
CHAPTER 12

Interrupts

12-1 BASIC INTERRUPT PROCESSING 459

FIGURE 12-1 A time line
that indicates interrupt usage
in a typical system.

Keyboard interrupt Printer interrupt Keyboard interrupt

1 I 1

1 Main program 1 I 1
Printer interrupt

12-1

INTRODUCTION

In this chapter, we expand our coverage of basic I/O and programmable peripheral interfaces by
examining a technique called interrupt-processed I/O. An interrupt is a hardware-initialed pro-
cedure that interrupts whatever program is currently executing.

This chapter provides examples and a detailed explanation of the interrupt structure of the
entire Intel family of microprocessors.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:
1. Explain the interrupt structure of the Intel family of microprocessors.
2. Explain the operation of software interrupt instructions INT, INTO, INT 3, and BOUND.
3. Explain how the interrupt enable flag bit (IF) modifies the interrupt structure.
4. Describe the function of the trap interrupt flag-bit (TF) and the operation of trap-generated

tracing.
5. Develop interrupt-service procedures that control lower-speed, external peripheral devices.
6. Expand the interrupt structure of the microprocessor by using the 8259A programmable

interrupt controller and other techniques.
7. Explain the purpose and operation of a real-time clock.

BASIC INTERRUPT PROCESSING

In this section, we discuss the function of an interrupt in a microprocessor-based system, and
structure and features of interrupts available to the Intel family of microprocessors.

The Purpose of Interrupts
Interrupts are particularly useful when interfacing I/O devices tt
relatively low data-transfer rates. In Chapter 11, for instance, we
using strobed input operation of the 82C55. In that example, software polled the 82<

458

IBF bit to decide whether data were available from the keyboard. If the person using the key-
board typed one character per second, the software for the 82C55 waited an entire second be-
tween each keystroke for the person to type another key. This process was such a tremendous
waste of time that designers developed another process, interrupt processing, to handle this
situation.

Unlike the polling technique, interrupt processing allows the microprocessor to execute
other software while the keyboard operator is thinking about what key to type next. As soon as a
key is pressed, the keyboard encoder de-bounces the switch and puts out one pulse that interrupts
the microprocessor. In this way, the microprocessor executes other software until the key is ac-
tually pressed when it reads a key and returns to the program that was interrupted. As a result, the
microprocessor can print reports or complete any other task while the operator is typing a docu-
ment and thinking about what to type next.

Figure 12-1 shows a time line that indicates a typist typing data on a keyboard, a printer
removing data from the memory, and a program executing. The program is the main program
that is interrupted for each keystroke and each character that is to print on the printer. Note that
the keyboard interrupt service procedure, called by the keyboard interrupt, and the printer inter-
rupt service procedure each take little time to execute.

Interrupts
The interrupts of the entire Intel family of microprocessors include two hardware pins that re-
quest interrupts (INTR and NMI), and one hardware pin (INTA) that acknowledges the interrupt
requested through INTR. In addition to the pins, the microprocessor also has software interrupts
INT, INTO, INT 3, and BOUND. Two flag bits, IF (interrupt flag) and TF (trap flag), are also
used with the interrupt structure and a special return instruction IRET (or IRETD in the 80386,
80486, or Pentium-Pentium II).

Interrupt Vectors. The interrupt vectors and vector table are crucial to an understanding of
hardware and software interrupts. The interrupt vector table is located in the first 1024 bytes
of memory at addresses OOOOOOH-0003FFH. It contains 256 different 4-byte interrupt vectors.
An interrupt vector contains the address (segment and offset) of the interrupt service procedure.

Figure 12-2 illustrates the interrupt vector table for the microprocessor. The first five in-
terrupt vectors are identical in all Intel microprocessor family members, from the 8086 to the
Pentium. Other interrupt vectors exist for the 80286 that are upward-compatible to the 80386,
80486, and Pentium-Pentium II, but not downward-compatible to the 8086 or 8088. Intel re-
serves the first 32 interrupt vectors for their use in various microprocessor family members. The
last 224 vectors are available as user interrupt vectors. Each vector is four bytes long and con-
tains the starting address of the interrupt service procedure. The first two bytes of the vector
contain the offset address, and the last two bytes contain the segment address.

The following list describes the function of each dedicated interrupt in the microprocessor:

Type 0 Divide Error—Occurs whenever the result of a division overflows or whenever
an attempt is made to divide by zero.

12-1 BASIC INTERRUPT PROCESSING 461
460 CHAPTER 12 INTERRUPTS

FIGURE 12-2 (a) The
interrupt vector table for the
microprocessor, and (b) the
contents of an interrupt vector.

080H

Type 32 — 255
User interrupt vectors

Type 14— 31
Reserved

04QH

03CH

038H

034H

030H

02CH

028H

024H

020H

01CH

018H

014H

01 OH

OOCH

008H

004H

OOOH

Type 16
Coprocessor error

Type 15
Unassigned

Type 14
Page fault

Type 13
General protection

Type 12
Stack segment overrun^

Type 11
Segment not present

Type 10
Invalid task state segment

Type 9
Coprocessor segment overrun

Type8
Double fault

Type 7
Coprocessor not available

Type 6
Undefined opcode

Type 5
BOUND

Type 4
Overflow (INTO)

TypeS
1-byte breakpoint

Type 2
NMI pin

Type 1
Single-step

Any interrupt vector^

TypeO
Divide error

Segment (high)
Segment (low)

Offset (high)

Offset (low)

Typel

(a)

or Trap-Occurs after

(b)

this interrupt later in this section of the chapter.)

Type 2

Type 3

Type 4

TypeS

Type 6

Type?

TypeS

Type 9

Type 10

Type 11

Type 12

Type 13

Type 14

Type 16

Non-maskable Hardware Interrupt—A result of placing a logic 1 on the NMI
input pin to the microprocessor. This input is non-maskable, which means that it
cannot be disabled.
One-Byte Interrupt—A special one-byte instruction (INT 3) that uses this vector
to access its interrupt-service procedure. The INT 3 instruction is often used to
store a breakpoint in a program for debugging.
Overflow—A special vector used with the INTO instruction. The INTO
instruction interrupts the program if an overflow condition exists, as reflected by
the overflow flag (OF).
BOUND—An instruction that compares a register with boundaries stored in the
memory. If the contents of the register are greater than or equal to the first word
in memory and less than or equal to the second word, no interrupt occurs because
the contents of the register is within bounds. If the contents of the register are
out-of-bounds, a type 5 interrupt ensues.
Invalid Opcode—Occurs whenever an undefined opcode is encountered in a
program.
Coprocessor Not Available—Occurs when a coprocessor is not found in the
system, as dictated by the machine status word (MSW) coprocessor control bits.
If an ESC or WAIT instruction executes and the coprocessor is not found, a type
7 exception or interrupt occurs.
Double Fault—Activated whenever two separate interrupts occur during the
same instruction.
Coprocessor Segment Overrun—Occurs if the ESC instruction (coprocessor
opcode) memory operand extends beyond offset address FFFFH.
Invalid Task State Segment—Occurs if the TSS is invalid because the segment
limit field is not 002BH or higher. In most cases, this is caused because the TSS
is not initialized.
Segment not Present—Occurs when the P bit (P = 0) in a descriptor indicates
that the segment is not present or not valid.
Stack Segment Overrun—Occurs if the stack segment is not present (P = 0) or if
the limit of the stack segment is exceeded.
General Protection—Occurs for most protection violations in the 80286-Pentium
II protected mode system. (These errors occur in Windows as general
protection faults.) A list of these protection violations follows:
a. Descriptor table limit exceeded
b. Privilege rules violated
c. Invalid descriptor segment type loaded
d. Write to code segment that is protected
e. Read from execute-only code segment
f. Write to read-only data segment
g. Segment limit exceeded
h. CPL = IOPL when executing CTS, HLT, LGDT, LIDT, LLDT, LMSW, or LTR
i. CPL > IOPL when executing CLI, IN, INS, LOCK, OUT, OUTS, and STI

Page Fault—Occurs for any page fault memory or code access in the 80386,
80486, and Pentium-Pentium II microprocessors.
Coprocessor Error—Takes effect whenever a coprocessor error (ERROR = 0)
occurs for the ESCape or WAIT instructions for the 80386, 80486, and
Pentium-Pentium II microprocessors only.

462 CHAPTER 12 INTERRUPTS

Type 17 Alignment Check—Indicates that word and doubleword data are addressed at an
odd memory location (or an incorrect location, in the case of a doubleword). This
interrupt is active in the 80486 and Pentium-Pentium II microprocessors.

Type 18 Machine Check—Activates a system memory management mode interrupt in the
Pentium-Pentium II microprocessors.

Interrupt Instructions: BOUND, INTO, I NT, INT3, and IRET
Of the five software interrupt instructions available to the microprocessor, INT and INT 3 are very
similar, BOUND and INTO are conditional, and IRET is a special interrupt return instruction.

The BOUND instruction, which has two operands, compares a register with two words of
memory data. For example, if the instruction BOUND AX,DATA is executed, AX is compared
with the contents of DATA and DATA+1 and also with DATA+2 and DATA+3. If AX is less
than the contents of DATA and DATA+1, a type 5 interrupt occurs. If AX is greater than
DATA+2 and DATA+3, a type 5 interrupt occurs. If AX is within the bounds of these two
memory words, no interrupt occurs.

The INTO instruction checks the overflow flag (OF). If OF = 1, the INTO instruction calls
the procedure whose address is stored in interrupt vector type number 4. If OF = 0, then the INTO
instruction performs no operation and the next sequential instruction in the program executes.

The INT n instruction calls the interrupt service procedure that begins at the address repre-
sented in vector number n. For example, an INT 80H or INT 128 calls the interrupt service pro-
cedure whose address is stored in vector type number 80H (000200H-00203H). To determine
the vector address, just multiply the vector type number (n) by 4, which gives the beginning ad-
dress of the 4-byte long interrupt vector. For example, an INT 5 = 4 x 5 or 20 (14H). The vector
for INT 5 begins at address 000014H and continues to 000017H. Each INT instruction is stored
in two bytes of memory: the first byte contains the opcode, and the second byte contains the in-
terrupt type number. The only exception to this is the INT 3 instruction, a 1-byte instruction. The
INT 3 instruction is often used as a breakpoint-interrupt because it is easy to insert a 1-byte in-
struction into a program. Breakpoints are often used to debug faulty software.

The IRET instruction is a special return instruction used to return for both software and
hardware interrupts. The IRET instruction is much like a far RET, because it retrieves the return
address from the stack. It is unlike the near return because it also retrieves a copy of the flag reg-
ister from the stack. An IRET instruction removes six bytes from the stack: two for the IP, two
for the CS, and two for the flags.

In the 80386-Pentium II, there is also an IRETD instruction because these microprocessors
can push the EFEAG register (32 bits) on the stack, as well as the 32-bit EIP in the protected mode.
If operated in the real mode, we use the IRET instruction with the 80386-Pentium II micro-
processors.

The Operation of a Real Mode Interrupt
When the microprocessor completes executing the current instruction, it determines whether an
interrupt is active by checking (1) instruction executions, (2) single-step, (3) NMI, (4) co-
processor segment overrun, (5) INTR, and (6) INT instruction in the order presented. If one oi|
more of these interrupt conditions are present, the following sequence of events occurs:

1. The contents of the flag register are pushed onto the stack.
2. Both the interrupt (IF) and trap (TF) flags are cleared. This disables the INTR pin and

trap or single-step feature.
3. The contents of the code segment register (CS) are pushed onto the stack.
4. The contents of the instruction pointer (IP) are pushed onto the stack.
5. The interrupt vector contents are fetched, and then placed into both IP and CS so that

next instruction executes at the interrupt service procedure addressed by the vector.

12-1 BASIC INTERRUPT PROCESSING 463

Whenever an interrupt is accepted, the microprocessor stacks the contents of the flag reg-
ister, CS and IP; clears both IF and TF; and jumps to the procedure addressed by the interrupt
vector. After the flags are pushed onto the stack, IF and TF are cleared. These flags are returned
to the state prior to the interrupt when the IRET instruction is encountered at the end of the in-
terrupt service procedure. Therefore, if interrupts were enabled prior to the interrupt service pro-
cedure, they are automatically re-enabled by the IRET instruction at the end of the procedure.

The return address (in CS and IP) is pushed onto the stack during the interrupt. Sometimes,
the return address points to the next instruction in the program; sometimes it points to the in-
struction or point in the program where the interrupt occurred. Interrupt type numbers 0, 5, 6, 7,
8, 10, 11, 12, and 13 push a return address that points to the offending instruction, instead of to
the next instruction in the program. This allows the interrupt service procedure to possibly retry
the instruction in certain error cases.

Some of the protected mode interrupts (types 8, 10, 11, 12, and 13) place an error code on
the stack following the return address. The error code identifies the selector that caused the in-
terrupt. In cases where no selector is involved, the error code is a 0.

Operation of a Protected Mode Interrupt
In the protected mode, interrupts have exactly the same assignments as in the real mode, but the
interrupt vector table is different. In place of interrupt vectors, protected mode uses a set of 256
interrupt descriptors that are stored in an interrupt descriptor table (IDT). The interrupt de-
scriptor table is 256 x 8 (2K) bytes long, with each descriptor containing eight bytes. The inter-
rupt descriptor table is located at any memory location in the system by the interrupt descriptor
table address register (IDTR).

Each entry in the IDT contains the address of the interrupt service procedure in the form of a
segment selector and a 32-bit offset address. It also contains the P bit (present) and DPL bits to de-
scribe the privilege level of the interrupt. Figure 12-3 shows the contents of the interrupt descriptor.

Real mode interrupt vectors can be converted into protected mode interrupts by copying
the interrupt procedure addresses from the interrupt vector table and converting them to 32-bit
offset addresses that are stored in the interrupt descriptors. A single selector and segment de-
scriptor can be placed in the global descriptor table that identifies the first 1M byte of memory as
the interrupt segment.

Other than the IDT and interrupt descriptors, the protected mode interrupt functions like
the real mode interrupt. We return from both interrupts by using the IRET or IRETD instruction.
The only difference is that in protected mode the microprocessor accesses the IDT instead of the
interrupt vector table.

Interrupt Flag Bits
The interrupt flag (IF) and the trap flag (TF) are both cleared after the contents of the flag reg-
ister are stacked during an interrupt. Figure 12-4 illustrates the contents of the flag register and

FIGURE 12-3 The pro-
tected mode interrupt
descriptor. Offset (A31-A16)

DPL 0 1 1 1 0 0 0 H

Segment selector

Offset (A15-AO)

464 CHAPTER 12 INTERRUPTS

FIGURE 12-4 The flag
register. (Courtesy of Intel
Corporation.)

12-1 BASIC INTERRUPT PROCESSING 465

FLAGS 0 DM T S Z
15 11 10 9 8 7 6 5 4 3 2 1 0

the location of IF and TF. When the IF bit is set, it allows the INTR pin to cause an interrupt;
when the IF bit is cleared, it prevents the INTR pin from causing an interrupt. When TF = 1, it
causes a trap interrupt (type number 1) to occur after each instruction executes. This is why we
often call trap a single-step. When TF = 0, normal program execution occurs. This flag bit allows
debugging, as explained in Chapters 17-19, which detail the 80386-Pentium II.

The interrupt flag is set and cleared by the STI and CLI instructions, respectively. There
are no special instructions that set or clear the trap flag. Example 12-1 shows an interrupt service
procedure that turns tracing on by setting the trap flag bit on the stack from inside the procedure.
Example 12-2 shows an interrupt service procedure that turns tracing off by clearing the trap
flag on the stack from within the procedure.

EXAM RLE 12-1

0000

0000
0001
0002
0004
0007
OOOA
OOOD
OOOE
OOOF

0010

;A procedure that sets TF to enable trap.

TRON PROC NEAR

50
55
8B EC
8B 46 08
80 CC 01
89 46 08
5D
58
CF

PUSH AX
PUSH BP
MOV BP,SP
MOV AX,[BP+8]
OR AH,1
MOV [BP+8],AX
POP BP
POP AX
I RET

save registers

get SP
get flags from stack
set TF
save flags
restore registers

EXAMPLE 12-2

0000

0000
0001
0002
0004
0007
OOOA
OOOD
OOOE
OOOF

0010

TRON ENDP

;A procedure that clears TF to disable trap.

TROFF PROC NEAR

50
55
8B EC
8B 46 08
80 E4 FE
89 46 08
5D
58
CF

PUSH
PUSH
MOV
MOV
AND
MOV
POP
POP
I RET

TROFF ENDP

AX
BP
BP,SP
AX,[BP+8]
AH,OFEH
[BP+8],AX
BP
AX

save registers

get SP
get TF
clear TF
save flags
restore registers

In both examples, the flag register is retrieved from the stack by using the BP
which, by default, addresses the stack segment. After the flags are retrieved, the TF bit is
set (TRON) or clears (TROFF) before returning from the interrupt service procedure. The
instruction restores the flag register with the new state of the trap flag. -«*«**

Trace Procedure. Assuming that TRON is accessed by an INT 40H instruction and
accessed by an INT 41H instruction, Example 12-3 traces through a program immediately
lowing the INT 40H instruction. The interrupt service procedure illustrated in Example
responds to interrupt type number 1 or a trap interrupt. Each time that a trap occurs—after

instruction executes following INT 40H-the TRACE procedure displays the contents of all the
16-bit microprocessor registers on the CRT screen. This provides a register trace of all the in-
structions between the INT 40H (TRON) and INT 41H (TROFF).

EXAMPLE 12-3

0000
0000

0014

003C

41 58 20 3D 20 42
58 20 3D 20 43 58
20 3D 20 44 58 20
3D 20
53 50 20 3D 20 42
50 20 3D 20 53 49
0 3D 20 44 49 20
3D 20
49 50 20 3D 20 46
4C 20 3D 20 43 53
20 3D 20 44 53 20
3D 20
45 53 20 3D 20 53
53 20 3D 20

.MODEL TINY

.CODE
RNAME DB 'AX = ','BX = ','CX = ','DX =

DB 'SP = ','BP = ','SI = ','DI =

DB 'IP =

DB 'ES =

DISP MACRO PAR1
PUSH AX
PUSH DX
MOV
MOV
INT
POP
POP
ENDM

DL,PAR1
AH, 6
21H
DX
AX

0046

0049

0060
0063
0064
0065
0068
006A
006D
006F
0072
0074
0077
007A
007C
007F
0081
0084
0086
0089
008B
008E
0091
0094
0097
009A
009D

BB 0000 R

E8
58
50
E8
8B
E8
SB
E8
8B
83
E8
8B
E8
SB
E8
SB
E8
8B
8B
E8
SB
E8
SB
E8
8C

004D

0048
Cl
0043
C2
003E
C4
CO OC
0036
C5
0031
C6
002C
C7
0027
EC
46 06
001F
46 OA
0019
46 08
0013
D8

CRLF MACRO
DISP 13
DISP 10
ENDM

TRACE PROC FAR USES AX BP BX

MOV
CRLF
CALL
POP
PUSH
CALL
MOV
CALL
MOV
CALL
MOV
ADD
CALL
MOV
CALL
MOV
CALL
MOV
CALL
MOV
MOV
CALL
MOV
CALL
MOV
CALL
MOV

BX, OFFSET RNAME

DREG
AX
AX
DREG
AX,CX
DREG
AX,DX
DREG
AX,SP
AX, 12
DREG
AX,BP
DREG
AX, SI
DREG
AX,DI
DREG
BP,SP
AX, [BP+
DREG
AX, [BP+
DREG
AX, [BP+
DREG
AX,DS

6]

10]

8]

;address names

;display AX
;get BX

;display BX

;display CX

;display DX

/display SP

;display BP

/display SI

/display DI

;display IP

/display Flags

/display CX

466 CHAPTER 12 INTERRUPTS 12-2 HARDWARE INTERRUPTS 467

009F
OOA2
OOA4
OOA7
OOA9

OOBO

OOBO
GOBI
OOB4

OOBF
OOCO
OOC2
OOC5
OOC5
OOC7
OOC9
OOCB
OOCD

E8 OOOE
8C CO
E8 0009
8C DO
E8 0004

CALL DREG
MOV AX,ES
CALL DREG
MOV AX,SS
CALL DREG
IRET

TRACE ENDP

DREG PROC NEAR USES CX
MOV CX,5

;display DS

;display ES

/display SS

; load count

43
E2 F2
B9 0004

D3 C8
D3 C8
D3 C8
D3 C8
50

OOCE 24 OF

OOD4 04 07

OOD6 04 30

OOE2 58
OOE3 E2 EO

DISP CS: [BX]
INC BX
LOOP DREG1
MOV CX , 4

ROL AX,1
ROL AX,1
ROL AX,1
ROL AX,1
PUSH AX
AND AL,OFH
. IF AL > 9

ADD AL,7
. ENDIF
ADD AL , 3 OH
DISP AL
POP AX
LOOP DREG2
DISP ' '
RET

DREG ENDP
END

; display character
; address next
; repeat 5 times
; load count

/position digit

; convert to ASCII

; repeat 4 times

Storing an Interrupt Vector in the Vector Table
In order to install an interrupt vector—sometimes called a hook—the assembler must address
absolute memory. Example 12-4 shows how a new vector is added to the interrupt vector table
by using the assembler and a DOS function call. Here, INT 21H function call number 25H ini-
tializes the interrupt vector. Notice that the first thing done in this procedure is to save the old in-
terrupt vector number by using DOS INT 21H function call number 35H to read the current
vector. See Appendix A for more detail on DOS INT 21H function calls.

EXAMPLE 12-4
.MODEL TINY
.CODE
;A program that installs NEW40 at INT 4OH.

010B
010D
010F
0111
0115

B4 35
BO 40
CD 21
89 IE 0102 R
8C 06 0104 R

MOV
MOV
INT
MOV
MOV

AH,35H ; get old interrupt vector
AL,40H
21H
WORD PTR OLD,BX
WORD PTR OLD+2,ES

; install new interrupt vector 40H

0119
one
011E
0120

0122
0125
0127
0129
012B
012D
012E
0131

BA 0106 R
B4 25
BO 40
CD 21

BA 0107 R
Dl EA
Dl EA
Dl EA
Dl EA
42
B8 3100
CD 21

MOV
MOV
MOV
INT

; leave NEW40

MOV
SHR
SHR
SHR
SHR
INC
MOV
INT
END

DX, OFFSET NEW40
AH,25H
AL,40H
21H

in memory

DX, OFFSET START
DX,1
DX,1
DX, 1
DX,1
DX
AX,3100H
21H

12-2

0100 05
.STARTUP

JMP
OLD DD

START

0106

0106 CF

0107

0107
0107 8C C8
0109 8E D8

;new interrupt procedure

NEW4 0 PROC FAR

IRET

NEW40 ENDP

MOV
MOV

AX,CS
DS,AX

;get data segment

HARDWARE INTERRUPTS

The microprocessor has two hardware interrupt inputs: non-maskable interrupt (NMI) and inter-
rupt request (INTR). Whenever the NMI input is activated, a type 2 interrupt occurs because
NMI is internally decoded. The INTR input must be externally decoded to select a vector. Any
interrupt vector can be chosen for the INTR pin, but we usually use an interrupt type number be-
tween 20H and FFH. Intel has reserved interrupts OOH through IFH for internal and future ex-
pansion. The INTA signal is also an interrupt pin on the microprocessor, but it is an output that
is used in response to the INTR input to apply a vector type number to the data bus connections
D7-DO. Figure 12-5 shows the three user interrupt connections on the microprocessor.

The non-maskable interrupt (NMI) is an edge-triggered input that requests an interrupt
on the positive edge (0-to-l transition). After a positive edge, the NMI pin must remain a logic 1
until it is recognized by the microprocessor. Note that before the positive edge is recognized, the
NMI pin must be a logic 0 for at least two clocking periods.

The NMI input is often used for parity errors and other major system faults, such as power
failures. Power failures are easily detected by monitoring the AC power line and causing an NMI

FIGURE 12-5 The interrupt
pins on al! versions of the
Intel microprocessor.

NMI
INTR

INTA

Interrupt inp

Interrupt out

468 CHAPTER 12 INTERRUPTS 12-2 HARDWARE INTERRUPTS 469

47K

VAC

CJ
R 1vcc o-v^x — I

vcc

< 1 K U1A

74ALS14

1 J=-

1.1

13

-SL

^
4

~$C

> IK

CEXT

REXT/CEXT

RIN

Al
A2
Bl Q
B2 _
CLR Q
74LS122

^

- 6vcc

NMI

FIGURE 12-6 A power failure detection circuit.

interrupt whenever AC power drops out. In response to this type of interrupt, the microprocessor
stores all of the internal register in a battery backed-up-memory or an EEPROM. Figure 12-6
shows a power failure detection circuit that provides a logic 1 to the NMI input whenever AC
power is interrupted.

In this circuit, an optical isolator provides isolation from the AC power line. The output of
the isolator is shaped by a Schmitt-trigger inverter that provides a 60 Hz pulse to the trigger input
of the 74LS122 retriggerable monostable multivibrator. The values of R and C are chosen so that
the 74LS122 has an active pulse width of 33 ms or 2 AC input periods. Because the 74LS122 is
retriggerable, as long as AC power is applied, the Q output remains triggered at a logic 1 and Q
remains a logic 0.

If the AC power fails, the 74LS122 no longer receives trigger pulses from the 74ALS14,
which means that Q returns to a logic 0 and Q returns to a logic 1, interrupting the micro-
processor through the NMI pin. The interrupt service procedure, not shown here, stores the con-
tents of all internal registers and other data into a battery-backed-up memory. This system
assumes that the system power supply has a large enough filter capacitor to provide energy for at
least 75 ms after the AC power ceases.

Figure 12-7 shows a circuit that supplies power to a memory after the DC power fails.
Here, diodes are used to switch supply voltages from the DC power supply to the battery. The
diodes used are standard silicon diodes because the power supply to this memory circuit is ele-
vated above +5.0 V to +5.7 V. The resistor is used to trickle-charge the battery, which is either
NiCAD, Lithium, or a gel cell.

FIGURE 12-7 A battery-
backed-up memory system
using a NiCad, lithium, or gel
cell.

+ 9.0V—— vi G vo
N
D

t
J r
5 00

2

—

^

4.7K
10K

Vcc

WR

Memory

When DC power fails, the battery provides a reduced voltage to the Vcc connection on the
memory device. Most memory devices will retain data with Vcc voltages as low as 1.5 V, so the
battery voltage does not need to be +5.0 V. The WR pin is pulled to Vcc during a power outage,
so no data will be written to the memory.

INTR and INTO
The interrupt request input (INTR) is level-sensitive, which means that it must be held at a logic
1 level until it is recognized. The INTR pin is set by an external event and cleared inside the in-
terrupt service procedure. This input is automatically disabled once it is accepted by the micro-
processor and re-enabled by the IRET instruction at the end of the interrupt service procedure.
The 80386-Pentium II use the IRETD instruction in the protected mode of operation.

The microprocessor responds to the INTR input by pulsing the INTA output in anticipa-
tion of receiving an interrupt vector type number on data bus connection D7-DO. Figure 12-8
shows the timing diagram for the INTR and INTA pins of the microprocessor. There are two
INTA pulses generated by the system that are used to insert the vector type number on the data
bus.

Figure 12-9 illustrates a simple circuit that applies interrupt vector type number FFH to
the data bus in response to an INTR. Notice that the INTA pin is not connected in this circuit.
Because resistors are used to pull the data bus connections (DO-D7) high, the microprocessor au-
tomatically sees vector type number FFH in response to the INTR input. This is possibly the
least expensive way to implement the INTR pin on the microprocessor.

Using a Three-State Buffer for INTA. Figure 12-10 shows how interrupt vector type number
80H is applied to the data bus (DO-D7) in response to an INTR. In response to the INTR, the
microprocessor outputs the INTA that is used to enable a 74ALS244 three-state octal buffer.
The octal buffer applies the interrupt vector type number to the data bus in response to the
INTA pulse. The vector type number is easily changed with the DIP switches that are shown in
this illustration.

Making the INTR Input Edge-triggered. Often, we need an edge-triggered input instead of a
level-sensitive input. The INTR input can be converted to an edge-triggered input by using a D-
type flip-flop, as illustrated in Figure 12-11. Here, the clock input becomes an edge-triggered
interrupt request input, and the clear input is used to clear the request when the INTA signal is
output by the microprocessor. The RESET signal initially clears the flip-flop so that no inter-
rupt is requested when the system is first powered.

INTR

INTA

LOCK

INTA

D7-DO -0----0---
Vector number

FIGURE 12-8 The timing of the INTR input and INTA output. *Note: This portion of the data
bus is ignored and usually contains the vector number.

470 CHAPTER 12 INTERRUPTS

FIGURE 12-9 A simple
method for generating inter-
rupt vector type number FFH
in response to INTR.

vcc
Q

DO
Dl
D2
D3
D4
D5
D6
D7

INTA

i
6

1 1
5 A

1
3

1
2

1
1

1
0 9man ™

1 2 :5 4 5 6 7 8

No connection

Low data bus

12-2 HARDWARE INTERRUPTS
471

FIGURE 12-11 Converting
INTR into an edge-triggered
interrupt request input.

Edge-triggered
interrupt request

RESET
74ALS04

FIGURE 12-10 A circuit
that applies any interrupt
vector type number in re-
sponse to TNTA. Here the
circuit is applying type
number 80H.

DO
Dl
D2
D3
D4
D5
D6
D7

INTA

1 1 1
8 6 4
1 1 1
Y Y Y 1

1 2 3
1 1 1
A AA
1 2 3

2 4 6

1 0 0
1 1 1
6 5 4

...
1 2 2

Low data bus

1
2 9 7 5 3
/ V Y \" Y /T'/VUoZ^r-T

4 1 2 3 4
1 2 2 2 2A A A A A 1 2
4 1 2 3 4 GG
mi YiYi vcc

8 1 3 5 7 9 V
---- ——— ̂ 1 [—— 1 16

2 " """ 153 ;.;.; 14
4 J 135 :.;.: 12
6 V.~ 117 v-: 10
8 ̂ 9

o o o o o 10K
1 1 1 1
3 2 1 0 9

MM,

4 5 6 7 8

The 82C55 Keyboard Interrupt
The keyboard example presented in Chapter 11 provides a simple example of the operation of
the INTR input and an interrupt. Figure 12-12 illustrates the interconnection of the 82C55 with
the microprocessor and the keyboard. It also shows how a 74ALS244 octal buffer is used to pro-
vide the microprocessor with interrupt vector type number 40H in response to the keyboard in-
terrupt during the INTA pulse.

The 82C55 is decoded at 80386SX I/O port address 0500H, 0502H, 0504H, and 0506H by
a PAL16L8 (the program is not illustrated). The 82C55 is operated in mode 1 (strobed input
mode), so whenever a key is typed, the INTR output (PC3) becomes a logic 1 and requests an in-
terrupt through the INTR pin on the microprocessor. The INTR pin remains high until the ASCII
data are read from port A. In other words, every time a key is typed, the 82C55 requests a type
40H interrupt through the INTR pin. The DAV signal from the keyboard causes data to be
latched into port A and causes INTR to become a logic 1.

Example 12-5 illustrates the interrupt service procedure for the keyboard. It is very impor-
tant that all registers affected by an interrupt are saved before they are used. In the software re-
quired to initialize the 82C55 (not shown here), the FIFO is initialized so that both pointers are
equal, the INTR request pin is enabled through the INTE bit inside the 82C55, and the mode of
operation is programmed.

EXAMPLE 12-5

= 0500
= 0506

;An interrupt service procedure that reads a key
;from the keyboard in Figure 12-12.

PORTA EQU 50OH
CNTR EQU 506H

00
FIFO DB 256 DUP (?)

0100 0000
0102 0000

0104

INP DW
OUTP DW

;queue

;input pointer
;output pointer

PROC FAR USES AX BX DI DX

472 CHARTER 12 INTERRUPTS 12-3 EXPANDING THE INTERRUPT STRUCTURE 473

DO
DI
D2
D3
D4
D5
D6
D7

IORC

Al
A2

RESET

A\/ AIT")

iowc
AO
A3
A4
A5
A6
A7
A8
A9

A10

A l l
A12
A13

A15

INTR
1 1 1
8 6 4
1 1 1
Y Y Y
1 2 3
1 1 1
A A A
1 2 3

INTA 2 4 6

34
33
32
31
30
29
28
27

5

i
2
3
4
5
6
7
8
9

11

U2
11 Ol
12 02
13 03
14 O4
15 05
16 06
17 O7
18 08
19
no
16L8

1O

&-

ftIE

1
2 9 7 5 3
1 2 2 2 2
Y Y Y Y Y
4 1 2 3 4
1 2 2 2 2
AA A A A 1 2
4 1 2 3 4 GG

36
9
8

35
^

U3
DO PAO
DI PA1
D2 PA2
D3 PA3
D4 PA4
D5 PA5
D6 PA6
D7 PA7

RD PBO
WR PB1
AO PB2
Al PB3
RESET PB4
CS PB5

PB6
PB7

PCO
PCI
PC2
PC3
PC4
PCS
PC6
PC7

4
3
2
1

39
38
37

18
19
2Q
h_2L
^2_
^3_
_2!
25

14_
L5
L6
17
13
I2_
U_
iO_

8255A-5

DO
DI
D2
D3
D4
D5
D6
D7

DAY

STB

Ul
74ALS244

1 1 1 1 TTl
8 1 3 5 7 |l|9

————————————— ^^_0 VCC
10K

FIGURE 12-12 An 82C55 interfaced to a keyboard from the microprocessor system using interrupt vector 40H.

0108 2E: 8B IE 0100 R
010D 2E: 8B 3E 0102 R

0112
0114
0116

0118
011A
011D
011E
0121
0126
0129
0129
012B
012E
012F
012F

FE C3
3B DF
74 11

FE CB
BA 0500
EC
2E: 88 07
2E: FE 06 0100 R
EB 07 90

BO 08
BA 0506
EE

MOV BX,CS:INP ;load input pointer
MOV DI,CS:OUTP ;load output pointer

;test for queue = full

;if queue is full

;get data from 82C55
; save data in queue.

0134

INC
CMP
JE

DEC
MOV
IN
MOV
INC
JMP

MOV
MOV
OUT

IRET

ENDP

BL
BX,DI
FULL

BL
DX,PORTA
AL,DX
CS: [BX] ,AL
BYTE PTR
DONE

AL,8
DX,CNTR
DX,AL

INP

;disable 82C55 interrupt

The procedure is short because the 80386SX already knows that keyboard data are avail-
able when the procedure is called. Data are input from the keyboard and then stored in the FIFO
(first-in, first-out) buffer. Most keyboard interfaces contain a FIFO that is at least 16 bytes in
depth. The FIFO in this example is 256 bytes, which is more than adequate for a keyboard inter-
face. Take note at how the INC BYTE PTR INP is used to add one to the input pointer and also
make sure that it always addressed data in the queue.

This procedure first checks to see whether the FIFO is full. A full condition is indicated
when the input pointer (INP) is one byte below the output pointer (OUTP). If the FIFO is full, the
interrupt is disabled with a bit set/reset command to the 82C55, and a return from the interrupt
occurs. If the FIFO is not full, the data are input from port A, and the input pointer is incremented
before a return occurs.

Example 12-6 shows the procedure that removes data from the FIFO. This procedure
first determines whether the FIFO is empty by comparing the two pointers. If the pointers are
equal, the FIFO is empty, and the software waits at the EMPTY loop where it continuously
tests the pointers. The EMPTY loop is interrupted by the keyboard interrupt, which stores
data into the FIFO so that it is no longer empty. This procedure returns with the character in
register AH.

EXAMPLE 12-6

0134

;A procedure that reads data from the queue of
;Example 12-5 and returns with it in AH.

READ PROC FAR USES BX DI DX

0137 EMPTY:
0137 2E: 8B IE 0100 R MOV BX,CS:INP
013D 2E: 8B 3E 0102 R MOV DI,CS:OUTP
0142 3B DF CMP BX,DI
0144 74 F2 JE EMPTY

0146 2E: 8A 25
0149 BO 09
014B BA 0506
014E EE
014F 2E: FE 06 0102 R

MOV AH,CS:[DI]
MOV AL, 9
MOV DX,CNTR
OUT DX,AL
INC BYTE PTR CS:OUTP
RET

; load input pointer
; load output pointer

;if queue is empty

;get data
;enable 82C55 interrupt

0157 READ ENDP

EXPANDING THE INTERRUPT STRUCTURE

This text covers three of the more common methods of expanding the interrupt structure of the
microprocessor. In this section, we explain how, with software and some hardware modification
of the circuit shown in Figure 12-10, it is possible to expand the INTR input so that it accepts
seven interrupt inputs. We also explain how to "daisy-chain" interrupts by software polling. In
the next section, we describe a third technique, in which up to 63 interrupting inputs can be
added by means of the 8259A programmable interrupt controller.

Using the 74ALS244 to Expand
The modification shown in Figure 12-13 allows the circuit of Figure 12-10 to accommodate up
to seven additional interrupt inputs. The only hardware change is the addition of an 8-input
NAND gate, which provides the INTR signal to the microprocessor when any of the IR inputs
becomes active.

474 CHAPTER 12 INTERRUPTS

DO
Dl
D2
D3
D4
D5
D6
D7

INTA

INTR

1
U2 2U2 3•< :
74ALS30 6

11
12

1 1
8 6

1
4

1
2

Low data bus

9 7 5 3
1 1 1 1 2 2 2 2 T T 1
Y Y Y Y Y Y Y Y U1

1 2 3 4 1 2 3 4 74ALS244
1 1 1 1 2 2 2 2
A A A A A A A A 1 2
1 2 3 4 1 2 3 4 GG

2 4 6 8
1
1

1
3

1 1 Till VCC
5 7 I ' 9 ?

^10K

TRO
TR1
IR2

TRl
TR4
TRS
TR6

FIGURE 12-13 Expanding the INTR input from one to seven interrupt request lines.

Operation. If any of the IR inputs becomes a logic 0, then the output of the NAND gate goes to
a logic 1 and requests an interrupt through the INTR input. The interrupt vector that is fetched
during the INTA pulse depends on which interrupt request line becomes active. Table 12-1
shows the interrupt vectors used by a single interrupt request input.

If two or more interrupt request inputs are simultaneously active, a new interrupt vector is
generated. For example, if IR1 and IRQ are both active, the interrupt vector generated is FCH
(252). Priority is resolved at this location. If the IRQ input is to have the higher priority, the
vector address for IRQ is stored at vector location FCH. The entire top half of the vector table
and its 128 interrupt vectors must be used to accommodate all possible conditions of these
seven interrupt request inputs. This seems wasteful, but in many dedicated applications it is a
cost-effective approach to interrupt expansion.

TABLE 12-1 Single inter-
rupt request for Figure 12-13. IR6 IR5 IR4 IR3 IR2 7R1 IRQ Vector

1
1
1
1
1
1
0

1
1
1
1
1
0
1

1
1
1
1
0
1
1

1
1
1
0
1
1
1

1
1
0
1
1
1
1

1
0
1
1
1
1
1

0
1
1
1
1
1
1

FEH
FDH
FBH
F7H
EFH
DFH
BFH

12-3 EXPANDING THE INTERRUPT STRUCTURE 475

Daisy-Chained Interrupt
Expansion by means of a daisy-chained interrupt is in many ways better than using the
74ALS244 interrupt expansion because it requires only one interrupt vector. The task of deter-
mining priority is left to the interrupt service procedure. Setting priority for a daisy-chain does
require additional software execution time, but in general this is a much better approach to ex-
panding the interrupt structure of the microprocessor.

Figure 12-14 illustrates a set of two 82C55 peripheral interfaces with their four INTR out-
puts daisy-chained and connected to the single INTR input of the microprocessor. If any interrupt
output becomes a logic 1, so does the INTR input to the microprocessor causing an interrupt.

When a daisy-chain is used to request an interrupt, it is better to pull the data bus connec-
tions (DO-D7) high by using pull-up resistors so interrupt vector FFH is used for the chain. Any
interrupt vector can be used to respond to a daisy-chain. In the circuit, any of the four INTR out-
puts from the two 82C55s will cause the INTR pin on the microprocessor to go high, requesting
an interrupt.

FIGURE 12-14 Two82C55
PIAs connected to the INTR
outputs are daisy-chained to
produce an INTR signal.

Note: Although not illustrated, the IR inputs are all active low.

- DO
- Dl
- D2
- D3
- D4
- D5
- D6
D7

WR
AO
Al
RESET
CS

PAO
PA1
PA2
PA3
PA4
PAS
PA6
PA7

PBO
PB1
PB2
PB3
PB4
PB5
PB6
fYD'7r D 1

O/̂ ArCu
o/̂ irLl
PC2
PCS
PC4
PCS
PC6
PC7

±:•j
—2

4H
J2_
Ji_
2̂_

!£
02_
-2Q_
21_
2̂2_
>23_

-̂ B ,.
-L5_ « i
16 INTR . , ——— 2_j17 A| Z
J2_
12
-LL.JQ_

U3A Daisy-chain

74ALS32

8255A-5

U2
U3C

J4
33
22
JL
20
22
2S
27

36

J5

DO
Dl
D2
D3
D4
D5
D6
D7

WR
AO
Al
RESET

PAO
PA1
PA2
PA3
PA4
PAS
PA6
PA7

PBO
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PCO
PCI
PC2
PC3
PC4
PCS
PC6
PC7

4
— 2 —
— 2 —
-4L.
-32_
-&_
JLL_
Jfi_
12
2Q
2I_
22
23
24
-21- INTR
14 B 4v
"J6~ INTR 5 ,
17 — A 1 Z
13
L2
JJ_
LO

INTR

USB

74ALS32

74ALS32

8255A-5

476 CHAPTER 12 INTERRUPTS

When the INTR pin does go high with a daisy-chain, the hardware gives no direct indica-
tion as to which 82C55 or which INTR output caused the interrupt. The task of locating which
INTR output became active is up to the interrupt service procedure, which must poll the 82C55s
to determine which output caused the interrupt.

Example 12-7 illustrates the interrupt service procedure that responds to the daisy-chain
interrupt request. The procedure polls each 82C55 and each INTR output to decide which inter-
rupt service procedure to utilize.

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 477

EXAMPLE 12-7

= 0504
= 0604
= 0001
= 0008

;A procedure that services the daisy-chain interrupt
;of Figure 12-14.

Cl EQU 504H
C2 EQU 604H
MASK1 EQU 1
MASK2 EQU 8

;first 82C55
;second 82C55
;INTRB
; INTRA

0000

0002
0005
0006
0008
OOOA
OOOC

POLL PROC FAR USES AX DX

BA 0504
EC
A8 01
75 OF
A8 08
75 13

OOOE BA 0604
0011 EC
0012 A8 01
0014 75 IB
0016 EB 29 00

0019

MOV
IN
TEST
JNZ
TEST
JNZ

MOV
IN
TEST
JNZ
JMP

POLL ENDP

DX,C1 ;address first 82C55
AL,DX ;get port C
AL,MASK1
LEVEL_0 ;if INTRB is set
AL,MASK2
LEVEL_1 ;if INTRA is set

DX,C2 ;address second 82C55
AL,DX ;get port C
AL,MASK1
LEVEL_2 ;if INTRB is set
LEVEL_3 ;for INTRA

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER

The 8259A programmable interrupt controller (PIC) adds eight vectored priority encoded inter-
rupts to the microprocessor. This controller can be expanded, without additional hardware, to ac-
cept up to 64 interrupt requests. This expansion requires a master 8259A and eight 8259A slaves.

General Description of the 8259A
Figure 12-15 shows the pin-out of the 8259A. The 8259A is easy to connect to the micro-
processor because all of its pins are direct connections except the CS pin, which must be de-
coded, and the WR pin, which must have an I/O bank write pulse. Following is a description of
each pin on the 8259A:
D7-DO The bi-directional data connections are normally connected to either the

upper or lower data bus on the 80386SX microprocessor or the data bus on
the 8088. If an 80486 or Pentium-Pentium II is used, then they connect to ,
any 8-bit bank. |

IR7-IRO Interrupt request inputs are used to request an interrupt and to connect
slave in a system with multiple 8259As.

WR The write input connects to either the lower or upper write strobe signal
16-bit system, or to any other bus write strobe in any size system.

FIGURE 12-15 The pin-out
of the 8259A programmable
interrupt controller (PIC).

8259A

IROU|-
IRlhUL-
IR2p^PE=

DO
Dl
D2
D3
D4
D5 IR5 |
D6 IR6k -
D7 IR7 P5_

AO
CSED
WR__
SP/EN
INT
INTA

CASOM2_
CASlMj—
CAS2H^—

RD
INT

IOTA

AO
CS
SP/EN

CAS2-CASO

The read input connects to the IORC signal.
The interrupt output connects to the INTR pin on the microprocessor from
the master, and is connected to a master IR pin on a slave.
Interrupt acknowledge is an input that connects to the INTA signal on the
system. In a system with a master and slaves, only the master INTA signal
is connected.

The AO address input selects different command words within the 8259A.
Chip select enables the 8259A for programming and control.
Slave program/enable buffer is a dual-function pin. When the 8259A is in
buffered mode, this is an output that controls the data bus transceivers in a
large microprocessor-based system. When the 8259A is not in the buffered
mode, this pin programs the device as a master (1) or a slave (0).
The cascade lines are used as outputs from the master to the slaves for
cascading multiple 8259As in a system.

Connecting a Single 8259A
Figure 12-16 shows a single 8259A connected to the 8086 microprocessor. Here the SP/EN pin
is pulled high to indicate that it is a master. The 8259A is decoded at I/O ports 0400H and 0402H
by the PAL16L8 (no program shown). Like other peripherals discussed in Chapter 11, the
8259A requires four wait states for it to function properly with a 16 MHz 80386SX and more for
some other versions of the Intel microprocessor family.

Cascading Multiple 8259As
Figure 12-17 shows two 8259As connected to the 80386SX microprocessor in a way that is
often found in the AT-style computer, which has two 8259As for interrupts. The XT- or PC-
style computer uses an 8259A controller at interrupt vectors 08H-OFH. The AT-style computer
uses interrupt vector OAH as a cascade input from a second 8259A located at vectors 70H
through 77H. Appendix A contains a table that lists the functions of all the interrupt vectors used
in the PC-, XT-, and AT-style computers.

This circuit uses vectors 08H-OFH and I/O ports 0300H and 0302H for Ul, the master;
and vectors 70H-77H and I/O ports 0304H and 0306H for U2, the slave. Notice that we also in-
clude data bus buffers to illustrate the use of the SP/EN pin on the 8259A. These buffers are used
only in very large systems that have many devices connected to their data bus connections. In
practice, we seldom find these buffers.

478 CHAPTER 12 INTERRUPTS

FIGURE 12-16 An8259A
interfaced to the 8086 micro-
processor.

„ OT- CM m-t in
CO O5 T~ T- T- T- T— T-cc rr gc DC eg cc DC DC

Interrupt inputs

Programming the 8259A
The 8259A is programmed by initialization and operation command words. Initialization com-
mand words (ICWs) are programmed before the 8259A is able to function in the system and
dictate the basic operation of the 8259A. Operation command words (OCWs) are programmed
during the normal course of operation. The OCWs control the operation of the 8259A.

Initialization Command Words. There are four initialization command words (ICWs) for the 8259A
that are selected when the AO pin is a logic one. When the 8259A is first powered up, it must be sent
ICW1, ICW2, and ICW4. If the 8259A is programmed in cascade mode by ICW1, then we also
must program ICWS. So if a single 8259A is use4 in a system, ICW1, ICW2, and ICW4 must be
programmed. If cascade mode is used in a system, then all four ICWs must be programmed. Refer to
Figure 12-18 for the format of all four ICWs. The following is a description of each ICW:

ICW1 Programs the basic operation of the 8259A. To program this ICW for 8086-Pentium II
operation, we place a logic 1 in bit IC4. Bits ADI, A7, A6, and A5 are don't cares
for microprocessor operation and only apply to the 8259A when used with an 8-bit
8085 microprocessor (not covered in this textbook). This ICW selects single or
cascade operation by programming the SNGL bit. If cascade operation is selected,
we must also program ICW3. The LTIM bit determines whether the interrupt
request inputs are positive edge-triggered or level-triggered. ; i

ICW2 $e|ects the vector number used with the interrupt request inputs. For example, if j
we1 decide to program the 8259A so it functions at vector locations 08H-OFH, we
place a 08H into this command word. Likewise, if we decide to program the j
8259A for vectors 70H-77H, we place a 70H in this ICW. ?

479

480 CHAPTER 12 INTERRUPTS
12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 481

FIGURE 12-18 The8259A
initialization command words
(ICWs) (Courtesy of Intel
Corporation.)

A, 0, D, 0,

F*.s/
/T

1
•1?

0. D, D, D, D,

.Mxrx; *i«

I1 s *•
|

1
ICW3 (MASTER DEVICE)

A0 0, 0, Qj 0, 0, D, D, D,

['
s,

|

hh S, Sj s'i 1 1 s< i **

1 1

A. ,-A. OF INTERRUPT
VECTOR ADDRESS

(MCSSO'BSMODE)
VT, OF INTERRUPT
VECTOR ADDRESS

(8086 / 8088 MODE)

J
i > IR INPUT MAS A SLAVE
0 IR INPUT DOE SWOT HAVE

A SLAVE

*•1 -
o,

0

ICW3 (SLAVE DEVICEI

0* °S °« °» °>

0 • o .0,

o,

'0,

°0,
-10 0

SI'

0

»VE

0

ID

0

1 1

in 1

»

D3 02

BUF

,8086' 8088 MODE
-MCS-80/85MOOE

WON BUME RED MODE
BUME RED MODE /SLAVE

- §UMERED*ODE/MASTER

ICW3

NOTE 1: SLAVE ID IS EQUAL TO THE CORRESPONDING

Is only used when ICW1 indicates that the system is operated in cascade mode.
This ICW indicates where the slave is connected to the master. For example, in
Figure 12-18 we connected a slave to IR2. To program ICWS for this connectioi
in both master and slave, we place a 04H in ICWS. Suppose we have two slaves

ICW4

connected to a master using IRQ and IR1. The master is programmed with an
ICWS of 03H; one slave is programmed with an ICWS of 01H and the other with
anICW3of02H.
Is programmed for use with the 8086-Pentium II microprocessors, but is not
programmed in a system that functions with the 8085 microprocessor. The
rightmost bit must be a logic 1 to select operation with the 8086-Pentium II
microprocessors, and the remaining bits are programmed as follows:
SFNM—Selects the special fully-nested mode of operation for the 8259A if a
logic 1 is placed in this bit. This allows the highest-priority interrupt request from
a slave to be recognized by the master while it is processing another interrupt from
a slave. Normally, only one interrupt request is processed at a time and others are
ignored until the process is complete.
BUF and M/S—Buffer and master slave are used together to select buffered
operation or nonbuffered operation for the 8259A as a master or a slave.
AEOI—Selects automatic or normal end of interrupt (discussed more fully under
operation command words). The EOI commands of OCW2 are used only if the
AEOI mode is not selected by ICW4. If AEOI is selected, the interrupt
automatically resets the interrupt request bit and does not modify priority. This is
the preferred mode of operation for the 8259A and reduces the length of the
interrupt service procedure.

Operation Command Words. The operation command words (OCWs) are used to direct the op-
eration of the 8259A once it is programmed with the ICW. The OCWs are selected when the AO
pin is at a logic 0 level, except for OCW1, which is selected when AO is a logic 1. Figure 12-19
lists the binary bit patterns for all three operation command words of the 8259A. Following is a
list describing the function of each OCW:

OCW1 Is used to set and read the interrupt mask register. When a mask bit is set, it will
turn off (mask) the corresponding interrupt input. The mask register is read when
OCW1 is read. Because the state of the mask bits are unknown when the 8259A is
first initialized, OCW1 must be programmed after programming the ICW upon
initialization.

OCW2 Is programmed only when the AEOI mode is not selected for the 8259A. In this
case, this OCW selects the way that the 8259A responds to an interrupt. The
modes are listed as follows:
Nonspecific End-of-Interrupt—A command sent by the interrupt service
procedure to signal the end of the interrupt. The 8259A automatically determines
which interrupt level was active and resets the correct bit of the interrupt status
register. Resetting the status bit allows the interrupt to take action again or a lower
priority interrupt to take effect.
Specific End-of-Interrupt—A command that allows a specific interrupt request to
be reset. The exact position is determined with bits L2-LO of OCW2.
Rotate-on-Nonspecific EOI—A command that functions exactly like the Non-
specific End-of-Interrupt command, except that it rotates interrupt priorities after
resetting the interrupt status register bit. The level reset by this command becomes
the lowest-priority interrupt. For example, if IR4 was just serviced by this com-
mand, it becomes the lowest-priority interrupt input and IR5 becomes the highest
priority.
Rotate-on-Automatic EOI—A command that selects automatic EOI with rotating
priority. This command must only be sent to the 8259A once if this mode is
desired. If this mode must be turned off, use the clear command.

482 CHAPTER 12 INTERRUPTS

FIGURE 12-19 The8259A
operation command words
(OCWs). (Courtesy of Intel
Corporation.)

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 483

O, 0,

M7 m «

[INTERRUPT MASK
-11 • MASK SET
10 • MASK RESET

MAO BEOISTES COMMAND

IS7 IS6 IS5 IS4 IS3 IS2 IS1 ISO
~"ISR STATUS

PRIORITY 0 j COMMAND (b)
ISR STATUS

PRIORITY

IS7 IS6 ISS ISA IS3 IS2 IS1 ISO
o o o o AFTER

COMMAND

LOWEST PRIORITY HIGHEST PRIORITY HIGHEST PRIORITY LOWEST PRIORITY

Rotate-on-Specific EOI—Functions as the specific EOI, except that it selects
rotating priority.
Set priority—Allows the programmer to set the lowest priority interrupt input
using the L2-LO bits.

OCW3 Selects the register to be read, the operation of the special mask register, and the
poll command. If polling is selected, the P bit must be set and then output to the
8259A. The next read operation will read the poll word. The rightmost three bits
of the poll word indicate the active interrupt request with the highest priority. The
leftmost bit indicates whether there is an interrupt and must be checked to
determine whether the rightmost three bits contain valid information.

Status Register. Three status registers are readable in the 8259A: interrupt request
(IRR), in-service register (ISR), and interrupt mask register (IMR). (See Figure 12-20 for all

FIGURE 12-20 The 8259A in-service register (ISR). (a) Before IR4 is accepted, and (b) after IR4 is accepted.
(Courtesy of Intel Corporation.)

status registers; they all have the same bit configuration.) The IRR is an 8-bit register that indi-
cates which interrupt request inputs are active. The ISR is an 8-bit register that contains the level
of the interrupt being serviced. The IMR is an 8-bit register that holds the interrupt mask bits and
indicates which interrupts are masked off.

Both the IRR and ISR are read by programming OCW3 and IMR is read through OCW1.
To read the IMR, AO = 1; to read either IRR or ISR, AO = 0. Bit positions DO and Dl of OCWS
select which register (IRR or ISR) is read when AO = 0.

8259A Programming Example
Figure 12-21 illustrates the 8259A programmable interrupt controller connected to a 16550 pro-
grammable communications controller. In this circuit, the INTR pin from the 16550 is connected
to the programmable interrupt controller's interrupt request input IRO. An IRQ occurs whenever
(1) the transmitter is ready to send another character, (2) the receiver has received a character, (3)
an error is detected while receiving data, and (4) a modem interrupt occurs. Notice that the 16550
is decoded at I/O ports 40H and 47H, and the 8259A is decoded at 8-bit I/O ports 48H and 49H.
Both devices are interfaced to data bus of an 8088 microprocessor.

Initialization Software. The first portion of the software for this system must program both the
16550 and the 8259A, and then enable the INTR pin on the 8088 so that interrupts can take ef-
fect. Example 12-8 lists the software required to program both devices and enable INTR. This
software uses two memory FIFOs that hold data for the transmitter and for the receiver. Each
memory FIFO is 16K bytes long and is addressed by a pair of pointers (input and output).

EXAMPLE 12-8

= 0048
= 0049
= 001B
= 0080
= 0003
= OOFE
= 0043
- 0040
= 0041
= 0042
= 0041

0000

0000 BO 8A
0002 E6 43

0004 BO 78
0006 E6 40
0008 BO 00

;Initialization software for the 16550 and 8259A
;of the circuit in Figure 12-21.

PIC1
PIC1
ICW1
ICW2
ICW4
OCW1
LINE
LSB
MSB
FIFO
ITR

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

48H
49H
IbH
80H
3
OFEH
43H
40H
41H
42H
41H

8259A control AO = 0
8259A control AO = 1
8259A ICW1
8259A ICW2
8259A ICW4
8259A OCW1
16550 line register
16550 Baud divisor LSB
16550 Baud divisor MSB
16550 FIFO register
16550 interrupt register

START PROC NEAR

/Program 16550, but do not enable interrupts yet

MOV AL,10001010B ;enable Baud divisor
OUT LINE,AL

MOV AL,120
OUT LSB,AL
MOV AL, 0

;program Baud rate
;9600 Baud rate

484 CHAPTER 12 INTERRUPTS 12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 485

RESET
An

A?

Data Bus (DO-D7)

A10 ————— H-

10/M
A1 1
A12
A13 ———————
A14 ———————
A15 ———————

INTR
INTA ———————

WR
RD ———————

C

X~

U2
11 01 19 40H-47H
I? n? =18
in nr^ 317
14 04 316
15 05 515
I6 06 44 ——— i
17 07 4| ——
IB 08 jl2— ,
19
110

16L8

48H-49H .—

10K

U1

M=
1̂0
11

idfc
-fr̂
TT38
zfc

IS=

27
1
3
2

16

—fr

DO AO
D1 A1
D2 A2
D3
D4 CSO
D5 CS1
D6 CS2
07 MR
SIN RD
SOUT RD

WR
BAUDOUT WR
RCLK ADS
RTS XI N
CTS XOUT
DTR
DSR TXRDY
DCD RXRDY
Rl DDISINTR
OUT1
OUT 2

16550

-ir-
26

12
13

D14

35
22
21
19

L 18

325 ,

16
17

?i=
-ir~

U3
DO I R O] j jD1 IgizB ———
D4 ™llD4 , R 4 22 ...
D5 |R523
D6 IR6 2 4

D7 IR7^ ————
AO
OS
RD
WR 12
^ D '"PTi C A S 0 ' ̂
î EN CAS1 13
1NT P A Q o 15IN IA CAb^
8259A

vcc

<> 10K

18.432 MHz
ifll

————

nthpr Intfii-mpt Requests

FIGURE 12-21 The 16550 UART interfaced to the 8088 microprocessor through the 8259A.

OOOA E6 41

OOOC
OOOE
0010
0012

BO OA
E6 43
BO 07
E6 42

OUT

MOV
OUT
MOV
OUT

MSB,AL

AL,00001010B
LINE,AL
AL,00000111B
FIFO,AL

0014 BO IB
0016 E6 48

0018
001A

001C
001E

BO 80
E6 49

BO 03
E6 49

; Program 8259A

MOV AL,ICW1
OUT PIC1,AL

MOV AL,ICW2
OUT PIC2,AL

MOV AL, ICW4
OUT PIC2,AL

;program 7-data, odd
;parity, one stop
;enable transmitter and
;and receiver

;program ICWl

;program ICW2

;program ICW4

0020 BO FE
0022 E6 49
0024 FB

0025 BO 07
0027 E6 41
0029 C3

002A

MOV
OUT
STI

AL, OCW1
PIC2,AL

;enable 16550 interrupts

MOV
OUT
RET

START ENDP

AL,5
ITR,AL

;program OCW1

;enable system INTR pin

;enable receiver and
;error interrupts

The first portion of the procedure (START) programs the 16550 UART for operation with
seven data bits, odd parity, one stop bit, and a Baud rate clock of 9600. The FIFO control register
also enables both the transmitter and receiver.

The second part of the procedure programs the 8259A, with its three ICWs and its one
OCW. The 8259A is set up so that it functions at interrupt vectors 80H-87H and operates with
automatic EOI. The ICW enables the interrupt for the 16550 UART. The INTR pin of the mi-
croprocessor is also enabled by using the STI instruction.

The final part of the software enables the receiver and error interrupts of the 16550 UART
through the interrupt control register. The transmitter interrupt is not enabled until data are avail-
able for transmission. See Figure 12-22 for the contents of the interrupt control register of the
16550 UART. Notice that the control register can enable or disable the receiver, transmitter, line
status (error), and modem interrupts.

Handling the 16550 UART Interrupt Request. Because the 16550 generates only one interrupt
request for various interrupts, the interrupt handler must poll the 16550 to determine what type
of interrupt has occurred. This is accomplished by examining the interrupt identification register
(see Figure 12-23). Note that the interrupt identification register (read-only) shares the same I/O
port as the FIFO control register (write-only).

FIGURE 12-22 The 16550
interrupt control register.

Interrupt Control Register
7 6 5 4 3 2 1 0

0 0 0 0 EM EL ET ER

I ———— 0 = disabled
1 = enabled

0 = disabled
1 = enabled

0 = disabled
1 = enabled

0 = disabled
1 = enabled

FIGURE 12-23 The 16550
interrupt identification register.

Interrupt Identification Register
7 6 5 4 3 2 1 0

0 0 0 0 ID ID ID PN

| ___ Interrupt Pending
0 = interrupt pending
1 = no interrupt

(see Table 12-2)

486 CHAPTER 12 INTERRUPTS

TABLE 12-2 The interrupt control bits of the 16550.

12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 487

Bit3

0
0

0
1

0

0

Bit2

0
1

1
1

0

0

Bit1

0
1

0
0

1

0

BitO

1
0

0
0

0

0

Priority

_

1

2
2

3

4

Type

No interrupt
Receiver error (parity,
framing, overrun, or break)
Receiver data available
Character time-out, nothing
has been removed from the
receiver FIFO for at least
four character times
Transmitter empty

Modem status

Reset Control

—
Reset by reading the line
register
Reset by reading the data

Reset by reading the data

Reset by writing to the
transmitter
Reset by reading the
modem status

Note: 1 is the highest priority and 4 the lowest.

The interrupt identification register indicates whether an interrupt is pending, the type of in-
terrupt, and whether the transmitter and receiver FIFO memories are enabled. See Table 12-2 for the
contents of the interrupt control bits.

The interrupt service procedure must examine the contents of the interrupt identification
register to determine what event caused the interrupt and pass control to the appropriate proce-
dure for the event. Example 12-9 shows the first part of an interrupt handler that passes control
to RECV for a receiver data interrupt, TRANS for a transmitter data interrupt, and ERR for a line
status error interrupt. Note that the modem status is not tested in this example.

EXAMPLE 12-9
;Interrupt handler for the 16550 UART of

0000
0001
0003
0005

0007
0009

OOOB
OOOD

50
E4 42
3C 06
74 20

3C 02
74 55

3C 04
74 11

; Figure 12-

INT80 PROC

PUSH
IN
CMP
JE

CMP
JE

CMP
JE

21.

FAR

AX
AL,42H
AL, 6
ERR

AL,2
TRANS

AL,4
RECV

;input interrupt ID reg
;test for error
;for receiver error

;test for transmitter
; for transmitter ready

;test for receiver
;for receiver ready

Receiving Data from the 16550. The data received by the 16550 are stored, not only in the FIFO
within the UART, but also in a FIFO memory until the software in the main program can use
them. The FIFO memory used for received data is 16K bytes long, so many characters can easily
be stored and received before any intervention from the microprocessor is required to empty the
receiver's memory FIFO. The receiver memory FIFO is stored in the extra segment so string in-
structions that use the DI register can be used to access it.

Receiving data from the 16550 requires two procedures. One procedure reads the data reg|
ister of the 16550 each time that the INTR pin requests an interrupt, and stores it into the menior|
FIFO. The other procedure reads data from the memory FIFO from the main program. |j

Example 12-10 lists the procedure used to read data from the memory FIFO from the main
program. This procedure assumes that the pointers (UN and IOUT) are initialized in the initial-
ization dialog for the system (not shown). The READ procedure returns with AL containing a
character read from the memory FIFO. If the memory FIFO is empty, the procedure returns with
the carry flag bit set to a logic one. If AL contains a valid character, the carry flag bit is cleared
upon return from READ.

Notice how the FIFO is reused by changing the address from the top of the FIFO to the
bottom whenever it exceeds the start of the FIFO plus 16K. This is located at the CMP instruc-
tion at offset address 0015. Also notice that interrupts are enabled at the end of this procedure, in
case they are disabled by a full memory FIFO condition by the RECV interrupt procedure.

EXAMPLE 12-10

0000

;A procedure that reads one character from the memory
;FIFO and returns with it in AL.
;If the FIFO is empty the return occurs with Carry = 1.

READ PROC NEAR USES BX DI

0002
0007

OOOC
OOOE
OOOF

0011
0014
0015
0019
001E
0020

0027
0027
0028
0028
0029
002B
002D
002F

26
26

3B
F9
74

26
47
81
26
76
26
00<

F8

9C
E4
06
E6
9D

: 8B 3E 4002 R
: 8B IE 4000 R

DF

16

: BA 06

FF 4000 R
: 89 3E 4002 R
07
: C7 06 4002 R
00 R

DONE:

DONE1

41
05
41

MOV
MOV

CMP
STC
JE

MOV
INC
CMP
MOV
JBE
MOV

CLC

PUSHF
IN
OR
OUT
POPF
RET

DI,IOUT ;get output pointer
BX, UN ; get input pointer

BX,DI ; compare pointers

DONE1

AL,ES: [DI]
DI
DI, OFFSET FIFO+lf
IOUT,DI ;
DONE ;
IOUT, OFFSET FIFO

;

;

AL,41H ;
AL,5 ;

;set carry flag
;if empty

rget data from FIFO
; address next byte
5*1024
; save pointer
:if within bounds

: clear carry flag

: save carry flag
•read interrupt control
•enable receiver interrupts

41H,AL

0033 READ ENDP

Example 12-11 lists the RECV interrupt service procedure that is called each time the 16550
receives a character for the microprocessor. In this example, the interrupt uses vector type number
80H, which must address the interrupt handler of Example 12-9. Each time that this interrupt oc-
curs, the REVC procedure is accessed by the interrupt handler reading a character from the 16550.
The RECV procedure stores the character into the memory FIFO. If the memory FIFO is full, the
receiver interrupt is disabled by the interrupt control register within the 16550. This may result in
lost data, but at least it will not cause the interrupt to overrun valid data already stored in the
memory FIFO. Any error conditions detected by the 8251A store a ? (3FH) in the memory FIFO.
Note that errors are detected by the ERR portion of the interrupt handler (not shown).

EXAMPLE 12-11

0020
0020

;RECV portion of the interrupt handler in Example

;continues from Example 12-9
;save registers

488 CHAPTER 12 INTERRUPTS 12-4 8259A PROGRAMMABLE INTERRUPT CONTROLLER 489

0021
0022
0023
0028
002D
002F
0030
0034
0036
0039
0039
003B
003D
003F
0040
0045
0048
0048
004A
004C
004E
004E
0050
0052
0053
0054
0055
0056

8B IE 4002 R
8B 36 4000 R

FE

FE 4000 R
03
0000 R

DE
OB
40

89 36 4000 R
06 90

41
FA
41

20
49

PUSH
PUSH
MOV
MOV
MOV
INC
CMP
JBE
MOV

CMP
JE
IN
STOSB
MOV
JMP

IN
AND
OUT

MOV
OUT
POP
POP
POP
POP
IRET

DI
SI
BX,IOUT ;load output pointer
SI, UN ; load input pointer
DI,SI
SI
SI, OFFSET FIFO+16*1024
NEXT
SI, OFFSET FIFO

BX,SI
FULL
AL,40H

UN, SI
DONE

AL,41H
AL, OF AH
41H,AL

AL , 2 OH
49H,AL
SI

is FIFO full?
if it is full
read 16550 receiver
save it in FIFO
save input pointer
end up

read interrupt control
disable receiver

signal 8259A EOI

restore registers
DI
BX
AX

EXAM RLE 12-13
;Interrupt service procedure for the 16550
;transmitter.

Transmitting Data to the 16550. Data are transmitted to the 16550 in much the same manner as
they are received, except that the interrupt service procedure removes transmit data from a
second 16K-byte memory FIFO.

Example 12-12 lists the procedure that fills the output FIFO. It is similar to the procedure
listed in Example 12-10, except it determines whether the FIFO is full instead of empty.

EXAMPLE 12-12

;A procedure that places data into the memory FIFO for
;transmission by the transmitter interrupt.
;AL = character to be transmitted.

SAVE PROC NEAR USES BX DI SI

0003
0008
OOOD
OOOF
0010
0014
0016
0019
0019
001B
001D
001E
0023
0023
0025
0027

002D

26:
26:
8B
46
81
76
BE

3B
74
AA
26:

E4
06
E6

: 8B 36 8004
: 8B IE 8006
FE

FE 8004 R
03
4004 R

DE
06

: 89 36 8004

41
01
41

R MOV
R MOV

MOV
INC
CMP
JBE
MOV

NEXT:
CMP
JE
STOSB

R MOV
DONE:

IN
OR
OUT
RET

SAVE ENDP

SI,OIN
BX,OOUT ;
DI,SI
SI
SI, OFFSET
NEXT
SI, OFFSET

BX,SI
DONE

get input pointer
get output pointer

OFIFO+16*1024

OFIFO

if full
; save data in OFIFO

QIN,SI

AL,41H
AL , 1
41H,AL

read interrupt control
enable transmitter

0060
0060
0061
0062
0068
006D
006F
0071
0074
0076
0077
007B
007D
0080
0080
0085
0088
0088
008A
008C
008E
008E
0090
0092
0093
0094
0095

53
57
26
26
3B
74
26
E6
47
81
76
BF

26
EB

E4
24
E6

BO
E6
5F
5B
58
CF

: 8B IE 8004
: 8B 3E 8006
DF
17
: 8A 05
40

FF 8004 R
03
4004 R

89 3E 8006
07 90

41
FD
41

20
49

TRANS:
PUSH
PUSH

R MOV
R MOV

CMP
JE
MOV
OUT
INC
CMP
JBE
MOV

NEXT1 :
R MOV

JMP
EMPTY :

IN
AND
OUT

DONES :
MOV
OUT
POP
POP
POP
IRET

BX
DI
BX,OIN
DI , OOUT
BX,DI
EMPTY
AL,ES: [DI]
40H,AL
DI

save registers

load input pointer
load output pointer

if empty
get character
send it to UART

DI, OFFSET OFIFO+16*1024
NEXT1
DI, OFFSET OFIFO

OOUT,DI
DONES

AL,41H
AL,OFDH
41H,AL

AL,20H
49H,AL
DI
BX
AX

read interrupt control
disable transmitter

signal 8259A EOI

Example 12-13 lists the interrupt service subroutine for the 16550 UART transmitter,
procedure is a continuation of the interrupt handler presented in Example 12-9 and is similar to
RECV procedure of Example 12-11, except that it determines whether the FIFO is empty rather
full. Note that we do not include an interrupt service procedure for the break interrupt or any

The 16550 also contains a scratch register, which is a general-purpose register that can be
used in any way deemed necessary by the programmer. Also contained within the 16550 are a
modem control register and a modem status register. These registers allow the modem to cause
interrupt and control the operation of the 16550 with a modem. See Figure 12-24 for the con-
tents of both the modem status register and the modem control register.

Modem Control Register
7 6 5 4 -

Modem Status Register

0 0 0 LB C)UT)UT
1

RTS DTR

| ___ DTR pin
0 = 1 on DTR pin
1 = 0 on DTR pin

RTS pin
0 = 1 on RTS pin
1 = 0 on RTS pin

0 = 1 on OUT 1 pin
1 = 0 on OUT 1 pin

HI IT 9 nin

0= 1 on OUT 2 pin
1 = Don OUT 2 pin

I nnnhank nnntrnl
0 = no operation
1 = selects loopback test

_ CTS has changed
0 = no change
1 = CTS has changed

_ DSR has changed
0 = no change
1 = DSR has changed

_ Trailing edge of Rl
0 = no change _
1 = trailing edge of Rl

_ DCD has changed
0 = no change
1 = DCD has changed

_ CTS pin __
0 = 1 on CTS pin
1 = 0 on CTS pin

_ DSR pin __
0 = 1 on DSR pin

__1 = 0 on DSR pin
. Rl pin _

0 = 1 onJRI pin
1 = 0 on Rl pin

- DCD pin __
0 = 1 on DCD pin
1 = 0 on DCD pin

12-24 The 16550 modem control and modem status registers.

490 CHAPTER 12 INTERRUPTS 12-5 INTERRUPT EXAMPLES 491

RS-232C

FIGURE 12-25 The 16550 interfaced to RS-2332C using 1488 line drivers and 1489 line

The modem control register uses bit positions 0-3 to control various pins on the 16550. Bit
position 4 enables the internal loop-back test for testing purposes. The modem status register al-
lows the status of the modem pins to be tested; it also allows the modem pins to be checked for a
change or, in the case of RI, a trailing edge.

Figure 12-25 illustrates the 16550 UART, connected to an RS-232C interface that is often
used to control a modem. Included in this interface are line driver and receiver circuits used to
convert between TTL levels on the 16550 to RS-232C levels found on the interface. Note that
RS-232C levels are usually +12 V for a logic 0 and -12 V for a logic 1 level.

In order to transmit or receive data through the modem, the DTR pin is activated (logic 0)
and the UART then waits for the DSR pin to become a logic 0 from the modem, indicating that
the modem is ready. Once this handshake is complete, the UART sends the modem a logic 0 on
the RTS pin. When the modem is ready, it returns the CTS signal (logic 0) to the UART. Com-
munications can now commence. The DCD signal from the modem is an indication that the
modem has detected a carrier. This signal must also be tested before communications can begin.

12-5 INTERRUPT EXAMPLES

This section of the text presents a real-time clock and an interrupt processed keyboard as exam-
ples of interrupt applications. A real-time clock keeps time in real time—that is, in hours ana
minutes. The example illustrated here keeps time in hours, minutes, seconds, and 1/60 seconds,^
using four memory locations to hold the BCD time of day. The interrupt processed keyboar||jj
uses a periodic interrupt to scan through the keys of the keyboard.

Real-Time Clock
Figure 12-26 illustrates a simple circuit that uses the 60 Hz AC power line to generate a periodic
interrupt request signal for the NMI interrupt input pin. Although we are using a signal from the
AC power line, which varies slightly in frequency from time to time, it is accurate over a period
of time.

The circuit uses a signal from the 120 VAC power line that is conditioned by a Schmitt
trigger inverter before it is applied to the NMI interrupt input. Note that you must make certain
that the power line ground is connected to the system ground in this schematic. The power line
ground (neutral) connection is the large flat pin on the power line. The narrow flat pin is the hot
side or 120 VAC side of the line.

The software for the real-time clock contains an interrupt service procedure that is called
60 times per second and a procedure that updates the count located in four memory locations.
Example 12-14 lists both procedures, along with the four bytes of memory used to hold the BCD
time of day.

EXAMPLE 12-1 4

.MODEL TINY
0000 .CODE

0100
0102
0103
0104
0105

0106

0106
0107

0108
010A
010D
0110
0112
0115
0117
011A
one
011E
0121
0121
0122
0123

EB
00
00
00
00

50
56

B4
BE
E8
75
E8
75
E8
75
B4
E8

5E
58
CF

04

60
0102
0014
OF
OOOF
OA
OOOA
05
24
0003

. STARTUP
JMP

TIME DB
DB
DB
DB

; Interrupt

TIMES PROC

PUSH
PUSH

MOV
R MOV

CALL
JNZ
CALL
JNZ
CALL
JNZ
MOV
CALL

DONE:
POP
POP
I RET

TIMES
?
•p
?

?

handler for NMI

FAR

AX .
SI

AH, 60H
SI, OFFSET TIME
UP
DONE
UP
DONE
UP
DONE
AH,24H
UP

SI
AX

;1/60 second counter
; seconds counter
; minutes counter
; hours counter

; save registers

; load modulus 60
; address time
; increment 1/60 counter

; increment seconds

; increment minutes

; load modulus 24
; increment minutes

; reload registers

0124 TIMES ENDP

0124 UP PROC NEAR

FIGURE 12-26 Converting
the AC power line to a 60 Hz
TTL signal for the NMI input. 120 VAC

Black K 33K 74LS14
NMI

492 CHAPTER 12 INTERRUPTS

0124
0127
0128
012A
012B
012F
0131
0133
0137
0137

2E:
46
04
27
2E
2A
75
2E

: 8A

01

: 88
C4
04
: 88

04

44

44

FF

FF

MOV
INC
ADD
DAA
MOV
SUB
JNZ
MOV

AL,CS: [SI]
SI
AL,"

CS:
AL,
UPl
CS:

1

[SI-1]
AH

[SI-1]

,AL

,AL

UPl :
C3 ~"mRET

;get count
;address next counter
;increment count
;make it BCD
;save count
;test modulus

;clear count

12-5 INTERRUPT EXAMPLES

0138 UP ENDP

Interrupt-Processed Keyboard
The interrupt-processed keyboard scans through the keys on a keyboard through a periodic in-
terrupt. Each time the interrupt occurs, the interrupt-service procedure tests for a key or de-
bounces the key. Once a valid key is detected, the interrupt-service procedure stores the
key-code into a keyboard queue for later reading by the system. The basis for this system is a pe-
riodic interrupt that can be caused by a timer or other device in the system. Note that most sys-
tems already have a periodic interrupt for the real-time clock. In this example, we assume that
the interrupt calls the interrupt-service procedure every 10 ms.

Figure 12-27 shows the keyboard interfaced to an 8255. It does not show the timer or other
circuitry required to call the interrupt, once in every 10 ms. (Not shown in the software is pro-
gramming of the 82C55.) The 82C55 must be programmed so that port A is an input port, port B
is an output port, and the initialization software must store a OOH at port B. This interfaces uses
memory that is stored in the code segment for a queue and a few bytes that keep track of the key-
board scanning. Example 12-15 lists the interrupt service procedure for the keyboard.

EXAMPLE 12-15
;interrupt procedure for the keyboard in
;figure 12-27

.MODEL TINY

FIGURE 12-27 A telephone
style keypad interfaced to the
82C55.

493

0000

1000
1001

.386

.CODE

PORTA EQU
PORTB EQU

1000H
1001H

;define port A address
/define Port B address

.STARTUP
INTKEY0100

0102 BA 1000
0105 EC
0106 OC FO

010C FE 06 0192 R

0117 C6 06 0192 R 02

0123 53
0124 C6 06 0193 R 01
0129 BB OOFB

012C BA 1001
012F 8A C3
0131 EE
0132 DO CB
0134 BA 1000
0137 EC
0138 OC FO

013E 80 C7 04

0143 8A D8
0145 BA 1001
0148 BO 00
014A EF
014B FE CF

014D DO EB
014F FE C7

0153 8A C7
0155 8B IE 0194 R
0159 2E: 88 07
015C FF 06 0194 R

0166 C7 06 0194 R 0182 R

016C 5B

; test for any key

;if key found
;increment bounce count
;if > 20 ms

PROC FAR USES AX DX /keyboard interrupt
MOV DX,PORTA
IN AL,DX
OR AL,OFOH
.IF AL != OFFH

INC DBCNT
.IF DBCNT==3

MOV DBCNT,2
.IF DBF==0

PUSH BX
MOV DBF,1
MOV BX,OFBH
.WHILE 1 ;find key

MOV DX,PORTB
MOV AL,BL
OUT DX,AL
ROR BL,1
MOV DX,PORTA
IN AL,DX
OR AL,OFOH
.BREAK .IF AL
ADD BH,4

.ENDW
MOV BL,AL
MOV DX,PORTB
MOV AL,0
OUT DX,AX
DEC BH
.REPEAT

SHR BL,1
INC BH

.UNTIL !CARRY?
MOV AL,BH
MOV BX,PNTR
MOV CS:[BX],AL ;key code to queu
INC PNTR
.IF BX == OFFSET DBCNT-1

MOV PNTR, OFFSET QUEUE
.ENDIF
POP BX

.ENDIF
. ENDIF

!= OFFH

; clear port B pins

;find key code

016F FE OE 0192 R

0175 C6 06 0192 R 00
017A C6 06 0193 R 00

;no key found
/decrement bounce count

0182
0182 0010 [

00

.ELSE
DEC DBCNT
.IF SIGN?

MOV DBCNT,0 /clear count and flag
MOV DBF,0

.ENDIF
.ENDIF
IRET

INTKEY ENDP
QUEUE DB 16 DUP(?) /keyboard queue

0192 00
0193 00
0194 0182 R

82C55

DBCNT DB 0
DBF DB 0
PNTR DW QUEUE
END

/debounce count
/debounce flag
/pointer to queue

CHAPTER 12 INTERRUPTS

The keyboard-interrupt finds the key and stores the key-code in the queue. The code stored
in the queue is a raw code that does not indicate the key number. For example, the key code for
the 1-key is a OOH, the key code for a 4-key is a 01H, etc. There is no provision for a queue over-
flow in this software. It could be added, but in almost all cases it is difficult to out-type a 16 bytes

queue.
Example 12-16 illustrates a procedure that removes data from the keyboard queue. This

procedure is not interrupt-driven and is called only when information from the keyboard is
needed in a program. Example 12-17 shows the caller software for the key procedure.

12-7 QUESTIONS AND PROBLEMS 495

EXAMPLE 12-16

0198 01 04 07 OA
019C 02 05 08 00
01AO 03 06 09 OB

01A4
01A5 8B IE 0196 R

01AF F9

01B2 2E: 8A 07
01B5 43

LOOK DB 1,4,7,10
DB 2,5,8,0
DB 3,6,9,11

;look up table

01BC 0182 R

01BF 89 IE 019:6 R
01C3 BB 0198 R
01C6 2E: D7
01C8 F8

01CB

EXAMPLE 12-17

01CB E8 FFD6

KEY PROC NEAR USES BX
MOV BX,OPNTR
. IF BX == PNTR

STC
.ELSE

MOV AL,CS:[BX]
INC BX
.IF BX == OFFSET DBCNT-1

MOV BX, OFFSET QUEUE
. ENDIF
MOV OPNTR,BX
MOV BX, OFFSET LOOK
XLAT CS:LOOK
CLC

. ENDIF
RET

KEY ENDP

.REPEAT
CALL KEY

.UNTIL !CARRY?

; queue empty

;get code from queue

12-6 SUMMARY
1. An interrupt is a hardware- or software-initiated call that interrupts the current^ v«~--.- ssasais

program at any point and calls a procedure. The procedure is called by the interrupt
or an interrupt service procedure.

2. Interrupts are useful when an I/O device needs to be serviced only occasionally at low
transfer rates.

3. The microprocessor has five instructions that apply to interrupts: BOUND, INT,
INTO, and IRET. The INT and INT 3 instructions call procedures with addresses
the interrupt vector whose type is indicated by the instruction.. The BOUND
conditional interrupt that uses interrupt vector type number 5. The INTO instruction
conditional interrupt that interrupts a program only if the overflow flag is set. Finally^
IRET instruction is used to return from interrupt service procedures.

4. The microprocessor has three pins that apply to its hardware interrupt structure: ̂ '̂1^
and INTA. The interrupt inputs are INTR and NMI, which are used to request
INTA is an output used to acknowledge the INTR interrupt request.

5. Real mode interrupts are referenced through a vector table that occupies memory locations
OOOOOH-003FFH. Each interrupt vector is four bytes long and contains the offset and segment
addresses of the interrupt service procedure. In protected mode, the interrupts reference the in-
terrupt descriptor table (IDT) that contains 256 interrupt descriptors. Each interrupt descriptor
contains a segment selector and a 32-bit offset address.

6. Two flag bits are used with the interrupt structure of the microprocessor: trap (TF) and in-
terrupt enable (IF). The IF flag bit enables the INTR interrupt input, and the TF flag bit
causes interrupts to occur after the execution of each instruction, as long as TF is active.

7. The first 32 interrupt vector locations are reserved for Intel use, with many predefined in the
microprocessor. The last 224 interrupt vectors are for user use and can perform any function
desired.

8. Whenever an interrupt is detected, the following events occur: (1) the flags are pushed onto
the stack, (2) the IF and TF flag bits are both cleared, (3) the IP and CS registers are both
pushed onto the stack, and (4) the interrupt vector is fetched from the interrupt vector table
and the interrupt service subroutine is accessed through the vector address.

9. Tracing or single-stepping is accomplished by setting the TF flag bit. This causes an inter-
rupt to occur after the execution of each instruction for debugging.
The non-maskable interrupt input (NMI) calls the procedure whose address is stored at in-
terrupt vector type number 2. This input is positive-edge triggered.
The INTR pin is not internally decoded, as is the NMI pin. Instead, INTA is used to apply
the interrupt vector type number to data bus connections DO-D7 during the INTA pulse.

12. Methods of applying the interrupt vector type number to the data bus during INTA vary
widely. One method uses resisters to apply interrupt type number FFH to the data bus, while
another uses a three-state buffer to apply any vector type number.
The 8259A programmable interrupt controller (PIC) adds at least eight interrupt inputs to
the microprocessor. If more interrupts are needed, this device can be cascaded to provide up
to 64 interrupt inputs.

14. Programming the 8259A is a two-step process. First, a series of initialization command
words (ICWs) are sent to the 8259A, then a series of operation command words (OCWs) are
sent.

15. The 8259A contains three status registers: IMR (interrupt mask register), ISR (in-service
register), and IRR (interrupt request register).

16. A real-time clock is used to keep time in real-time. In most cases, time is stored in either bi-
nary or BCD form in several memory locations.

QUESTIONS AND PROBLEMS

1. What is interrupted by an interrupt?
2. Define the term interrupt.
3. What is called by an interrupt?
4. Why do interrupts free up time for the microprocessor?
5. List the interrupt pins found on the microprocessor.
6. List the five interrupt instructions for the microprocessor.
7. What is an interrupt vector?
8. Where are the interrupt vectors located in the microprocessor's memory?
9. How many different interrupt vectors are found in the interrupt vector table?

10. Which interrupt vectors are reserved by Intel?

10.

11

13

496 CHAPTER 12 INTERRUPTS

11. Explain how a type 0 interrupt occurs.
12. Where is the interrupt descriptor table located for protected mode operation?
13. Each protected mode interrupt descriptor contains what information?
14. Describe the differences between a protected and real mode interrupt.
15. Describe the operation of the BOUND instruction.
16. Describe the operation of the INTO instruction.
17. What memory locations contain the vector for an INT 44H instruction?
18. Explain the operation of the IRET instruction.
19. What is the purpose of interrupt vector type number 7?
20. List the events that occur when an interrupt becomes active.
21. Explain the purpose of the interrupt flag (IF).
22. Explain the purpose of the trap flag (TF).
23. How is IF cleared and set?
24. How is TF cleared and set?
25. The NMI interrupt input automatically vectors through which vector type number?
26. Does the INTA signal activate for the NMI pin?
27. The INTR input is _______ -sensitive.
28. The NMI input is _______ -sensitive.
29. When the INTA signal becomes a logic 0, it indicates that the microprocessor is waiting for

an interrupt __________ number to be placed on the data bus (DO-D7).
30. What is a FIFO?
31. Develop a circuit that places interrupt type number 86H on the data bus in response to the

INTR input.
32. Develop a circuit that places interrupt type number CCH on the data bus in response to the

INTR input.
33. Explain why pull-up resistors on DQ-D7 cause the microprocessor to respond with interrupt

vector type number FFH for the INTA pulse.
34. What is a daisy-chain?
35. Why must interrupting devices be polled in a daisy-chained interrupt system?
36. What is the 8259A?
37. How many 8259As are required to have 64 interrupt inputs?
38. What is the purpose of the IRO-IR7 pins on the 8259A?
39. When are the CAS2-CASO pins used on the 8259A?
40. Where is a slave INT pin connected on the master 8259A in a cascaded system?
41. WhatisanlCW?
42. What is an OCW?
43. How many ICWs are needed to program the 8259A when operated as a single master in a

system?
44. Where is the vector type number stored in the 8259A?
45. Where is the sensitivity of the IR pins programmed in the 8259A? ;
46. What is the purpose of ICW1? |
47. What is a non-specific EOI? I
48. Explain priority rotation in the 8259A. ||
49. What is the purpose of IRR in the 8259A?
50. At which I/O ports is the master 8259A PIC found in the personal computer?
51. At which I/O ports is the slave 8259A found in the personal computer?

CHAPTER 13

Direct Memory Access
and DMA-Controlled I/O

INTRODUCTION

In previous chapters, we discussed basic and interrupt-processed I/O. Now we turn to the final
form of I/O called direct memory access (DMA). The DMA I/O technique provides direct ac-
cess to the memory while the microprocessor is temporarily disabled. This allows data to be
transferred between memory and the I/O device at a rate that is limited only by the speed of the
memory components in the system or the DMA controller. The DMA transfer speed can ap-
proach 32-40 M-byte transfer rates with today's high-speed RAM memory components.

DMA transfers are used for many purposes, but more common are DRAM refresh, video
displays for refreshing the screen, and disk memory system reads and writes. The DMA
transfer is also used to do high-speed memory-to-memory transfers.

This chapter also explains the operation of disk memory systems and video systems that
are often DMA-processed. Disk memory includes floppy, fixed, and optical disk storage. Video
systems include digital and analog monitors.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Describe a DMA transfer.
2. Explain the operation of the HOLD and HLDA direct memory access control signals.
3. Explain the function of the 8237 DMA controller when used for DMA transfers.
4. Program the 8237 to accomplish DMA transfers.
5. Describe the disk standards found in personal computer systems.
6. Describe the various video interface standards that are found in the personal computer.

BASIC DMA OPERATION

Two control signals are used to request and acknowledge a direct memory access (DMA)
transfer in the microprocessor-based system. The HOLD pin is an input that is used to request a
DMA action and the HLDA pin is an output that acknowledges the DMA action. Figure 13-1
shows the timing that is typically found on these two DMA control pins.

497

