
1

80x86 Instruction Encoding

Machine Language

8086 Instructions
• Like other attributes of x86 processors, the machines 

through x86-64 are backwardly compatible with the 8086
• We will look at 8086 encoding in detail 
• Extension to Pentium instruction is straightforward 

Encoding of 8086 Instructions
• 8086 instructions are encoded as binary numbers
• Instructions vary in length from 1 to 6 bytes

Note that many RISC architectures have fixed length instructions

• Below is the general 2-operand instruction format

Instruction Formats
• There are many variations in Intel instruction format
• Some instructions are optimized to be small

Increment and decrement
Addition, subtraction, logical operations on accumulator
Add immediate to register 
Push/pop register

Opcode and Addressing Mode
• The first two bytes are called the opcode byte and 

the addressing mode byte
• The opcode byte specifies the operation, the size of 

operands and the direction of data movement 
between operands

• The addressing mode byte specifies two operands for 
the instruction 

For some instructions, such as any immediate mode 
instruction the addressing mode byte also serves as an 
“opcode extension”

• Some instructions are one-byte instructions and lack 
the addressing mode byte

Prefix Bytes
• An instruction may also be optionally preceded by 

one or more prefix bytes for repeat, segment 
override, or lock prefixes

• In 32-bit machines we also have an address size 
override prefix and an operand size override prefix



2

Byte Order
• Note the order of bytes in an assembled instruction
• 16-bit values are stored in little-endian order

[High Data][Low Data][High Addr][Low Addr][addr mode]opcode[prefix]

Prefix Bytes
• There are four types of prefix instructions:

Repetition
Segment Overrides
Lock
Address/Operand size overrides (for 32-bit machines)

• Encoded as follows (Each in a single byte)
• Repetition

REP, REPE, REPZ F3H
REPNE, REPNZ F2H

• Note that REP and REPE and not distinct
Machine (microcode) interpretation of REP and REPE code depends on 
instruction currently being executed

• Segment override
CS 2EH
DS 3EH
ES 26H
SS 36H

• Lock F0H

The Opcode Byte
• The opcode field specifies the operation performed 

(mov, xchg, etc). Usually (but not always) 6 bits

• The d (direction) field specifies the direction of data 
movement:

d = 1 destination is operand specified by REG field
d = 0 destination is operand specified by R/M field

• The d position MAY be interpreted as the "s" bit
s = 1 one byte of immediate data is present which must 
be sign-extended to produce a 16-bit operand
s = 0 two bytes of immediate are present

The Opcode Byte
• The d position is interpreted as the "c" bit in Shift 

and Rotate instructions
C= 1 CL is used for shift count
C=0 Shift/Rotate by 1 or by immediate value

• The w (word/byte) bit specifies operand size
W = 1 data is word (16 bits)
W = 0 data is byte

• In 32-bit instructions
W = 1 data is dword (32 bits)
W = 0 data is byte

• What if we have a 16-bit operand in 32-bit code? 

Operand and Address Size Overrides
• We only have one bit (the w bit) for operand size so 

only two operand sizes can be directly specified
• Operand and Address size override prefixes are used 

to specify 32-bit registers in 16-bit code and 16-bit 
registers in 32-bit code

66h = operand size override
67h = address size override

• Interpretation of an instruction depends on whether 
it is executed in a 16-bit code segment or a 32-bit 
code segment
Instruction 16-bit code 32-bit code
mov ax,[bx] 8B 07 67 66 8B 07
mov eax,[bx] 66 8B 07 67 8B 07
mov ax,[ebx] 67 8B 03 66 8B 03
mov eax,[ebx] 67 66 8B 03 8B 03

Addressing Mode Byte
• Contains three fields that specify operands

Mod Bits 6-7 (mode; determines how R/M field is 
interpreted
Reg Bits 3-5 (register) or SREG (Seg register)
R/M Bits 0-2 (register/memory)

• MOD
00 Use R/M Table 1 for R/M operand
01 Use R/M Table 2 with 8-bit displacement
10 Use R/M Table 2 with 16-bit displacement
11 Use REG table for R/M operand



3

REG table
REG w=0 w=1 REG w=0 w=1
000 AL AX 100 AH SP
001 CL CX 101 CH BP
010 DL DX 110 DH SI
011 BL BX 111 BH DI

• For 32 bit code
REG w=0 w=1 REG w=0 w=1
000 AL eax 100 AH esp
001 CL ecx 101 CH ebp
010 DL edx 110 DH esi
011 BL ebx 111 BH edi

SREG
000ES 001 CS 010 SS 110 DS

R/M Tables
R/M Table 1 (Mod = 00)
000 [BX+SI] 010[BP+SI] 100 [SI] 110 Drc't Add
001 [BX+DI] 011[BP+DI] 101 [DI] 111 [BX]

R/M Table 2 (Mod = 01 or 10)
Add DISP to register specified:
000 [BX+SI] 010[BP+SI] 100 [SI] 110 [BP]
001 [BX+DI] 011[BP+DI] 101 [DI] 111 [BX]

Addressing Mode Byte
• Not present if instruction has zero explicit operands 

For one-operand instructions the R/M field indicates where the 
operand is to be found
For two-operand instructions (except those with an immediate 
operand) one is a register determined by REG (SREG) field and 
the other may be register or memory and is determined by R/M 
field. 

• The Direction bit has meaning only in two-operand 
instructions 

Indicates whether "destination" is specified by REG or by R/M

• Note that this allows many instructions to be encoded 
in two different ways

Swap R/M and REG operands and flip d bit

Addressing Mode 00
• Specifies R/M Table 1 (with NO displacement)
000 [BX+SI] 010[BP+SI] 100 [SI] 110 Drc't Add
001 [BX+DI] 011[BP+DI] 101 [DI] 111 [BX]

• Note that the 110 case (direct addressing) requires that 
the instruction be followed by two address bytes 

• There are then two possibilities:
Opcode AddrMode
Opcode AddrMode Offset-Low Offset-High

• Examples:
MOV AX,[2A45]
MOV AX,[DI]

Addressing Mode 01
• Specifies R/M Table 2 with 8-bit signed displacement
R/M Table 2 (Mod = 01 or 10)
Add DISP to register specified:
000 [BX+SI] 010[BP+SI] 100 [SI] 110 [BP]
001 [BX+DI] 011[BP+DI] 101 [DI] 111 [BX]

• All instructions have the form:
Opcode AddrMode Disp8

• Examples
ADD AX,[BX+1000h]
MOV DX,[BX+DI+130]

Addressing Mode 11
• Specifies that R/M bits refer to REG table
• All two operand register-to-register instructions use 

addressing mode 11
MOV AX,BX
MOV DX,CX
MOV AH,BL

• Addressing Mode 11 is also used by immediate mode 
instructions where dest is a register

ADD BX,1 
ADC CH,0
OR SI, 0F0Fh



4

Addressing Mode 10
• Specifies R/M Table 2 with 16-bit unsigned displacement
R/M Table 2 (Mod = 01 or 10)
Add DISP to register specified:
000 [BX+SI] 010[BP+SI] 100 [SI] 110 [BP]
001 [BX+DI] 011[BP+DI] 101 [DI] 111 [BX]

• All instructions have the form:
Opcode AddrMode Disp-Low Disp-High

• Examples
MOV AX,[BP+2]
MOV DX,[BX+DI+4]
MOV [BX-4],AX

MOV reg/mem to/from reg/mem
• This instruction has the structure:

100010dw modregr/m Disp-lo Disp-hi

• Where 0, 1 or 2 displacement bytes are present 
depending on the MOD bits

•MOV AX,BX
w = 1 because we are dealing with words
MOD = 11 because it is register-register

• if d = 0 then REG = source (BX) and R/M = dest (AX)
= 1000 1001   1101 1000 (89 D8)

• if d = 1 then REG = source (AX) and R/M = dest (BX)
= 1000 1011   1010 0011 (8B C3)

MOV reg/mem to/from reg/mem
•MOV [BX+10h],CL

w = 0 because we are dealing with a byte 
d = 0 because we need R/M Table 2 to encode [BX+10h]

• therefore first byte is 10001000 = 88H
• since 10H can be encoded as an 8-bit displacement, we 

can use 
MOD=01 REG=001 and R/M=111  = 0100 1111 = 4FH 

• and the last byte is 10H
result: 88 4F 10
Note: MOV [BX+10H],CX = 89 4F 10

• since 10H can also be encoded as a 16-bit displacement, 
we can use 
MOD=10 REG=001 and R/M=111  = 1000 1111 = 8FH 

• and the last bytes are 00 10
result: 88 8F 00 10

MOV reg/mem, imm
• This instruction has the structure:

1100 011w MOD 000 R/M disp1 disp2
• Where 0, 1 or 2 displacement bytes are present 

depending on value of MOD
•MOV BYTE PTR [100h],10h

w = 0 because we have byte operand
MOD = 00 (R/M Table 1) R/M = 110 (Direct Addr)
bytes 3 and 4 are address; byte 5 immediate data

• Result
C6 06 00 01 10

•MOV WORD PTR [BX+SI],10h
w = 1 because we have byte operand
MOD = 00 (R/M Table 1) R/M = 000 ([BX+SI])
bytes 3 and 4 are immediate data

• Result
C7 00 10 00

MOV imm to reg
• This instruction is optimized as a 4-bit opcode, with 

register encoded into the instruction
1011wreg

• Examples
MOV bx, 3 1011 w=1 reg=011=BX 
10111011 imm BB 03 00
MOV bh, 3 1011 w=0 reg=111=BH 
10110111 imm B7 03 
MOV bl, 3 1011 w=0 reg=011=BL 
10110011 imm B3 03 

MOV direct mem to/from accumulator
• Another optimized instruction

101000dw addr

• Example mov al, [34F4]
d = 0 because dest is REG
w = 0 because AL is 8 bits
10100000 addr = A0 F4 C4

• Example mov [34F4], ax
d = 1 because dest is REG
w = 1 because AX is 8 bits
10100011 addr = A3 F4 C4



5

POP Reg/Mem
• POP memory/register has the structure:

8F MOD000R/M
• Note that w = 1 always for POP (cannot pop bytes)

Note: The middle 3 bits of the R/M byte are specified as 000 but
actually can be any value

• To POP into AX:
MOD = 11 (Use REG table) R/M = 000 ->11 000 000
Encoding: 8F C0

• To POP into BP:
MOD = 11 (Use REG table) R/M = 101 ->11 000 101
Encoding: 8F C5

POP Reg/Mem
• To POP into memory location DS:1200H
MOD = 00 R/M = 110 00 000 110
Encoding 8F 06 00 12

•
• To POP into memory location CS:1200H add a prefix 

byte
CS = 2Eh
Encoding = 2E 8F 06 00 12

POP General Register
• This one-byte opcode has the structure:

01011 REG
• So

POP AX = 01011000 = 58
POP BX = 01001011 = 5B

• Note that there are two legal encodings of POP REG
• Shorter form exists because POPs are so common
• All assemblers and compilers will use the shorter 

form 

POP Segment Register
• This one-byte opcode has the structure:

00seg111  
POP ES = 0000 0111 = 07H
POP DS = 0001 1111 = 1FH
POP SS = 0001 0111 = 17H

• Note that both forms of POP REG do not follow the 
general rules outlined above--registers are coded into 
the opcode byte

• Note also that even though POP CS is illegal, DEBUG 
will correctly assemble it as 0F -- but will not 
unassemble it.

Immediate Mode Instructions
• Immediate mode instructions have only one register 

or memory operand; the other is encoded in the 
instruction itself

The Reg field is used an “opcode extension”
The addressing mode byte has to be examined to determine 
which operation is specified

add imm to reg/mem 1000 00sw mod000r/m
or imm to reg/mem 1000 00sw mod001r/m

• In instructions with immediate operands the “d” bit 
is interpreted as the “s” bit 

• When the s bit is set it means that the single byte 
operand should be sign-extended to 16 bits

ADD imm to reg/mem
•add dx, 3 ;Add imm to reg16

1000 00sw mod000r/m
w=1 (DX is 16 bits)
mod = 11 (use REG table)  r/m = 010 =DX

• With s bit set we have
1000 0011 11 000 010 operand = 83 C2 03

• With s bit clear we have
1000 0001 11 000 010 operand = 81 C2 03 00



6

Examples of Equivalent Encodings
• The short instructions were assembled with debug's A command
• The longer instructions were entered with the E command

1822:0100 58            POP     AX
1822:0101 8FC0          POP     AX
1822:0103 894F10        MOV     [BX+10],CX
1822:0106 898F1000      MOV     [BX+0010],CX
1822:010A A10001        MOV     AX,[0100]
1822:010D 8B060001      MOV     AX,[0100]

• The above examples show inefficient machine language 
equivalences.

• There are also plenty of "efficient" equivalences where the 
instructions are the same length

• It is possible to create signature in machine language for a 
particular assembler or compiler by picking specific encodings

Extending 16-bit encoding to 32 bits
• There are only a few changes needed
1. Add some opcodes for new instruction
2. Treat w bit as 0=8 bits, 1=32 bits, so in REG field 

interpret w=1 and REG=000 as eax, not ax
3. Add operand size prefix byte to handle 16-bit 

operands
4. Likewise 8/16 bit displacement, imm data, or 

address values are treated as 8/32 bit
5. The MAJOR change is the interpretation of 

addressing mode byte
The R/M byte can specify the presence of a SIB byte
SIB has fields scale, index, base
(see instruction format reference)

32-bit General Format
• This is the general form for common 2 operand 

instructions

32-Bit SIB Example
•ADD ebx,[eax + 4 * ecx]
• Opcode 000000dw = 00000011 because dest is REG 

operand and w=1 indicates 32 bits
• Addressing mode byte mod reg r/m = 00 001 100

Mod 00 with R/M 100 means SIB mode, no displacement

• SIB byte scale index base = 10 001 000
10 = 4 001=ecx 000 = eax

• Complete Instruction =
00000011 00001100 10001000
03 0C 88


