutine !!

more general than

Display245

Note: other notes continue in next sections,

students can download from links mentioned in

website.

