DEFLATE

“Deflate” redirects here. For other uses, see Deflation
(disambiguation).

In computing, deflate is a data compression algorithm
that uses a combination of the LZ77 algorithm and
Huffman coding. It was originally defined by Phil Katz
for version 2 of his PKZIP archiving tool and was later
specified in RFC 1951.111

The original algorithm as designed by Katz was patented
as U.S. Patent 5,051,745 and assigned to PKWARE,
Inc.2IBl Ag stated in the RFC document, Deflate is
widely thought to be implementable in a manner not cov-
ered by patents.[' This has led to its widespread use, for
example in gzip compressed files, PNG image files and
the .ZIP file format for which Katz originally designed it.

1 Stream format

A Deflate stream consists of a series of blocks. Each

block is preceded by a 3-bit header:

e First bit: Last-block-in-stream marker:

e 1: this is the last block in the stream.

e O: there are more blocks to process after this
one.

e Second and third bits: Encoding method used for
this block type:

e (0: a stored/raw/literal section, between 0 and
65,535 bytes in length.

e 01: a static Huffman compressed block, using
a pre-agreed Huffman tree.

e 10: a compressed block complete with the
Huffman table supplied.

e 11: reserved, don't use.

Most blocks will end up being encoded using method 10,
the dynamic Huffman encoding, which produces an op-
timised Huffman tree customised for each block of data
individually. Instructions to generate the necessary Huff-
man tree immediately follow the block header.

Compression is achieved through two steps

e The matching and replacement of duplicate strings
with pointers.

e Replacing symbols with new, weighted symbols
based on frequency of use.

1.1 Duplicate string elimination

Main article: LZ77 and LZ78

Within compressed blocks, if a duplicate series of bytes
is spotted (a repeated string), then a back-reference is in-
serted, linking to the previous location of that identical
string instead. An encoded match to an earlier string con-
sists of a length (3—-258 bytes) and a distance (1-32,768
bytes). Relative back-references can be made across any
number of blocks, as long as the distance appears within
the last 32 kB of uncompressed data decoded (termed the
sliding window).

1.2 Bit reduction

Main article: Huffman coding

The second compression stage consists of replacing com-
monly used symbols with shorter representations and
less commonly used symbols with longer representations.
The method used is Huffman coding which creates an
unprefixed tree of non-overlapping intervals, where the
length of each sequence is inversely proportional to the
probability of that symbol needing to be encoded. The
more likely a symbol has to be encoded, the shorter its
bit-sequence will be.

A tree is created, containing space for 288 symbols:

e (0-255: represent the literal bytes/symbols 0-255.

e 256: end of block — stop processing if last block,
otherwise start processing next block.

e 257-285: combined with extra-bits, a match length
of 3-258 bytes.

e 286, 287: not used, reserved and illegal but still part
of the tree.

A match length code will always be followed by a distance
code. Based on the distance code read, further “extra”
bits may be read in order to produce the final distance.
The distance tree contains space for 32 symbols:

https://en.wikipedia.org/wiki/Deflation_(disambiguation)
https://en.wikipedia.org/wiki/Deflation_(disambiguation)
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Phil_Katz
https://en.wikipedia.org/wiki/PKZIP
https://tools.ietf.org/html/rfc1951
https://www.google.com/patents/US5051745
https://en.wikipedia.org/wiki/PKWARE,_Inc.
https://en.wikipedia.org/wiki/PKWARE,_Inc.
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Reference_(computer_science)
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding

e (0-3: distances 14
e 4-5: distances 5-8, 1 extra bit
e 06-7: distances 9-16, 2 extra bits

e 8-9: distances 17-32, 3 extra bits

e 26-27: distances 8,193-16,384, 12 extra bits
e 28-29: distances 16,385-32,768, 13 extra bits

e 30-31: not used, reserved and illegal but still part of
the tree.

Note that for the match distance symbols 2-29, the num-

ber of extra bits can be calculated as % —1.

2 Encoder/compressor

During the compression stage, it is the encoder that
chooses the amount of time spent looking for matching
strings. The zlib/gzip reference implementation allows
the user to select from a sliding scale of likely resulting
compression-level vs. speed of encoding. Options range
from —O0 (do not attempt compression, just store uncom-
pressed) to —9 representing the maximum capability of
the reference implementation in zlib/gzip.

Other Deflate encoders have been produced, all of which
will also produce a compatible bitstream capable of being
decompressed by any existing Deflate decoder. Differing
implementations will likely produce variations on the final
encoded bit-stream produced. The focus with non-zlib
versions of an encoder has normally been to produce a
more efficiently compressed and smaller encoded stream.

2.1 Deflate64/Enhanced Deflate

Deflate64, specified by PKWare, is a proprietary vari-
ant of the Deflate procedure. The fundamental mech-
anisms remain the same. What has changed is the in-
crease in dictionary size from 32kB to 64kB, an addition
of 14 bits to the distance codes so that they may address
a range of 64kB, and the length code has been extended
by 16 bits so that it may define lengths of 3 to 65538
bytes.[*! This leads to Deflate64 having a slightly higher
compression ratio and a slightly lower compression time
than Deflate.5! Several free and/or open source projects
support Deflate64, such as 7-Zip,!®! while others, such as
zlib, do not, as a result of the proprietary nature of the
procedure!”! and the very modest performance increase
over Deflate.®!

3 USING DEFLATE IN NEW SOFTWARE

3 Using Deflate in new software

Implementations of Deflate are freely available in many
languages. C programs typically use the zlib library (li-
censed under the zlib License, which allows use with
both free and proprietary software). Programs written
using the Borland dialects of Pascal can use paszlib; a
C++ library is included as part of 7-Zip/AdvanceCOMP.
Java includes support as part of the standard library (in
java.util.zip). Microsoft .NET Framework 2.0 base class
library supports it in the System.IO.Compression names-
pace.

3.1 Encoder implementations

e PKZIP: the first implementation, originally done by
Phil Katz as part of PKZip.

e zlib/gzip: standard reference implementation used
in a huge amount of software, owing to public avail-
ability of the source code and a license allowing in-
clusion into other software.

e jzlib: Rewrite/re-implementation/port of the
zlib encoder into pure Java and distributed un-
der a BSD license. (Fully featured replace-
ment for java.util.zip).

e PasZLIB: Translation/port of the zlib code
into Pascal source code by Jacques Nomssi-
Nzali.

e gziplite: Minimalist rework of gzip / gun-
zip with minimal memory requirement,
also supporting on-the-fly data compres-
sion/decompression (no need to bufferize all
input) and input/output to/from memory.

e pako: full featured zlib port to JavaScript, op-
timized for high speed. Works in browsers and
node.js.

e miniz — Public domain Deflate/Inflate implementa-
tion with a zlib-compatible API in a single .C source
file

e lodepng by Lode Vandevenne. A BSD-licensed sin-
gle file PNG file reader with built-in C++ Inflate im-
plementation and no external dependencies.

o KZIP/PNGOUT: an encoder by the game-
programmer Ken Silverman using “an exhaustive
search of all patterns” and "[an] advanced block
splitter”.

e PuZip: designed for Commodore 64/C128 comput-
ers. PuZip is limited to an 8kB LZ77 window size,
with only the store (type 00) and fixed Huffman
(type 01) methods.

e BigSpeed Deflate: “Tiny in-memory compression li-
brary” available as a MS Windows DLL limited to

https://en.wikipedia.org/wiki/Sliding_scale
https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/7-Zip
https://en.wikipedia.org/wiki/Zlib
https://en.wikipedia.org/wiki/Zlib_License
https://en.wikipedia.org/wiki/Borland
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/7-Zip
https://en.wikipedia.org/wiki/AdvanceCOMP
https://en.wikipedia.org/wiki/Microsoft_.NET_Framework
https://en.wikipedia.org/wiki/PKZIP
https://en.wikipedia.org/wiki/Phil_Katz
https://en.wikipedia.org/wiki/PKZip
https://en.wikipedia.org/wiki/Zlib
https://en.wikipedia.org/wiki/Gzip
http://www.jcraft.com/jzlib/
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/BSD_license
http://www.nomssi.de/paszlib/paszlib.html
https://en.wikipedia.org/wiki/Pascal_(programming_language)
http://sourceforge.net/projects/gziplite/
https://github.com/nodeca/pako
http://code.google.com/p/miniz/
http://lodev.org/lodepng/
https://en.wikipedia.org/wiki/BSD_license
http://advsys.net/ken/utils.htm#kzip
https://en.wikipedia.org/wiki/PNGOUT
https://en.wikipedia.org/wiki/Ken_Silverman
http://www.cs.tut.fi/~albert/Dev/puzip/
https://en.wikipedia.org/wiki/Commodore_64
https://en.wikipedia.org/wiki/Commodore_128
http://www.bigspeed.net/index.php?page=bsdefdll

3.2 Hardware encoders

32kB blocks at a time and three compression set-
tings.

BJWFlate & DeflOpt/DeflOpt: Ben Jos Wal-
beehm’s utilities “designed to attempt to squeeze
every possible byte out of the files it compresses”.
Note that the author has stopped development on
BJWFlate (but not DeflOpt) in March 2004.

Crypto++: contains a public domain implemen-
tation in C++ aimed mainly at reducing potential
security vulnerabilities. The author, Wei Dai states
“This code is less clever, but hopefully more under-
standable and maintainable [than zlib]".

DeflateStream - an implementation of a stream that
performs DEFLATE compression, it is packaged
with the Base Class Library included with the NET
Framework.

ParallelDeflateOutputStream — an open source
stream that implements a parallel (multi-thread) de-
flating stream, for use in .NET programs.

DotNetCompression — a managed C# implemen-
tation of DEFLATE/ZLIB/GZIP that is optimized
for high speed, conforms to the streaming API
of System.IO.Compression and includes assemblies
for .NET Framework, .NET Compact Framework,
Xamarin.iOS, Xamarin.Android, Xamarin.Mac,
Windows Phone, Xbox 360, Silverlight, Mono and
as a Portable Class Library.

7-Zip/AdvanceCOMP: written by Igor Pavlov in
C++, this version is freely licensed and tends to
achieve higher compression than zlib at the expense
of CPU usage. Has an option to use the DE-
FLATEG4 storage format.

deflate.s7i/gzip.s7i, a pure-Seed7 implementation
of Deflate and gzip compression, by Thomas
Mertes. Made available under the GNU LGPL li-
cense.

PuTTY ‘sshzlib.c’: a standalone implementation, ca-
pable of full decode, but static tree only creation, by
Simon Tatham. MIT licensed.

Halibut ‘deflate.c’: a standalone implementation ca-
pable of full decode. Forked from PuTTY’s ‘ssh-
zlib.c’, but extended to write dynamic Huffman trees
and provides Adler-32 and CRC-32 checksum sup-
port.

Plan 9 from Bell Labs operating system’s libflate im-
plements deflate compression.

Hyperbac: uses its own proprietary lossless com-
pression library (written in C++ and Assembly) with
an option to implement the DEFLLATE64 storage
format.

zip.js: JavaScript implementation.

e Zopfli: C implementation by Google that achieves
highest compression at the expense of CPU usage.
Apache licensed.

AdvanceCOMP uses the higher compression ratio ver-
sion of Deflate as implemented by 7-Zip (or optionally
Zopfli in recent versions) to enable recompression of gzip,
PNG, MNG and ZIP files with the possibility of achiev-
ing smaller file sizes than zlib is able to at maximum set-
tings. An even more effective (but also more user-input-
demanding and CPU intensive) Deflate encoder is em-
ployed inside Ken Silverman's KZIP and PNGOUT util-
ities, although recent versions of AdvanceCOMP have
surpassed KZIP and PNGOUT when using Advance-
COMP’s Zopfli mode.

3.2 Hardware encoders

e AHA361-PCIX/AHA362-PCIX from Comtech
AHA. Comtech produced a PCI-X card (PCI-ID:
193f:0001) capable of compressing streams using
Deflate at a rate of up to 3.0 Gbit/s (375 MB/s) for
incoming uncompressed data. Accompanying the
Linux kernel driver for the AHA361-PCIX is an
“ahagzip” utility and customised “mod_deflate_aha”
capable of using the hardware compression from
Apache. The hardware is based on a Xilinx Virtex
FPGA and four custom AHA3601 ASICs. The
AHA361/AHA362 boards are limited to only han-
dling static Huffman blocks and require software
to be modified to add support — the cards were
not able to support the full Deflate specification,
meaning they could only reliably decode their own
output (a stream that did not contain any dynamic
Huffman type 2 blocks).

e StorCompress 300/MX3 from Indra Networks.
This is a range of PCI (PCI-ID: 17b4:0011) or PCI-
X cards featuring between one and six compression
engines with claimed processing speeds of up to 3.6
Ghbit/s (450 MB/s). A version of the cards are avail-
able with the separate brand WebEnhance specifi-
cally designed for web-serving use rather than SAN
or backup use; a PCle revision, the MX4E is also
produced.

e AHA363-PCle/AHA364-PCle/AHA367-PCle. In
2008, Comtech started producing two PCle cards
(PCI-ID: 193f:0363/193f:0364) with a new hard-
ware AHA3610 encoder chip. The new chip was
designed to be capable of a sustained 2.5Gbit/s. Us-
ing two of these chips, the AHA363-PCle board can
process Deflate at a rate of up to 5.0 Gbit/s (625
MB/s) using the two channels (two compression and
two decompression). The AHA364-PCle variant is
an encode-only version of the card designed for out-
going load balancers and instead has multiple reg-
ister sets to allow 32 independent virfual compres-

http://www.walbeehm.com/download/
https://en.wikipedia.org/wiki/DeflOpt
https://en.wikipedia.org/wiki/Crypto++
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Vulnerability_(computing)
http://msdn.microsoft.com/en-us/library/system.io.compression.deflatestream.aspx
http://cheeso.members.winisp.net/DotNetZipHelp/html/26cbdba2-021a-ccf1-a9c9-b7ae55f6ecb8.htm
https://www.noemax.com/dotnetcompression/
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/.NET_Compact_Framework
https://en.wikipedia.org/wiki/Xamarin
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Xamarin
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Xamarin
https://en.wikipedia.org/wiki/Mac_OS
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/Xbox_360
https://en.wikipedia.org/wiki/Silverlight
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/7-Zip
https://en.wikipedia.org/wiki/AdvanceCOMP
https://en.wikipedia.org/wiki/C++
http://seed7.sourceforge.net/libraries/deflate.htm
http://seed7.sourceforge.net/libraries/gzip.htm
https://en.wikipedia.org/wiki/Seed7
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/PuTTY
https://en.wikipedia.org/wiki/MIT_License
http://www.chiark.greenend.org.uk/~sgtatham/halibut/
https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
http://plan9.bell-labs.com/sources/plan9/sys/src/libflate/
https://en.wikipedia.org/wiki/Red_Gate_Software#HyperBac
http://gildas-lormeau.github.com/zip.js/
https://en.wikipedia.org/wiki/Zopfli
https://en.wikipedia.org/wiki/Apache_license
https://en.wikipedia.org/wiki/AdvanceCOMP
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Multiple-image_Network_Graphics
https://en.wikipedia.org/wiki/ZIP_file_format
https://en.wikipedia.org/wiki/Ken_Silverman
https://en.wikipedia.org/wiki/PNGOUT
http://www.aha.com/
http://www.aha.com/
https://en.wikipedia.org/wiki/PCI-X
https://en.wikipedia.org/wiki/Linux_(kernel)
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Virtex_(FPGA)
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://www.indranetworks.com/SC300.html
http://www.indranetworks.com/SCMX3.html
http://www.indranetworks.com/
https://en.wikipedia.org/wiki/PCI_Local_Bus
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/PCIe
http://www.indranetworks.com/SCMX4E.html
http://www.aha.com/show_prod.php?id=36
http://www.aha.com/show_prod.php?id=37
http://www.aha.com/show_prod.php?id=38
https://en.wikipedia.org/wiki/Load_balancer

sion channels feeding two physical compression en-
gines. Linux, Microsoft Windows, and OpenSolaris
kernel device drivers are available for both of the
new cards, along with a modified zlib system library
so that dynamically linked applications can auto-
matically use the hardware support without inter-
nal modification. The AHA367-PCle board (PCI-
ID: 193f:0367) is similar to the AHA363-PCle but
uses four AHA3610 chips for a sustained compres-
sion rate of 10 Gbit/s (1250 MB/s). Unlike the
AHA362-PCIX, the decompression engines on the
AHA363-PCle and AHA367-PCle boards are fully
deflate compliant.

Nitrox and Octeon processors from Cavium, Inc.
contain high-speed hardware deflate and inflate en-
gines compatible with both ZLIB and GZIP with
some devices able to handle multiple simultaneous
data streams.

6 REFERENCES

e puff.c (zlib), a small, unencumbered, single-
file reference implementation included in the
/contrib/puff directory of the zlib distribution.

o tinf written by Jgrgen Ibsen in ANSI C and
comes with zlib license. Adds about 2k code.

e tinfl.c (miniz), Public domain Inflate imple-
mentation contained entirely in a single C
function.

PCDEZIP, Bob Flanders and Michael Holmes, pub-
lished in PC Magazine 1994-01-11.

inflate.cl by John Foderaro. Self-standing Common
Lisp decoder distributed with a GNU LGPL license.

inflate.s7i/gzip.s7i, a pure-Seed7 implementation of
Deflate and gzip decompression, by Thomas Mertes.
Made available under the GNU LGPL license.

pyflate, a pure-Python stand-alone Deflate (gzip)

and bzip2 decoder by Paul Sladen. Written for
research/prototyping and made available under the

4 Decoder/decompressor .
BSD/GPL/LGPL/DFSG licenses.

Inflate is the decoding process that takes a Deflate bit °
stream for decompression and correctly produces the
original full-size data or file.

deflatelua, a pure-Lua implementation of Deflate
and gzip/zlib decompression, by David Manura.

e inflate a pure-Javascript implementation of Inflate
by Chris Dickinson

4.1 Inflate-only implementations e pako: JavaScript speed-optimized port of zlib. Con-

. . . . tains separate build with inflate only.
The normal intent with an alternative Inflate implemen-

tation is highly optimised decoding speed, or extremely
predictable RAM usage for micro-controller embedded
systems.

4.2 Hardware decoders

o Serial Inflate GPU from BitSim. Hardware im-
plementation of Inflate. Part of BitSim’s BADGE
(Bitsim Accelerated Display Graphics Engine) con-
troller offering for embedded systems.

e Assembly

e 6502 inflate, written by Piotr Fusik in 6502 as-
sembly language.

e Elektronika MK-90 inflate, the above 6502
program ported by Piotr Piatek to the PDP-11 5
architecture.

e SAMflate, written by Andrew Collier in Z80 ®
assembly language with optional memory pag-
ing support for the SAM Coupé, and made
available under the BSD/GPL/LGPL/DFSG °
licenses.

See also

List of archive formats

e List of file archivers
Comparison of file archivers
o inflate.asm, a fast and efficient implementation

in M68000 machine language, written by Keir
Fraser and released into the Public Domain.

6 References

[1] L. Peter Deutsch (May 1996). DEFLATE Compressed
Data Format Specification version 1.3. 1ETF. p. 1.
sec. Abstract. RFC 1951. https://tools.ietf.org/html/

rfc195 1#section- Abstract. Retrieved 2014-04-23.

o C/C++

e kunzip by Michael Kohn and unrelated to
“KZIP”. Comes with C source-code under the
GNU LGPL license. Used in the GIMP in-
staller.

[2] US patent 5051745, Katz, Phillip W., “String searcher,
and compressor using same”, published 1991-09-24, is-

sued 1991-09-24

https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/OpenSolaris
http://cavium.com/processor_security_nitrox-III.html
https://github.com/zerix/Cavium-SDK-2.0/tree/master/examples/zip
http://cavium.com/
https://en.wikipedia.org/wiki/Assembly_language
https://github.com/pfusik/zlib6502
https://en.wikipedia.org/wiki/MOS_Technology_6502
http://www.pisi.com.pl/piotr433/mk90mc1e.htm#inflate
https://en.wikipedia.org/wiki/PDP-11_architecture
https://en.wikipedia.org/wiki/PDP-11_architecture
http://sourceforge.net/projects/samflate/
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/SAM_Coup%C3%A9
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
https://github.com/keirf/Amiga-Stuff
https://en.wikipedia.org/wiki/M68000
https://en.wikipedia.org/wiki/Public_Domain
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
http://www.mikekohn.net/file_formats/kunzip.php
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/LGPL
https://en.wikipedia.org/wiki/GIMP
https://en.wikipedia.org/wiki/Zlib
http://www.ibsensoftware.com/download.html
http://code.google.com/p/miniz/source/browse/trunk/tinfl.c
http://code.google.com/p/miniz/
http://opensource.franz.com/deflate/
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/LGPL
http://seed7.sourceforge.net/libraries/inflate.htm
http://seed7.sourceforge.net/libraries/gzip.htm
https://en.wikipedia.org/wiki/Seed7
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://www.paul.sladen.org/projects/pyflate/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
http://lua-users.org/wiki/ModuleCompressDeflateLua
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Gzip
https://github.com/chrisdickinson/inflate
https://en.wikipedia.org/wiki/Javascript_(programming_language)
https://github.com/nodeca/pako
http://www.bitsim.com/en/badge.htm
https://en.wikipedia.org/wiki/List_of_archive_formats
https://en.wikipedia.org/wiki/List_of_file_archivers
https://en.wikipedia.org/wiki/Comparison_of_file_archivers
https://en.wikipedia.org/wiki/L._Peter_Deutsch
https://tools.ietf.org/html/rfc1951#section-Abstract
https://tools.ietf.org/html/rfc1951#section-Abstract
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://tools.ietf.org/html/rfc1951#section-Abstract
https://tools.ietf.org/html/rfc1951#section-Abstract
http://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US5051745
https://en.wikipedia.org/wiki/Phil_Katz

3

[4

[5

[6

[7

[8

—

—_

—

— =

—

David, Salomon (2007). Data Compression: The Complete
Reference (4 ed.). Springer. p. 241. ISBN 978-1-84628-
602-5.

Binary Essence - Deflate64

Binary Essence - “Calgary Corpus” compression compar-
isons

7-Zip Manual and Documentation - compression Method

History of Lossless Data Compression Algorithms -
Deflate64

zlib FAQ - Does zlib support the new “Deflate64” format
introduced by PK Ware?

External links
PKWARE, Inc.'s appnote.txt, .ZIP File Format
Specification; Section 10, X. Deflating - Method 8.

RFC 1951 — Deflate Compressed Data Format Spec-
ification version 1.3

zlib Home Page

An Explanation of the Deflate Algorithm by Antaeus
Feldspar.

Extended Application of Suffix Trees to Data Com-
pression An excellent algorithm to implement De-
flate by Jesper Larsson

http://books.google.com/books?id=ujnQogzx_2EC&pg=PA241
http://books.google.com/books?id=ujnQogzx_2EC&pg=PA241
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84628-602-5
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84628-602-5
http://www.binaryessence.com/dct/imp/en000225.htm
http://www.binaryessence.com/dct/apc/en000263.htm
http://www.binaryessence.com/dct/apc/en000263.htm
http://sevenzip.sourceforge.jp/chm/cmdline/switches/method.htm
http://ieeeghn.org/wiki/index.php/History_of_Lossless_Data_Compression_Algorithms#DEFLATE64
http://www.zlib.net/zlib_faq.html#faq40
http://www.zlib.net/zlib_faq.html#faq40
https://en.wikipedia.org/wiki/PKWARE,_Inc.
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
https://tools.ietf.org/html/rfc1951
http://www.zlib.net/
http://zlib.net/feldspar.html
http://www.larsson.dogma.net/dccpaper.pdf
http://www.larsson.dogma.net/dccpaper.pdf

6 8 TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

8 Text and image sources, contributors, and licenses

8.1 Text

o DEFLATE Source: https://en.wikipedia.org/wiki/DEFLATE?0ldid=672745787 Contributors: Damian Yerrick, Tobias Hoevekamp, Zun-
dark, Ap, Olivier, Edward, J-Wiki, Den fjittrade ankan~enwiki, Timwi, Rvalles, Fibonacci, RedWolf, Diberri, Enochlau, DocWatson42,
Inkling, OverlordQ, Kate, Sladen, Vague Rant, Bo Lindbergh, Andrejj, Plugwash, Evice, K12u, Minghong, Wrs1864, Paul1337, Danhash,
Cristan, Pmberry, Deeahbz, Aottley, Marudubshinki, Graham87, Josh Parris, Ketiltrout, Rjwilmsi, Dieter Schmeer, Yar Kramer, FlaBot,
Chobot, 12120012, YurikBot, Hydrargyrum, CambridgeBayWeather, Sangwine, Brandon, Off!, Unforgiven24, JLaTondre, Wilsynet,
DmitriyV, SmackBot, Mmernex, Slashme, KelleyCook, JorgePeixoto, Chris the speller, Kurykh, Jacob Poon, Sommers, Cybercobra, Mag-
naMopus, OS2Warp, OxF, Jac16888, BobC32, Boemanneke, Thijs!bot, Bobblehead, Remram44, Widefox, Sterrys, CountingPine, Speck-
Made, Raise exception, Mikeakohn, Piotr433, Borber, Mrh30, DrSlony, Hgb, Alexbrn, Aspects, Int21h, Goodonel21, DanielPharos,
AgnosticPreachersKid, Viktorkallas, IsmaelLuceno, Addbot, AndersBot, OlEnglish, Luckas-bot, DeluxNate, Craigster0, KamikazeBot,
4th-otaku, AnomieBOT, Pur-ja, Blenheimears, FrescoBot, Citrin.ru, Dimafogo, Noloader, SlowByte, Tolly4bolly, Maschen, Richgel999,
MelbourneStar, Helpful Pixie Bot, BG19bot, Alexander Philippou, EoRdE6, Pink kittyl111, Nazlax10 and Anonymous: 79

8.2 Images

o File:Question_book-new.svg Source: https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: Cc-by-sa-3.0
Contributors:
Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:

Tkgd2007
o File:Symbol_template_class.svg Source: https://upload.wikimedia.org/wikipedia/en/5/5¢/Symbol_template_class.svg License: Public
domain Contributors: ? Original artist: ?

8.3 Content license

e Creative Commons Attribution-Share Alike 3.0

https://en.wikipedia.org/wiki/DEFLATE?oldid=672745787
https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
//en.wikipedia.org/wiki/File:Question_book.png
//en.wikipedia.org/wiki/User:Equazcion
//en.wikipedia.org/wiki/User:Tkgd2007
https://upload.wikimedia.org/wikipedia/en/5/5c/Symbol_template_class.svg
https://creativecommons.org/licenses/by-sa/3.0/

	Stream format
	Duplicate string elimination
	Bit reduction

	Encoder/compressor
	Deflate64/Enhanced Deflate

	Using Deflate in new software
	Encoder implementations
	Hardware encoders

	Decoder/decompressor
	Inflate-only implementations
	Hardware decoders

	See also
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

