
© nabg

Java
simple programs

© nabg

Simple programs

• Simply
– a context to illustrate a few more Java constructs
– a chance for you to get started fairly quickly in first

assignment

• Style
– “hybrid”; like the C++ you have written

• Procedural flow
• Use of instances of a few standard classes

© nabg

“Hybrid” code!

• I use the term “hybrid” to describe such code, as it
is a mix of procedural and class based (term hybrid
isn’t generally used)

• Thinking about problem is predominantly
procedural
– To accomplish task

• Do this to data
• Next do this to data
• Next do this
• Finally do this

Calls to subordinate functions
that work with global data

© nabg

Hybrid code –
functions and global data structures

• In C++,
– main() calls other functions defined in same file or in

other linked files
– Data structures defined as global variables (or as

filescope variables)

• In Java,
– Some changes because of requirement that everything

be a member of a class
• Have class that defines main() and the other functions and has

class data instead of global/filescope data

© nabg

Hybrid code –
use of classes

• In C++
– From first program, you used cin and cout –

instances of istream and ostream classes – even
though you had no idea what a class was

– Later you added C++’s string class and possibly
vector from standard template library

• In Java
– You’ve already seen System, PrintStream

(System.out = cout) and String

© nabg

Example 1

• First example
– to introduce a little more Java I/O

• Program an input file has positive numbers
one per line, with 0.0 as sentinel terminator
value
– want mean and standard deviation of these

values

© nabg

Program structure

• Main function
– gets filename from command line
– Invokes auxiliary function to do processing.

• Auxiliary function
– Opens file; terminate if file problems
– Initializes counters etc;
– Loops reading and processing data to end of file
– Computes final results
– Prints results

© nabg

Implementations

• Java
– “Import libraries” that the program depends on
– Define a class!

• Can’t have “free functions”; everything must belong
to a class

• Class defines a main and a (static) auxiliary function

© nabg

Code …

• Actual code of functions
– Iterative and selection constructs are essentially

identical to those you learnt in C++

• Everything you have learnt about basic
coding in C++ carries over to Java.

© nabg

Java – overall structure
import java.io.*;
public class Example
{

private static void process(String filename)
{
…
}
public static void main(String[] args)
{

…
}

}

import libraries ~ include headers

This is procedural style, so static
main invoking static auxiliary
function.
Both functions defined as members
of same “class”

© nabg

Java class
public class ClassName
{

// Members defined in any order
// Access qualifier (public, protected,
// private) should be specified for each member
// (if omitted, get default “package” access –
// this is a bit sloppy as a coding style)

// Data members (variables and constants)
// Member functions (Java prefers term “methods”)
// Members (data and functions) can be
// instance members or class (static) members
// Meaning of “instance” and “class” exactly
// same as in C++

}

© nabg

Java
Input & Output

• I/O:
– console (C++’s cin, cout, C’s stdin, stdout)
– local files
– data entered and displayed using GUI

components
– files accessed across Internet

© nabg

Input & Output

• Java not well suited to processing lots of data
– input exceedingly clumsy¶
– output lacks good formatting capabilities for

reports
• Java 1.5 added C style printf formatted output because

so many programmers complained!

• But, sometimes necessary
¶Horstmann got so frustrated with input that he wrote the “console” class
described in his book Core Java
Not the only one – many of other introductory text books exploit I/O helper
classes written by textbook authors

© nabg

I/O deficiencies

• Why does Java I/O seem so bad?
1. C++’s iostream library is actually very sophisticated;

you have been spoilt; all those overloaded >>
extraction and << insertion operator functions do
immense amounts of work for you.

2. Original concept for Java was mainly for interactive
work

1. Input a single item of data from text-field in a GUI display.
2. Output data in graphical form, no tabular listings going to

lineprinters
3. (Java development team included programmers who

had worked on a complex “streams & filters” model
than Sun was pushing for I/O in the 1980s)

© nabg

Input & Output

• Java I/O model inspired by other work at
Sun on “streams” and “filters”
– you build up something like an input stream by

• taking a basic connection object (to file, network, ...)
• giving this to another object that adds capabilities like

buffering (for more efficient i/o)
• giving this buffering object to something that

provides a bigger range of input processing functions
• ...

© nabg

Input

• Basic input connection – to file, keyboard,
network, … -
– Lets you get one byte at a time

• Buffered connection (text stream)
– Lets you read one line at a time

• Result is a String object

– Bit like a gets() in C/C++’s stdio library or
cin.getline() in iostream library

© nabg

Input

• But typically you don’t want to read input
as strings representing whole lines,
you want to do something like read an
integer, a double, and a string all on a line
separated by whitespace characters

• C++
int ival; double dval; char strval[128];
…
cin >> ival >> dval >> strval;

© nabg

Input – parsing etc

• C++’s istream class’s >> operator functions
“parse” the data
– Find the space delimited data elements
– Interpret numeric input to get a numeric value

• With Java
– DO IT YOURSELF!
– (with aid of a few standard functions)

© nabg

Reading numbers in Java

• One of Java input stream classes provides
functions to read and write numbers in internal
format (“binary files”)

• Other Java classes provide parsing functions
that can extract a numeric value from a
String (illustrated earlier in HelloWorldApp variant that
read a numeric command line argument)
– suited to text files
– suited also to GUI inputs that return Strings

© nabg

Reading numbers

• Normal approach
– get a String (from file or maybe from some GUI component)
– attempt to parse string to get numeric value

– so expect to see something line
String s = input.readLine()
numeric n = Numeric class convert String to value

© nabg

Reading numbers

• If file has several numbers (or data items) per line,
it gets a bit more complex
– have to split string into separate parts, each of which

holds one number
– There are now (at least) two ways of splitting up lines

• StringTokenizer (you may have used the strtok function in C++
- works remarkably like a StringTokenizer object)

• split() method in String class

© nabg

Remember exception handling

• All input operations can fail.
• So all input operations will need to be

bracketed in try { } catch () { } exception
handling code.

Catch the exception!
But then what do you do?
In most simple programs, all you can do is terminate with
an error message.
try { ... } catch { ... } tends to assume that working interactively
and have an intelligent user who, when prompted, can re-enter
correct data.

© nabg

Java classes used in Example 1
• File

– encapsulates concept of file: name, pathname,
size, modification date, accessibility, ..

• FileInputStream
– read individual bytes etc

• InputStreamReader
– “from byte stream to character stream” (all that

Unicode stuff)
This code shows how to build up the streams step by step. Some
classes, e.g. FileReader, have been added that have constructors
that perform some of the steps shown here in full.

© nabg

Java classes used in Example 1

• BufferedReader
– adds buffering, provides a readLine() function that

returns a String representing next line of file

• System
– access to “stdin, stdout”, environment variables etc

© nabg

Java classes used in Example 1

• String
– a non-editable string
– (not like string class that you used in C++)

• Assorted exception classes ...

© nabg

import java.io.*;

public class Example {

public static void main(String args[])
{

if(args.length<1)
System.out.println("Need name of data file");

else process(args[0]);
}

private static void process(String filename)
{

...
}

}

Note:
access qualifiers etc are specified for each
individual function and data member
(unlike C++ where can have entries grouped)

Note difference from C/C++ in
numbering of command line arguments

© nabg

Convention for code fragments

• I thought it obvious
• Some students clearly didn’t understand
• That slide showed outline with class

declaration, and main()
• Body of process() function indicated by

ellipsis (…)
• Code shown on some other slide

© nabg

static void process(String filename)
{

// Open file and package with adapter
// classes until have BufferedReader from which
// can read lines

// loop reading data values (have to handle
// exceptions)
// read line
// attempt to extract double
// accumulate sums etc

// compute mean
// compute standard deviation

}
Code would be “better” as three functions – “setupInput”,
“readData”, and “generateReport”. If you can point to a few lines
of code and given them an explanatory name, then make that code a
separate function

© nabg

static void process(String filename)
{ File f = new File(filename);

if(!f.canRead()) {
System.out.println("Can't read from that file");
System.exit(1);
}

FileInputStream fStream = null;
try {

fStream = new FileInputStream(f);
}
catch (FileNotFoundException e) {

System.out.println("No such file?");
System.exit(1);
}

BufferedReader datareader = new
BufferedReader(new InputStreamReader(fStream));

© nabg

• Using newer Java classes:

static void process(String filename)
{ BufferedReader datareader = null;

try {
datareader =
new BufferedReader(

new FileReader(filename));
}
catch(FileNotFoundException fne) {

System.out.println(“Couldn’t open “ +
filename);

System.exit(1);
}

© nabg

What the … ?
File f = new File(filename);
…
FileInputStream fStream = new FileInputStream(f);

BufferedReader datareader =
new BufferedReader(new

InputStreamReader(fStream));

© nabg
In the heap (free store)

FileInputStream object
owns

connection to file
does

read one byte

InputStreamReader object
owns

reference to FileInputStream object
info on character set in use

does
read one character

BufferedReader object
owns

reference to InputStreamReader object
some space to buffer a line

does
read one line

© nabg

static void Process(String filename)
{

BufferedReader datareader = …
... // Ellipsis again, that code shown on earlier slide
int count = 0;

double sum = 0.0;

double sumsq = 0.0;
for(;;) { .. }
if(count == 0) {

System.out.println("No data"); return; }
double mean = sum / count;
System.out.println("Mean " + mean);
if(count<2) { System.out.println(
"Too few items to calculate standard deviation");return;}
double stdev = Math.sqrt((sumsq - sum*sum/count)

/(count-1));
System.out.println("Standard deviation " + stdev);

}

© nabg

Math

• sqrt function needed
• C/C++?

– Oh somewhere, sqrt() defined in some library

• Java
– No such sloppiness!
– Everything must belong to a class.
– sqrt() (and cos(), sin() etc) belong to Math class
– Never have Math objects, Math class simply a

“namespace” where maths functions exist

© nabg © nabg

© nabg
for(;;) {

String s = null;
try { s = datareader.readLine(); }
catch (IOException e) {

System.out.println("Error reading file");
System.exit(1);
}

if(s==null) break;
double d = 0.0;
try { d = Double.parseDouble(s.trim()); }
catch (NumberFormatException n) {

System.out.println("Bad data in file");
System.exit(1);
}

if(d == 0.0) break;
count++; sum += d; sumsq += d*d;

}

© nabg

Example 1
input code

try { s = datareader.readLine(); }
catch (IOException e) {

System.out.println("Error reading file");
System.exit(1);
}

if(s==null) break;

• handle case of failure to read a line (e.g. the file didn’t
have a 0.0 sentinel value as terminator)

• Note, a new String object created each time go
round for-loop; then forgotten (relying on automatic garbage
collector to remove it)

• Get a null string at end of file

© nabg

Example 1
reading the double

• d = Double.parseDouble(s.trim());

• static double Double.parseDouble(String)

• Classes Double, Float, Integer define a few useful
functions relating to numeric types including static
conversion functions that take a string and parse it to
yield numeric value (or exception)

• C/C++ lovers will remember atoi() and similar functions

© nabg/* validate args */
if(!...) { …; return; }
/* input & checks */
…
if(!...) { …; return; }
for(;;) {

…
if(…) { …; return; }
…
if(…) break;
…
if(…) continue;
…

}
…

Ooh naughty – multiple exits from loop, multiple returns
from a function

“filter” style

Aside comment on
coding styles

© nabgif(…) {
…
if(…) {

bool littlegreenmansaysoktocross = true;
bool timetogo = false;
while(littlegreenmansaysoktocross) {

…
if(…) {

timetogo = true;
littlegreeenmansaysoktocross = false;
}
else {

…
if(…) { littlegreenmaysaysoktocross = false; }

else {
….
if(!...) {

…
}

}
}

}
if(!timetogo) {

…
}

}
}

“Pascal” style

© nabg

Java & C++
• Data file 12500 numbers

– C++ 0.6 seconds
– Java 3.1 seconds

• Java doesn’t compete on performance
• Java competes on convenience; Java’s

standardized libraries make it much easier to
build interactive programs

This example is a little unfair on C++; much of the work is I/O; if had a more
intensive computational task then performance difference would be more marked.

© nabg

Example 2
• Another example

– arrays
• Program

– an input file has a set of student records (student
name, mark); file starts with count then has string name
(just one name, no initials etc), double mark on each line

– print names of those students who got less than
half the average mark

© nabg

Data file

88
Tom 34
Dragan 48
Harry 71
Sue 68
…
Truls 45
Joseph 13

© nabg

Purpose of example …

• Illustrates
– Arrays of numeric values and of Strings
– Approaches to parsing more complex data

inputs

© nabg

Example 2

• Program structure
– create arrays
– loop reading from file, filling in arrays and

keeping track of sum of marks
– calculate average
– loop through array

• if mark less than half of average,
print name

© nabg

Example 2

• Java classes mostly as in Example 1
• Java class StringTokenizer from java.util library

(package)
– StringTokenizer is given a String and details of

characters that separate ‘tokens’
• here ‘tokens’ will be character strings representing numbers
• space will be only separator character

• StringTokenizer now somewhat outdated – also
illustrate newer coding style using split() method
of class String

© nabg

Arrays

• An array is essentially a kind of object
– gets allocated on heap
– supports [] access operator
– provides “length” accessor

• A variable that is to become an array is
declared as an array of specified type

• Space for array allocated by new operator
(when specify actual array size)

© nabg

Arrays

• Array of built-in (primitive) types
int[] data; // or int data[];
...
data = new int[25];

• “data” is an array of integers
...
data[3] = 999;

© nabg

data The heap
(“free store”

Array (25@4byte integers)

© nabg

Arrays

• Arrays of built in types can also be created
with an initializer:

int gradepts[] = { 0, 45, 50, 65, 75, 85 };

© nabg

Arrays

• Array of a class type:
String[] names;
...
classList = new String[25];

• Now have an array of “object reference
variables” (pointers), NOT an array of
Student objects

© nabg

Arrays
classList = new String[25];

• array of “object reference variables”
• Create the actual objects separately:

for(int i=0;i<25;i++) {
…
read in name … create new String
classList[i] = thename;

© nabg

classList The heap
(“free store”

Array (25@ “object reference
variables” i.e. pointers)

String name

String another name

String anotherone

© nabg

Arrays

• Array variable itself is simply a “pointer”
int a[];
int b[];
...
a = new int[77];
...
b = new int[77];
...
// This b = a; does not copy contents of array!
b = a; // Now have two pointers to the same

// structure, the array that b used
// to point at will be garbage collected

© nabg

a The heap
(“free store”

Array (77@4byte integers)

b

Before

Another array (77@4byte
integers)

© nabg

a The heap
(“free store”

Array (77@4byte integers)

b

After

Another array (77@4byte
integers) waiting to be

garbage collected

© nabg

Back to program …

• Processing now sufficiently elaborate that should
break it down into more functions.

• These are private auxiliary functions – only called
by main()

• Data could be passed from function to function but
easier if the functions operate on quasi global data

© nabg

Procedural code – everything static

• Not defining new type of object
• Simply have set of functions that process

data.

• Must define a class, that is Java rule
• All functions must be members of class;

again the Java rule
• Functions and data are static

© nabg

imports …
public class Program2 {
static data members
private auxiliary functions
public static void main(String[] args)
{
...

}

}

Program2.java file

© nabg

import java.io.*;
import java.util.StringTokenizer;
public class Program2 {

...

}

• Illustrates two slightly different forms of import
statement
– only want one class (StringTokenizer) from util “library”

(package), so ask simply for this one
– want several classes from java.io package; just specify all.

– Some development environments will put the import
statements in for you; they always use the explicit form that
names the class; if import several classes from same package
then get many import statements

© nabg

Data needed

• “Global” data – (global scope or filescope in C/C++,
static data members of Program class for procedural-style
Java)
– Array of String variables for names
– Array of int variables for marks
– int for average mark

© nabg

Functions

• Function should fit on one screen of your
editor,
if it is longer, break it down into auxiliary
functions

• Function call overhead is small
• Little functions, each with a clearly defined

purpose, make code more readable

© nabg

Functions

• main
– Opens input stream, calls other functions

• getClassSize
– Reads first line of input, converts to integer, creates

arrays
• readData

– Reads in data with names and marks
• calculateAverage
• printReport

© nabg

public class Program2 {
private static String[]classList;
private static int[] marks;
private static int average;
public static void main(String args[])
{ ... }
private static void

getClassSize(BufferedReader input)
{ ... }
private static void

readData(BufferedReader input)
{ ... }
private static void calculateAverage()
{ ... }
private static void printReport()
{ … }

}

© nabg

public static void main(String args[])
{

if(args.length<1) {
System.out.println("Need name of file with data");
System.exit(1);

}
String fileName = args[0];
BufferedReader input = null;
try {

input = new BufferedReader(
new FileReader(fileName));

}
catch(IOException ioe) {

System.out.println("Unable to open input file");
System.exit(1);

}
…

}

© nabg

public static void main(String args[])
{

…
getClassSize(input);
readData(input);
try { input.close(); }
catch(IOException ioe2) { /* ignore */ }
calculateAverage();
printReport();

}

© nabg

main()

• Standard code to create BufferedReader for file
– Create in main, pass to other functions
– Don’t keep creating new readers (seems popular error

by students)
• System.exit(1) – convention for programs that

have failed (old Unix convention)
• Handle exceptions

– Mostly print error message and stop, sometimes can
simply ignore

• Invoke other static functions

© nabg

private static void
getClassSize(BufferedReader input)

{
int size = 0;
try {

String line = input.readLine();
size = Integer.parseInt(line.trim());

}
catch(IOException ioe) {

System.out.println("Couldn't read from file");
System.exit(1);

}
catch(NumberFormatException nfe) {

System.out.println("Non-numeric data for class size");
System.exit(1);

}
…

}

© nabg

private static void
getClassSize(BufferedReader input)

{
…
if(size<=0) {

System.out.println("Invalid class size");
System.exit(1);

}
classList = new String[size];
marks = new int[size];
// System.out.println("Arrays allocated");
}

© nabg

getClassSize

• Define local variables in smallest scope possible
– String line only used within try…catch so define it

there

• Use tracer statements when developing code
– System.out.println(“some message”)
– At entry and exit from each function
– Comment out when confident function works
– Remove such dead code before submitting work for

assessment

© nabg
private static void readData(

BufferedReader input)
{

for(int i=0;i<marks.length;i++)
{

try {
String line = input.readLine();
StringTokenizer strtok = new

StringTokenizer(line);
classList[i] = strtok.nextToken();
marks[i] =
Integer.parseInt(strtok.nextToken());

}
catch(Exception e) {

System.out.println("Got exception " +
e.toString());

System.out.println("Occurred on line " +
i + " of student data");

System.exit(1);
}

}
// System.out.println("Data read");

}

© nabg © nabg

© nabg

Combining exceptions with same
handler code

catch(Exception e) {
System.out.println("Got exception " +

e.toString());
System.out.println("Occurred on line "

+ i + " of student data");
}

© nabg

private static void calculateAverage()
{

// System.out.println("Calculating average");
for(int mark : marks) average += mark;
average = (int) (average/marks.length);

}
private static void printReport()
{

int cutoff = (int) (average / 2);
System.out.println(

"Students with marks less than half of average");
for(int i=0;i<classList.length;i++)

if(marks[i] < cutoff)
System.out.println(classList[i]);

System.out.println(
"(They probably plan to pay again next year.)");

}

© nabg

What style of for-loop?

• “for each”
– When processing each element of collection

• for(int i=0;…;i++) counting loop
– Indexing into different arrays
– Need to use the index value
– …

© nabg

getClassSize
• Common error

String[] classList = new String[size];
int[] marks = new int[size];

• This declares local variables with same names as the static
class member variables.

• Arrays assigned to local variables.
• Local variables destroyed on exit from function, arrays are

garbage collected.
• Real arrays were never initialized.
• “Null pointer exception” when try to use arrays in the

readData() function

© nabg

Hint on Assignment 1

• These examples should give you some idea
as to how to organize code for assignment
1.

© nabg

Example 3

• Same as example 2, except now want output
with data on pupils sorted by mark.
– Extra sort and list function added before code to

compute average and code to list poorly
performing pupils

© nabg

public static void main(String args[])
{

…
getClassSize(input);
readData(input);
try { input.close(); }
catch(IOException ioe2) { /* ignore */ }
sortAndPrint();
calculateAverage();
printReport();

}

© nabg

private static void sortAndPrint()
{ // Selection sort – not very efficient

int count = classList.length;
for(int i=0;i<count-1;i++){

int max =i;
for(int j=i+1;j<count;j++)

if(marks[j]>marks[max])max=j;
int itemp = marks[max];
marks[max]=marks[i];
marks[i]=itemp;
String stmp=classList[max];
classList[max]=classList[i];
classList[i]=stmp;

}
for(int i=0;i<count;i++)

System.out.println((i+1) + "\t"
+ classList[i] + "\t"

+ marks[i]);
}

© nabg

Parallel arrays

• When related data stored in separate
structures
– String[] classList (names)
– int[] marks

have to swap all elements when sorting
otherwise marks end up with wrong pupils!

© nabg

Data aggregates

© nabg

Data aggregation

• Why did you have struct types and
struct variables in C/C++?
– to group together data that belong together

struct pupil {
char* name;
int mark;

};

© nabg

Java “struct”

• Java doesn’t have a distinct struct construct but
you can achieve much the same thing with a very
limited class declaration:

public class Pupil
{
public String name;
public int mark;

}

© nabg

Java struct-like class
• In Java, such things are almost always promoted into

proper classes by adding a few useful methods:
public class Pupil
{

public String name;
public int mark;
public Pupil(String aName, int aMark)
{ name = aName; mark = aMark; }
public String toString()
{

return name + " \t " + Integer.toString(mark);
}

}

© nabg

Minimal methods …

• A constructor
– Like in C++

• No return type
• Name is same as class name
• May have different versions with different kinds of

initializing argument

• A toString() method
– Signature must be public String toString()

© nabg

Keep data private

• For various reasons, it is better to keep the
data members private

• Since users of class will need to read values
of data members, and may need to modify
values, accessor and mutator functions are
supplied.

• (A class that provides such functions for all its
data members, and which follows certain naming
conventions, is called a “bean”)

© nabg

public class Pupil
{

private String name;
private int mark;
public Pupil(String aName, int aMark)
{ name = aName; mark = aMark; }
public String toString()
{

return name + " \t " + Integer.toString(mark);
}
public String getName() { return name; }
public int getMark() { return mark; }
public void setName(String newName)
{ name = newName; }
public void setMark(int newMark)
{ mark = newMark; }

}

© nabg

Program 4

Yet another version of those students
and their marks!

© nabg

One .java file or several .java files?

• This next version of the program will use the Pupil
class.

• Can keep each Java class in own file
– public class Program in file Program4.java
– public class Pupil in file Pupil.java

• Or can have just the one file with several classes
– File Program4.java contains

• public class Program4
• class Pupil

Code here illustrates Pupil and Program4 in same file; if
doing in NetBeans would use two files

© nabg

import java.io.*;
import java.util.StringTokenizer;

class Pupil
{
…

}
public class Program4 {
…

}

© nabg

Program4
1. Use array of Pupil records instead of separate parallel

arrays of marks (int[]) and names (String[])
2. File no longer starts with count of records (very

inconvenient in practice). Instead, simply read lines
until get end of file (a null value returned from
readLine()).

3. As don’t know size of array, will have to pre-allocate an
array we hope will be large enough!

4. Keep count of records read (array length doesn’t
determine number of actual records).

5. Sort Pupil records.

© nabg
public class Program4 {

private static Pupil[] pupils;
private static int average;
private static int count;
private static final int kSIZE=250;
public static void main(String args[])
{

…
}
private static void

readData(BufferedReader input) { … }
private static void calculateAverage() { … }
private static void printReport() { … }
private static void sortAndPrint(){ … }

}

© nabg
public static void main(String args[])
{

if(args.length<1)
System.out.println("Need name of file with data");

System.exit(1);
}
String fileName = args[0];
BufferedReader input = null;
try {

input = new BufferedReader(
new FileReader(fileName));

}
catch(IOException ioe) {

System.out.println("Unable to open input file");

System.exit(1);
}
pupils = new Pupil[kSIZE];
readData(input);
try { input.close(); }
catch(IOException ioe2) { /* ignore */ }
sortAndPrint();
calculateAverage();
printReport();

}

© nabg

private static void
readData(BufferedReader input)

{
count = 0;
for(;;)
{

try {
String line = input.readLine();
if(line==null) break;
StringTokenizer strtok = new

StringTokenizer(line);
String name = strtok.nextToken();
int mark = Integer.parseInt(strtok.nextToken());
pupils[count++] =

new Pupil(name, mark);
}
catch(Exception e) {

System.out.println("Got exception " +
e.toString());

System.out.println("Occurred on line " +
count + " of student data");

System.exit(1);
}

}
}

© nabg

forever

• Loop
for(;;) {

…
if(someCondition) break;
…

}
• Very common for handling input streams where

detect some form of sentinel end marker (here,
end-of-file indicated by null return from readLine

© nabg

Constructing new object

• Have read name, and mark
pupils[count++] =

new Pupil(name, mark);

• Add record to array
– Array of object type is essentially an array of

pointers initialized to null

© nabg

pupils The heap
(“free store”

Array (250@ “object reference
variables” i.e. pointers)

Pupil object

Another Pupil

Yet another Pupil

© nabg

private static void sortAndPrint()
{
for(int i=0;i<count-1;i++){

int max =i;
for(int j=i+1;j<count;j++)

if(pupils[j].getMark()>
pupils[max].getMark())max=j;

Pupil ptemp = pupils[max];
pupils[max]=pupils[i];
pupils[i]=ptemp;

}
for(int i=0;i<count;i++)

System.out.println((i+1) + "\t"
+ pupils[i]);

}

© nabg

Invoking method of object in array

if(pupils[j].getMark()>

• pupils[j] array element, an object of
type Pupil

• .getMark() call member function

© nabg

Have to use counting loops

• foreach loop
– for(Pupil p : pupils)

will process every element of array
• How many elements? kSIZE i.e. 250
• How many elements actually exist?

– Don’t know, it depends on data in file but less
than 250

• Would encounter a null pointer exception

© nabg

private static void calculateAverage()
{
for(int i=0;i<count;i++) {

average += pupils[i].getMark();
}
average = (int) (average/count);

}
private static void printReport()
{
int cutoff = (int) (average / 2);
System.out.println("Students with marks less than
half of average");

for(int i=0;i<count;i++)
if(pupils[i].getMark() < cutoff)

System.out.println(pupils[i]);
}

© nabg

Java is smarter than that …

Java knows how to sort …

© nabg

You should have expected that …

• C/C++ libraries include a qsort() function that can
sort arrays of structures;
of course, you have to supply an auxiliary function
that defines how to determine which struct is
greater

void qsort(void *base,
size_t nel, size_t width,
int
(*compar)(const void *,

const void *));

© nabg

OK, which one of you can explain

void qsort(void *base, size_t nel,
size_t width,
int

(*compar)
(const void *, const void *)

);

© nabg

The qsort() function is an implementation of the quick-sort
algorithm. It sorts a table of data in place. The contents
of the table are sorted in ascending order according to the
user-supplied comparison function.

The base argument points to the element at the base of the
table. The nel argument is the number of elements in
the table. The width argument specifies the size of each
element in bytes. The compar argument is the name of
the comparison function, which is called with two
arguments that point to the elements being compared.

The function must return an integer less than, equal to, or
greater than zero to indicate if the first argument is to be
considered less than, equal to, or greater than the second
argument.

The contents of the table are sorted in ascending order
according to the user supplied comparison function.

© nabg

Java’s sort

• Naturally, in Java, any function for sorting must
be defined as part of a class;
it is the class Arrays

• Arrays is not a class from which one creates
“Arrays” objects;
it is simply a namespace thing;

• Arrays is a class where functions for sorting,
binary search etc are defined.

© nabg

© nabg © nabg

Arrays.sort(array, start-index, end-
index)

• Arrays.sort(array)
• Arrays.sort(array, start, end)

• Lots of versions for different kinds of arrays
– int[]
– float[]
– Object[] ? !

© nabg

Arrays.sort

• Obviously Java knows how to compare int, float,
double, char, and other built-in types.

• But what about objects that are from classes that
Java has never heard about before,
e.g. class Pupil

• As with C++/C’s qsort(), you must supply the
function that does the comparison

© nabg

interface Comparable

• Simplest approach …

interface Comparable {
int compareTo(Object other);

}
interface Comparble<T> {

int compareTo(T other);
}

© nabg

class X implements Comparable

• You define your class as implementing
Comparable interface.

• You define a compareTo function that determines
ordering when comparing “this” object with
“other” object
– Return –ve value if “this” is smaller than “other”
– Return 0 if they are equal
– Return +ve value if “this” is larger than “other”

See details with the “Boxes” example associated with assignment 1

© nabg

Program 5

• Same as Program 4
• But using Arrays.sort rather than our own.

• Class Arrays is in java.util package, so need
another import statement.

NetBeans of course will look after the imports for you, but you
should try to understand what is going on

© nabg

Collections.sort

• Java has collection classes like Vector (a
dynamic array), LinkedList and ArrayList.

• May need to sort data held in a collection.
– Copy from collection into temporary array
– Use Array.sort()

• To save you the trouble, there is another
helper class Collections that is like Array

© nabg

© nabg

sort(List<T> list)
Sorts the specified

list into ascending
order, according
to the natural
ordering of its
elements.static

sort(List<T> list,
Comparator<? super T> c)

Sorts the specified list
according to the
order induced by
the specified
comparator.

How does it work? Well it copies into an array and uses Array.sort

© nabg

class Pupil implements Comparable
{

…
public int compareTo(Object other)
{

Pupil otherP = (Pupil) other;
// Don't want normal numeric sort which would be
// int dif = mark - otherP.mark;
// as that would put them in ascending order by
// mark
// Want descending order by mark

int dif = otherP.mark - mark;
if(dif != 0) return dif;

// If same mark, want them alphabetical
// sorted by name

return name.compareTo(otherP.name);
}

} Java 1.4 and earlier version

© nabg

Pupil.compareTo(Object other)

• Should only be comparing Pupil objects with other
Pupil objects,
and can only do comparison if can look inside
objects and get at their fields

• Hence type cast
Pupil otherP = (Pupil) other;
• Compare first by mark, if marks are equal

compare by name
• Strings already have a compareTo function that

sorts alphabetically

© nabg

private static void sortAndPrint()
{
Arrays.sort(pupils, 0, count);
for(int i=0;i<count;i++)

System.out.println((i+1) + "\t"
+ pupils[i]);

}

© nabg

class Pupil implements Comparable<Pupil>
{
…
public int compareTo(Pupil other)
{
// Want descending order by mark

int dif = other.mark - mark;
if(dif != 0) return dif;

// If same mark, want them alphabetical
// sorted by name

return name.compareTo(other.name);
}

}
Java 1.5 version (Program6)

© nabg

Java is smarter than that …

Use collection classes …

© nabg

Knowing how big the arrays are

• Earlier examples cheated
– Data file started with a line giving number of records
– This number was read and used to determine size of

array to create.
• More generally, you don’t know how many data

elements there are to process, you must simply
process all in the input file.

• So used scheme where pre-allocated the array.
• But how do you create an array of appropriate

size?

© nabg

Guess a size?
public class Program {

private static final int
kIMSURETHISWILLBEBIGENOUGH = 10000l;

private static Pupil[] enrollment;
public static void main(String args[])
{

enrollment =
new Pupil[kIMSURETHISWILLBEBIGENOUGH];

if(args.length<1)
System.out.println("Need name of data file");

else process(args[0]);
}

static void process(String filename)
{

...
}

}

© nabg

Trouble with guessing …

• Too large
– Waste of storage space

• Too small
– Run time exception, array subscript out of

bounds

kSIZE=250; well it would work for CSCI subjects now, but
before the engineers were moved into CSCI191, the combined
CSCI114/CSCI191 class had 300+ students and the program
would have failed if applied to data file for that subject

© nabg

Dynamic arrays

• You might have been shown how to
implement a “dynamic array” in your C++
studies
– Create array with initial size
– Add elements

• If array is full when want to add an element
– Create a new larger array
– Copy existing data
– Get rid of too small array
– Continue working with larger array

© nabg

Using a dynamic array
• You could code one yourself in Java …

– A variable to reference the array
– An integer to represent current size
– An integer to count number of elements added

– Initialize – allocate small array, record size, zero count
– Loop reading data

• Create new element
• Invoke an add routine

– Add routine
• Grow array if necessary

© nabgprivate static Pupil[] enrollment;
private static int size;
private static int count;
public static void main(String[] args)
{

enrollment = new Pupil[100]; size = 100; count = 0;
…

}
private static void process(String filename)
{

…;
for(;;) { …; Pupil next = new Pupil(id,mark);

add(next); … }
}
private static void add(Pupil s)
{

if(count==size) {
Pupil[] temp = new Pupil[size+100]
for(int i=0;i<size;i++) temp[i]=enrollment[i];
enrollment = temp; size +=100;

}
enrollment[count++] = s;

Make the array grow

© nabg

Java has everything built-in!

• You don’t need to code such things.
• Java comes with a number of “Collection” classes.

– Linkedlists,
– Resizable arrays,
– Binary tree structures,
– Hashtables
– …

• All in java.util package.

© nabg

Using collection classes

• Pick the java.util class most suited to
current needs
– Simple collections: e.g. Vector, LinkedList,

ArrayList, …
– Ordered collections: Treeset, …
– Keyed collections: Hashmap, …

• Create an instance of that class
• Add your data to the collection

© nabg

Complication here …

• Traditional Java style
• Java 1.5 style – greater type security

• You need to be familiar with both
– Very large volume of existing code in traditional style –

you have to work with and update this code
– New style for new applications

• Old style first

© nabg

The simplest collection class

• Simplest collection class in java.util:
– Vector

• java.util.Vector is essentially a class defining a
simple dynamic array
– Constructors

• No argument, get small array to start with;
• integer argument – define starting size;

– add (and addElement) methods – add more data,
growing array if necessary

– elementAt(int ndx) method to get an element
– size() to get number of elements

© nabg © nabg

Collections of what?

• Collections of Objects! What else did you expect.
• Object - topic of next lecture.
• Java differs from C++ here

– C++: classes are independent
– Java: classes are all part of a great hierarchy, every

class is inherently a specialized subclass of Java’s
Object class

– So, every instance of every class is an Object

© nabg

Add an Object (instance of any
specialized subclass of Object
class to given Vector)

© nabg

Objects in Collection

• Can put any Object into a collection
– Most of the collection classes have an add(Object o)

method

• Can get at elements in a collection; methods vary a
little, Vector has methods like
– firstElement(), lastElement(), elemenAt(int index)

• What do you get when you ask a collection for a
particular element using one of the access
methods?

© nabg

Object in => Objects out

Object elementAt(int index)
Returns the component at the specified index

• Get back an Object of course.

© nabg

What is an “Object”?

• More in next lecture.
• Base class for all Java classes.
• Defines some properties that all Java Objects have

– Functions that work with every object
• toString – every object can print out some information, though

the default is simply to print its class name and memory
address (which isn’t usually very informative)

• Functions that you learn about later for locking access to
objects

© nabg © nabg

Type casts

• You know what you put in a collection, e.g. a
Pupil record.

So
• You know that the Object you get back isn’t just

an Object, it really is a Pupil record
So
• You type cast when you get something out of a

collection:
Pupil one = (Pupil) myCollection.firstElement();

© nabg

Java 1.5 enhancement

• Java 1.5 has “template collections”
• Look a bit like C++ templates, work quite

differently.
• In Java 1.5

– When you define a collection object (instance of any
collection class) you specify the class of the objects that
will be stored in that collection

– Compile time checks make sure you are using the
collection correctly (in some situations, supplemented
by run-time checks)

– When you obtain an object from the collection, you
don’t have to do an explicit type cast – casting is
automatic

© nabg

Vector<Pupil>

Vector<Pupil> collection;
…
collection = new Vector<Pupil>();
…
Pupil s = new Pupil(…);
collection.add(s);
..
Pupil x = collection.firstElement(); // No explicit type cast

1.5

© nabg

Demo program

• Class Pupil
• Program

– Main creates a Vector
– Process

• Loop reading data, creating Pupil record objects and
adding them to Vector

• When complete, data moved from Vector to Pupil[]

© nabgprivate static void readData(BufferedReader input)
{

Vector collection = new Vector();
count = 0;
for(;;)
{

try {
String line = input.readLine();
if(line==null) break;
StringTokenizer strtok = new

StringTokenizer(line);
String name = strtok.nextToken();
int mark = Integer.parseInt(strtok.nextToken());
collection.add(new Pupil(name, mark));
count++;

}
catch(Exception e) {

…
System.exit(1);

}
}
pupils = (Pupil[])

collection.toArray(new Pupil[0]);
}

Java 1.4 style

© nabgprivate static void readData(BufferedReader input)
{

Vector<Pupil> collection = new Vector<Pupil>();
count = 0;
for(;;)
{

try {
String line = input.readLine();
if(line==null) break;
StringTokenizer strtok = new

StringTokenizer(line);
String name = strtok.nextToken();
int mark = Integer.parseInt(strtok.nextToken());
collection.add(new Pupil(name, mark));
count++;

}
catch(Exception e) {

…
System.exit(1);

}
}
pupils = collection.toArray(new Pupil[0]);

}

Java 1.5 style

© nabg

Use collection or convert to array?

• Depends on what processing you need to do later.
• Usually, just work with collection (Vector,

LinkedList, whatever)
• Sometimes more convenient to get data copied

from collection to array.
• Most collections have a toArray() method
• Here wanted the array form for next sorting step

© nabg

Vector.toArray()

enrollment = collection.toArray(
new Pupil[0]);

• Why the dummy argument new Pupil[0]?

© nabg

Java 1.5 “improvement”

StringTokenizer deprecated

© nabg

Managing without
StringTokenizer

• StringTokenizer class is “deprecated”
– Means that you should not use it in any new

programs
• String class got given extra methods in Java

1.4 release
– Including a split() function

© nabg

String[] String.split(regex-pattern)

• Split method breaks up a String returning an array
of String objects for the separate parts.

• Regex-pattern – a “regular expression” that
defines how to recognize the points where string is
to be split

• Regular expressions can be quite complex, you
may get short introduction in one of C++ subjects.

© nabg

split() rather than StringTokenizer

• Sun’s justification:
– Regex-es allow for definition of much more

sophisticated criteria for splitting a string
– So can do much more than StringTokenizer

• Consequence
– Need much more sophisticated programmers to

use them correctly!

© nabg

void readData(BufferedReader input)
{

…;
String s = input.readLine();

String[] sparts = s.split("\\s")
name = Integer.parseInt(sparts[0]);
mark = Integer.parseInt(sparts[1]);
…

}

© nabg

Regex-es (yeech)

String[] sparts = s.split("\\s")

• Why \\s?
All we wanted to say was split at
whitespace characters (which
StringTokenizer does by default).

Aside comment!
© nabg

Regex-es

• A test program-
public class Tez {

public static void main(String[] args)
{

String query = "This-is-a-test";
String[] parts = query.split("-");
System.out.println(

"There were " + parts.length + " parts");
for(int i=0;i<parts.length;i++)

System.out.println(parts[i]);
}

}

Aside comment!

© nabg

Regex-es

• Regex can be
– A simple character, split at “-”

• query.split(“-”)
• Result: [“This”, “is”, “a”, “test”]

– A set of characters, split at any vowel “[aeiou]”
• query.split(“[aeiou]”);
• Result: [“Th”, “s-”, “s-”, “-t”, “st”];

– Sets are defined “[” characters “]”

Aside comment! © nabg

Regex-es

• There are predefined sets represented by
escape combinations (see documentation)
– \d set of all digits
– \D set of all characters that are not digits
– \s set of all whitespace characters
– \S set of all characters other than

whitespace
– Others

Aside comment!

© nabg

Regex-es

• So, we wanted to say “split at whitespace”
so could use the predefined character set \s

• But had to define this as a string!
• In a string, the \ character is an “escape

character” (same as it was in C++).
• So had to “escape the escape” - hence “\\s”

Aside comment! © nabg

Regex-es

• Other problems
– Characters like [].|+* have special meaning inside

regexes
– So if want to split at e.g. * character, cannot say

• String query = “This*is*a*test”;
• query.split(“*”);

– (You would get a runtime error about a bad regex)
– Instead must use an escape combination-

• query.split(“*”);

Aside comment!

© nabg

Regexes

• Regex-es
– Fun (?)
– Powerful
– More generally used for much fancier tricks than

simply splitting up a string
– Something to learn about in some C++ subject (or in

context of Perl, in CSCI399)
– A pain

• But as Sun expects us to use more sophisticated
features added to Java, I guess we just learn to use
regexes

Last aside comment! © nabg

Working with collections

© nabg

Iterating through collections

• Can use a for loop
Vector<Pupil> collection = new Vector<Pupil>();
…
// fill collection with data
…

int numelements = collection.size();
for(int i=0;i<numelements;i++) {
Pupil p = collection.elementAt(i);
…

}

© nabg

Iterating through collections

• (As explained in CSCI124 (?)), collections
normally have associated Iterator objects
that can be used when seeking to iterate
through collection.

• Use of iterators tends to result in cleaner,
more readily understood code

Uhm, revised healthier low-class CSCI124 probably hasn’t
touched on collection classes and their Iterators.

© nabg

private static void process(String filename)
{

…
for(;;) { … }

Iterator<Pupil> iter =
collection.iterator();

while(iter.hasNext()) {

Pupil st = iter.next();
double diff = mean - st.fMark;
diff = Math.abs(diff);
if(diff > 2.0*stdev)
System.out.println(st);

}

}

© nabg

and another Java 1.5 feature …
• Very common to:

– create and fill a collection
– get Iterator from collection
– have a loop with hasNext() and next() operations on Iterator

• Java 1.5 adds a little “syntactic sugar” with its “for each”
loop

• Code using the “for each” construct slightly more readible
• Use “for each” loop if really do want to process all

elements in turn.
• Use explicit Iterator when want to do something fancier

such as remove elements while walking the collection
(Iterator class has a remove operation)

© nabg

Iterators

• Most of the java.util collection classes have
a method iterator() that returns an Iterator.

• Iterator defines methods
– hasNext()
– next()

© nabg

Iterator

• Different collections yield different iterator
objects (instances of specialized Iterator
classes)

• They all have the same operations
– hasNext()
– next()

© nabg

Iterator - vector

• Vector (dynamic array)
capacity

size
0
1

6
9

6
2

2
3
4
5

Data item

Data item

Data item

null
null
null

Iterator object

limit
index

© nabg

Iterator linkedlist

• LinkedList

null

Data item Data item Data item Data item

Data item

Iterator object

© nabg

Iterators

• No reason to know their internal structure
• No reason to know what specialized class

they are instances of.

• They all work the same, just give me an
Iterator

© nabg

Enumeration

• Some collection classes give you an Enumeration
instead of, or as an alternative to an Iterator.

• Enumeration was Java’s first version of “iterator”
construct.

• Java developers decided that they didn’t like some
details of its implementation so they later invented
Iterator

• Enumerator remains for backwards compatibility

© nabg

“for-each” loop/iterator/enumeration

• Which to use?
– “for-each”: use when working through all elements of

array or a collection such as Vector or LinkedList
• For-each will actually use an Iterator

– Iterator: use when working through a collection that
may get modified (Iterator.remove() operation)

– Enumeration: use only when necessary for
compatibility with “legacy” code

© nabg

End of examples

• OK
– Not really Java style
– Haven’t really explained Objects and object reference

variables yet
– But enough to get you started on Java coding and

assignment 1
• Actual code – iteration constructs, selection constructs etc –

really no difference from C++
• Structure of program – few extra restrictions, no free functions

(everything is part of a class)
• Minor syntactic differences from C++ (e.g. setting access

control on class members)
• But what you already know from C++ mostly works!

© nabg

Minor issues

-programming style
-Primitive type data elements in

collections

© nabg

Note on stylistic convention
followed in some textbooks

• Many textbooks are written by authors who
believe that you should never write any
“procedural” style Java
(they have never read any of Sun’s examples of more advanced applications!)

• They use a style where an object is always
created, and the code is executed by this object

Side issue 1 : “main() must create an object”

© nabg

Version of an earlier example in
this alternative style

• Class ProgramWithObject – same program really
– main() now creates an instance of its own class and

invokes a method on that instance
– All data members (apart from any constants) and

function members now become instance members
rather than class members.

– (Code uses default no argument constructor that is provided
automatically if you don’t define any constructors)

© nabg

public class ProgramWithObject {
private Pupil[] pupils;
…
public static void main(String args[]) {

ProgramWithObject iReallyInsistOnHavingAnObject =
new ProgramWithObject();

iReallyInsistOnHavingAnObject.work(args);
}
private void work(String args[]) {

System.out.println("This is object " +
this.toString());

System.out.println("I am starting work");
this.pupils = new Pupil[kSIZE];
if(args.length<1)

System.out.println("Need name of data file");
else this.process(args[0]);

}
private void process(String filename)
{ … }

}

© nabg

Output from modified program

$ java ProgramWithObject data1
This is object ProgramWithObject@16f0472
I am starting work
…

© nabg

“this”

• Remember “this” in C++?
– Pointer to current instance of class, the object for which

a method is being executed.
• You probably never used “this”, the C++ compiler

takes it as implicit when dealing with member
functions and data members.

• Rules are similar in Java.
– Can use “this” to reference the current object for which

a method is being executed.
– Usually don’t bother as compiler takes it as implicit.

© nabg

Side issue 2: collection of numeric
values

• Another area where 1.5 differs from earlier Javas.

• Collections are collections of Objects
– int, float, long, double etc are not objects

– values have to be “boxed” inside objects before can go in
collection

• Old Javas – programmer did the “boxing”
• Java 1.5 – boxing is automatic
• Old style first

© nabg

Another side issue –
collections and primitive types

• java.util collection classes are collections of
Objects

• Suppose you wanted a collection of integer
values; how about …

Vector intdata = new Vector();
for(;;) {

// read data from file or somewhere
…
int nextOne = …;
intdata.add(nextOne); //???????????? !!!!!!

Side issue 2: “I want a collection of numeric values”

Signature of function was: boolean add(Object o)

© nabg

Collections and primitive types

• That code would not compile with Java 1.4.
• Collections like Vector are collections of Objects

(things that exist as structures in the “heap”)
• int (double) values are held in stack-based

variables, they don’t exist in the heap.
• If you want to put the value of some primitive type

variable in a collection, you must “box” the value
in an object

© nabg

Integer, Double, Float, …

• These classes exist for you to “box” primitive
values inside heap based objects so that you can
use them in contexts where an object is required
(which mainly means when you want to put them into
collections!).

Vector intdata = new Vector();
for(;;) {

// read data from file or somewhere
…
int nextOne = …;
Integer boxedNextOne = new Integer(nextOne)
intdata.add(boxedNextOne);

© nabg

Integer, Double, Float

• Objects of these classes are immutable – you can
not change their values

• So you cannot do arithmetic on them.

• If you have “boxed” an int value in an Integer
object, and need to do arithmetic
– Extract value from Integer object
– Do arithmetic
– Create a new Integer object to hold the result

© nabg

Updating a value in a collection
Vector v = new Vector();
…
for(;;) {

…
int val = …;
Integer bval = new Integer(val);
v.add(bval);
…

}
…
// increment value at 3rd entry in Vector (0 based array)
Integer tmp = (Integer) v.elementAt(2);
int oval = tmp.intValue();
oval += whatever;
Integer replace = new Integer(oval);
v.setElementAt(replace, 2);

© nabg

Java 1.5 – autobox (and unbox)
Vector<Integer> collection = new Vector<Integer>();
…
collection.add(37);
…
collection.add(2123);
…

int value = collection.lastElement();

