CHAPTER 12

Interrupts

INTRODUCTION

In this chapter, we expand our coverage of basic 1/0 and programmable periphera interfaces by
examining atechnique called inerrupt-processed I/0. An interrupt is ahardware-initialed pro-
cedure that interrupts whatever program is currently executing.

This chapter provides examples and a detailed explanation of the interrupt structure of the

entire Intel family of microprocessors.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

Explain the interrupt structure of the Intel family of microprocessors.
" Explain the operation of software interrupt instructions INT. INTO, INT 3, and BOUND.

. Explain how the interrupt enable flag bit (IF) modifies the interrupt structure.

. Describe the function of the trap interrupt flag-bit (TF) and the operation of trap-generated

tracing.
5. Devel%p interrupt-service procedures that control lower-speed, external peripheral devices.
6. Expand the interrupt structure of the microprocessor by using the 8259A programmable
interrupt controller and other techniques.
7. Explain the purpose and operation of areal-time clock.

A w =

121

458

BASIC INTERRUPT PROCESSING

Inthis section, we discuss the function of an interrupt in amicroprocessor-based system, and
structure and features of interrupts available to the Intel family of microprocessors.

The Purpose of Interrupts |
at provide or require da

Interrupts are particularly useful when interfacing 1/0 devices th + keyboard ex@
relatively low data-transfer rates. In Chapter L1, for instance, we showed a key ¢2C55 an
using strobed input operation of the 82C55. In that example, software polled the °~

FIGURE 12-1

that indicates interrupt usage

in a typical system. §

121 BASIC INTERRUPT PROCESSING 459

Printer interrupt Keyboard interrupt

-
=
}

Printer interrupt

A time line Keyboard interrupt

IBF hit to decide whether data were available from the keyboard. If the person using the key-
board typed one character per second, the software for the 82C55 waited an entire second be-
tween each keystroke for the person to type another key. This process was such a tremendous
waste of time that designers developed another process, interrupt processing, to handle this
situation.

Unlike the polling technique, interrupt processing allows the microprocessor to execute
other software while the keyboard operator is thinking about what key to type next. As soon as a
key is pressed, the keyboard encoder de-bounces the switch and puts out one pulse that interrupts
the microprocessor. In this way, the microprocessor executes other software until the key is ac-
tually pressed when it reads akey and returns to the program that was interrupted. As aresult, the
microprocessor can print reports or complete any other task while the operator is typing a docu-
ment and thinking about what to type next.

Figure 12-1 shows atime line that indicates a typist typing data on a keyboard, a printer
removing data from the memory, and a program executing. The program is the main program
that is interrupted for each keystroke and each character that is to print on the printer. Note that
the keyboard interrupt service procedure, caled by the keyboard interrupt, and the printer inter-
rupt service procedure each take little time to execute.

Interrupts

The interrupts of the entire Intel family of microprocessors include two hardware pins that re-
quest interrupts (INTR and NMI), and one hardware pin (INTA) that acknowledges the interrupt
requested through INTR. In addition to the pins, the microprocessor dso has software interrupts
INT, INTO, INT 3, and BOUND. Two flag bits, IF (interrupt flag) and TF (trap flag), are aso
used with the interrupt structure and a specia return instruction TRET (or IRETD in the 80386,
80486, or Pentium-Pentium I1).

Interrupt Vectors. The interrupt vectors and vector table are crucia to an understanding of
hardware and software interrupts. The interrupt vector table is located in the first 1024 bytes
of memory at addresses OOOOOOH-0003FFH. It contains 256 different 4-byte interrupt vectors.
Aninterrupt vector contains the address (segment and offset) of the interrupt service procedure.

Figure 12-2 illustrates the interrupt vector table for the microprocessor. The first five in-
terrupt vectors are identical in al Intel microprocessor family members, from the 8086 to the
Pentium. Other interrupt vectors exist for the 80286 that are upward-compatible to the 80386,
80486, and Pentium-Pentium 11, but not downward-compatible to the 8086 or 8088. Intel re-
serves the first 32 interrupt vectors for their use in various microprocessor family members. The
last 224 vectors are available as user interrupt vectors. Each vector is four bytes long and con-
tains the starting address of the interrupt service procedure. The first two bytes of the vector
contain the offset address, and the last two bytes contain the segment address.

The following list describes the function of each dedicated interrupt in the microprocessor:

Type 0 Divide Error—Occurs whenever the result of a division overflows or whenever
an attempt is made to divide by zero.

460 CHAPTER 12

FIGURE 122 (a) The
interrupt vector table for the
microprocessor, and (b) the

contents of an interrupt vector.

Type 1

INTERRUPTS
Type 32 — 255
~User interrupt vectors ;
080H
Type 14 — 31
|
Type 16 :
Coprocessor error
040H
Type 15
Unassigned
03CH
Type 14
Page fault
038H
Type 13
General protection
034H
Type 12
Stack segment overrun
030H
Type 11
Segment not present
02CH
Type 10
Invalid task state segment
028H
Type 9
Coprocessor segmentoverrun
024H
Type 8
Double fault
020H
Type 7
Coprocessor not available
01CH
Type 6
Undefined opcode
018H
Type 5
BOUND
014H
Type 4
Overflow (INTO)
010H
Type 3
1-byte breakpoint
OOCH L Any interrupt vector
Type 2 —
NMI pin 3 Segment (high)
008H
Type 1 Segment (low)
004H Single-step 1 Offset (high)
Type 0 Offset (
000H Divide error 0 set (low)
(b)
@

i i tion if the trap
— the execution of each mstruc
o aee i bit is cleared sO that t

detail is provided a‘

Single-step . ©X
(TF% flag bit is set. Upon accepting this interrupt, the TF
intermnt service procedure executes at full speed. (More

this interrupt later in this section of the chapter.)

12-1 BASIC INTERRUPT PROCESSING 461

Type 2

Type 3

Type 4

Type 5

Type 6

Type 7

Type 8
Type 9

Type 10

Type 11
Type 12

Type 13

Type 14

Type 16

Non-maskable Hardware Interrupt—A result of placing alogic 1 on the NMI

input pin to the microprocessor. This input is non-maskable, which means that it
cannot be disabled.

One-Byte Interrupt—A specia one-byte instruction (INT 3) that uses this vector
to access its interrupt-service procedure. The INT 3 instruction is often used to
store a breakpoint in a program for debugging.

Overflow—aA specia vector used with the INTO instruction. The INTO

instruction interrupts the program if an overflow condition exists, as reflected by
the overflow flag (OF).

BOUND—An instruction that compares a register with boundaries stored in the
memory. If the contents of the register are greater than or equal to the first word
in memory and less than or equal to the second word, no interrupt occurs because
the contents of the register is within bounds. If the contents of the register are
out-of-bounds, atype 5 interrupt ensues.

Invalid Opcode--—-Occurs whenever an undefined opcode is encountered in a
program.

Coprocessor Not Available—Occurs when a coprocessor is not found in the
system, as dictated by the machine status word (MSW) coprocessor control bits.

If an ESC or WAIT instruction executes and the coprocessor is not found, atype
7 exception or interrupt occurs.

Double Fault—Activated whenever two separate interrupts occur during the
sameinstruction.

Coprocessor Segment Overrun—Occurs if the ESC instruction (coprocessor
opcode) memory operand extends beyond offset address FFFFH.

Invalid Task State Segment—Occurs if the TSS is invaid because the segment
limit field is not 002BH or higher. In most cases, this is caused because the TSS
is not initialized.

Segment not Present—Occurs when the P bit (P = 0) in a descriptor indicates
that the segment is not present or not valid.

Stack Segment Overrun—Occurs if the stack segment is not present (P = 0) or if
the limit of the stack segment is exceeded.

General Protection—Occurs for most protection violations in the 80286—Pentium
[l protected mode system. (These errors occur in Windows as general

protection faults.) A list of these protection violations follows:

a Descriptor table limit exceeded

Privilege rules violated

Invalid descriptor segment type loaded

Write to code segment that is protected

Read from execute-only code segment

Write to read-only data segment

Segment limit exceeded

CPL = IOPL when executing CTS, HLT, LGDT, LIDT, LLDT, LMSW, or LTR
. CPL > 10PL when executing CLL, IN, INS, LOCK, OUT, OUTS, and STI

Page Fault—Occurs for any page fault memory or code access in the 80386,
80486, and Pentium-Pentium Il microprocessors.
Coprocessor Error—Takes effect whenever a coprocessor error (ERROR = 0)

occurs for the ESCape or WAIT instructions for the 80386, 80486, and
Pentium-Pentium |l microprocessors only.

o

—2Q -0 oo

462

CHAPTER 12 INTERRUPTS

Type 17 Alignment Check—Indicates that word and doubleword data are addressed at an
odd memory location (or an incorrect location, in the case of a doubleword). This
interrupt is active in the 80486 and Pentium-Pentium || microprocessors.

Type 18 Machine Check—Activates a System memory management mode interrupt in the
Pentium-Pentium 11 microprocessors.

Interrupt Instructions: BOUND, INTO, INT, INT 3, and IRET

Of the five software interrupt instructions available to the microprocessor, INT and INT 3 are very
similar, BOUND and INTO are conditional, and IRET is a special interrupt return instruction.

The BOUND instruction, which has two operands, compares a register with two words of
memory data. For example, if the instruction BOUND AX,DATA is executed, AX is compared
with the contents of DATA and DATA+1 and also with DATA+2 and DATA+3. If AX is less
than the contents of DATA and DATA+1, a type 5 interrupt occurs. If AX is greater than
DATA+2 and DATA+3, atype 5 interrupt occurs. If AX is within the bounds of these two
memory words, no interrupt occurs.

The INTO instruction checks the overflow flag (OF). If OF = 1, the INTO instruction calls
the procedure whose address is stored in interrupt vector type number 4. If OF = 0, then the INTO
instruction performs no operation and the next sequential instruction in the program executes.

The INT ninstruction calls the interrupt service procedure that begins at the address repre-
sented in vector number n. For example, an INT 80H or INT 128 calls the interrupt service pro-
cedure whose address is stored in vector type number 80H (000200H-00203H). To determine
the vector address, just multiply the vector type number (n) by 4, which gives the beginning ad-
dress of the 4-byte long interrupt vector. For example, an INT 5 =4 x 5 or 20 (14H). The vector
for INT 5 begins a address 000014H and continues to 00001 7H. Each INT instruction is stored
in two bytes of memory: the first byte contains the opcode, and the second byte contains the in-
terrupt type number. The only exception to thisis the INT 3 instruction, a 1-byteinstruction. The
INT 3 instruction is often used as a breakpoint-interrupt because it is easy to insert a 1-bytein-
struction into a program. Breakpoints are often used to debug faulty software.

The IRET instruction is a special return instruction used to return for both software and
hardware interrupts. The IRET instruction is much like afar RET, because it retrieves the return

address from the stack. It is unlike the near return because it also retrieves a copy of the flag reg-
ister from the stack. An IRET instruction removes six bytes from the stack: two for the IP, two
for the CS, and two for the flags.

Inthe 80386—Pentium !1, there is also an IRETD instruction because these microprocessors
can push the EFEAG register (32 bits) on the stack, as well as the 32-hit EIP in the protected mode.
If operated in the red mode, we use the IRET instruction with the 80386-Pentium Il micro-

processors.

The Operation of a Real Mode Interrupt

When the microprocessor completes executing the current instruction, it determines whether an
interrupt is active by checking (1) instruction executions, (2) single-step, (3) NML (4) ©*
processor segment overrun, (5) INTR, and (6) INT instruction in the order presented. If one
more of these interrupt conditions are present, the following sequence of events occurs:

1. The contents of the flag register are pushed onto the stack.)

2. Both the interrupt (IF) and trap (TF) flags are cleared. This disables the INTR pin and
trap or single-step feature.

3. The contents of the code segment register (CS) are pushed onto the stack.

4. The contents of the instruction pointer (IP) are pushed onto the stack.

5. The interrupt vector contents are fetched, and then placed into both IP and CS so that
next instruction executes at the interrupt service procedure addressed by the vector.

12-1 BASIC INTERRUPT PROCESSING 463

Whenever an interrupt is accepted, the microprocessor stacks the contents of the flag reg-
ister, CS and IP; clears both IF and TF; and jumps to the procedure addressed by the interrupt
vector. After the flags are pushed onto the stack, IF and TF are cleared. These flags are returned
to the state prior to the interrupt when the IRET instruction is encountered a the end of the in-
terrupt service procedure. Therefore, if interrupts were enabled prior to the interrupt service pro-
cedure, they are automatically re-enabled by the IRET instruction at the end of the procedure.

Thereturn address (in CS and IP) is pushed onto the stack during the interrupt. Sometimes,
the return address points to the next instruction in the program; sometimes it points to the in-
struction or point in the program where the interrupt occurred. Interrupt type numbers O, 5, 6, 7,
8, 10, 11. 12, and 13 push areturn address that points to the offending instruction, instead of to
the next instruction in the program. This alows the interrupt service procedure to possibly retry
the instruction in certain error cases.

Some of the protected mode interrupts (types 8, 10, 11, 12, and 13) place an error code on
the stack following the return address. The error code identifies the selector that caused the in-
terrupt. In cases where no selector is involved, the error code is a 0.

Operation of a Protected Mode Interrupt

In the protected mode, interrupts have exactly the same assignments as in the red mode, but the
interrupt vector table is different. In place of interrupt vectors, protected mode uses a set of 256
interrupt descriptors that are stored in an interrupt descriptor table (IDT), The interrupt de-
scriptor table is 256 x 8 (2K) bytes long, with each descriptor containing eight bytes. The inter-
Tupt descriptor table is located at any memory location in the system by the interrupt descriptor
table address register (IDTR).

Each entry in the IDT contains the address of the interrupt service procedure in the form of a
segment selector and a 32-bit offset address. It also contains the P bit (present) and DPL bits to de-
scribe the privilege level of the interrupt. Figure 12-3 shows the contents of the interrupt descriptor.

Real mode interrupt vectors can be converted into protected mode interrupts by copying
the interrupt procedure addresses from the interrupt vector table and converting them to 32-bit
offset addresses that are stored in the interrupt descriptors. A single selector and segment de-
scriptor can be placed in the globa descriptor table that identifies the first 1M byte of memory as
the interrupt segment.

Other than the IDT and interrupt descriptors, the protected mode interrupt functions like
the real mode interrupt. We return from both interrupts by using the IRET or IRETD instruction.
The only difference is that in protected mode the microprocessor accesses the IDT instead of the
interrupt vector table.

Interrupt Flag Bits

The interrupt flag (IF) and the trap flag (TF) are both cleared after the contents of the flag reg-
ister are stacked during an interrupt. Figure 12-4 illustrates the contents of the flag register and

FIGURE 12-3 The pro-

tected mode interrupt 7

descriptor. Offset (A31-A16) 6
5|PlopLf ot1110 00H 4
3 Segment selector 2
1 Offset (A15-A0) 0

464

CHAPTER 12 INTERRUPTS

FIGURE 12-4 The flag
register. (Courtesy of Intel
Corporation.)

FLAGS r
5

o ob 7 si2] [a] [r] Je]
11109 8 7 6 5 4 3 10

the location of IF and TF. When the IF bit is set, it alows the INTR pin to cause an interrupt;
when the IF bit is cleared, it prevents the INTR pin from causing an interrupt. When TF = 1, it
causes atrap interrupt (type number 1) to occur after each instruction executes. This is why we
often call trap asingle-step. When TF = 0, normal program execution occurs. This flag bit allows
debugging, as explained in Chapters 17-19, which detail the 80386-Pentium 11.

The interrupt flag is set and cleared by the STT and CLI instructions, respectively. There
are no specid instructions that set or clear the trap flag. Example 12-1 shows an interrupt service
procedure that turns tracing on by setting the trap flag bit on the stack from inside the procedure.
Example 12-2 shows an interrupt service procedure that turns tracing off by clearing the trap
flag on the stack from within the procedure.

EXAMPLE 12-1

121 BASIC INTERRUPT PROCESSING
465

instruction executes following INT 40H-the TRACE procedure displays the contents of all the
16-bit MICTOProcessor regjisters on the CRT screen. This provides aregister trace of dl the in-
structions between the INT 40H (TRON) and INT 41H (TROFF).

;A procedure that

sets TF to enable trap.

0000 TRON PRCC NEAR
0000 50 PUSH AX ;save registers
0001 55 PUSH BP
0002 8B EC MOV BP,SP ;get SP
0004 8B 46 08 MV AX, [BP+8] ;get flags from stack
0007 80 CC 01 R AH, 1 ;set TF
OO0OA 89 46 08 MoV [BP+8],AX ;save flags
O0o0D 5D PCP BP ;restore registers
OOCE 58 PCP AX
O0OF CF TRET
0010 TRON ENDP
EXAMPLE 12-2
;A procedure that clears TF to disable trap.
0000 TROFF PROC NEAR
0000 50 PUSH AX ;save registers
0001 55 PUSH BP
0002 8B EC MOV BP,SP ;get SP
0004 8B 46 08 MOV AX, [BP+8] ;get TR
0007 80 E4 FE AND AH, OFEH ;clear TF
OOCA 89 46 08 MOV [BP+8],AX ;save flags
000D 5D PCP BP ;restore registers
OOCE 58 PCP AX
O0CF CF IRET
0010 TROFF ENDP

In both examples, the flag register is retrieved from the stack by using the BP register,
which, by default, addresses the stack segment. After the flags are retrieved, the TF bitis
set (TRON) or clears (TROFF) before returning from the interrupt service procedure. The
instruction restores the flag register with the new state of the trap flag.

eith
IRET:

Trace Procedure. Assuming that TRON is accessed by an INT 40H instruction and TROFE.
accessed by an INT 41H instruction, Example 12-3 traces through a program immediately
lowing the INT 40H instruction. The interrupt service procedure illustrated in Example
responds to interrupt type number 1 or atrap interrupt. Each time that atrap occurs—aftere

EXAMPLE 12-3
.MODEL TI NY
0000 CODE
0000 41 58 20 3D 20 42 RNAME DB 'AX = /,'BX= ’,'CxX= ‘DX = ¢
58 20 3D 20 43 58 ' ’
20 3D 20 44 58 20
3D 20
0014 53 50 20 3D 20 42 "SP= ’,'BP= 1,77 = +, ipr= -
50 20 3D 20 53 49 »® ' SRR e
0 3D 20 44 49 20
3D 20
0028 49 50 20 3D 20 46 DB 'IP= ','FL = ’,/CS = ', 'Dg = «
4C 20 3D 20 43 53 ' T T
20 3D 20 44 53 20
3D 20
003C 45 53 20 3D 20 53 DB 'ES = ', g5 -
53 20 3D 20 '
DISP NMACRO PARL
PUSH AX
PUSH DX
MOV DL, PAR1
MOV AH, 6
| NT 21H
PCP DX
PP AX
ENDM
CRLF MACRO
DSsP 13
DSP 10
ENDM
0046 TRACE PROC FAR USES AX BP BX
0049 BB 0000 R g_\/': BX, OFFSET RNAMVE ;address nanes
gggg 8 004D CALL DREG ;display AX
PCP AX rget BX
0064 50 PUBH AX '
0065 EB 0048 CALL di
0068 8B c1 MOV z?;E(ch eeptay BX
006A E8 0043 CALL DREG ;
006D 8B MV 2X,Dx Fdsptay X
006F E8 003E AL DREG ;display DX
0072 8B 4 MOV AX,SP ' Y
0074 83 CO CC AD AX 12
0077 EB 0036 L '
007A 8B o5 NOY % me ey
007C EB 0031 CALL DREG ;display BP
007F 8B 5 MV AX, sI ' Y
0081 EB 002C : spl
0084 8B C7 %L z?fgz Fispiay 8
0086 E8 0027 CALL DREG ;display D
0089 8B EC MV BP, SP ' Y
008B 8B 46 06 MOV AX, [BP+g]
8335 ISEB 001F CALL DREG ;display IP
9091 B 46 QA MV A%, [BP410]
E8 0019 CALL DREG ;display Fl ags
0097 8B 46 08 MV 2X, [BPg]
009A EB 0013 CALL DREG ;display X
009D sC DB MV aX,DS ey

466

CHAPTER 12 INTERRUPTS

009F E8 OOOE CALL DREG ;display DS
Q0A2 8C QO MV aX,ES
00A4 EB 0009 CALL DREG ;display ES
Q0A7 8C DO MV AX,SS
O0A9 E8 0004 CALL DREG ;display SS
IRET
00BO TRACE ENDP
00BO DREG PROC NEAR USES X
00B1 B9 0005 MOV Cx,5 ; load count
ooB4 DREGL:
DISP CS: [BX] ;display character
OOBF 43 INC BX ;address next
00CO E2 RF2 LOOP DREGL ;repeat 5 times
ooCc2 B9 0004 MV CX, 4 ; load count
00C5 DREG2 :
oocs B 3B ROL A%, 1 ;position digit
ooC7 B @8 ROL A%, 1
ooy B GB8 ROL AX,1
oocB B B ROL A%, 1
ooCcD 50 PUSH AX
OOCE 24 OF AND Al;, OFH ; convert to ASA |
JIF AL > 9
ooD4 04 07 ADD AL, 7
.ENDIF
ooD6 04 30 ADD AL, 3CH
DsP AL
OO0E2 58 POP AX .
OCE3 E2 EO LOCP DREXR ;repeat 4 times
psp ' !
RET
00F1 DREG ENDP
END

Storing an Interrupt Vector in the Vector Table

In order to ingtal an interrupt vector—sometimes called a hook—the assembler must address
absolute memory. Example 12-4 shows how a new vector is added to the interrupt vector table
by using the assembler and a DOS function call. Here, INT 21H function cal number 25H ini-
tializes the interrupt vector. Notice that the first thing donein this procedureis to save the old in-
terrupt vector number by using DOS INT 21H function cal number 35H to read the current
vector. See Appendix A for more detail on DOS INT 21H function calls.

EXAMPLE12-4
.MODEL TINY
.CODE
;A program that installs NEw40 at |NT 40H.
. STARTUP
0100 EB 05 JwP START
0102 00000000 ab Db ?
;new interrupt procedure
0106 NEW40 PROC FAR
0106 CF | RET
0107 NEW40 ENDP
0107 START:
0107 8C @B MOV AX,CS ;get data segnent

0109 8E D8 MOV DS, AX

122 HARDWARE INTERRUPTS 467

010B B4 35 MV AH,35H ; get old interrupt vector
010D BO 40 MOV AL, 40H

010F D 21 I NT 21H

0111 89 1E 0102 R MV WORD PTR OLD, BX

0115 8C 06 0104 R MV WIRD PTR OLD+2,ES

; install new interrupt vector 40H

0119 BA 0106 R MOV DX, OFFSET NEWO
011c B4 25 MOV AH, 25H
011E BO 40 MOV AL,40H

0120 @D 21 INT 21H

; leave NEWAO in memory

0122 BA 0107 R MOV DX, OFFSET START
0125 D1 EA SHR DX, 1
0127 D1 EA SHR DX, 1
0129 O EA SR DX,1
012B DO EA SR DX, 1
012D 42 INC DX
012E B8 3100 MOV AX,3100H
0131 D 21 I NT 21H
END

12-2

HARDWARE INTERRUPTS

The microprocessor has two hardware interrupt inputs: non-maskable interrupt (NMI) and inter-
rupt request (INTR). Whenever the NMI input is activated, a type 2 interrupt occurs because
NMI is internally decoded. The INTR input must be externally decoded to select a vector. Any
interrupt vector can be chosen for the INTR pin, but we usually use an interrupt type number be-
tween 20H and FFH. Intel has reserved interrupts OOH through 1FH for internal and future ex-
pansion. The INTA signal is also an interrupt pin on the microprocessor, but it is an output that
isused in response to the INTR input to apply avector type number to the data bus connections
D7-DO. Figure 12-5 shows the three user interrupt connections on the microprocessor.

The non-maskable interrupt (NMI) is an edge-triggered input that requests an interrupt
on the positive edge (0-to-1 transition). After apositive edge, the NMI pin must remain alogic 1
until it is recognized by the microprocessor. Note that before the positive edge is recognized, the
NMI pin must be alogic O for at least two clocking periods.

The NMI input is often used for parity errors and other major system faults, such as power
failures. Power failures are easily detected by monitoring the AC power line and causing an NM|

FIGURE 12-5 The interrupt
pins on alf versions of the

Intel microprocessor.
NMI fe————

Interrupt in|
INTR pLinp

INTA fp———— Interrupt out

468

FIGURE 12-7 A battery- LM7805 +57V +50V
backed-up memory system +90V
using a NiCad, lithium, or gel

cell.

CHAPTER 12 INTERRUPTS

L
CEXT
el

VCC o~ A2 13 | ReXTICEXT

SIK - UIA A2
395 ofE—

k!
K ;)) — B
t__j_o R Q L& NMI

T4ALS14

FIGURE 12-6 A power failure detection circuit.

interrupt whenever AC power drops out. In response to this type of interrupt, the microprocessor
stores al of the internal register in a battery backed-up-memory or an EEPROM. Figure 12-6
shows a power failure detection circuit that provides alogic 1 to the NMI input whenever AC
power is interrupted.

In this circuit, an optical isolator provides isolation from the AC power line. The output of
the isolator is shaped by a Schmitt-trigger inverter that provides a 60 Hz pulse to the trigger input
of the 741.8122 retriggerable monostable multivibrator. The values of R and C are chosen so that
the 7415122 has an active pulse width of 33 ms or 2 AC input periods. Because the 74LS122 jg
retriggerable, as long as AC power is applied, the Q output remains triggered a alogic 1 and Q
remains alogic 0.

If the AC power fails, the 7415122 no longer receives trigger pulses from the 74ALS14,
which means that Q returns to a logic 0 and Q returns to a logic 1, interrupting the micro-
processor through the NMI pin. The interrupt service procedure, not shown here, stores the con-
tents of dl interna registers and other data into a battery-backed-up memory. This system

assumes that the system power supply has alarge enough filter capacitor to provide energy for at
least 75 ms after the AC power ceases.

Figure 12-7 shows a circuit that supplies power to a memory after the DC power fails.
Here, diodes are used to switch supply voltages from the DC power supply to the battery. The
diodes used are standard silicon diodes because the power supply to this memory circuit is de-
vated above +5.0 V to +5.7 V. The resistor is used to trickle-charge the battery, which is either

NiCAD, Lithium, or agel cel.

vi 4 VO A

~ioo
T 47K

N
D_—

10K
t Vee

122 HARDWARE INTERRUPTS
469

When DC power fails, the battery provides areduced voltage to the VVcc connection on the
memory device. Most memory devices will retain data with VVcc voltages aslow as 15 V, so the
battery voltage does not need to be +5.0 V. The WR pin is pulled to VVcc during a power outage,
s0 no datawill be written to the memory.

INTR and INTA

The interrupt request input (INTR) is level-sensitive, which means that it must be held at alogic
1 level until it isrecognized. The INTR pin is set by an external event and cleared inside the in-
terrupt service procedure. This input is automatically disabled once it is accepted by the micro-
processor and re-enabled by the IRET instruction at the end of the interrupt service procedure.
The 80386—Pentium || yse the IRETD instruction in the protected mode of operation.

The microprocessor responds to the INTR input by pulsing the INTA output in anticipa-
tion of receiving an interrupt vector type number on data bus connection D7-DO. Figure 12-8
shows the timing diagram for the INTR and INTA pins of the microprocessor. There are two
m;’A pulses generated by the system that are used to insert the vector type number on the data

Figure 129 illustrates a simple circuit that applies interrupt vector type number FFH to
the data bus in response to an INTR. Notice that the INTA pin is not connected in this circuit.
Because resistors are used to pull the data bus connections (D0-D7) high, the microprocessor au-
tomatically sees vector type number FFH in response to the INTR input. This is possibly the
least expensive way to implement the INTR pin on the microprocessor.

Using a Three-Sate Buffer for /NTA. Figure 12-10 shows how interrupt vector type number

80H is applied to the data bus (DO-D7) in response to an INTR. In response to the INTR, the

microprocessor outputs the INTA that is used to enable a 74ALS244 three-state octal buffer.

The octal buffer applies the interrupt vector type number to the data bus in response to the

{#T,Allpglsgt._ The vector type number is easily changed with the DIP switches that are shown in
is illustration.

Making the INTR Input Edge-triggered. Often, we need an edge-triggered input instead of a
level-sensitive input. The INTR input can be converted to an edge-triggered input by using a D-
type flip-flop, as illustrated in Figure 12-11. Here, the clock input becomes an edge-triggered
interrupt request input, and the clear input is used to clear the request when the INTA signd is
output by the microprocessor. The RESET signal initially clears the flip-flop so that no inter-
rupt is requested when the system is first powered.

INTR

__ Vann

Vector number

FIGURE 12-8 The timing of the INTR input and INTA output. *Note: This portion of the data
bus is ignored and usually contains the vector number.

470 CHAPTER 12 INTERRUPTS

FIGURE 129 A simple
method for generating inter-
rupt vector type number FFH
in response to INTR.

FIGURE 12-10 A circuit
that applies any interrupt
vector type number in re-
sponse to INTA. Here the
circuit is applying type
number 80H.

vCcC
O
[E——
1 11,11111
6/5:A|312|110]9
i 85 27K
112! s\6l7|e
DO
D1
D2
B3 Low databus
D5
D6
D7
TNTA No connection
DO
DI
D2
Bﬁ Low data bus
D5
D6
D7 !
1,11]1 ‘
8161412]9]7]513
JIIN LY ' 74ALS244
12341234
AAAARAAA 12
12341234 GG
& M T \eC
INTA 416 8|l|3|jlz__u9 5_v_AlV
T 2
AT
,._.—'SM
ll0|0 OIOIO|O 0 10K
1.1 1 Al
6]5)4]3]2]1]0]9

nRARAT

1
12|245678
11

122 HARDWARE INTERRUPTS

FIGURE 12-11 Converting
INTR into an edge-triggered
interrupt request input.

471
vee
10K [
4 UIA
2 »p oy INTR
Edge-triggered R
= 3 bk
interrupt request c -
6
L Q
| 74ALS74
3
U2A
74ALS08
12
U3A
1 2 I
RESET iNTA
TAALSH4

The 82C55 Keyboard Interrupt

The keyboard example presented in Chapter 11 provides a smple example of the operation of
the INTR input and an interrupt. Figure 12-12 illustrates the interconnection of the 82C55 with
the microprocessor and the keyboard. It also shows how a74A1.8244 octal buffer is used to pro-
vide the microprocessor with interrupt vector type number 40H in response to the keyboard in-
terrupt during the INTA pulse.

The 82C55 is decoded at 80386SX 1/0 port address 0500H, 0502H, 0504H, and 0506H by
a PAL16L8 (the program is not illustrated). The 82C55 is operated in mode 1 (strobed input
mode), so whenever akey istyped, the INTR output (PC3) becomes alogic 1 and requests anin-
terrupt through the INTR pin on the microprocessor. The INTR pin remains high until the ASCII
data are read from port A. In other words, every time akey is typed, the 82C55 requests a type
40H interrupt through the INTR pin. The DAV signal from the keyboard causes data to be
latched into port A and causes INTR to become alogic 1.

Example 12-5 illustrates the interrupt service procedure for the keyboard. Itis very impor-
tant that all registers affected by an interrupt are saved before they are used. In the software re-
quired to initialize the 82C55 (not shown here), the FIFO is initialized so that both pointers are

equal, the INTR requesetJ)in is enabled through the INTE bit inside the 82C55, and the mode of
operation is programmed.

EXAMPLE 12-5
;an interrupt service procedure that reads a key
ifrom the Keyboard in Figure 12-12.
= 0500 PCRTA EQU 5001
= 0506 ONTR ES:JJ 506H
0000 0100 [00 FIFO DB 256 DWP (?) ; queue
1
0100 0000 INP Dy ? ;input poi nter
0102 0000 oure DN - oucpat ol nt er
0104 KEY PROC FAR USES AX BX pr DX

472 CHARTER 12 INTERRUPTS

U3
Do AIDo PO -4 bo
DI DI PALI— D2
D2 D2 PA2 1L D3
D3 3Ll p3 PA3 [D4
D4 D4 PA4
P 21 ps PA5 -3 e
Do _ 281ps Pac -2 D7
D7 2l p7 PA7
ORC 5| RD peo [HE&-
IORC —%— WR PBL 19
Al 4 AO P2 2
A2 81 At pPB3 2L _
RESET %] RESET PB4 |-22- DAV
& cs Pas | 22
WA PB6
WAIT2 - PB7 [25
14
v PRS-
fowc 01 pi— e 6~ " Keyboard
AO AN ol s 17 STB
A3 B 0B pl—y s 113
A4 4 o [ole pCs [12—
A5 15 6 Pl PO [
AB Slis 08 PEl] o7 [0
A7 VAR 3
A8 Sl o8 ®BA5
A9 19
A10 Lino
168
All
AL2
Al3
Al4
Al5
INTR
1111
81614{2191715]3
11112222 U1
YYYYYYYY TAAL 244
12341234
11112222
AAAAAAAA 12
12341234 GG
REAT
INTA 24 6|8]1
LT D U
<4 1(1<

FIGURE 12-12 An 82C55 interfaced to a keyboard from the microprocessor system using interrupt vector

0108 2E 8B 1E 0100 R
010D 2E 8B 3E 0102 R

0112 FE Q&G
0114 3B DF
0116 74 11

0118 FE CB
011A BA 0500
011D EC

011E 2E 88 07

0121 2E FE 06 0100 R

0126 EB 07 90
0129

0129 BO 08
012B BA 0506
012E EE

012F

012F

0134

FULL:

DONE :

KEY

MOV
MV

JE

€83 558200

IRET

BX,CS:INP ;load input pointer
D, Cs: QUTP ;load output pointer
BL .test for queue = full
BX, DI

FULL ;if queue is full

BL

DX, PORTA

AL, DX ;get data from 82C55
Ccs: [BX],AL ; save data in gueue
BYTE PTR INP

DONE

AL, 8 ;disable 82C55 interrupt
DX, CNTR

DX, AL

40H.

12-3 EXPANDING THE INTERRUPT STRUCTURE 473

The procedure is short because the 80386SX already knows that keyboard data are avail-
able when the procedure is called. Data are input from the keyboard and then stored in the FIFO
(first-in, first-out) buffer. Most keyboard interfaces contain a FIFO that is at least 16 bytes in
depth. The FIFO in this example is 256 bytes, which is more than adequate for a keyboard inter-
face. Take note at how the INC BYTE PTR INP is used to add one to the input pointer and also
make sure that it always addressed datain the queue.

This procedure first checks to see whether the FIFO is full. A full condition is indicated
when theinput pointer (INP) is one byte below the output pointer (OUTP). If the FIFO isfull, the
interrupt is disabled with a bit set/reset command to the 82C55, and a return from the interrupt
occurs. If the FIFO is not full, the data are input from port A, and the input pointer is incremented
before a return occurs.

Example 12-6 shows the procedure that removes data from the FIFO. This procedure
first determines whether the FIFO is empty by comparing the two pointers. If the pointers are
equal, the FIFO is empty, and the software waits at the EMPTY loop where it continuously
tests the pointers. The EMPTY loop is interrupted by the keyboard interrupt, which stores

data into the FIFO so that it is no longer empty. This procedure returns with the character in
register AH.

EXAMPLE 12-6

;A procedure that reads data from the queue of

;Example 12-5 and returns with it in AH
0134 READ PROC FAR USES BX DI DX
0137 EMPTY:
0137 2E 8B 1E 0100 R MOV BX CS: | NP ; load input pointer
013D 2E 8B 3E 0102 R MOV DT, CS:0UTP ; load output pointer
0142 3B OF aw BX,DI
0144 74 F2 JE EMPTY ;if queue is empty
0146 2E B8A 25 MOV AH,CS:[DI] ;get data
0149 BO 09 MOV AL, 9 ;enable 82C55 interrupt
014B BA 0506 MOV DX, CNTR
014E EE aur DX, AL
014F 2E FE 06 0102 R INC BYTE PTR CS:0QUTP

RET

0157 READ ENDP

EXPANDING THE INTERRUPT STRUCTURE

This text covers three of the more common methods of expanding the interrupt structure of the
microprocessor. In this section, we explain how, with software and some hardware modification
of the circuit shown in Figure 12-10, it is possible to expand the INTR input so that it accepts
seven interrupt inputs. We also explain how to "daisy-chain” interrupts by software polling. In
the next section, we describe a third technique, in which up to 63 interrupting inputs can be
added by means of the 8259A programmable interrupt controller.

Using the 74ALS244 to Expand

The modification shown in Figure 12-13 alows the circuit of Figure 12-10 to accommodate up
to seven additional interrupt inputs. The only hardware change is the addition of an 8-input

NAND gate, which provides the INTR signal to the microprocessor when any of the IR inputs
becomes active.

CHAPTER 12 INTERRUPTS 123 EXPANDING THE INTERRUPT STRUCTURE 475
474
—— Daisy-Chained Interrupt
Expansion by means of a daisy-chained interrupt is in many ways better than using the
7T4ALS244 interrupt expansion because it requires only one interrupt vector. The task of deter-
DO mining priority is left to the interrupt service procedure. Setting priority for a daisy-chain does
Blz require additional software execution time, but in general this is a much better approach to ex-
D3 Low datab panding the interrupt structure of the microprocessor.
D4 ow caa bus Figure 12-14 illustrates a set of two 82C55 peripheral interfaces with their four INTR out-
D5
D6 puts daisy-chained and connected to the single INTR input of the microprocessor. If any interrupt
D7 output becomes alogic 1, so does the INTR input to the microprocessor causing an interrupt.
1,111 o7 513 When a daisy-chain is used to request an interrupt, it is better to pull the data bus connec-
8.6]4/2 . » tions (DO-D7) high by using pull-up resistors so interrupt vector FFH is used for the chain. Any
11112222
YYYYYVYYY ul interrupt vector can be used to respond to a daisy-chain. In the circuit, any of the four INTR out-
12341234 AL : puts from the two 82C55s will cause the INTR pin on the microprocessor to go high, requesting
11112222 - .
AAAAAAAA 12‘ an interrupt
12341234 GG
[4111 Ht vce FIGURE 12-14 Two 82C55 ul
TNTA 2.4]6|8/1|3517 9 PiAs connected to the INTR ~ —3£.700 pro]—4—
10K outputs are daisy-chained to 327 % P2
1 | . produce an INTR signal. S m o PspEL
. 2 IR0 =4 [Eg e
u2 3 TR1 5% PAS 5
R2 277 % PR
INTR | 8 (4 D7 PA7
: i =18 o
TAALSD 6 RS =0 P
(12 TR6 A PB3 7
RESET PB4
—6165 % [23__
FIGURE 12-13 Expanding the INTR input from one to seven interrupt request lines. pR7| 25 INTR B 1 UA Daisy—chain
14
PO o 3
Operation. If any of the IR inputs becomes alogic 0, then the output of the NAND gate goesto pe2 H15 INTR
alogic 1 and requests an interrupt through the INTR input. The interrupt vector that is fetched FCA |-13— TAALS32
during the INTA pulse depends on which interrupt request line becomes active. Table 12-1 f;’,% _1_11_1_
shows the interrupt vectors used by a single interrupt request input. PC7 |-
If two or more interrupt request inputs are simultaneously active, anew interrupt vector is 8255A-5 u3C
generated. For example, if IR1 and IR0 are both active, the interrupt vector generated is FCH U2 9 5
(252). Priority is resolved at this location. If the IR0 input is to have the higher priority, the v 10 INTR
vector address for 1R(is stored at vector location FCH. The entire top half of the vector table —7-3—}2 %IQ PA1 %— TIALSR2
and its 128 interrupt vectors must be used to accommodate al possible conditions of these s Eﬁaz (i
seven interrupt request inputs. This seems wasteful, but in many dedicated applicationsiitis a ”10‘23 ,DIS' lﬁ’ﬁ‘s‘ %
cost-effective approach to interrupt expansion. :222_8_ B‘; gﬁg %
3z R
TABLE 121 Single inter Vi —2 % %i
X . — p— — — =5 = B0 ector
rupt request for Figure 12-13. IRG IR5 IR4 IR3 IR2 A1 o —_ —35—_L ﬁlESET % &
r: ¢ 1 1t 1 o —He& mH
1 1 1 1 0 l FDH PB7 22— | NTR U3B
1 1 1 0 1 l FBH ool L4 B 4
1 1 1 0 1 ! 1 FH el | R 5) 8
1 1 0 | 1 | | EFH Pery — A |
1 0 1 1 1 1 1 DFH PC4 13 TAALS32
0 I 1 1 L 1 ! BFH Pos 41—
PC7 -0
8255A-5

Note: Although not illustrated, the IRinputs are all active low.

476 CHAPTER 12 INTERRUPTS

When the INTR pin does go high with adaisy-chain, the hardware gives no direct indica-
tion as to which 82C55 or which INTR output caused the interrupt. The task of locating which
INTR output became active is up to the interrupt service procedure, which must poll the 82C55s
to determine which output caused the interrupt.

Example 12-7 illustrates the interrupt service procedure that responds to the daisy-chain
interrupt request. The procedure polls each 82C55 and each INTR output to decide which inter-
rupt service procedure to utilize.

EXAMPLE 12-7
;A procedure that services the daisy-chain interrupt
;of Figure 12-14.

= 0504 ¢l EQU 504H ;First 82055

= 0604 2 EQU 604H ;second 82C55

= 0001 MASKlL EQU 1 ; INTRB

= 0008 MASK2 EQU 8 ; INTRA

0000 POLL PROC FAR USES AX DX

0002 BA 0504 MV DX CL ;address first 82055

0005 EC IN AL, DX ;get port C

0006 A8 01 TEST AL, MASKL

0008 75 OF INZ LEVEL_O ;if INTRB is set

O00A A8 08 TEST AL, MASK?

oooc 75 13 JNz LEVEL_1 ;if INTRA is set

OOOE BA 0604 MoV DX Q@ ;address second 82C55

0011 EC IN AL DX ;get port C

0012 A8 01 TEST AL,MASKL

0014 75 1B JNz LEVEL 2 ;if INTRB is set

0016 EB 29 00 JW LEVEL_3 ;for INTRA

0019 POLL ENDP

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER

The 8259A programmable interrupt controller (PIC) adds eight vectored priority encoded inter-
rupts to the microprocessor. This controller can be expanded, without additional hardware, to ac-
cept up to 64 interrupt requests. This expansion requires amaster 8259A and eight 8259A dlaves.

General Description of the 8259A

Figure 12-15 shows the pin-out of the 8259A. The 8259A is easy to connect to the micro-
processor because al of its pins are direct connections except the CS pin, which must be de-
coded, and the WR pin, which must have an 1/0 bank write pulse. Following is a description of
each pin on the 8259A:

D7-DO The bi-directional data connections are normally connected to either the
upper or lower databus on the 80386SX microprocessor or the data bus on
the 8088. If an 80486 or Pentium-Pentium |1 is used, then they connectto -

any 8-hit bank.
IR7-IRO Interrupt request inputs are used to request an interrupt and to connect 08
dave in a system with multiple 8259As. .
WR The write input connects to either the lower or upper write strobe signal },

16-bit system, or to any other bus write strobe in any size system.

12-4 8250A PROGRAMMABLE INTERRUPT CONTROLLER 477

FIGURE 12-15 The pin-out 8250A
of the 8259A programmable 11
interrupt controller (PIC). —10
-9
8
7]
6
_5|
4
_27 |
AO
=18
TIo] dpiew
N C
—LZ9NT CAST
—26 INTA CAS2

RD The read input connects to the IORC signal.

INT The interrupt output connects to the INTR pin on the microprocessor from
the master, and is connected to amaster IR pin on asave.

IOTA Interrupt acknowledge is an input that connects to the INTA signal on the
system. In a system with amaster and slaves, only the master INTA signal
is connected.

AO The AO address input selects different command words within the 8259A.

cs Chip select enables the 8259A for programming and control.

SP/EN Slave program/enable buffer is adual-function pin. When the 8259A isin

buffered mode, this is an output that controls the data bus transceiversin a
large microprocessor-based system. When the 8259A is not in the buffered
mode, this pin programs the device as amaster (1) or aslave (0).

CAS2-CASO The cascade lines are used as outputs from the master to the slaves for
cascading multiple 8259As in a system.

Connecting a Single 8259A

Figure 12-16 shows a single 8259A connected to the 8086 microprocessor. Here the sp/EN pin
is pulled high to indicate that it is amaster. The 8259A is decoded at I/O ports 0400H and 0402H
by the PALI6L8 (no program shown). Like other peripherals discussed in Chapter 11, the
8259A requires four wait states for it to function properly with a 16 MHz 80386SX and more for
some other versions of the Intel microprocessor family.

Cascading Multiple 8259As

Figure 12-17 shows two 8259As connected to the 80386SX microprocessor in a way that is
often found in the AT-style computer, which has two 8259As for interrupts. The XT- or PC-
style computer uses an 8259A controller at interrupt vectors 08H-OFH. The AT-style computer
uses interrupt vector OAH as a cascade input from a second 8259A located at vectors 70H
through 77H. Appendix A contains atable that lists the functions of al the interrupt vectors used
in the PC-, XT-, and AT-style computers.

This circuit uses vectors 08H-OFH and 1/0 ports 0300H and 0302H for U1, the master;
and vectors 70H-77H and 1/O ports 0304H and 0306H for U2, the slave. Notice that we aso in-
clude databus buffersto illustrate the use of the SP/EN pin on the 8259A. These buffers are used

only in very large systems that have many devices connected to their data bus connections. In
practice, we seldom find these buffers.

478 CHAPTER 12 INTERRUPTS

vce i or-NOT©
{ o oOYuan BaD N0
: EC ELEEE cezlzcll

FIGURE 12-16 An 8259A

interfaced to the 8086 micro-
processor. 10K
" : g 9999] 00 dedgeesd
I — T AT T OTT
Do) IR0 |48 33 5234 ;
ot oo ias 58 [SISISISRRISHY
D3 ? D3 IR3 g; Interrupt inputs
D4 D4 IR4 i
D5 51 bs ins 2
D6 D6
D7 4 1p7 IR7 |22 }7
27 || of ol ot sty
" & TR %’ RS J o
WR 7 = 12 [eysefisfichifinfiig QOO fiof e i it QNG
71 SP/EN CASO 3 L«LL| | [=ER===== b4
INTR 56— INT 8/&%; e 5 000 GO0
INTA INTA — @ %
WAT2 ———— 4 8259A i s . &
QI‘L\”;—»‘E § B <[5
585885885 MREGEE(S S 35888885 WMREGEE §
ARSI RENRAK T

)

>

®

12

[]

ESS

s

T

[}

(=]

(3]

o

°

[=

©

T

<

(o]

[w]

o

°

c

©

&

[5]

©

£

[0}

<

s x T

Q T E] S

g Oo— AN T N 0 § T

[aY]

o

i I = 8

NE! N ©

5\ /% B\ /% &

T

R N 8

Programming the 8259A l i 3
2 o 0

The 8259A is programmed by initialization and operation command words. I nitialization com- Taninene oo - " 5
mand words (1cws) are programmed before the 82504 is zble to function in the system and <<ee<eRe Yol ©e222_e 958 o
dictate the basic operation of the 8259A. Operation command wor ds (OCWs) are programmed Y U daoseae |3 =
during the normal course of operation. The OCWs control the operation of the 8259A. > 2”””"1’“’“’j " Sjoggdanes j~ <
- D

Initialization Command Words. There are four initidization command words (ICWs) for the 8259A &
that are selected whenthe AO pinis alogic one. When the 8259A isfirst powered up, it must be sent °§
1cw1, ICW2, and ICWA4. If the 8259A is programmed in cascade mode by ICW1, then we aso — %
must program jcw3. So if asingle 8259A isused in a system, ICW1, ICW2, and ICW4 must be J ha
programmed. If cascade modeisused in asystem, then all four ICWs must be programmed. Refer to J 8
Figure 12-18 for the format of al four ICWSs. Thefollowing is adescription of each ICW: %
Icwi1 Programs the basic operation of the 8259A. To program this ICW for 8086-Pentium E
operation, we place alogic 1 in bit IC4. Bits ADL, A7, A6, and A5 are don't cares p:d

for microprocessor operation and only apply to the 8259A when used with an 8-bit &

8085 microprocessor (not covered in this textbook). This ICW selects single or - o ‘g

cascade operation by programming the SNGL hit. If cascade operation is selected o ,E

we must also program ICW3. The LTIM bit determines whether the interrupt 2 EREN

request inputs are positive edge-triggered or level-triggered. 3 ~ g -

ICW2 Selects the vector number used with the interrupt request inputs. For example, if o -
We decide to program the 8§259A so it functions at vector locations 08H-OFH, we; '5'.:4

place a ggy into this command word. Likewise, if we decide to program the 85883585 = | z

iz o

8259A for vectors 70H-77H, we place a 70H in this ICW.
479

480 CHAPTER 12 INTERRUPTS

FIGURE 12-18 The 8259A
initialization command words
(ICWs) (Courtesy of Intel
Corporation.)

NOTE % S\.AVE ID IS EQUAL TO THE CORRESPONDING

MASTER

oWt
A, O 0, o O %

CLLL b=ET]
]

1 ICWs NEEDED
0« NO ICW4A NEEDED

1 = SINGLE
0 = CASCADE MODE

CALL ADORESS INTERVAL
1+ INTERVAL OF &
Q- INTERVAL OF 8

v = LEVEL

MODE
© = EDGE MODE

1owz

AR ™o
FrLLi_LLLL_

1CW3 (MASTER DEVICE)
p, %% b &

Ay O By O By a3
| s |slststs]s(® T s.]
; | LI

1CW3 {SLAVE DEVICEI

o, U O 0

DDonBnDE

of INTERRUPT
E'IOR ADDRESS
(MCS 80785 MODE ONLY)

(8088/8088

> R INPUT MAS ASLAVE
IR INPUT DOE SWOT wave

o

ASLAVE

SLAVE DIV

2

“i-le|»
=11~

5
1
0

1

~lelo]e

o7 O Oy D& 03 02 D1 Do

(T LTl

T

i

3
t
'
0

ofe]e]e
Sle|-1-

©
1
o

= 8086/8088 MODE
0 = MCS.80/ 85 MODE

1 AUTO EOt
© - NORMAL EOV

- BUFFERED MODE/SLAVE

x WON guF FERED MODE
1
-- BUF FERED MODE/MASTER|

T = SPECIAL FULLY NESTED

MOOE
0 = NOT SPECIAL FULLY
ESTED MODE

Is only used when w1 indicates that the system is operated in cascade mode
This ICW indicates where the slave is connected to the master. For examnl ﬁe ction,
Figure 1, g Wwe connected aslave to IR2. To program ICW3 for this ©OM"

in both master and save, we place a04H in ICW3. Suppose we have two saves |

ICW3

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 481

connected to amaster using IR0 and IR 1. The master is programmed with an
ICW3 of 03H; one slave is programmed with an ICW3 of 01H and the other with
an ICW3 of 02H.

ICW4 Is programmed for use with the 8086-Pentium |l microprocessors, but is not
programmed in a system that functions with the 8085 microprocessor. The
rightmost bit must be alogic 1 to select operation with the 8086-Pentium 11
microprocessors, and the remaining bits are programmed as follows:

SFNM—Selects the special fully-nested mode of operation for the 8259A if a
logic 1 is placed in this bit. This alows the highest-priority interrupt request from
a dave to be recognized by the master while it is processing another interrupt from
adave. Normally, only one interrupt request is processed a atime and others are
ignored until the process is complete.

BUF and M/S—Buffer and master save are used together to select buffered
operation or nonbuffered operation for the 8259A as a master or a dave.

AEOI—Selects automatic or normal end of interrupt (discussed more fully under
operation command words). The EOI commands of OCW2 are used only if the
AEOI mode is not selected by ICWA4. If AEQI is selected, the interrupt
automatically resets the interrupt request bit and does not modify priority. Thisis
the preferred mode of operation for the 8259A and reduces the length of the
interrupt service procedure.

Operation Command Words. The operation command words (OCWS) are used to direct the op-
eration of the 8259A once it is programmed with the ICW. The OCWs are selected when the AO
pinis at alogic O level, except for OCW 1, which is sdlected when AO is alogic 1. Figure 12-19
lists the binary bit patterns for dl three operation command words of the 8259A. Following is a
list describing the function of each OCW:

OoCw1 Is used to set and read the interrupt mask register. When amask bit is st it will
turn off (mask) the corresponding interrupt input. The mask register is read when
OCWL1 isread. Because the state of the mask bits are unknown when the 8259A is
first initialized, OCW1 must be programmed after programming the ICW upon
initialization.
OCW2 Is programmed only when the AEOI mode is not selected for the 8259A. In this
case, this OCW selects the way that the 8259A responds to an interrupt. The
modes are listed as follows:
Nonspecific End-of-Interrupt—A command sent by the interrupt service
procedure to signal the end of the interrupt. The 8259A automatically determines
which interrupt level was active and resets the correct bit of the interrupt status
register. Resetting the status bit allows the interrupt to take action again or alower
priority interrupt to take effect.
Specific End-of-Interrupt—A command that allows a specific interrupt request to
be reset. The exact position is determined with bits L2-LO of OCW2.
Rotate-on-Nonspecific EOI—A command that functions exactly like the Non-
specific End-of-Interrupt command, except that it rotates interrupt priorities after
resetting the interrupt status register bit. The level reset by this command becomes
the lowest-priority interrupt. For example, if IR4 wasjust serviced by this com-
mand, it becomes the lowest-priority interrupt input and IR5 becomes the highest
priority.
Rotate-on-Automatic EOI—A command that selects automatic EOI with rotating
priority. This command must only be sent to the 8259A once if this mode is
desired. If this mode must be turned off, use the clear command.

482

CHAPTER 12 INTERRUPTS

FIGURE 12-19 The 8259A oow
4 O, 0 O 0O DO 0 D 0

operation command words

(OCWSs). (Courtesy of Intel FI il 1 . : il Tondl B l'" l h l "’J

Corporation.) U]] [| [] F]E_@ﬂ
0 + MASK RESET

OCWZ
A 0, 0 O 0O 0 DO O 0

nooEnDEEn

mLEveL T 3E
ACTED UPOW
ol]2[314[5]8]7
ol1jotrJatr]elt
Glolrjrlojel1t
ofofefofr[r]r]"
I
HON-BPECIFIC E0ICONMAND } M OF INTERRUPT.
V[1111 e eo commue
T] 0] 7] ROTATE ON MON-SPRCHIC KOI COUMAND
T{ 0] 0] moTaTE m AUTOMANIC EOI $0OE toeT) AUTOMATIC ROTETION
T 0[O MOTATE e AUTOMATIC EOI MODE (CLEAR)
TPV [1] -AOTATF ON SRECIFIC EO) COMMAND } SPECIIC ROTATION
T 71 0] sy swoRMTY command
0[1]0] woorenamon
L0-L2 ANE USED
ocw3
A D, O O O 0 D 0 D
C o=l L
l MAG REGHSTER CoMMAND
I I O
) l] 1 !
AEAD | READ
A REG | ISREG
MO ACTION | on NexT fON NEXT
AD PuLSE | D PULSE
1=POLL COMMAND
0-NO POLL COMMAND
SPECIAL MASK MODE
T
ST
RESET ':E::AL
sPeCIAL
MO ACTION reciaL | srEcin

Rotate-on-Specific EOI—Functions as the specific EOI, except that it selects
rotating priority.

Set priority—Allows the programmer to set the lowest priority interrupt input
using the L2-LO bits.

OoCwa3 Selects the register to be read, the operation of the specia mask register, and the
poll command. If polling is selected, the P bit must be set and then output to the
8259A. The next read operation will read the poll word. The rightmost three bits
of the poll word indicate the active interrupt request with the highest priority. The
leftmost bit indicates whether there is an interrupt and must be checked to
determine whether the rightmost three bits contain valid information.

Satus Register. Three status registers are readable in the 8259A: interrupt request seg!

(IRR), in-service register (ISR), and interrupt mask register (IMR). (See Figure 12-20 for dl

124 8259A PROGRAMMABLE INTERRUPT CONTROLLER 483

1S7_156 1S5 154 1S3 IS2_IS1 ISO IS7 IS6 IS5 IS4 IS3 IS2 IS1_iSQ
ISR STATUS 0 1 0 1 0 0 0 ©] BEFORE ISR STATUS 0 1 0 0 .0 0 9 0 AFTER
(a) PRIORITY [7 6 5 4 3 2 1 0] COMMAND (b) PRIORITY 2 1. 8 7 6 5 4 3] COMMAND
* |
!
| i
LOWEST PRIORITY HIGHEST PRIORITY HIGHEST PRIORITY LOWEST PRIORITY

FIGURE 12-20 The 8259A in-service register (ISR). (a) Before IR4 is accepted, and (b) after IR4 is accepted.
(Courtesy of Intel Corporation.)

status registers; they al have the same bit configuration.) The IRR is an 8-hit register that indi-
cates which interrupt request inputs are active. The ISR is an 8-bit register that contains the level
of the interrupt being serviced. The IMR is an 8-bit register that holds the interrupt mask bits and
indicates which interrupts are masked off.

Both the IRR and ISR are read by programming OCW3 and IMR is read through OCW 1.
Toread the IMR, AO = 1; to read either IRR or ISR, AO = 0. Bit positions DO and D1 of OCW3
select which register (IRR or ISR) is read when AO = 0.

8259A Programming Example

Figure 12-21 illustrates the 8259A programmable interrupt controller connected to a 16550 pro-
grammable communications controller. In this circuit, the INTR pin from the 16550 is connected
to the programmable interrupt controller's interrupt request input IRO. An IR0 occurs whenever
(1) the transmitter is ready to send another character, (2) the receiver has received a character, (3)
an error is detected while receiving data, and (4) amodem interrupt occurs. Notice that the 16550
is decoded at /O ports 40H and 47H, and the 8259A is decoded at 8-bit 1/0 ports 48H and 49H.
Both devices are interfaced to data bus of an 8088 microprocessor.

Initialization Software. The first portion of the software for this system must program both the
16550 and the 8259A, and then enable the INTR pin on the 8088 o that interrupts can take ef-
fect. Example 12-8 lists the software required to program both devices and enable INTR. This
software uses two memory FIFOs that hold data for the transmitter and for the receiver. Each
memory FIFO is 16K bytes long and is addressed by apair of pointers (input and output).

EXAMPLE 12-8

;Initialization software for the 16550 and 8259A
;of the circuit in Figure 12-21.

0048 PICL EQU 48H 7 8259A control AO

= =0
= 0049 PICI EQU 49H :8259A control AO = 1

= 001B ICWlL EQU 1bH ;82594 | OM

= 0080 IcwW2 EQU 80H ; 8B259A ICW2

= 0003 ICWd EQU 3 ; 8259A ICwW4

= OOFE OCWl EQU CFEH ; 8259A OCW1

= 0043 LINE EQU 43H ;16550 line register

= 0040 LSB EQU 40H ;16550 Baud divisor LSB
= 0041 VBB EQU 1H ;16550 Baud divisor MSB
= 0042 FIFO EQ 42H ;16550 FIFO register

= 0041 ITR EQU 41H ;16550 interrupt register
0000 START PROC NEAR

;Program 16550, but do not enable interrupts yet

0000 BO 8A MOV AL,10001010B ;enable Baud divisor
0002 E6 43 QUT LINE, AL

0004 BO 78 MOV AL,120 ;program Baud rate
0006 E6 40 aur LSB,AL ;9600 Baud rate
0008 BO 00 MV AL, O

484 CHAPTER 12 INTERRUPTS
RESET
25 vce
A2 — T
< 10K
Data Bus (DO-D7)
| Ul
N1 oo o2
2 27
N M=
N cso 2
6 b5 CSl —7
7 D6 cs2 o
N8 p7 35
MR
10 g o 22
Serial Data 1T Sout RD p2L
WR 19
|—15¢ BAUDOUT WR bag
1 9 IRCLK ADS b= 18.432 MHz
32 S XIN | 16 I h—
— < CR XOUT [z Ly
_*.BLB%ﬁ TXRRY 22
= 3‘8 DCD RXRD
w2
Al 11 0119 40H-47H

48H-49H 1 RD

“IlShew -
INTR iva b C%Aszg 13
INTA TIKNTTS—‘—A—’ -

VCCo—ANS 59A

JE— 10K
WR
iy

FIGURE 12-21 The 16550 UART interfaced to the 8088 microprocessor through the 8259A.

O0O0A

OO0E
0010
0012

0014
0016

0018
001A

0o1C
001E

3

8883

#8 838 838

41

43
07
42

1B

80

49

03
49

€868 §

MSB, AL

AL, 00001010B

LINE, AL
1,00000111B
FIFO,AL

; Programsg259a

MOV
aur
MoV
aur
MoV
aur

AL, ICWL
PTCL1,AL

AL, ICW2
Pl 2, AL

AL, ICw4
Pl C2, AL

;program 7-data, odd
;parity, one stop
;enable transmtter and
;and recei ver

;program LCWL

;program ICW2

;program ICW4

Other Interrupt Requests

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 485

0020 BO FE MOV AL, OCWl ;pr ocwl
0022 E6 49 ar PICA program oo
0024 FB STT

;enable system | NIR pin
;enable 16550 interrupts

ggg? E(CS) gz MV AL,S ;enable recei ver and
aur ITR, AL ; interrupts

0029 <3 RET sren .

002A START ENDP

The first portion of the procedure (START) programs the 16550 UART for operation with
seven databits, odd parity, one stop bit, and a Baud rate clock of 9600. The FIFO control register
aso enables both the transmitter and receiver.

The second part of the procedure programs the 8259A, with its three ICWs and its one
OCw. The 8250A is set up so that it functions at interrupt vectors 80H-87H and operates with
automatic EOL The ICW enables the interrupt for the 16550 UART. The INTR pin of the mi-
croprocessor is also enabled by using the STI instruction.

The final part of the software enables the receiver and error interrupts of the 16550 UART
through the interrupt control register. The transmitter interrupt is not enabled until data are avail-
able for transmission. See Figure 12-22 for the contents of the interrupt control register of the
16550 UART. Notice that the control register can enable or disable the receiver, transmitter, line
status (error), and modem interrupts.

Handling the 16550 UART Interrupt Request. Because the 16550 generates only one interrupt
request for various interrupts, the interrupt handler must poll the 16550 to determine what type
of interrupt has occurred. This is accomplished by examining the interrupt identification register
(see Figure 12-23). Note that the interrupt identification register (read-only) shares the same 1/0
port as the FIFO control register (write-only).

FIGURE 12-22 The 16550 Interrupt Control Register
interrupt control register. 7 6 5 4 3 2 1.0

0|0 O0fO0|EM EL:ET:ER

Fnable Raceiver Interrupt
0 = disable
1 = enabley

Enable Transmitter Interrupt
= dis; rbjeg
=en:

Enable Line Interrupt
= disgble

= enable

Enagblze (tj\flsc%%n Interrupt
= enable

FIGURE 12-23 The 16550 Interrupt Identification Register
interrupt identification register. 7 6 5 4 3 2 1 0

I l
[0|0|0[OIID|IDIIDIPN
T

 —
Interrupt Pending
0 = interrupt pending
1 =nointerrupt

Interrupt Identification Bits
(see Table 12-2)

CHAPTER 12 INTERRUPTS

TABLE 12-2 The interrupt control bits of the 16550.

Reset Control

Bit1 BitO Priority Type
0 1 — No interrupt —
1 0 1 Receiver error (parity, Reset by reading the line
framing, overrun, or break) register
0 0 2 Receiver data available Reset by reading the data

Character time-out, nothing
has been removed from the

receiver FIFO for at least Reset by reading the data
four character times
1 0 3 Transmitter empty Reset by writing to the
transmitter
0 0 4 Modem status Reset by reading the

modem status

Note: 1 is the highest priority and 4 the lowest.

The interrupt identification register indicates whether an interrupt is pending, the type of in-
terrupt, and whether the transmitter and receiver FIFO memories are enabled. See Table 12-2for the
contents of the interrupt control bits.

The interrupt service procedure must examine the contents of the interrupt identification
register to determine what event caused the interrupt and pass control to the appropriate proce-
dure for the event. Example 12-9 shows the first part of an interrupt handler that passes control
to RECV for areceiver datainterrupt, TRANS for atransmitter datainterrupt, and ERR for aline
status error interrupt. Note that the modem status is not tested in this example.

EXAMPLE 129

;Interrupt handler for the 16550 UART of
; Figure 12-21.

0000 INT80 PROC FAR
0000 50 PUSH AX)
0001 E4 42 IN AL, 424 ;input interrupt 1D reg
0003 3C 06 oW AL, 6 jtest for error
0005 74 20 JE ERR ; for receiver error

oW AL,2 ;test for transmtter
888; 34(: gg JE TRANS ;for transmtter ready
000B 3C 04 ow AL, 4 ;test for receiver
000D 74 11 JE RECV ; for receiver ready

Receiving Data from the 16550. The datareceived by the 16550 are stored, not only in the FIFO
within the UART, but aso in a FIFO memory until the software in the main program can use
them. The FIFO memory used for received datais 16K bytes long, so many characters can easily
be stored and received before any intervention from the microprocessor is required to empty the
receiver’s memory FIFO. The receiver memory FIFO is stored in the extra segment so string
structions that use the DI register can be used to access it.

Receiving data from the 16550 requires two procedures. One procedure reads the data
ister of the 14550 €ach time that the INTR pin requests an interrupt, and stores it into the Tefmo
FIFO. The other procedure reads data from the memory FIFO from the main program.

1,

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 487

Example 12-10 lists the procedure used to read data from the memory FIFO from the main
program. This procedure assumes that the pointers (ITN and IOUT) are initialized in the initial-
ization dialog for the system (not shown). The READ procedure returns with AL containing a
character read from the memory FIFO. If the memory FIFO is empty, the procedure returns with
the carry flag bit set to alogic one. If AL contains a valid character, the carry flag bit is cleared
upon return from READ.

Notice how the FIFO is reused by changing the address from the top of the FIFO to the
bottom whenever it exceeds the start of the FIFO plus 16K. This is located a the CMP instruc-
tion at offset address 0015. Also natice that interrupts are enabled a the end of this procedure, in
case they are disabled by afull memory FIFO condition by the RECV interrupt procedure.

EXAMPLE 12-10
iA procedure that reads one character fromthe nenory

;FIFO and returns with it in aAL.
;If the FIFO is enpty the return occurs with Carry = 1.

0000 READ PROC NEAR USES BX D
0002 26: 8B 3E 4002 R MOV DI, TOUT ;get output pointer
0007 26: 8B1E 4000 R MOV BX, N ; get input pointer
000C 3B DF CW BX,DI ; compare pointers
O0CE RO STC ;set carry flag
OOOF 74 16 JE DONE1 ;if enpty
0011 26: BA 06 MOV AL,ES: [DI] :get data from HFO
0014 47 INC D raddress next byte
0015 81 FF 4000 R COW DI, OFFSET FIFO+16*1024
0019 26: 89 3E 4002 R MOV IOUT,DI ;i save pointer
001E 76 07 JBE DONE ;1if within bounds
0020 26: C7 06 4002 R MV Toulr, OFFSET FI FO
0000 R

0027 DONE :
0027 F8 CLC rclear carry flag
0028 DONEL:
0028 9C PUSHF ;save carry flag
0029 E4 41 IN AL, 41H ;'read interrupt control
002B 06 05 R AL, 5 ;eenabl e receiver interrupts
002D E6 41 aur 41H,AT,
002F 9D PCPF

RET
0033 READ ENDP

Example 12-11 lists the RECV interrupt service procedure that is called each time the 16550
receives a character for the microprocessor. In this example, the interrupt uses vector type number
80H, which must address the interrupt handler of Example 12-9. Each time that this interrupt oc-
curs, the REVC procedure is accessed by the interrupt handler reading a character from the 16550.
The RECV procedure stores the character into the memory FIFO. If the memory FIFO is full, the
receiver interrupt is disabled by the interrupt control register within the 16550. This may result in
lost data, but at least it will not cause the interrupt to overrun valid data already stored in the
memory FIFO. Any error conditions detected by the 8251A store a ? (3FH) in the memory FIFO.
Note that errors are detected by the ERR portion of the interrupt handler (not shown).

EXAMPLE 12-11

JRECV portion of the interrupt handler in Exanple
;12-9.
0020 RECV: jcontinues from Exanple 12-9
0020 53 PUSH BX jsave registers

488

CHAPTER 12 INTERRUPTS

0021 57 PUSH D

0022 56 PUSH S)

0023 26: 8B 1E 4002 R MOV BX,IOUT ;1oad out put pointer

0028 26: 8B 36 4000 R Mv S, N ; load input pointer

002D 8B FE MV DI,SI ;
002F 46 INC S

0030 81 FE 4000 R aw SI, OFFSET Fl FO+16* 1024

0034 76 03 JBE NEXT

0036 BE 0000 R MOV SI, OFFSET FI FO

0039 NEXT:

0039 3B DE CW BX,SI ;is FIFO full?

003B 74 OB JE FULL if it is full

003D E4 40 IN AL, 40H ;read 16550 receiver

003F aa STCSB ;save it in FIFO

0040 26: 89 36 4000 R MV N S ;save input pointer

0045 EB 06 90 WP DONE ;end up

0048 FULL

0048 E4 41 IN AL, 41H ;read interrupt control

004A 24 FA AND AL, OFAH ;di sabl e receiver i
004C E6 41 aur 41H AL H
004E DONE :

004E BO 20 MOV AL,2CH ;signal 8259A EQ

0050 E6 49 aur 49H AL i

0052 5E PCP S ;restore registers

0053 5F PCP B}

0054 5B PCP BX

0055 58 PCP AX

0056 CF | RET

Transmitting Data to the 76550. Data are transmitted to the 16550 in much the same manner as
they are received, except that the interrupt service procedure removes transmit data from a
second 16K-byte memory FIFO.

Example 12-12 lists the procedure that fills the output FIFO. It is similar to the procedure
listed in Example 12-10, except it determines whether the FIFO is full instead of empty.

EXAMPLE 12-12

;A procedure that places data into the memory FIFO for
;transmission by the transmitter interrupt.
;AL = character to be transnitted.

/SAVE PROC NEAR USES BX DI S

124

8259A PROGRAMMABLE

EXAMPLE 12-13

0060
0060
0061
0062
0068
006D
006F
0071
0074
0076
0077
007B
007D
0080
0080
0085
0088
0088
008A
008C
008E
008E
0090
0092
0093
0094
0095

BO
E6
5F
5B
58
CF

INTERRUPT CONTROLLER

;Interrupt service procedure for the 16550
;lransmitter.

TRANS:

8B 1E 8004 R
8B 3E 8006 R
DF
17
8A 05
40

FF 8004 R
03
4004 R

NEXT1 :

89 3E 8006 R
07 90

EMPTY:

41
FD
41

DONTS:

20
49

PUSH BX ;save registers
PUSH D

MOV BX,OIN ;load input pointer
MOV DI, Q0UT ;1 oad output pointer
OW BX,DI

JE EMPTY ;if enpty

MV AT, ES: [DI] ;get character

aut 40H, AL ;send it to UART
INC D

CWP DI, OFFSET OFIFO+16%1024

JBE NEXTL

MOV DI, OFFSET OFl FO

MOV OOUT,DI

JIMP ONES

IN AL, 41H ;read interrupt control
AND AL, OFDH ;disable transmtter
QUT 41H AL

MOV AL, 20H ;signal 8259A EOI
aJr 49H, AL

PCP D

PCP BX

PCP AX

IRET

The 16550 also contains a scratch register, which is a general-purpose register that can be
used in any way deemed necessary by the programmer. Also contained within the 16550 are a
modem control register and a modem status register. These registers allow the modem to cause
interrupt and control the operation of the 16550 with a modem. See Figure 12-24 for the con-

tents of both the modem status register and the modem control register.

Modem Control Register

LB O)UT|
| 2

()Ur‘l RTSIDTR
]

0000 2
0003 26:: 8B 36 8004 R MOV SI,OIN ;get input pointer Lo|o 0
0008 26:: 8B 1E 8006 R MOV BX,00UT ;get output pointer
000D 8B FE MOV DI,sI
OOOF 46 INC S
0010 81 FE 8004 R oaw SI,0FFSET OFIFO+16%*1024
0014 76 03 JBE NEXT
0016 BE 4004 R MOV SI,OFFSET CFI FO
0019 NEXT:
0019 3B DE : aw BX, 81
001B 74 06 JE DONE ;if full
001D AA STOSB ; save data in OFIFO
001E 26:: 89 36 8004 R MoV QIN, ST
0023 DONE :
0023 E4 41 IN AL,41H ;read interrupt control
0025 06 01 R AL, 1 ;enable transnitter
0027 EB6 41 aur 41H, AL
RET
002D SAVE ENDP

Example 12-13 lists the interrupt service subroutine for the 16550 UART transmitter- Thi
procedure is a continuation of the interrupt handler presented in Example 12-9 and is similar to e
RECV procedure of Example 12-11, except that it determines whether the FIFO is empty rather

full. Note that we do not include an interrupt service procedure for the bresk interrupt or any end URE 12-24

[DTRpin
0=1 on DTR pin
1 =0o0n DTR pin
RTS pin
0=1 onRTS pin
1=00nRTS pin
OUT 1 pin
0=10n0OUT 1 pin
1=00n0UT 1 pin
OUT 2 pin
0=1 on OUT 2 pin
1=00nQUT2 pin
Loophack contral

0= no operation

1 = selects loopback test

Modem Status Register
7 6 5 4 3 2 1 Y
D—I
CTS

IDCD
L &R has changed
=no change

D
RI [DSR|CTS| DCD!

D
DSR

TE
Rl

I
~od
=
35
oo
S
s
E]
=]
@
=

0
1=

Trailing edge of I
0 = no change
1

as changed
no change

W
=

CTS pin __
0=1on CTS pin
1=00nCTS pin

_ﬁR pin __

0=1 on DSR pin
__1=00n DSR pin
_RiIpin _

0=1onRipin

1 =0o0n Rl pin

- DCD pin __

0=1 on DCD pin

1 =0on DCD pin

The 16550 modem control and modem status registers.

CTS has changed
DSR has changed
railing edge of Rl

DCD has changed

490 CHAPTER 12 INTERRUPTS
% 1
Ui 1489 ,EW\
= = |
A2 8% 1 1489 24 °
15150 D4 — 5 5 =T
14 4 cs2 D6 g Tg——o
35 |ur D7 1489 g1
22 |pp SIN |10 21 1°
214 RD sout |11] 5 8 to
—2 1 WR
WR BAUDOUT 18— > o
—25 4 ADS RCLK |2 Tae8 1
16 32 78 |°
17 ygu‘r gg ggg 3 ©
24 4 TXRDY BSR a7 3 4 T
—29 4 RXRDY DCDR38 | 1
23 _1ppis RI39 o
30| NTR 2 1488 15
ouT! Py 5 6 I =
ouT2 p=— £
16550
1488 RS-232C
10K 8 3
1489
VCC 4
FIGURE 1225 The 16550 interfaced to RS-2332C using 1488line drivers and 1489line
receivers.

The modem control register uses bit positions 0-3 to control various pins on the 16550. Bit
position 4 enables the internal loop-back test for testing purposes. The modem status register al-
lows the status of the modem pins to be tested; it also allows the modem pins to be checked for a
change or, in the case of RI, atrailing edge.

Figure 12-25 illustrates the 16550 UART, connected to an RS-232C interface that is often
used to control a modem. Included in this interface are line driver and receiver circuits used to
convert between TTL levels on the 16550 to RS-232C levels found on the interface. Note that
RS-232C levels are usually +12 V for alogic 0 and -12 V for alogic 1 level.

In order to transmit or receive data through the modem, the DTR pin is activated (logic 0)
and the UART then waits for the DSR pin to become alogic 0 from the modem, indicating that
the modem is ready. Once this handshake is complete, the UART sends the modem alogic 0 on
the RTS pin. When the modem is ready, it returns the CTS signal (logic 0) to the UART. Com-
munications can now commence. The DCD signa from the modem is an indication that the
modem has detected a carrier. This signal must also be tested before communications can begin.

12-5 INTERRUPT EXAMPLES

This section of the text presents areal-time clock and an interrupt processed keyboard as exam-
ples of interrupt applications. A real-time clock keeps time in real time—that is, in hours ana
minutes. The example illustrated here keeps time in hours, minutes, seconds, and 1/60 seconds:
using four memory locations to hold the BCD time of day. The interrupt processed keyboard

uses a periodic interrupt to scan through the keys of the keyboard.

125 INTERRUPT EXAMPLES 491

Real-Time Clock

Figure 12-26 illustrates a smple circuit that uses the 60 Hz AC power line to generate a periodic

interrupt request signal for the NMI interrupt input pin. Although we are using a signal from the

éfc‘ power line, which varies slightly in frequency from time to time, it is accurate over a period
time.

The circuit uses a signal from the 120 VAC power line that is conditioned by a Schmitt
trigger inverter before it is applied to the NMI interrupt input. Note that you must make certain
that the power line ground is connected to the system ground in this schematic. The power line
ground (neutral) connection is the large flat pin on the power line. The narrow flat pin is the hot
side or 120 VAC side of the line.

The software for the real-time clock contains an interrupt service procedure that is called
60 times per second and a procedure that updates the count located in four memory locations.
E_xamg?lg 12-14 lists both procedures, along with the four bytes of memory used to hold the BCD
time of day.

EXAMPLE 12-14

.MODEL TI NY
0000 .CODE

.STARTUP
0100 EB 04 JWP TIMES
0102 00 TIME DB ? ;1/60 second counter
0103 00 0B ? ; seconds counter
0104 00 DB ? ;minutes counter
0105 00 DB 2 ;hours counter

;Interrupt handl er for NM

0106 TIMES PROC FAR

0106 50 PUSH AX ; save registers
0107 56 PUSH g

0108 B4 60 MV aH, 60H ; load nmodul us 60
010A BE 0102 R MOV ST, OFFSET TIME ;address time

010D E8 0014 CALL WP ; increment 1/ 60 counter
0110 75 OF INZ DONE

0112 E8 OOOF CALL w ; increment seconds
0115 75 QA INZ DONE

0117 E8 OOOA CALL WP ;increment m nutes
011A 75 05 INZ DONE

0l1ic B4 24 MOV RAH, 24H ; load nodul us 24
011E E8 0003 CALL WP ;increment m nutes
0121 DONE :

0121 5E PCP 9 ;reload registers
0122 58 PCP AX

0123 CF | RET

0124 TI MES ENDP

0124 P PROC NEAR

FIGURE 12-26 Converting
the AC power line to a 60 Hz
TTL signal for the NMI input.

120 VAC
White

Black , 33K

74LS14

NMI

0.1uF

492

CHAPTER 12 INTERRUPTS

3 MOV L : [ST ;get count
(O)igé; flg sh 0t INC g o8 e ;address next counter
ADD AL, 1 sincrement count
géILEBA (2)‘71 o DAA ;make it BCD
012B 2E: 8844 FF MOV CS: [9-1] AL ;save count
012F 2A &4 SB AL, AH ;test nodul us
75 04 JINZ (U]
gﬁ:l; 2E: 8844 FF MWV cs: [9-1] AL ;clear count
0137 < UPL:
0137 G RET
0138 upP ENDP
END

The 4 keyboard scans through the keys on a keyboard through a periodic in-
terrupt. Each time the interrupt occurs, the interrupt-service procedure tests for a key or de-
bounces the key. Once a valid key is detected, the interrupt-service procedure stores the
key-code into akeyboard queuefor later reading by the system. The basis for this systemis ape-
riodic interrupt that can be caused by atimer or other device in the system. Note that most sys-
tems aready have a periodic interrupt for the rea-time clock. In this example, we assume that
the interrupt cals the interrupt-service procedure every 10 ms.

Figure 12-27 shows the keyboard interfaced to an 8255. It does not show the timer or other
circuitry required to call the interrupt, once in every 10 ms. (Not shown in the software is pro-
gramming of the 82C55.) The 82C55 must be programmed so that port A is an input port, port B
is an output port, and the initialization software must store a OOH at port B. This interfaces uses
memory that is stored in the code segment for aqueue and afew bytes that keep track of the key-
board scanning. Example 12-15 lists the interrupt service procedure for the keyboard.

Interrupt-Processed Keyboard
interrupt—}i)rocesse

EXAMPLE 12-15
;interrupt Pprocedure for the keyboard in
; figure 12-27

" MODEL TI NY

FIGURE 12-27 A telephone
style keypad interfaced to the
82C55.

125 INTERRUPT EXAMPLES

493

. 386
0000 .CODE
= 1000 PCRTA EQU 1000H ;define port A address
= 1001 PCRTB EQU 1001H ;define Port B address
. STARTUP
0100 INTKEY — PROC FAR USES AX DX ;keyboard interrupt
0102 BA 1000 MOV DX, PORTA
0105 EC IN AL, DX ; test for any key
0106 OC FO CR AL, OFOH
.IF AL != OFFH ;if key found
010C FE 06 0192 R I NC DBONT ;increment bounce count
.IF DBCNT==3 ;if > 20 s
0117 G5 06 0192 R 02 MOV DBCNT, 2
.IF DBF==
0123 53 PUSH BX
0124 G5 06 0193 R 01 MOV DEF, 1
0129 BB OOFB MV BX, OFBH
.WHILE 1 ;£ind key
012C BA 1001 MOV DX, PORTB
012F 8A C3 MOV AL, BL
0131 EE QUT DX, AL
0132 DO B ROR BL, 1
0134 BA 1000 MOV DX, PORTA
0137 EC IN AL,DX
0138 CC FO OR AL, 0F0H

013E 80 C7 04

0143 8A D8
0145 BA 1001
0148 BO 00
014A EF

014B FE CF

014D DO EB
014F FE C7

0153 8A C7

0155 8B 1E 0194 R
0159 2E 88 07
015C FF 06 0194 R

0166 C7 06 0194 R 0182 R

016C 5B

016F FE CE 0192 R

0175 G5 06 0192 R 00
017A 5 06 0193 R 00

0182
0182 0010 [
00

0192 00
0193 00
0194 0182 R

.BREAK .IF AL 1= COFFH
ADD BH, 4
. ENDW
MOV BL, AL
MOV DX, PORTB
MV AL, 9
QUT DX, AX ; clear port B pins
DEC BH
-REPEAT ;find key code
SHR BL, 1
INC BH
.UNTIL !CARRY?
MOV AL, BH
MOV BX, PNTR
MOV CS:[BX],AL ;key code to queue
INC PNTR
.IF BX == OFFSET DBCNT-1
MOV PNTR, CFFSET QUEUE
.ENDIF
PCP BX

.ENDIF
. ENDF

.ELSE

DEC DBCONT

LIF S
MOV
MoV

;jno key found
;decrement bounce count
ave
DBCNT,0 ;clear count and flag
DBF, 0

.ENDIF

.ENDIF
IRET

I NTKEY ENDP

QUELE DB 16 DUP(?)

DBONT DB 0

DBF
PNTR
END

DB 0
Dw QUELE

;keyboard queue

;debounce count
;debounce flag
;pointer to queue

494

CHAPTER 12 INTERRUPTS

inthe
the 1
flowi

queue,

procedure is not interrupt-driven and is caled only when information from the keyboard is
needed in a program. Example 12-17 shows the caller software for the key procedure.

EXAMPLE 12-16

0198
019C
01A0

01A4
01A5

01AF

01B2
01B5

01BC

01BF
01C3
01Gs
01C8

0108 KEY ENDP
EXAMPLE 12-17

01CB E8 FFD6 CALL KEY

The keyboard-interrupt finds the key and stores the key-code in the queue. The code stored
queue is araw code that does not indicate the key number. For example, the key code for
ke isaOOH, the key code for a4-key is a01H, etc. Thereisno provision for aqueue over-
n t¥1is software. It could be added, but in amost al casesit is difficult to out-type a 16 bytes

Example 12-16 illustrates a procedure that removes data from the keyboard queue. This

;look up table
01 04 07 QA LaoK 0 ilook up

02 05 08 00
03 06 09 CB

B8y

4
6

© ®
o

69,11
KEY PROC NEAR USES BX
8B 1E 0196 R MOV BX,OPNTR
.IF BX== PNIR
F9 STC
.ELSE
2E. 8A 07 MV AL, CS: [BX]
43 INC BX
.1F BX == CFFSET DBCNT-1
MOV BX, OFFSET QUEUE
.ENDIF
MV OPNTR, BX

; queue empty

;get code from queue

BB 0182 R

89 1E 0196 R
BB 0198 R MOV BX, OFFSET LOCK

2B D7 XLAT Cs:LOOK
F8 ac

_ENDIF

RET

.REPEAT

LUNTIL !CARRY?

12-6

SUMMARY

1.

d
- Interrupts A€ useful when an 1/0 device needs to be serviced only occasionally at low

. The microprocessor has five instructions that apply to interrupts: BOUND, INT

An interrupt is ahardware- or software-initiated call that interrupts the currently wre=

12-7 QUESTIONS AND PROBLEMS 495

5. Rea mode interrupts are referenced through a vector table that occupies memory locations
OOOOOH-003FFH. Each interrupt vector is four byteslong and contains the offset and segment
addresses of the interrupt service procedure. In protected mode, the interrupts reference thein-
terrupt descriptor table (IDT) that contains 256 interrupt descriptors. Each interrupt descriptor
contains a segment selector and a 32-bit offset address.

Two flag bits are used with the interrupt structure of the microprocessor: trap (TF) and in-

terrupt enable (IF). The IF flag bit enables the INTR interrupt input, and the TF flag bit

causes interrupts to occur after the execution of each instruction, as long as TF is active.

7. Thefirst 32 interrupt vector locations are reserved for Intel use, with many predefined in the

g\iqrcégrocr. Thelast 224 interrupt vectors are for user use and can perform any function
lesired.

8. Whenever an interrupt is detected, the following events occur: (1) the flags are pushed onto

the stack, (2) the IF and TF flag bits are both cleared, (3) the IP and CS registers are both

pushed onto the stack, and (4) the interrupt vector is fetched from the interrupt vector table
and the interrupt service subroutine is accessed through the vector address.

Tracing or single-stepping is accomplished by setting the TF flag bit. This causes an inter-

rupt to occur after the execution of each instruction for debugging.

10. The non-maskable interrupt input (NM1) calls the procedure whose address is stored at in-
terrupt vector type number 2. This input is positive-edge triggered.

1. The INTR pin is not internally decoded, as is the NMI pin. Instead, INTA is used to apply
the interrupt vector type number to data bus connections DO-D7 during the INTA pulse.

12. Methods of applying the interrupt vector type number to the data bus during INTA vary
widely. One method uses resisters to apply interrupt type number FFH to the databus, while
another uses athree-state buffer to apply any vector type number.

13. The 8259A programmable interrupt controller (PIC) adds at least eight interrupt inputs to
the microprocessor. If more interrupts are needed, this device can be cascaded to provide up
to 64 interrupt inputs.

14. Programming the 8259A is a two-step process. First, a series of initialization command
words (ICWs) are sent to the 8259A, then a series of operation command words (OCWSs) are
sent.

15. The 8259A contains three status registers: IMR (interrupt mask register), ISR (in-service
register), and IRR (interrupt request register).

16. A real-time clock is used to keep timein real-time. In most cases, time is stored in either bi-
nary or BCD form in several memory locations.

o

©

program at any point and calls aprocedure. The procedure is cdled by the interrupt
or an interrupt service procedure.

transfer rates. I

INTO, and IRET. The INT and INT 3 instructions call pro_cedures with addramﬁlc'g;
the interrupt vector whose type is indicated by the instruction. The BOUND **~ -
conditional interrupt that uses interrupt vector type number 5. The INTO instr"r*izﬂ'_'h
conditional interrupt that interrupts a program only if the overflow flag is set.
IRET instruction is used to return from interrupt service procedures. INTR
The microprocessor has three pins that apply to its hardware interrupt structure: , __....
and INTA. Theinterrupt inputs are INTR and NMI, which are used to request

INTA is an output used to acknowledge the INTR interrupt request.

QUESTIONS AND PROBLEMS

- What isinterrupted by an interrupt?

. Define the term interrupt.

. What is called by an interrupt?

Why do interrupts free up time for the microprocessor?

List the interrupt pins found on the microprocessor.

. List the five interrupt instructions for the microprocessor.

What is an interrupt vector?

. Where are the interrupt vectors located in the microprocessor's memory?
How many different interrupt vectors are found in the interrupt vector table?
. Which interrupt vectors are reserved by Intel?

Boow~Nooswp ~

496

CHAPTER 12 INTERRUPTS

. What is adaisy-chain?)) o

. Why must intérrupting devices be polled in a daisy-chained interrupt system?

. What is the 8259A?)))

. How many g259As are required to have 64 interrupt inputs?

. What is the purpose of the IRO-IR7 pins on the 8259A7

. When are the CAS2-CASO pins used on the 8259A7?

. Whereis adave INT pin connected on the master 8259A in a cascaded system?
. What is an ICW?

. What is an OCW?))

. How many ¢ are needed to program the 8259A when operated as a single master in a

. Where is the vector type number stored in the 8259A7

. Where is the sensitivity of the IR pins programmed in the 825947

. What is the purpose of ICW1?

. What is a non-specific EOI?

. Explain priority rotation in the 8259A.

. What is the purpose of IRR in the 8259A?

. Atwhich I/O ports is the master 8259A PIC found in the personal computer?
_ Atwhich I/0 portsis the dave 8259A found in the personal computer?

Explain how atype O interrupt occurs.

. Where is the interrupt descriptor table located for protected mode operation?

Each protected mode interrupt descriptor contains what information?

. Describe the differences between a protected and real mode interrupt.
. Describe the operation of the BOUND instruction.
. Describe the operation of the INTO instruction.

What memory locations contain the vector for an INT 44H instruction?

. Explain the operation of the IRET instruction.

. What is the purpose of interrupt vector type number 7?

. List the events that occur when an interrupt becomes active.

. Explain the purpose of the interrupt flag (IF).

. Explain the purpose of the trap flag (TF).

. How is IF cleared and set?

. How is TF cleared and set?

_ Thepgyy interrupt input automatically vectors through which vector type number?
. Doesthe INTA signd activate for the NMI pin?

. TheINTR inputis -sengitive.
. TheNMI inEI)_utis -sensitive.
. When the IN

A signal becomes alogic 0, it indicates that the microprocessor is waiting for
an interrupt number to be placed on the data bus (DO-D7).
What is a FIFO?

_ Develop acircuit that places interrupt type number 86H on the data bus in response to the

INTR input.

. Develop acircuit that places interrupt type number CCH on the data bus in response to the

INTR input.

. Explain why pull-up resistors on DQ-D7 cause the microprocessor to respond with interrupt

vector type number FFH for the INTA pulse.

system?

CHAPTER 13

Direct Memory Access
and DMA-Controlled /O

INTRODUCTION

In previous chapters, we discussed basic and interrupt-processed /0. Now we turn to the final
form of 1/O called direct memory access (DMA). The DMA 1/O technique provides direct ac-
cess to the memory while the microprocessor is temporarily disabled. This alows datato be
transferred between memory and the 1/0 device at arate that is limited only by the speed of the
memory components in the system or the DMA controller. The DMA transfer speed can ap-
proach 32-40 M-byte transfer rates with today's high-speed RAM memory components.

DMA transfers are used for many purposes, but more common are DRAM refresh, video
displays for refreshing the screen, and disk memory system reads and writes. The DMA
transfer is also used to do high-speed memory-to-memory transfers.

This chapter also explains the operation of disk memory systems and video systems that

are often DMA-processed. Disk memory includes floppy, fixed, and optical disk storage. Video
systems include digital and analog monitors.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:
1. Describe aDMA transfer.

. Explain the operation of the HOLD and HLDA direct memory access control signals.
. Explain the function of the 8237 DMA controller when used for DMA transfers.
. Program the 8237 to accomplish DMA transfers.

. Describe the disk standards found in personal computer systems.
. Describe the various video interface standards that are found in the personal computer.

O~ wWN

BASIC DMA OPERATION

Two control signals are used to request and acknowledge a direct memory access (DMA)
transfer in the microprocessor-based system. The HOLD pinis an input that is used to request a
DMA action and the HLDA pin is an output that acknowledges the DMA action. Figure 13-1
shows the timing that is typically found on these two DMA control pins.

497

