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2 SOLUTIONS TO THE EXERCISES



Important Advice to the Reader

This companion volume toThe Haskell Road to Logic, Math and Programming will enable you to check
your solutions to the exercises. It should be used wisely. You should only turn to the solution of an exercise
after you have tried to solve the exercise on your own. What the following pages donot provide is a shortcut to
understanding.

You don’t expect to improve your swimming or iceskating skills by watching swimming or iceskating contests
on TV. If you want to learn how to swim you must be willing to get wet. If you want to learn how to skate, you
must venture on the ice skating ring and take the risk of falling. Likewise, you can’t expect to improve your skills
in reasoning or programming by watching others reason or program. Just reading through the following pages, to
watch how the authors reason and program, is next to useless. You have to tackle the problems yourself, at the risk
of making mistakes, only using the solutions as checks on your understanding.

We can make this advice still more specific. When learning skills in formal reasoning it is easy to deceive
yourself into thinking you have thought hard enough. Therefore, a honest attempt to solve a problem should
always includea written account of how far you got. Thus, if you find you cannot solve a problem, you should
have an attempted solution on paper. Your account should always end with “I can get this far, but then I am stuck
because . . . ” or “I follow the rules like on page . . . of the book, but then I get the wrong answer because . . . ”.
Proceeding like this, you will make very rapid progress. On the other hand, if you think you can disregard this
advice you might as well not bother with the book at all, for skills in formal reasoning and computation can only
be acquired by training, and without proper exercise you will never be any good at it.

You are completely free to do as you please, of course. Only don’t tell anyone you haven’t been warned.
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4 SOLUTIONS TO THE EXERCISES



Solutions to the Exercises from Chapter 1

module Sol1 where

import GS

1.1 The precedences are:^ binds more strongly than* and/, and these in turn bind more strongly than+ and-.

1.6. The type declaration forrem should run something like

rem :: Integer -> Integer -> Integer

In actual fact, the type is slightly more general than this.

1.7. If divides has typeInteger -> Integer -> Bool, this means thatdivides takes an argument of type
Integer, and then produces a result of typeInteger -> Bool. Thus,divides 5 indeed has this type. In
other words,divides 5 is itself a function that expects an argument of typeInteger to give a result of type
Bool. Providing this argument creates a boolean expression, i.e.,divides 5 7 is of typeBool. This expression
evaluates toFalse, by the way, since5 is not a divisor of7.

1.9

mxmInt :: [Int] -> Int

mxmInt [] = error "empty list"

mxmInt [x] = x

mxmInt (x:xs) = max x (mxmInt xs)

1.10

removeFst :: Eq a => a -> [a] -> [a]

removeFst x [] = []

removeFst x (y:ys) | x == y = ys

| otherwise = y : (removeFst x ys)

1.13
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count :: Char -> String -> Int

count c [] = 0

count c (x:xs) | c==x = 1 + (count c xs)

| otherwise = (count c xs)

1.14

copy :: Int -> Char -> String

copy 0 c = []

copy n c = c:(copy (n-1) c)

blowup :: String -> String

blowup xs = blowup’ xs 1

blowup’ :: String -> Int -> String

blowup’ [] n = []

blowup’ (x:xs) n = (copy n x) ++ (blowup’ xs (n+1))

Haskell hackers may appreciate the following alternative. To understand the details, look up the code forzip,
take andrepeat in Prelude.hs.

spread :: [a] -> [a]

spread xs = [ x | (n,y) <- zip [1..] xs , x <- take n (repeat y)]

1.15 The best way to approach this is to generalizemnmInt andsrtInt, and use these to implement a general
sorting algorithm based on insertion. In Haskell, types for which we can do size comparison are put in a so-called
type class, the type classOrd. In Haskell, we can make this type class requirement part of the type declaration.
f :: Ord a => a means thatf is a type in classOrd. f :: Ord a => [a] -> a means thatf is a function
from lists overa to a objects, wherea is a type in classOrd. In other words,f picks an object from a list of things,
where the list contains objects that can be compared for size. That is the type we need for the generalized minimum
function.

mnm :: Ord a => [a] -> a

mnm [] = error "empty list"

mnm [x] = x

mnm (x:xs) = min x (mnm xs)

srt :: Ord a => [a] -> [a]

srt [] = []

srt xs = m : (srt (removeFst m xs)) where m = mnm xs

1.17
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substring :: String -> String -> Bool

substring [] ys = True

substring (x:xs) [] = False

substring (x:xs) (y:ys) = ((x==y) && (prefix xs ys))

|| (substring (x:xs) ys)

1.18

1. [String] is an abbreviation of[[Char]]. We have:

Prelude> :t ["Alan","Turing"]
["Alan","Turing"] :: [[Char]]

2. (Bool,String) is an abbreviation of(Bool,[Char]). We have:

Prelude> :t (True,"Turing")
(True,"Turing") :: (Bool,[Char])

3. [(Bool,String)] is an abbreviation of[(Bool,[Char])]. We have:

Prelude> :t [(True,"Turing")]
[(True,"Turing")] :: [(Bool,[Char])]

4. ([Bool],String) is an abbreviation of([Bool],[Char]). We have:

Prelude> :t ([True],"Turing")
([True],"Turing") :: ([Bool],[Char])

5. Bool -> Bool is the type of the Haskell negation operator:

Prelude> :t not
not :: Bool -> Bool

1.20

lengths :: [[a]] -> [Int]

lengths = map length

1.21

sumLengths :: [[a]] -> Int

sumLengths lists = sum (map length lists)

Here is another way to express this, using(.) for function composition:
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sumLengths :: [[a]] -> Int

sumLengths = sum . lengths

1.24 The change makes no difference. The final argumentn in the definition can be left out, for saying thatldp
is the function that results from applyingldpf to primes1 is equivalent to saying thatldp is the function that for
any argumentn does the same as what(ldpf primes1) does for argumentn.



Solutions to the Exercises from Chapter 2

module Sol2 where

import GSWH

import TAMO

2.2

P Q P ⊕Q
t t f
t f t
f t t
f f f

2.4

P Q P ⊕Q P ⇔ Q ¬(P ⇔ Q)
t t f t f
t f t f t
f t t f t
f f f t f

2.9

P Q P ⊕Q (P ⊕Q)⊕Q
t t f t
t f t t
f t t f
f f f f

2.13
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tst1a = not True <=> False

tst1b = not False <=> True

tst2 = logEquiv1 (\ p -> p ==> False) (\ p -> not p)

tst3a = logEquiv1 (\ p -> p || True) (const True)

tst3b = logEquiv1 (\ p -> p && False) (const False)

tst4a = logEquiv1 (\ p -> p || False) id

tst4b = logEquiv1 (\ p -> p && True) id

tst5 = logEquiv1 excluded_middle (const True)

tst6 = logEquiv1 (\ p -> p && not p) (const False)

The implementation usesexcluded_middle; this is defined in Chapter 2 as a name for the function(\ p -> p || not p).
const k is the function which gives valuek for any argument.

Note that the implementation oftst4a andtst4b makes clearwhyP ∨ ⊥ ≡ P andP ∧ > ≡ P are called
laws of identity.

2.15

contrad1 :: (Bool -> Bool) -> Bool

contrad1 bf = not (bf True) && not (bf False)

contrad2 :: (Bool -> Bool -> Bool) -> Bool

contrad2 bf = and [not (bf p q) | p <- [True,False], q <- [True,False]]

contrad3 :: (Bool -> Bool -> Bool -> Bool) -> Bool

contrad3 bf = and [ not (bf p q r) | p <- [True,False],

q <- [True,False],

r <- [True,False]]

2.16.1 The equationx2 + 1 = 0 has no solutions.; ¬∃x(x2 + 1 = 0).

2.16.2 There is a largest natural number.; ∃n(n ∈ N ∧ ∀m(m ∈ N ⇒ m > n)).

2.16.3 The number13 is not prime. ; ∃m(m ∈ N ∧ 1 < m ∧m < 13 ∧m|13).

2.16.4 The numbern is not prime. ; n ∈ N ∧ ∃m(m ∈ N ∧ 1 < m ∧m < n ∧m|n).

2.16.5 There are only finitely many primes.;

∃p((p ∈ N ∧ ¬∃m(m ∈ N ∧ 1 < m ∧m < p ∧m|p))∧
∀q((q ∈ N ∧ q > p) ⇒ ∃n(n ∈ N ∧ 1 < n ∧ n < q ∧ n|q))).

2.17 The statementx < y < z is an abbreviation ofx < y ∧ y < z. The negation of this,¬(x < y ∧ y < z), is
equivalent tox > y ∨ y > z.

2.18.1(Φ ⇔ Ψ) ≡ (¬Φ ⇔ ¬Ψ), for we have:

Φ ⇔ Ψ ≡ (Φ ⇒ Ψ) ∧ (Ψ ⇒ Φ)
≡ (¬Ψ ⇒ ¬Φ) ∧ (¬Φ ⇒ ¬Ψ)
≡ (¬Φ ⇒ ¬Ψ) ∧ (¬Ψ ⇒ ¬Φ)
≡ ¬Φ ⇔ ¬Ψ.



SOLUTIONS TO THE EXERCISES 11

2.18.2(¬Φ ⇔ Ψ) ≡ (Φ ⇔ ¬Ψ), for we have:

¬Φ ⇔ Ψ ≡ (¬Φ ⇒ Ψ) ∧ (Ψ ⇒ ¬Φ)
≡ (¬Ψ ⇒ ¬¬Φ) ∧ (¬¬Φ ⇒ ¬Ψ)
≡ (¬Ψ ⇒ Φ) ∧ (Φ ⇒ ¬Ψ)
≡ Φ ⇔ ¬Ψ.

2.19Φ ≡ Ψ is true iff Φ andΨ are equivalent iffΦ andΨ have the same truth value no matter what the truth values
are of their proposition letters iffΦ ⇔ Ψ is logically valid.

2.21.1 Here is an example formula:

P Q Q ⇒ P
t t t
t f t
f t f
f f t

2.21.2 A two-letter formula has a truth table with four rows. The value at every row can be eithert of f, so there
are24 = 16 truth tables altogether.

2.21.3 and 4 To find a formula for a given four-row truth table, construct a formula that describes the table. In the
first item above, the description would run:(P ∧ Q) ∨ (P ∧ ¬Q) ∨ (¬P ∧ ¬Q). In this example, the formula
happens to be equivalent toQ ⇒ P . It is clear that the method of describing a truth table always works.

2.21.5 With 3-letter formulas, we get truth tables with23 = 8 rows, so there are28 different meanings to express,
but these again can be described in so-called disjunctive normal form. And so on: for formulas withn letters, there
are2(2n) different truth tables, and any of these tables can be described by a formula in disjunctive normal form.

2.22 ‘Between every two rational numbers there is a third one.’ Take two arbitrary rationalsx, y with x < y. Then
x < x+y

2 < y. x+y
2 is rational, for assumex = p

q andy = m
n . Thenx+y

2 = 1
2 (p

q + m
n ) = pn+qm

qn .

2.23.1 Structure tree for∀x(Ax ⇒ (Bx ⇒ Cx)).

∀x(Ax ⇒ (Bx ⇒ Cx))

Ax ⇒ (Bx ⇒ Cx)

Ax Bx ⇒ Cx

Bx Cx

2.23.2 Structure tree for∃x(Ax ∧Bx).

∃x(Ax ∧Bx)

Ax ∧Bx

Ax Bx
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2.23.3 Structure tree for∃xAx ∧ ∃xBx.

∃xAx ∧ ∃xBx

∃xAx

Ax

∃xBx

Bx

2.26.1∃x∃y(x ∈ Q ∧ y ∈ Q ∧ x < y). With restricted quantifiers this becomes:

∃x ∈ Q ∃y ∈ Q (x < y).

2.26.2∀x(x ∈ R ⇒ ∃y(y ∈ R ∧ x < y)). With restricted quantifiers this becomes:

∀x ∈ R ∃y ∈ R (x < y).

2.26.3∀x(x ∈ Z ⇒ ∃m,n(m ∈ N ∧ n ∈ N ∧ x = m− n)). With restricted quantifiers this becomes:

∀x ∈ Z ∃m,n ∈ N (x = m− n).

2.27.1∀x ∈ Q∃m,n ∈ Z(n 6= 0 ∧ x = m/n). Without restricted quantifiers this becomes:

∀x(x ∈ Q ⇒ ∃m,n(m ∈ Z ∧ n ∈ Z ∧ n 6= 0 ∧ x = m/n)).

2.27.2∀x ∈ F∀y ∈ D(Oxy ⇒ Bxy). Without restricted quantifiers this becomes:

∀x(Fx ⇒ ∀y(Dy ⇒ (Oxy ⇒ Bxy))).

2.31.1 The equationx2 + 1 = 0 has a solution; ∃x(x2 + 1 = 0).

2.31.2 A largest natural number does not exist; ¬∃n(n ∈ N ∧ ∀m(m ∈ N ⇒ m 6 n)).

2.31.3 The number13 is prime (used|n for ‘d dividesn’) ;

¬∃m(m ∈ N ∧ 1 < m ∧m < 13 ∧m|13).

2.31.4 The numbern is prime ; n ∈ N ∧ ¬∃m(m ∈ N ∧ 1 < m ∧m < n ∧m|n).

2.31.5 There are infinitely many primes;

∀p(p ∈ N ⇒ ∃q(q ∈ N ∧ q > p ∧ ¬∃n(n ∈ N ∧ 1 < n ∧ n < q ∧ n|q))).

2.32 We assume that the domain of discussion consists of all human beings.

2.32.1 Everyone loved Diana; ∀xLxd.

2.32.2 Diana loved everyone; ∀xLdx.

2.32.3 Man is mortal. ; ∀x(Mx ⇒ M’x).

2.32.4 Some birds do not fly.; ∃x(Bx ∧ ¬Fx).

2.33.1 Dogs that bark do not bite (B for barking,B′ for biting). ; ∀x((Dx ∧Bx) ⇒ ¬B’x).
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2.32.2 All that glitters is not gold (G for glitter, G′ for gold) ; ¬∀x(Gx ⇒ G’x).

2.32.3 Friends of Diana’s friends are her friends.; ∀x∀y((Fxy ∧ Fyd) ⇒ Fxd).

2.32.4 The limit of1n asn approaches infinity is zero.;

∀ε > 0∃n ∈ N∀k ∈ N(k > n ⇒ 1
k

< ε).

2.34.1 Everyone loved Diana except Charles.; ∀x(¬x = c ⇒ Lxd).

2.34.2 Every man adores at least two women.; ∀x(Mx ⇒ ∃y∃z(¬z = y ∧Wy ∧Wz ∧Axy ∧Axz)).

2.34.3 No man is married to more than one woman.; ¬∃x(Mx∧∃y∃z(¬z = y∧Wy∧Wz∧Maxy∧Maxz).

2.35.1 The King is not raging; ∃x(Kx ∧ ∀y(Ky ⇒ x = y) ∧ ¬Rx).

2.35.2 The King is loved by all his subjects; ∃x(Kx ∧ ∀y(Ky ⇒ x = y) ∧ ∀z(Szx ⇒ Lzx)).

2.36.1∃x ∈ R(x2 = 5). ; The equationx2 = 5 has a real solution.

2.36.2∀n ∈ N∃m ∈ N(n < m). ; There is no largest natural number.

2.36.3∀n ∈ N¬∃d ∈ N(1 < d < (2n + 1) ∧ d|(2n + 1)). ; for all natural numbersn it holds that2n + 1 is
prime (a false statement, by the way; the smallest counterexample is23 + 1).

2.36.4∀n ∈ N∃m ∈ N(n < m ∧ ∀p ∈ N(p 6 n ∨ m 6 p)). ; every natural number has an immediate
successor.

2.36.5∀ε ∈ R+∃n ∈ N∀m > n(|a− am| 6 ε). ; the sequencea0, a1, a2, . . . converges toa.
As a bonus, here is how to generate primes of the form2n + 1 in Haskell (assuming you have the code for

prime loaded):

Sol2> [ 2^n + 1 | n <- [0..], prime (2^n + 1) ]
[2,3,5,17,257,65537

And here is how to generate non-primes of that form:

Sol2> [ 2^n + 1 | n <- [0..], not (prime (2^n + 1)) ]
[9,33,65,129,513,1025,2049,4097,8193,16385,32769,131073,262145,524289,1048577,
2097153,4194305,8388609,16777217,33554433,67108865,134217729,268435457,
536870913,1073741825,2147483649,4294967297,8589934593,17179869185,34359738369,
68719476737,137438953473,274877906945,549755813889,1099511627777,
2199023255553,4398046511105,8796093022209,17592186044417,35184372088833,
70368744177665,140737488355329{Interrupted!}

2.37.a This is the case where the domain isN = {0, 1, 2, . . .}, and where the meaning ofR is <.

1. ∀x∀y(xRy) expresses that every pair of natural numbers is in the ‘less than’ relation. This is false.

2. ∀x∃y(xRy) expresses that for every natural number there is a larger number. This is true.

3. ∃x∀y(xRy) expresses that there is a natural number that is less than any natural number. This is false, for
no natural number is less than itself.
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4. ∃x∀y(x = y ∨ xRy) expresses that there is a natural number that is less than or equal to any natural number.
This is true, for the natural number0 has this property.

5. ∀x∃y(xRy ∧ ¬∃z(xRz ∧ zRy)) expresses that every natural number has an immediate successor. This
is true.

2.37.b This is the case where the domain isN = {0, 1, 2, . . .}, and where the meaning ofR is >.

1. ∀x∀y(xRy) expresses that every pair of natural numbers is in the ‘greater than’ relation. This is false.

2. ∀x∃y(xRy) expresses that for every natural number there is a smaller number. This is false.

3. ∃x∀y(xRy) expresses that there is a natural number that is greater than any natural number. This is false,
for there is no largest natural number.

4. ∃x∀y(x = y ∨ xRy) expresses that there is a natural number that is greater than or equal to any natural
number. This is false.

5. ∀x∃y(xRy ∧ ¬∃z(xRz ∧ zRy)) expresses that every natural number has an immediate predecessor. This
is false, for0 has no immediate predecessor.

2.37.c This is the case where the domain isQ, and where the meaning ofR is <.

1. ∀x∀y(xRy) expresses that every pair of rational numbers is in the ‘less than’ relation. This is false.

2. ∀x∃y(xRy) expresses that for every rational number there is a larger number. This is true.

3. ∃x∀y(xRy) expresses that there is a rational number that is less than any rational number. This is false.

4. ∃x∀y(x = y ∨ xRy) expresses that there is a rational number that is less than or equal to any rational
number. This is false.

5. ∀x∃y(xRy ∧ ¬∃z(xRz ∧ zRy)) expresses that every rational number has an immediate successor. This
is false.

2.37.d This is the case where the domain isR, and where the meaning ofxRy is y2 = x.

1. ∀x∀y(xRy). This is false.

2. ∀x∃y(xRy) expresses that every real number has a real square root. This is false, the square root of a
negative real number is not a real number.

3. ∃x∀y(xRy) expresses that there is a real number that is a square root of every real number. This is false.

4. ∃x∀y(x = y ∨ xRy) expresses that there is a real number that is equal to or is a square root of every real
number. This is false.

5. ∀x∃y(xRy ∧ ¬∃z(xRz ∧ zRy)) expresses that for every real numberx there is ay with x = y2 and for
all z with x = z2 it holds thatz 6= y2. This is false, for0 and1 are counterexamples.

2.37.e The case where the domain is the set of all human beings; meaning ofR: father-of.

1. ∀x∀y(xRy). Everyone is everyone’s father. This is false.

2. ∀x∃y(xRy). Everyone is the father of a child. This is false.

3. ∃x∀y(xRy). Somebody is everyone’s father. This is false (we are only talking about earthly matters here).

4. ∃x∀y(x = y ∨ xRy). Somebody is everyone’s self or father. False.
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5. ∀x∃y(xRy ∧ ¬∃z(xRz ∧ zRy)). Everyone is the father of a child that does not have a sibling that is also
its father. False.

2.37.f This is the case wherexRy means thatx lovesy. As judgements tend to be subjective here, this is better
left to the imagination of the reader.

2.38.a This is the case where the domain isN and the meaning ofR is <.

1. ∀y(xRy) expresses the property of being smaller than any natural number. No natural number has this
property.

2. ∃y(xRy) expresses the property of not being the largest natural number. Every natural number has this
property.

3. ∀y(xRy) expresses that the property of being less than any natural number. No natural number has this
property.

4. ∀y(x = y ∨ xRy) expresses that the property of being less than or equal to any natural number. The natural
number0 is the only natural number with this property.

5. ∃y(xRy ∧ ¬∃z(xRz ∧ zRy)) expresses the property of having an immediate successor. Every natural
number has this property.

2.38.b,c,d,e,f: left to the reader.

2.39Φ ≡ Ψ is true iff Φ andΨ are true in the same structures iff wheneverΦ is true in a structure,Ψ is true in that
structure as well and vice versa, iffΦ ⇒ Ψ andΨ ⇒ Φ are true in any structure, iffΦ ⇔ Ψ is valid.

2.41.1¬∃x ∈ R(x2 = 5) can be expressed equivalently as∀x ∈ R(x2 6= 5).

2.41.2¬∀n ∈ N∃m ∈ N(n < m) can be expressed equivalently as∃n ∈ Nat∀m ∈ N(n > m).

2.41.3¬∀n ∈ N¬∃d ∈ N(1 < d < (2n + 1) ∧ d|(2n + 1)) can be expressed equivalently as

∀n ∈ N∃d ∈ N(1 < d < (2n + 1) ∧ d|(2n + 1)).

2.41.4¬∀n ∈ N∃m ∈ N(n < m ∧ ∀p ∈ N(p 6 n ∨ m 6 p)) can be expressed equivalently as

∃n ∈ N∀m ∈ N(n > m ∨ ∃p ∈ N(p > n ∧m > p)).

2.41.5¬∀ε ∈ R+∃n ∈ N∀m > n(|a− am| 6 ε) can be expressed equivalently as

∃ε ∈ R+∀n ∈ N∃m > n(|a− am| > ε).

2.46¬∃x ∈ A Φ(x) is not equivalent to∃x 6∈ A Φ(x). TakeA to be the set of all computer scientists, and let
Φ(x) express thatx is clever. It is certainly the case that there are clever people who are not computer scientists
(∃x 6∈A Φ(x)), but this is quite different from the statement that no computer scientist is clever (¬∃x∈A Φ(x)).

2.47∃x 6∈ A ¬Φ(x) is not equivalent to∃x ∈ A ¬Φ(x). ReadingA andΦ as above we get that∃x 6∈ A ¬Φ(x)
amounts to “there are stupid people who are not computer scientists”, while∃x ∈A ¬Φ(x) expresses “there are
stupid computer scientists”. Both true, but quite different truths.

2.50 “The sequencea0, a1, a2, . . . does not converge toa” can be expressed formally as

∃δ > 0∀n∃m > n(|a− am| > δ).

2.51
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unique :: (a -> Bool) -> [a] -> Bool

unique p xs = length (filter p xs) == 1

2.52

parity :: [Bool] -> Bool

parity [] = True

parity (x:xs) = x /= (parity xs)

2.53

evenNR :: (a -> Bool) -> [a] -> Bool

evenNR p = parity . map p

The following works as well:

evenNR :: (a -> Bool) -> [a] -> Bool

evenNR p xs = even (length (filter p xs))



Solutions to the Exercises from Chapter 3

module Sol3

where

import TUOLP

3.2 Given:P ⇒ Q, P ⇒ (Q ⇒ R).
To be proved:P ⇒ R.
Proof:

SupposeP .
To be proved:R.
Proof:
FromP ⇒ Q andP we getQ.
FromP ⇒ (Q ⇒ R) andP we getQ ⇒ R.
FromQ ⇒ R andQ we getR.

ThusP ⇒ R.

3.4 Assume thatn, m ∈ N.
To show: (m is odd ∧ n is odd)⇒m + n is even.
Proof:

Assume that (m is odd ∧ n is odd)
For instance,m = 2p + 1, n = 2q + 1, p, q ∈ N.
Thenm + n = 2p + 2q + 2 = 2(p + q + 1) is even.

3.5.1 To show: FromP ⇔ Q it follows that(P ⇒ R) ⇔ (Q ⇒ R).
Proof:

AssumeP ⇔ Q
SupposeP ⇒ R.

AssumeQ.
Then fromQ,P ⇔ Q, we getP , and fromP, P ⇒ R we getR.

ThusQ ⇒ R.
SupposeQ ⇒ R.

AssumeP .
Then fromP, P ⇔ Q, we getQ, and fromQ,Q ⇒ R we getR.

ThusP ⇒ R.
Thus(P ⇒ R) ⇔ (Q ⇒ R).

17
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3.5.2 To show: FromP ⇔ Q it follows that(R ⇒ P ) ⇔ (R ⇒ Q).
Proof:

AssumeP ⇔ Q
SupposeR ⇒ P .

AssumeR.
Then fromR ⇒ P andR we getP , and fromP, P ⇔ Q, we getQ.

ThusR ⇒ Q.
SupposeR ⇒ Q.

AssumeR.
Then fromR ⇒ Q andR we getQ, and fromQ,P ⇔ Q, we getP .

ThusR ⇒ P .
Thus(R ⇒ P ) ⇔ (R ⇒ Q).

3.7.1 Given:P ⇒ Q.
To show:¬Q ⇒ ¬P .
Proof:

Assume¬Q
AssumeP
Then fromP ⇒ Q andP we getQ, and contradiction with¬Q.

Thus¬P .
Thus¬Q ⇒ ¬P .

3.7.2 Given:P ⇔ Q.
To show:¬P ⇔ ¬Q.
Proof:

Assume¬P
If Q then fromP ⇔ Q andQ we getP , and contradiction. Thus¬Q.

Thus¬P ⇒ ¬Q.
Assume¬Q
If P , then fromP ⇔ Q andP we getQ, and contradiction. Thus¬P .

Thus¬Q ⇒ ¬P .
Thus¬P ⇔ ¬Q.

3.9 Given:(P ⇒ Q) ⇒ P .
To be proved:P .
Proof:

Assume¬P .
If P ⇒ Q, then from the given,P , and contradiction. So¬(P ⇒ Q).
But thenP , and contradiction with assumption¬P .

ThusP .

3.11.1 Given:A ⇒ B ∨ C, B ⇒ ¬A.
To be proved:A ⇒ C.
Proof:

SupposeA.
To be proved:C.
FromA andA ⇒ B ∨ C, we getB ∨ C.
If B then from the givenB ⇒ ¬A we get¬A, and contradiction. So¬B.
FromB ∨ C and¬B we getC, by the reasoning of 3.10.

ThusA ⇒ C.

3.11.2 Given:A ∨B ⇒ C ∨D, C ⇒ A, B ⇒ ¬A.
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To be proved:B ⇒ D.
Proof:

AssumeB.
To be proved:D.
FromB,B ⇒ ¬A we get¬A.
From¬A andC ⇒ A we get¬C.
FromB we getA ∨B, and withA ∨B ⇒ C ∨D we getC ∨D.
By the reasoning of 3.10, fromC ∨D and¬C, we getD.

Thus,B ⇒ D.

3.15 Letn ∈ N. To be proved:division ofn2 by 4 gives remainder0 or 1.
Proof:

Assumen even.
Thenn = 2m, son2 = 4m2, so division ofn2 by 4 gives remainder0.
Assumen odd.
Thenn = 2m + 1, son2 = 4m2 + 4m + 1 = 4(m2 + m) + 1.
In this case, division ofn2 by 4 gives remainder1.

Thus division ofn2 by 4 gives remainder0 or 1.

3.17 Left to the reader.

3.18 Given: FromΓ, P (c) it follows thatQ(c).
To be proved: FromΓ it follows that∀x(P (x) ⇒ Q(x)).
Proof:

AssumeΓ. Let c be arbitrary.
SupposeP (c). Then from the given:Q(c).

Thus (deduction rule)P (c) ⇒ Q(c).
Thus (∀ introduction)∀x(P (x) ⇒ Q(x)).

3.25.1 Given:∀x(P (x) ⇒ Q(x)), ∀xP (x).
To be proved:∀xQ(x).
Proof:

Let c be arbitrary. Then from∀xP (x) we get thatP (c).
From the given∀x(P (x) ⇒ Q(x)), we getP (c) ⇒ Q(c).
FromP (c) andP (c) ⇒ Q(c), we getQ(c).

Thus (∀ introduction)∀xQ(x).

3.25.2 Given:∃x(P (x) ⇒ Q(x)), ∀xP (x).
To be proved:∃xQ(x).
Proof:

Supposec is an object that satisfiesP (c) ⇒ Q(c).
From the given∀xP (x) we get thatP (c).
FromP (c) andP (c) ⇒ Q(c), we getQ(c).

Thus∃xQ(x).

From∃x(P (x) ⇒ Q(x)), ∃xP (x) it doesnot follow that∃xQ(x). The snag is that ifc is an object that doesnot
have propertyP , thenc trivially satisfiesP (c) ⇒ Q(c). But this situation is consistent with¬Q(c).

3.26 Given:∀x∃y(xRy),∀x∀y(xRy ⇒ yRx),∀x∀y∀z(xRy ∧ yRz ⇒ xRz).
To be proved:∀x(xRx).
Proof:

Let c be arbitrary. Then from the given∀x∃y(xRy) we get∃y(cRy).



20 SOLUTIONS TO THE EXERCISES

Let d be such thatcRd. Then from this and the given∀x∀y(xRy ⇒ yRx), we getdRc.
FromcRd, dRc, and the given∀x∀y∀z(xRy ∧ yRz ⇒ xRz), we getcRc.

Thus (∀ introduction)∀x(xRx).

3.27.1 Given:∀x∀y∀z(xRy ∧ yRz ⇒ xRz),∀x¬xRx.
To be proved:∀x∀y(xRy ⇒ ¬yRx).
Proof:

Let c, d be arbitrary objects such thatcRd. We have to show that¬dRc.
SupposedRc. Then fromcRd, dRc and the first given,cRc.
Contradiction with the second given.

Thus¬dRc.
Thus∀x∀y(xRy ⇒ ¬yRx).

3.27.2 Given:∀x∀y(xRy ⇒ ¬yRx).
To be proved:∀x¬xRx.
Proof:

Let c be arbitrary object. We have to show that¬cRc.
SupposecRc. Then with the given,¬cRc, and contradiction. Thus¬cRc.

Thus∀x¬xRx.

3.27.3 Given:∀x∀y(xRy ∧ x 6= y ⇒ ¬yRx).
To be proved:∀x∀y(xRy ∧ yRx ⇒ x = y).
Proof:

Let c andd be arbitrary objects withcRd anddRc. We have to show thatc = d.
Supposec 6= d. Then from this,cRd, and the given,¬dRc, and contradiction. Thusc = d.

Thus∀x∀y(xRy ∧ yRx ⇒ x = y).

3.27.4 Given:∀x¬xRx, ∀x∀y(xRy ⇒ yRx),∀x∀y∀z(xRy ∧ yRz ⇒ xRz).
To be proved:¬∃x∃y(xRy).
Proof:

Suppose∃x∃y(xRy), e.g.,cRd.
Then from this and the second given,dRc.
FromcRd anddRc, with the third given,cRc, and contradiction with the first given.

So¬∃x∃y(xRy).

3.28 Given:∀y∃z∀xP (x, y, z).
To be proved:∀x∀y∃zP (x, y, z).
Proof:
Let c, d be arbitrary. We have to show that∃zP (c, d, z).
From the given,∃z∀xP (x, d, z).
Let e be such that∀xP (x, d, e). ThenP (c, d, e).
Thus∃zP (c, d, z).

3.31.1 The equivalences∀x∀yΦ(x, y) ≡ ∀y∀xΦ(x, y) and∃x∃yΦ(x, y) ≡ ∃y∃xΦ(x, y) are straightforward. As
an example, we prove that∀x∀yΦ(x, y) ⇒ ∀y∀xΦ(x, y).

Given:∀x∀yΦ(x, y).
To be proved:∀y∀xΦ(x, y)
Proof:

Let y be arbitrary. We have to show that∀xΦ(x, y).
Let x be arbitrary. We have to show thatΦ(x, y).

This is immediate from the given.
Therefore∀xΦ(x, y).

Therefore∀y∀xΦ(x, y).
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3.31.2 As an example, we prove∃x¬Φ(x) ⇒ ¬∀xΦ(x).

To be proved:∃x¬Φ(x) ⇒ ¬∀xΦ(x).
Proof:

Suppose∃x¬Φ(x). We have to show that¬∀xΦ(x).
Assume∀xΦ(x). Then from the given, there is ana with ¬Φ(a).
From the assumptionΦ(a). Contradiction.

Therefore¬∀xΦ(x).
Thus∃x¬Φ(x) ⇒ ¬∀xΦ(x).

3.31.3 As an example, we prove∀x(Φ(x) ∧ Ψ(x)) ≡ (∀xΦ(x) ∧ ∀xΨ(x)).

To be proved:∀x(Φ(x) ∧ Ψ(x)) ≡ (∀xΦ(x) ∧ ∀xΨ(x)).
Proof:
⇒: Assume∀x(Φ(x) ∧ Ψ(x)).

We have to show that∀xΦ(x) ∧ ∀xΨ(x).
Let x be arbitrary. Then from the assumption,Φ(x) ∧ Ψ(x). ThusΦ(x) andΨ(x).

This proves∀xΦ(x) and∀xΨ(x). Thus∀xΦ(x) ∧ ∀xΨ(x).
⇐: Assume∀xΦ(x) ∧ ∀xΨ(x).

We have to show that∀x(Φ(x) ∧ Ψ(x)).
Let x be arbitrary. Then from the assumption,Φ(x) andΨ(x). ThusΦ(x) ∧Ψ(x).

This proves∀x(Φ(x) ∧Ψ(x)).

3.32
Restricted universal quantifier introduction:

Given: . . .
To be proved:∀x ∈ A Φ(x).
Proof:
What is to be proved is equivalent to∀x(x ∈ A ⇒ Φ(x)).
Let x be arbitrary. We now have to prove thatx ∈ A ⇒ Φ(x).

Assumex ∈ A.
To show:Φ(x).
Proof: . . .

Thus∀x ∈ A Φ(x).

Restricted universal quantifier elimination:

Given:∀x ∈ A Φ(x), t ∈ A.
The first given is equivalent to∀x(x ∈ A ⇒ Φ(x)).
So it follows that for anyt we have thatt ∈ A ⇒ Φ(t).
Therefore, from the givens∀x ∈ A Φ(x), t ∈ A, it follows thatΦ(t).

Restricted existential quantifier introduction:

Given: t ∈ A andΦ(t). To be proved:∃x ∈ AΦ(x).
Proof:
What is to be proved is equivalent to∃x(x ∈ A ∧ Φ(x)).
This follows from the givent ∈ A andΦ(t).

Restricted existential quantifier elimination:
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Given:∃x ∈ AΦ(x).
To be proved:P .
Proof:
The given is equivalent to∃x(x ∈ A ∧ Φ(x)).

Supposec is an object that satisfies(c ∈ A ∧ Φ(c)).
So supposec ∈ A is an object that satisfiesΦ(c).
To be proved:P .
Proof: . . .

ThusP .

3.34 To be proved:A = {4n + 3 | n ∈ N} contains infinitely many prime numbers.
Proof: A variation on Euclid’s proof of the infinity of primes works.

Assume that there are only finitely many prime numbers inA.
I.e., assume that{p1, . . . , pk} is the set of all prime numbers inA,
and considerN = 4p1 · · · pk − 1 = 4(p1 · · · pk − 1) + 3.
If N is prime, we have a contradiction with the assumption, and the result follows.
Otherwise,N has a prime factorq, different from all thepi.
This is because each of thepi dividesN with a remainder−1.
If q has form4n + 3, then done, so supposeq has form4n + 1.
Since(4a + 1)(4b + 1) has the form(4c + 1), we know thatNq has form4n + 3.
Also, N

q has a prime factorq1.
After a finite number of steps this will yield a prime factorqi of the form4n + 3,
with qi 6= p1, . . . , pk.

3.36 To be proved: ifn is composite, then2n − 1 is composite as well.
Proof: Assume there area, b ∈ N with n = ab. Let x = 2b − 1 andy = 1 + 2b + 22b + · · ·+ 2(a−1)b.
Thenxy = (2b − 1)(1 + 2b + 22b + · · ·+ 2(a−1)b) =

2b + 22b + · · · + 2(a−1)b + 2ab

− 1 − 2b − 22b − · · · − 2(a−1)b

Soxy = 2ab − 1. In other words,xy = 2n − 1, and2n − 1 is composite.

3.38

fasterprimes :: [Integer]

fasterprimes = 2 : sieve oddsFrom3

3.39

examples = [ take n primes | n <- [0..],

not (prime (product (take n primes) + 1)) ]

This generates:

[[2,3,5,7,11,13],
[2,3,5,7,11,13,17],
[2,3,5,7,11,13,17,19],
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[2,3,5,7,11,13,17,19,23],
[2,3,5,7,11,13,17,19,23,29],
[2,3,5,7,11,13,17,19,23,29,31,37],
[2,3,5,7,11,13,17,19,23,29,31,37,41],
[2,3,5,7,11,13,17,19,23,29,31,37,41,43],
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47],
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53],
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59],
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61]
...

3.41 To be proved: For alln ∈ N: if 2n − 1 is prime, then2n−1(2n − 1) is perfect.
Proof:
Let n ∈ N, with 2n − 1 prime. Then the proper divisors of2n−1(2n − 1) are

1, 2, 22, . . . , 2n−1, 2n − 1, 2(2n − 1), 22(2n − 1), . . . , 2n−2(2n − 1).

Observe that1 + (1 + 2 + 22 + · · ·+ 2n−1) = 2n, soA = 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1.
Next, observe that

B = (2n − 1) + 2(2n − 1) + 22(2n − 1) + · · ·+ 2n−2(2n − 1) = (1 + 2 + 22 + · · ·+ 2n−2)(2n − 1).

By the same observation as above, we see that1 + 2 + 22 + · · · + 2n−2 = 2n−1 − 1. Therefore, the sum of the
proper divisors of2n−1(2n − 1) equals

A + B = (2n − 1) + (1 + 2 + 22 + · · ·+ 2n−2)(2n − 1)
= (2n − 1) + (2n−1 − 1)(2n − 1) = 2n−1(2n − 1),

which proves that2n−1(2n − 1) is perfect.

3.42 We will prove that(3, 5, 7) is the only prime triple.
Any prime triple different from(3, 5, 7) has the form(n, n + 2, n + 4), with 3 6 | n.
There are two cases to consider.

Case 1. There is ana ∈ N with n = 3a + 1.
In this casen + 2 = 3a + 3 = 3(a + 1), son + 2 is not a prime.

Case 2. There is ana ∈ N with n = 3a + 2.
In this casen + 4 = 3a + 6 = 3(a + 2), son + 4 is not a prime.

In either case,(n, n + 2, n + 4) is not a prime triple.

3.43 Any prime greater than3 has the form3q+1 or3q+2. If p = 3q+1 thenp2+2 = (3q+1)+2 = 9q2+6q+3 =
3(3q2+2q+1), which means thatp2+2 is composite. Ifp = 3q+2 thenp2+2 = (3q+2)2+2 = 9q2+12q+6 =
3(3q2 + 4q + 2), which means thatp2 + 2 is composite in this case as well.
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Solutions to Exercises from Chapter 4

module Sol4

where

import STAL

import List

import SetEq

4.2 To be proved:A ⊇ A.
Proof: same as the proof ofA ⊆ A.

To be proved:A ⊇ B ∧B ⊇ A =⇒ A = B.
Proof: note thatA ⊇ B ∧B ⊇ A =⇒ A = B is equivalent toB ⊇ A ∧A ⊇ B =⇒ A = B,
which is in turn equivalent toA ⊆ B ∧B ⊆ A =⇒ A = B, which is extensionality again.

To be proved:A ⊇ B ∧B ⊇ C =⇒ A ⊇ C.
This is equivalent toB ⊆ A ∧ C ⊆ B =⇒ C ⊆ A,
which is in turn equivalent toC ⊆ B ∧B ⊆ A =⇒ C ⊆ A,
i.e., transitivity of⊆, and same proof as before.

4.4 To be proved:{{1, 2}, {0}, {2, 1}} = {{0}, {1, 2}}.
Proof:
⊆: {1, 2} ∈ {{0}, {1, 2}}, {0} ∈ {{0}, {1, 2}}, and{2, 1} ∈ {{0}, {1, 2}},

since{1, 2} = {2, 1} because{1, 2} and{2, 1} have the same elements.
⊇: {0} ∈ {{1, 2}, {0}, {2, 1}} and{1, 2} ∈ {{1, 2}, {0}, {2, 1}}.

4.7 Given:A is a set of sets.
To be proved:{x ∈ A | x 6∈ x} 6∈ A.
Proof:

Let B := {x ∈ A | x 6∈ x}, and assumeB ∈ A.
SupposeB ∈ B. Then, from the definition ofB, B /∈ B, and contradiction.
SupposeB /∈ B. Then, sinceB ∈ A andB /∈ B, B ∈ B, and contradiction again.

Therefore{x ∈ A | x 6∈ x} 6∈ A.

4.8 If we check the type ofelem, we find:elem :: Eq a => a -> [a] -> Bool. This means thatelem takes
an object of any typea for which == is defined as first argument, a list over the same type as second argument,
and produces a truth value. Therefore, the first argument ofelem constrains the type of list that is needed for a

25
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second argument. Ifelem is called withelem 1 1, then the second argument is a numeral (an object of classNum),
while the argument that is needed is a list argument[a]. The error message expresses that the type of the second
argument in the call does not match the type for the second argument that Haskell infers from the type ofelem.

4.10.1 To be proved:{a} = {b} iff a = b.
Proof:
⇒: Suppose{a} = {b}.

Then{a} and{b} have the same elements, soa = b.
⇐: Supposea = b.

Then∀x(x ∈ {a} ⇔ x ∈ {b}).
Therefore, by extensionality,{a} = {b}.

4.10.2 To be proved:{a1, a2} = {b1, b2} iff a1 = b1 ∧ a2 = b2, or a1 = b2 ∧ a2 = b1.
Proof:
⇒: Suppose{a1, a2} = {b1, b2}.

We show thata1 = b1 ∧ a2 = b2 or a1 = b2 ∧ a2 = b1.
Assume not(a1 = b1 ∧ a2 = b2).
To show:a1 = b2 ∧ a2 = b1.
The assumption is equivalent toa1 6= b1 ∨ a2 6= b2.

Case 1:a1 6= b1.
Then sincea1 ∈ {b1, b2} (from the given),a1 = b2.
Sinceb1 ∈ {a1, a2} (again from the given),a2 = b1.

Case 2:a2 6= b2.
Sinceb2 ∈ {a1, a2} (from the given),a1 = b2.
Then sincea2 ∈ {b1, b2} (from the given),a2 = b1.

This provesa1 = b2 ∧ a2 = b1.
⇐: Supposea1 = b1 ∧ a2 = b2, or a1 = b2 ∧ a2 = b1.

To show:{a1, a2} = {b1, b2}.
⊆:

Supposea1 = b1 ∧ a2 = b2.
Thena1 ∈ {b1, b2} anda2 ∈ {b1, b2}, so{a1, a2} ⊆ {b1, b2}.
Supposea1 = b2 ∧ a2 = b1.
Thena1 ∈ {b1, b2} anda2 ∈ {b1, b2}, so{a1, a2} ⊆ {b1, b2}.

⊇:
Supposea1 = b1 ∧ a2 = b2.
Thenb1 ∈ {a1, a2} andb2 ∈ {a1, a2}, so{a1, a2} ⊇ {b1, b2}.
Supposea1 = b2 ∧ a2 = b1.
Thenb1 ∈ {a1, a2} andb2 ∈ {a1, a2}, so{a1, a2} ⊇ {b1, b2}.

4.11∅ 6= {∅}, for ∅ has no elements, while{∅} has one element, namely∅.
{∅} 6= {{∅}}, for although both{∅} and{{∅}} are singletons, the elements they contain are different, because,

as we have seen,∅ 6= {∅}.

4.13 The type of the set difference operator− is s → s → s. The type for the inclusion operator⊆ is s → s → t.

4.14

1. x ∈ {x | E(x)} :: t.

2. {x | E(x)} :: s.

3. (A ∩B) ⊆ C :: t.
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4. (A ∪B) ∩ C :: s.

5. ∀x(x ∈ A ⇒ x ∈ B) :: t.

6. A = B :: t.

7. a ∈ A ⇔ a ∈ B :: t.

4.17.1 To show thatA 6⊆ B iff A − B 6= ∅, we rewrite the two sides as logical formulas. ForA 6⊆ B, this gives
¬∀x(x ∈ A ⇒ x ∈ B). ForA− B 6= ∅, this gives:∃x(x ∈ A ∧ x /∈ B). That these two formulas are equivalent
can be seen from the quantifier rules in Chapter 2.

4.17.2 Compare the formula forA∩B with that forA−(A−B): x ∈ A∧x ∈ B versusx ∈ A∧¬(x ∈ A∧x /∈ B).
Formula¬(x ∈ A ∧ x /∈ B) is equivalent tox /∈ A ∨ x ∈ B, and this in turn tox ∈ A ⇒ x ∈ B. Thus,
x ∈ A ∧ ¬(x ∈ A ∧ x /∈ B) is equivalent tox ∈ A ∧ x ∈ B.

4.19 With the distributivity law for∩, we get that

(A ∪B) ∩ (C ∪D) = ((A ∪B) ∩ C) ∪ ((A ∪B) ∩D).

By ∩ commutativity we get:

((A ∪B) ∩ C) ∪ ((A ∪B) ∩D) = (C ∩ (A ∪B)) ∪ (D ∩ (A ∪B)).

Using∩ distributivity to rewriteC ∩ (A ∪B)) andD ∩ (A ∪B), we get:

(C ∩ (A ∪B)) ∪ (D ∩ (A ∪B)) = (C ∩A) ∪ (C ∩B) ∪ (D ∩A) ∪ (D ∩B).

4.21 Immediate from the propositional validitiesP⊕Q ≡ (P ∧¬Q)∨(Q∧¬P ) andP⊕Q ≡ (P ∨Q)∧¬(P ∧Q).
The truth table checks are left to the reader.

4.23 Given:X has at least two elements.
To be proved:⊆ on℘(X) is not linear.
Proof:
We have to show that there areA,B ∈ ℘(X) with A 6⊆ B andB 6⊆ A.
Let a, b be arbitrary elements ofX, with a 6= b (from the given).
DefineA := {a} andB := {b}.
ThenA,B ∈ ℘(X). Because ofa /∈ B, we haveA 6⊆ B. Because ofb /∈ A, we haveB 6⊆ A.

4.26 The translation of∩F ⊆ ∪G is: ∀x(∀y(y ∈ F ⇒ x ∈ y) ⇒ ∃z(z ∈ G ∧ x ∈ z)).

4.27 We show thatA = ∪F fits the bill.

Given:A = ∪F .
To be proved:F ⊆ ℘(A).
Proof:

Assume thatX is an arbitrary element ofF .
ThenX ⊆ ∪F , soX ∈ ℘(A).

This establishesF ⊆ ℘(A).

Given:A = ∪F .
To be proved: For all setsB: if F ⊆ ℘(B) thenA ⊆ B.
Proof:

Let B be an arbitrary set.
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SupposeF ⊆ ℘(B).
To show:A ⊆ B.

Let x be an arbitrary element ofA.
To show:x ∈ B.
By the definition ofA we get fromx ∈ A that there is anX ∈ F with x ∈ X.
By F ⊆ ℘(B), X ⊆ B. Therefore,x ∈ B.

Thus,A ⊆ B.

4.29
(Ac)c = A, for x ∈ (Ac)c ⇔ x /∈ Ac ⇔ x ∈ A.
Xc = ∅, for x ∈ Xc ⇔ x ∈ X ∧ x /∈ X ⇔ x ∈ ∅.
∅c = X, for x ∈ ∅c ⇔ x ∈ X ∧ x /∈ ∅ ⇔ x ∈ X.
A ∪Ac = X, for x ∈ A ∪Ac ⇔ (x ∈ A ∧ x ∈ X) ∨ (x /∈ A ∧ x ∈ X) ⇔ x ∈ X.
A ∩Ac = ∅, for x ∈ A ∩Ac ⇔ x ∈ A ∧ x /∈ A ⇔ x ∈ ∅.
A ⊆ B ⇔ Bc ⊆ Ac, for ∀x(x ∈ A ⇒ x ∈ B) ⇔ ∀x(x /∈ B ⇒ x /∈ A).
(A ∩B)c = Ac ∪Bc, for:

x ∈ (A ∩B)c ⇔ ¬(x ∈ A ∩B)
⇔ ¬(x ∈ A ∧ x ∈ B)
∗⇔ x /∈ A ∨ x /∈ B

⇔ x ∈ Ac ∨ x ∈ Bc

⇔ x ∈ Ac ∪Bc,

where again, the step(∗) is justified by one of the De Morgan laws of propositional reasoning.

4.30.1℘(∅) = {∅}, ℘℘(∅) = ℘({∅}) = {∅, {∅}}, ℘℘℘(∅) = ℘({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}.

4.30.2 We see from the above that|℘(∅)| = 1, |℘2(∅)| = 2, |℘3(∅)| = 4. Since the elements of℘n+1(∅) are the
subsets of℘n(∅), we know that|℘4(∅)| = 24 = 16, and|℘5(∅)| = 216 = 65536.

4.30.3 SupposeA hasn elements. Since the elements of℘(A) are the subsets ofA, how many different subsets
doesA have? To fully determine an arbitrary subsetB of A, we have to decide for each of then elements ofA
whether to put it inB or not. There are2n possible ways of doing this. Thus|℘(A)| = 2n.

4.31 This is true, for here is a proof.
Given:℘(A) = ℘(B).
To be proved:A = B.
Proof:
⊆: Let x ∈ A. Then{x} ∈ ℘(A), so by the given,{x} ∈ ℘(B), and thusx ∈ B.
⊇: Let x ∈ B. Then{x} ∈ ℘(B), so by the given,{x} ∈ ℘(A), and thusx ∈ A.

4.32.1 The proof poses no problem.
To be proved:℘(A ∩B) = ℘(A) ∩ ℘(B).
Proof:
⊆: Let X ∈ ℘(A ∩B). ThenX ⊆ A ∩B, i.e.,X ⊆ A andX ⊆ B.

It follows thatX ∈ ℘(A) andX ∈ ℘(B), and thereforeX ∈ ℘(A) ∩ ℘(B).
⊇: Let X ∈ ℘(A) ∩ ℘(B). ThenX ∈ ℘(A) andX ∈ ℘(B), i.e.,X ⊆ A andX ⊆ B.

It follows thatX ⊆ A ∩B, and thereforeX ∈ ℘(A ∩B).

4.32.2 During the proof attempt of the left to right inclusion (the case℘(A ∪ B) ⊆ ℘(A) ∪ ℘(B)) we get stuck,
for the assumption thatX ∈ ℘(A ∪ B) does yield thatX ⊆ A ∪ B, but from this we cannot draw the conclusion
thatX ⊆ A or X ⊆ B.
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Indeed, look at the exampleA = {1, 2} andB = {2, 3}. Then{1, 3} ⊆ A∪B but{1, 3} 6⊆ A, and{1, 3} 6⊆ B.
This provides a counterexample to℘(A ∪ B) ⊆ ℘(A) ∪ ℘(B). Note that the inclusion in the other direction still
holds, for the following proof works:

To be proved:℘(A ∪B) ⊇ ℘(A) ∪ ℘(B).
Proof:
Let X ∈ ℘(A) ∪ ℘(B). ThenX ∈ ℘(A) or X ∈ ℘(B), i.e.,X ⊆ A or X ⊆ B.
It follows thatX ⊆ A ∪B, and thereforeX ∈ ℘(A ∪B).

4.33.1 To be proved:B ∩ (
⋃

i∈I Ai) =
⋃

i∈I(B ∩Ai).
Proof:
⊆: Assumex ∈ B ∩ (

⋃
i∈I Ai).

To show:x ∈
⋃

i∈I(B ∩Ai).
From the assumption,x ∈ B, andx ∈

⋃
i∈I Ai.

Thus,x ∈ B and there is ani ∈ I with x ∈ Ai.
Thus, there is ani ∈ I with x ∈ B ∩Ai, i.e.,x ∈

⋃
i∈I(B ∩Ai).

⊇: Assumex ∈
⋃

i∈I(B ∩Ai)
To show:x ∈ B ∩ (

⋃
i∈I Ai).

From the assumption, there is ani ∈ I with x ∈ B ∩Ai.
Thus,x ∈ B andx ∈ Ai for somei ∈ I.
Therefore,x ∈ B andx ∈

⋃
i∈I Ai. Thus,x ∈ B ∩ (

⋃
i∈I Ai).

4.33.2 To be proved:B ∪ (
⋂

i∈I Ai) =
⋂

i∈I(B ∪Ai).
Proof:
⊆: Assumex ∈ B ∪ (

⋂
i∈I Ai).

To show:x ∈
⋂

i∈I(B ∪Ai).
From the assumption,x ∈ B or x ∈

⋂
i∈I Ai.

Thus,x ∈ B or for all i ∈ I x ∈ Ai.
Thus, for alli ∈ I we havex ∈ B ∪Ai, i.e.,x ∈

⋂
i∈I(B ∪Ai).

⊇: Assumex ∈
⋂

i∈I(B ∪Ai)
To show:x ∈ B ∪ (

⋂
i∈I Ai).

From the assumption, for alli ∈ I we havex ∈ B ∪Ai.
Thus,x ∈ B or x ∈ Ai for all i ∈ I.
Therefore,x ∈ B or x ∈

⋂
i∈I Ai. Thus,x ∈ B ∪ (

⋂
i∈I Ai).

4.33.3 Given: For alli ∈ I, Ai ⊆ X.
To be proved:(

⋃
i∈I Ai)c =

⋂
i∈I Ac

i .
⊆: Assumex ∈ (

⋃
i∈I Ai)c.

To show:x ∈
⋂

i∈I Ac
i .

From the assumption,x ∈ X andx /∈
⋃

i∈I Ai. Then there is noi ∈ I with x ∈ Ai.
Therefore, for alli ∈ I it holds thatx ∈ Ac

i , i.e.,x ∈
⋂

i∈I Ac
i .

⊇: Assumex ∈
⋂

i∈I Ac
i .

To show:x ∈ (
⋃

i∈I Ai)c.
From the assumption, it holds for alli ∈ I thatx ∈ Ac

i .
Therefore, there is noi ∈ I with x ∈ Ai, i.e.,x /∈

⋃
i∈I Ai. Thus,x ∈ (

⋃
i∈I Ai)c.

4.33.4 Given: For alli ∈ I, Ai ⊆ X.
To be proved:(

⋂
i∈I Ai)c =

⋃
i∈I Ac

i .
⊆: Assumex ∈ (

⋂
i∈I Ai)c.

To show:x ∈
⋃

i∈I Ac
i .

From the assumption,x ∈ X andx /∈
⋂

i∈I Ai. Then there is ani ∈ I with x /∈ Ai.
Therefore, for somei ∈ I it holds thatx ∈ Ac

i , i.e.,x ∈
⋃

i∈I Ac
i .
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⊇: Assumex ∈
⋃

i∈I Ac
i .

To show:x ∈ (
⋂

i∈I Ai)c.
From the assumption, it holds for somei ∈ I thatx ∈ Ac

i .
Therefore, there is ani ∈ I with x /∈ Ai, i.e.,x /∈

⋂
i∈I Ai. Thus,x ∈ (

⋂
i∈I Ai)c.

4.34 To be proved: Any sequence of setsA0, A1, . . . with ℘(Ai+1) ⊆ Ai is finite.
Proof:
Assume there exists an infinite sequence of setsA0, A1, . . . with for all i ∈ N, ℘(Ai+1) ⊆ Ai.
Then we can show that℘(

⋂
i∈N Ai) ⊆

⋂
i∈N Ai.

Indeed, letX ∈ ℘(
⋂

i∈N Ai) be arbitrary.
ThenX ⊆

⋂
i∈N Ai.

We show thatX ∈ Ai for all i ∈ N.
Let k ∈ N be arbitrary.
ThenX ⊆ Ak+1, and from℘(Ak+1) ⊆ Ak we get thatX ∈ Ak.

It follows thatB =
⋂

i∈N Ai has the property℘(B) ⊆ B, i.e., every subset ofB is an element ofB.
In particular, the subset{x ∈ B | x /∈ x} has to be an element ofB.
This gives a contradiction with what was established in Exercise 4.7.

4.35 Given: a collectionK of sets satisfying the condition∀A ∈ K(A = ∅ ∨ ∃B ∈ K(A = ℘(B))).
To be proved: every element ofK has the form℘n(∅) for somen ∈ N.
Proof:

Let A0 ∈ K be arbitrary.
From the previous exercise we know that any sequenceA0, A1, . . . with ℘(Ai+1) ⊆ Ai is finite.
Applying this to the sequenceA0, A1, . . . where℘(Ai+1) = Ai we get from the condition onK,
this gives ann ∈ N, and a sequenceA0, . . . , An,
with ∀i < n ℘(Ai+1) = Ai, and for noB, ℘(B) ⊆ An.
In particular℘(∅) 6⊆ An, i.e.,∅ /∈ An.
FromAn ∈ K and∅ /∈ An we getAn = ∅. But thenA0 = ℘n(∅).

4.39 Left to the reader.

4.40 Given:A 6= ∅, B 6= ∅, A×B = B ×A.
To be proved:A = B.
Proof:
⊆: Let x ∈ A be arbitrary. SinceB 6= ∅ there is any ∈ B,

and we can consider the pair(x, y) ∈ A×B.
FromA×B = B ×A, we get that(x, y) ∈ B ×A, and thereforex ∈ B.

⊇: Let y ∈ B be arbitrary. SinceA 6= ∅ there is anx ∈ A,
and we can consider the pair(y, x) ∈ B ×A.
FromA×B = B ×A, we get that(y, x) ∈ A×B, and thereforey ∈ A.

The non-emptiness condition is necessary, for ifA = ∅ andB = {1}, thenA 6= B, butA×B = ∅ = B ×A.

4.41.1 Given:{a, b} = {a, c}.
To be proved:b = c.
Proof:

Suppose, for a contradiction, thatb 6= c.
Assumea 6= b. Thenb ∈ {a, b}, b /∈ {a, c}, for b 6= a andb 6= c.
Contradiction with the given.
Assumea = b. Thenc ∈ {a, c}, c /∈ {a, b} = {b}, for c 6= b.
Contradiction with the given.
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4.41.2 Given:{{a}, {a, b}} = {{x}, {x, y}}.
To be proved:a = x ∧ b = y.
Proof:

Case 1:a = b. In this case,{a} = {a, b}, so from the given,{{a}} = {{x}, {x, y}}.
This gives{a} = {x}, and thereforea = x, and{a} = {x, y}, and thereforea = b = y.
Case 2:a 6= b. In this case,{a} 6= {a, b}, and{a, b} 6= {x}, for {a, b} is not a singleton.
Thus, from the given,{a} = {x}, and thereforea = x.
Also, from the given,{a, b} = {x, y}, so from this anda = x we get thatb = y.

4.43 To see how the Haskell implementation of list equality accomplishes that lists of different length are classified
as unequal, we distinguish two cases. In case there is a first positionn with list1[n] 6= list2[n], the matter is clear:
at then-th comparison, a call to(x:xs) == (y:ys) will yield False. Suppose therefore that we have two lists
list1, list2, with list1 a proper prefix of list2. In other words, list1 has lengthk, and for alli < k, list1[i] = list2[i].
Then afterk comparison steps we are at the end of list1, but not at the end of list2. In other words, we now process
a call of the form[] == (y:ys). This is the case that is covered by the catch-all phrase_ == _ = False, so in
this case the test will yieldFalse.

4.44 The definition could run like this:

L < K :≡ |L| < |K|
∨ (|L| = |K|
∧∃x, xs, y, ys (L = x : xs∧K = y : ys∧ (x < y ∨ (x = y ∧ xs < ys)))).

Here is an implementation:

compare’ :: Ord a => [a] -> [a] -> Ordering

compare’ [] [] = EQ

compare’ (x:xs) (y:ys) | length (x:xs) < length (y:ys) = LT

| length (x:xs) > length (y:ys) = GT

| otherwise = compare (x:xs) (y:ys)

And here is how it compares with the standard implementation ofcompare:

Main> compare [1,3] [1,2,3]
GT
Main> compare’ [1,3] [1,2,3]
LT
Main> compare [1,3] [1,2]
GT
Main> compare’ [1,3] [1,2]
GT

4.45 Wheninit is called with an empty list, we get an error message (for there is no equation to cover this case).
If init is called with a non-empty list, the list is returned minus its last element.

4.46 Sincereverse is predefined, we call our versionreverse’.

reverse’ :: [a] -> [a]

reverse’ [] = []

reverse’ (x:xs) = reverse’ xs ++ [x]
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4.47

splitList :: [a] -> [([a],[a])]

splitList [x,y] = [([x],[y])]

splitList (x:y:zs) = ([x],(y:zs)): addLeft x (splitList (y:zs))

where addLeft u [] = []

addLeft u ((vs,ws):rest) = (u:vs,ws): addLeft u rest

A neater version results when we avail ourselves of themap function:

split :: [a] -> [([a],[a])]

split [x,y] = [([x],[y])]

split (x:y:zs) =

([x],(y:zs)) : (map (\ (us,vs) -> ((x:us),vs)) (split (y:zs)))

4.48

q11 = [ y | (x,y) <- act, x == "Robert De Niro" || x == "Kevin Spacey"]

4.49

q12 = nub ([ y | ("Quentin Tarantino",y) <- act, releaseP (y,"1994") ]

++ [ y | ("Quentin Tarantino",y) <- direct, releaseP (y,"1994") ])

4.50

q13 = [ x | (x,y) <- release, y > "1997", not (actP ("William Hurt",x)) ]

4.51

difference :: Eq a => [a] -> [a] -> [a]

difference xs [] = xs

difference xs (y:ys) = difference (delete y xs) ys

4.53
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genUnion :: Eq a => [[a]] -> [a]

genUnion [] = []

genUnion [xs] = xs

genUnion (xs:xss) = union xs (genUnion xss)

genIntersect :: Eq a => [[a]] -> [a]

genIntersect [] = error "list of lists should be non-empty"

genIntersect [xs] = xs

genIntersect (xs:xss) = intersect xs (genIntersect xss)

4.54

unionSet :: (Eq a) => Set a -> Set a -> Set a

unionSet (Set []) set2 = set2

unionSet (Set (x:xs)) set2 =

insertSet x (unionSet (Set xs) (deleteSet x set2))

intersectSet :: (Eq a) => Set a -> Set a -> Set a

intersectSet (Set []) set2 = Set []

intersectSet (Set (x:xs)) set2

| inSet x set2 = insertSet x (intersectSet (Set xs) set2)

| otherwise = intersectSet (Set xs) set2

differenceSet :: (Eq a) => Set a -> Set a -> Set a

differenceSet set1 (Set []) = set1

differenceSet set1 (Set (y:ys)) =

differenceSet (deleteSet y set1) (Set ys)

4.55insertSet will now have to insert an item at the right position to keep the underlying list sorted. This can
be done in terms of an auxiliary functioninsertList, as follows:

insertSet :: (Ord a) => a -> Set a -> Set a

insertSet x (Set s) = Set (insertList x s)

insertList x [] = [x]

insertList x ys@(y:ys’) = case compare x y of

GT -> y : insertList x ys’

EQ -> ys

_ -> x : ys

4.56 The only thing that is needed is a small patch in the functionshowSet, like this:
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showSet [] str = showString "0" str

showSet (x:xs) str = showChar ’’ ( shows x ( showl xs str))

where showl [] str = showChar ’’ str

showl (x:xs) str = showChar ’,’ (shows x (showl xs str))

4.57.1 Assuming setA hasN elements, and a curly braces representation withP pairs of braces. Then for℘(A)
you need:

1. one new pair of outermost braces,

2. for each of the2N elements of℘(A) a pair of outermost braces,

3. each of theN elements ofA occurs in half of the elements of℘(A), i.e., in 2N−1 elements of℘(A); for
these we needP − 1 brace pairs (all brace pairs ofA, minus the outermost brace pair); all in all this gives
2N−1(P − 1) brace pairs.

Writing # for number of elements, and] for number of brace pairs, this gives:

V0 = ∅ #(V0) = 0 ](V0) = 1
V1 = ℘(∅) #(V1) = 1 ](V1) = 2
V2 = ℘2(∅) #(V2) = 2 ](V2) = 4
V3 = ℘3(∅) #(V3) = 4 ](V3) = 11
V4 = ℘4(∅) #(V4) = 16 ](V4) = 1 + 16 + 8× 10 = 97
V5 = ℘5(∅) #(V5) = 216 = 65536 ](V5) = 1 + 216 + 215 × 96 = 3211265

4.57.2 AssumeN is the number of elements ofA, andE the number of occurrences of∅ in the standard represen-
tation ofA. Then℘(A) has2N−1E +1 occurrences of∅, since each element ofA occurs in half of the elements of
℘(A), and we need one extra occurrence of∅ for the empty subset ofA. Writing [ for the number of occurrences
of ∅, this gives:

V0 = ∅ #(V0) = 0 [(V0) = 1
V1 = ℘(∅) #(V1) = 1 [(V1) = 1
V2 = ℘2(∅) #(V2) = 2 [(V2) = 2
V3 = ℘3(∅) #(V3) = 4 [(V3) = 5
V4 = ℘4(∅) #(V4) = 16 [(V4) = 8× 5 + 1 = 41
V5 = ℘5(∅) #(V5) = 216 = 65536 [(V5) = 215 × 41 + 1 = 1343489

4.57.3 The number of brace pairs in the standard representation equals the number of brace pairs in the representa-
tion where∅ appears as{}minus the number of occurrences of∅ in the standard representation. Thus, the number
we need is](V5)− [(V5) = 3211265− 1343489 = 1867776.



Solutions to Exercises from Chapter 5

module Sol5

where

import SetOrd

import List

import REL

5.13 To be proved:∀x ∀y ∃R (xRy).
Proof:
Let c, d be arbitrary objects. Consider the setR = {(c, d)}.
ThencRd. Thus, there is a relationR with cRd.

5.17 Given:R ⊆ A2.
To be proved:∀x¬xRx iff ∆A ∩R = ∅.
Proof:
only if: Suppose∀x¬xRx.

Assume(c, d) ∈ ∆A ∩R. Thenc = d, c ∈ A and(c, c) ∈ R.
Contradiction with∀x¬xRx.

if: Suppose∆A ∩R = ∅.
AssumecRc. Then, becauseR ⊆ A2, c ∈ A.
Therefore(c, c) ∈ ∆A, so(c, c) ∈ ∆A ∩R.
Contradiction with∆A ∩R = ∅.

5.19.1 It is easy to prove that∀x∀y(xRy ⇔ yRx) follows from∀x∀y(xRy ⇒ yRx), so that the two formulas are
equivalent.

5.19.2 Note thatR ⊆ R−1 iff for arbitrary (c, d) ∈ R it holds that(c, d) ∈ R−1, i.e., that(d, c) ∈ R. This is
equivalent to∀x∀y(xRy ⇒ yRx). Similarly, note thatR = R−1 is equivalent to∀x∀y(xRy ⇔ yRx). Next, use
the previous item.

5.20 Given:∀x∀y(xRy ⇒ ¬yRx).
To be proved:∀x¬xRx.
Proof:

Let c be an arbitrary object, and suppose, for a contradiction, thatcRc.
Then from the given,¬cRc, and contradiction. Thus¬cRc.

Therefore∀x¬xRx.

35
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5.22 Given:∀x∀y(xRy ⇒ ¬yRx).
To be proved:∀x∀y(xRy ∧ yRx ⇒ x = y).
Proof:
Let c, d be arbitrary, and assumecRd anddRc.
Then contradiction with the given.
Thus, trivially,c = d.

5.23 This follows from the fact that the formulas∀x, z ∈ A(∃y ∈ A(xRy ∧ yRz) ⇒ xRz) and∀x, y, z ∈
A(xRy ∧ yRz) ⇒ xRz) are equivalent.

5.28 To show that every strict partial order is asymmetric one has to prove∀x∀y(xRy ⇒ ¬yRx) (asymmetry)
from the givens∀x∀y∀z(xRy ∧ yRz ⇒ xRz) (transitivity) and∀x¬xRx (irreflexivity). You already did this, in
Exercise 3.27.1.

5.29 To show that every transitive and asymmetric relation is a strict partial order, we have to establish that from
∀x∀y∀z(xRy ∧ yRz ⇒ xRz) (transitivity) and∀x∀y(xRy ⇒ ¬yRx) (asymmetry),∀x¬xRx (irreflexivity)
can be proved. In fact, irreflexivity follows already from asymmetry, as you already proved in Exercise 3.27.2.

5.30 Here is the proof:
Given:∀x, y, z ∈ A(xRy ∧ yRz ⇒ xRz),∀x ∈ A(¬xRx).
To be proved:S = R ∪∆A is a partial order (reflexive, transitive, antisymmetric).
Proof:

Reflexivity: immediate from the fact that∆A ⊆ R ∪∆A.
Transitivity: Assume for arbitraryc, d, e ∈ A thatcSd anddSe.

We have to show thatcSe.
If c = d andd = e, thenc = e, socSe.
If cRd andd = e, thencRe, socSe.
If c = d anddRe, thencRe, socSe.
If cRd anddRe, thencRe by transitivity ofR, socSe.

Antisymmetry: AssumecSd anddSc. We have to showc = d.
Supposec 6= d.
ThencRd anddRc, and by transitivity ofR, cRc. Contradiction with irreflexivity ofR.

5.31 Given:R is transitive, reflexive, and antisymmetric.
To be proved:R−1 is transitive, reflexive, and antisymmetric.
Proof:

Transitivity: AssumecR−1d anddR−1e. TheneRd anddRc.
So by transitivity ofR, eRc, and thereforecR−1e.

Reflexivity: AssumecR−1c. ThencRc.
Antisymmetry: AssumecR−1d anddR−1c. ThencRd anddRc.

By antisymmetry ofR, c = d.

5.32 Given:S ⊆ A2 is reflexive and symmetric, for alla, b ∈ A there is oneS-path connectinga with b.
r ∈ A, a 6 b iff a is on the path connectingr with b.

To be proved:
1. 6 is reflexive.
Proof: Letc ∈ A be arbitrary. Then there is pathr, . . . , c from r to c, soc 6 c.
2. 6 is antisymmetric.
Proof: Letc, d ∈ A be arbitrary, and supposec 6 d andd 6 c.
Thenc is on the pathr, . . . , d, andd is on the pathr, . . . , c.
Since the pathsr, . . . , c andr, . . . , d are unique, it follows thatc = d.
3. 6 is transitive.
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Proof: Letc, d, e ∈ A be arbitrary, and supposec 6 d andd 6 e.
Thenc is on the pathr, . . . , d, andd is on the pathr, . . . , e.
Since paths are unique, it follows thatc is on the pathr, . . . , e.
4. For alla ∈ A, r 6 a.
Proof: Letc ∈ A be arbitrary. Then there is a path fromr to c, andr is on that path. Sor 6 c.
5. For everya ∈ A, the setXa = {x ∈ A | x 6 a} is finite and ifb, c ∈ Xa thenb 6 c or c 6 b.
Proof: Leta ∈ A be arbitrary. Then there is a single pathr = a1, . . . , an = a.
The setXa consists of{a1, . . . , an}, because for eachai on the patha1, . . . , an

there is a single path from the root toai, namely,r = a1, . . . , ai.
Let b, c ∈ Xa. Thenb andc are on the same pathr = a1, . . . , an = a.
Thus,b, c are among theai and we haveb 6 c or c 6 b.

5.33

< 6 successor divisor coprime
irreflexive

√ √

reflexive
√ √

asymmetric
√ √

antisymmetric
√ √ √ √

symmetric
√

transitive
√ √ √

linear
√ √

Note that thecoprimerelation is not irreflexive, for1 and1 are coprime.
5.35.1 We show thatR ∪∆A is the reflexive closure ofR:

First we show thatR ⊆ R ∪∆A and thatR ∪∆A is reflexive.
Proof: the first is immediate, the second follows from the fact that∆A ⊆ R ∪∆A.
Next we show thatR ∪∆A is the smallest reflexive relation havingR as a subset:

If R ⊆ S andS is reflexive, thenR ∪∆A ⊆ S.
Proof: LetS be such thatR ⊆ S andS is reflexive. Assume(c, d) ∈ R ∪∆A.
We have to show thatcSd.
From(c, d) ∈ R ∪∆A we getcRd or c = d.

If cRd then byR ⊆ S, cSd.
If c = d then by reflexivity ofS, cSd.

5.35.2 We show thatR ∪R−1 is the symmetric closure ofR.
To be proved:R ⊆ R ∪R−1 andR ∪R−1 is symmetric.
Proof: both are immediate.
To be proved: IfR ⊆ S andS is symmetric, thenR ∪R−1 ⊆ S.
Proof: LetS be such thatR ⊆ S andS is symmetric. Assume(c, d) ∈ R ∪R−1.
We have to show thatcSd.
From(c, d) ∈ R ∪R−1 we getcRd or dRc.

If cRd then byR ⊆ S, cSd.
If dRc then byR ⊆ S, dSc, and by symmetry ofS, cSd.

5.36 From the transitivity ofR ⊆ A2 it does not follow thatR ∪ R−1 ∪∆A is transitive. ConsiderA = {1, 2, 3}
with R = {(1, 2), (1, 3)}. ThenR is transitive, but

R ∪R−1 ∪∆A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 3), (3, 1)}

is not, for(2, 1) and(1, 3) are in it, but(2, 3) is not.
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5.38 The composition of the relation “father of” with itself gives the relation “paternal grandfather of”. The
composition of “brother of” and “parent of”, in that order, gives the relation “uncle of”. This gives an example
showing thatR ◦ S andS ◦ R may well be different: a brother of a parent of mine is an uncle, but a parent of my
brother is my own parent.

5.39R2 = {(0, 0), (0, 3), (1, 2), (1, 3), (2, 2), (2, 3)}, R3 = {(0, 2), (0, 3), (1, 0), (1, 3), (2, 0), (2, 3)} andR4 =
{(0, 0), (0, 3), (1, 2), (1, 3), (2, 2), (2, 3)}. From these results we see thatR ∪ R2 is a good candidate forS. And
indeed, if we put

S = {(0, 0), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3)},

we get thatR ∪ (S ◦R) = S.

5.40.1 To be proved:R is transitive iffR ◦R ⊆ R.
Proof:
Only If: SupposeR is transitive, and assumec, d are such thatcR ◦Rd.

We have to show thatcRd.
Fromc(R ◦R)d we get that there is ane with cRe andeRd.
But then transitivity ofR givescRd.

If: SupposeR ◦R ⊆ R, and assumecRd anddRe.
We have to show thatcRe.
FromcRd anddRe, we getc(R ◦R)e, and becauseR ◦R ⊆ R this givescRe.

5.40.2 An example of a transitive relationR for whichR ◦R 6= R is < onN. We have that0 < 1, but¬0(<◦<)1.

5.41.1 To be proved:Q ◦ (R ◦ S) = (Q ◦R) ◦ S.
Proof:
⊆: Let (c, d) ∈ Q ◦ (R ◦ S). Then there is ane with cQe and(e, d) ∈ R ◦ S.

Therefore, there is anf with eRf andfSd.
It follows that(c, f) ∈ Q ◦R, and(c, d) ∈ (Q ◦R) ◦ S.

⊇: Let (c, d) ∈ (Q ◦R) ◦ S. Then there is ane with (c, e) ∈ (Q ◦R) andeSd.
Therefore, there is anf with cQf andfRe.
It follows that(f, d) ∈ R ◦ S, and(c, d) ∈ Q ◦ (R ◦ S).

5.41.2 To be proved:(R ◦ S)−1 = S−1 ◦R−1.
Proof:
⊆: Let (c, d) ∈ (R ◦ S)−1. Then(d, c) ∈ R ◦ S, so there is ane with dRe andeSc.

Therefore,cS−1e andeR−1d, and thus(c, d) ∈ S−1 ◦R−1.
⊇: Let (c, d) ∈ S−1 ◦R−1. Then there is ane with cS−1e andeR−1d.

Thus,dRe andeSc. Therefore,(d, c) ∈ R ◦ S, and it follows that(c, d) ∈ (R ◦ S)−1.

5.45 Given:R = {(n, n + 1) | n ∈ N}.
To be proved:R+ = <.
Proof:
⊆: Let (n, m) ∈ R+. Then there is ak ∈ N, k > 0, with (n, m) ∈ Rk.

Applying the definition ofR we get thatn + k = m, i.e.,n < m.
⊇: Let n < m. Then there is ak ∈ N, k > 0, with n + k = m.

Thus,(n, m) ∈ Rk, and therefore(n, m) ∈ R+.

5.46 Given:R ⊆ A2.
To be proved:R∗ = R+ ∪∆A is the smallest transitive and reflexive relation onA that includesR.
Proof:
First, we have to check thatR∗ includesR, and is reflexive and transitive.

The first two of these are immediate from the definition.
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For transitivity, pick arbitraryc, d, e ∈ A with cR∗d anddR∗e. We have to show thatcR∗e.
PuttingR0 = ∆A, we get that there aren, m > 0 with cRnd anddRme.
Therefore there is ak > 0 with cRke, i.e.,c = e or cR+e.

Next, letR ⊆ S ⊆ A2, with S reflexive and transitive.
We have to show thatR∗ ⊆ S.

Take an arbitrary pairc, d with cR∗d. Then there is ak > 0 with cRkd.
If k = 0 thenc = d, andcSd by reflexivity ofS.
If k > 0 then there arec1, . . . ck−1 with cRc1, . . . ,ck−1Rd.
By the fact thatR ⊆ S, cSc1, . . . ,ck−1Sd, and by transitivity ofS, cSd.

5.47 If R = {(n, n + 1) | n ∈ N}, thenR∗ =6.

5.48.1 Given: for eachi ∈ I, Ri ⊆ A2, with Ri transitive.
To be proved:

⋂
i∈I Ri is transitive.

Proof:
Let (c, d), (d, e) ∈

⋂
i∈I Ri. We have to show that(c, e) ∈

⋂
i∈I Ri.

From(c, d), (d, e) ∈
⋂

i∈I Ri we get thatcRid, dRie for all i ∈ I.
Since eachRi is transitive,cRie for all i ∈ I. Thus(c, e) ∈

⋂
i∈I Ri.

5.48.2 Given:R ⊆ A2, Q =
⋂
{S | R ⊆ S ⊆ A2, S transitive}.

To be proved:R+ = Q.
Proof:
SinceA2 is transitive,{S | R ⊆ S ⊆ A2, S transitive} 6= ∅.
Immediately from the definition ofQ, we have thatR ⊆ Q.
Also, from 5.48.2 we get thatQ is transitive.
R+ is included in each transitiveS with R ⊆ S ⊆ A2, and thereforeR+ = Q.

5.49.1 To be proved:(R∗)−1 = (R−1)∗.
Proof:
⊆: Suppose(c, d) ∈ (R∗)−1. We have to show that(c, d) ∈ (R−1)∗.

From(c, d) ∈ (R∗)−1 we get(d, c) ∈ R∗, so there is ak > 0 with dRkc.
Thus, there arec1, . . . , ck−1 with dRc1, . . . ,ck−1Rc.
Therefore,cR−1ck−1, . . . ,c1R

−1d, i.e.,c(R−1)kd, and we see that(c, d) ∈ (R−1)∗.
⊇: Suppose(c, d) ∈ (R−1)∗. We have to show that(c, d) ∈ (R∗)−1.

From(c, d) ∈ (R−1)∗ we get that there is ak > 0 with c(R−1)kd.
Thus, there arec1, . . . , ck−1 with cR−1c1, . . . ,ck−1R

−1d.
Therefore,dRck−1, . . . ,c1Rc, i.e.,dRkc, sodR∗c, and thus,(c, d) ∈ (R∗)−1.

5.49.2 To see that(R∪R−1)∗ = R∗∪R−1∗ may be false, note that(R∪R−1)∗ surely is transitive. If we can find a
case whereR∗∪R−1∗ is not transitive, we are done. For this, the example used in the solution to Exercise 5.36 may
serve again. ConsiderA = {1, 2, 3} with R = {(1, 2), (1, 3)}. ThenR∗ = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)},
R−1 = {(2, 1), (3.1)}, andR−1∗ = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2)}. The union ofR∗ andR−1∗ is not transi-
tive, for (2, 1) and(1, 3) are in it, but(2, 3) is not.

5.49.3 Given:S ◦R ⊆ R ◦ S.
To be proved:(R ◦ S)∗ ⊆ R∗ ◦ S∗.
Proof:

Let (c, d) be an arbitrary element of(R ◦ S)∗. We have to show that(c, d) ∈ R∗ ◦ S∗.
Since(c, d) ∈ (R ◦ S)∗, there is ak > 0 with (c, d) ∈ (R ◦ S)k.
Thus, there arec1, . . . , ck−1 with c(R ◦ S)c1, . . . ,ck−1(R ◦ S)d.
So there ared1, . . . , dk with cRd1, d1Sc1, . . . ,ck−1Rdk, dkSd.
By what is given, we can replace any patternxSy, yRz by xRy, ySz.
After a finite number of such replacements we getc(Rk ◦ Sk)d, i.e.,(c, d) ∈ R∗ ◦ S∗.
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5.50

property reflexivity symmetry transitivity
preserved under∩? yes yes yes
preserved under∪? yes yes no
preserved under inverse? yes yes yes
preserved under complement?no yes no
preserved under composition?yes no no

5.52 To definerestrictR, we need a version ofintersectSet for sets as ordered lists:

intersectSet :: (Ord a) => Set a -> Set a -> Set a

intersectSet (Set []) set2 = Set []

intersectSet (Set (x:xs)) set2

| inSet x set2 = insertSet x (intersectSet (Set xs) set2)

| otherwise = intersectSet (Set xs) set2

Now computing the restriction of a relationR to a setA is a matter of intersectingR with A2 (the total relation on
A):

restrictR :: Ord a => Set a -> Rel a -> Rel a

restrictR set rel = intersectSet (totalR set) rel

Note that it is assumed that the lists used in the representations of set and relation areordered.

5.53

rclosR :: Ord a => Rel a -> Rel a

rclosR r = unionSet r (idR background)

where background = unionSet (domR r) (ranR r)

sclosR :: Ord a => Rel a -> Rel a

sclosR r = unionSet r (invR r)

5.54

tclosR :: Ord a => Rel a -> Rel a

tclosR r | transR r = r

| otherwise = tclosR (unionSet r (compR r r))

5.55
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inDegree :: (Eq a) => Rel a -> a -> Int

inDegree (Set r) = \ x -> length [ y | (_,y) <- r, y == x ]

outDegree :: (Eq a) => Rel a -> a -> Int

outDegree (Set r) = \ x -> length [ y | (y,_) <- r, y == x ]

5.56

sources :: (Eq a) => Rel a -> Set a

sources (Set r) = Set [ x | x <- union (map fst r) (map snd r),

inDegree (Set r) x == 0,

outDegree (Set r) x >= 1 ]

sinks :: (Eq a) => Rel a -> Set a

sinks (Set r) = Set [ x | x <- union (map fst r) (map snd r),

outDegree (Set r) x == 0,

inDegree (Set r) x >= 1 ]

5.57 It is not hard to see that the successor relationS = {(n, m) ∈ Z | n + 1 = m} has the property that
S ∪ S2 6= S∗.

successor :: Rel’ Int

successor = \ n m -> n+1 == m

rel = unionR’ successor (repeatR’ [0..1000] successor 2)

We get:

REL> rel 1 3
True
REL> rel 1 4
False

This shows thatrel is not the less-than relation on[1..1000].

5.58

transClosure’ :: [a] -> Rel’ a -> Rel’ a

transClosure’ xs r | transR’ xs r = r

| otherwise =

transClosure’ xs (unionR’ r (compR’ xs r r))

5.68 We have to check reflexivity, symmetry and transitivity.≡n is reflexive forn | m−m. ≡n is symmetric, for
n | m− k iff n | k−m. For transitivity of≡n, assumen | m− k andn | k− p. Thenn | (m− k) + (k− p), i.e.,
n | m− p.
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5.71.1{(2, 3), (3, 5), (5, 2)} is not reflexive onN, not symmetric, and not transitive.

5.71.2{(n, m) | |n−m| > 3} is not reflexive onN, is symmetric, is not transitive.

5.72.1 SinceA = {1, 2, 3} has three elements,A2 has 9 elements. The number of relations onA equals the number
of different subsets ofA2, so there are29 = 512 relations onA.

5.72.2 An example of a relation onA is that is reflexive, but neither symmetric nor transitive is

{(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}.

Here is the check by computer:

REL> reflR (Set [1,2,3]) (Set [(1,1),(1,2),(2,2),(2,3),(3,3)])
True
REL> symR (Set [(1,1),(1,2),(2,2),(2,3),(3,3)])
False
REL> transR (Set [(1,1),(1,2),(2,2),(2,3),(3,3)])
False

5.72.3 An example of a relation on dA that is not reflexive, that is symmetric, and that is not transitive is
{(1, 2), (2, 1), (2, 3), (3, 2)}. Here is the check by computer:

REL> reflR (Set [1,2,3]) (Set [(1,2),(2,1),(2,3),(3,2)])
False
REL> symR (Set [(1,2),(2,1),(2,3),(3,2)])
True
REL> transR (Set [(1,2),(2,1),(2,3),(3,2)])
False

5.72.4 Reflexive, symmetric, not transitive:{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}. Reflexive, symmet-
ric, transitive: the total relation onA. Reflexive not symmetric, transitive:{1, 1), (1, 2), (2, 2), (3, 3)}. Not reflex-
ive, symmetric, transitive: the empty relation onA. Not reflexive, not symmetric, transitive:{(1, 2), (2, 3), (1, 3)}.
Not reflexive, not symmetric, not transitive:{(1, 2), (2, 3)}. The checks are left to the reader.

5.73

A A2 ℘(A2) reflexive symmetric transitive equivalence
0 0 1 1 1 1 1
1 1 2 1 2 2 1
2 4 16 4 8 13 —
3 9 512 26 = 64 26 = 64 — —
4 16 216 = 65536 212 = 4096 210 = 1024 — —
5 25 225 = 33554432 220 = 1048576 215 = 32768 — —

n n2 2(n2) 2n(n−1) 2( n2+n
2 ) — —

The explanation for the formula2n(n−1) for the number of reflexive relations over a universeA with n elements
is that any relation that contains all objects of the form(c, c) is reflexive. Next, observe thatA2 containsn(n− 1)
pairs(c, d) with c 6= d. All of these pairs may or may not be part of a reflexive relation, so there are2n(n−1)

different reflexive relations onA.
The explanation for the formula2( n2+n

2 ) for the number of symmetric relations over a universeA with n
elements is that any pair of the form(c, c) can be in a symmetric relation, and there aren such pairs. Next,
if (c, d) with c 6= d is in a symmetric relation, then(d, c) has to be in as well, and there are1

2n(n − 1) sets

{(c, d), (d, c)} with c 6= d. All in all this givesn + 1
2n(n − 1) = n2+n

2 objects to choose from, giving2( n2+n
2 )

different possibilities.
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5.75 Given:R ⊆ A2, R symmetric and transitive,∀x ∈ A∃y ∈ A(xRy).
To be proved:R is reflexive onA.
Proof:

Let c ∈ A be arbitrary. We have to show thatcRc.
From∃y ∈ A(cRy), let d ∈ A be an object withcRd.
FromcRd and symmetry ofR, dRc.
FromcRd, dRc and transitivity ofR, cRc.

5.76 Given:R ⊆ A2.
To be proved:R is an equivalence iff∆A ⊆ R andR = R ◦R−1.
Proof:
Only if: SupposeR is an equivalence. We have to show∆A ⊆ R andR = R ◦R−1.

∆A ⊆ R is immediate from the reflexivity ofR.
Next we showR = R ◦R−1.
⊂: AssumecRd. Then by reflexivity ofR, cRc, and by symmetry ofR, dRc, hencedR−1c.

Thus(c, d) ∈ R ◦R−1.
⊂: Assume(c, d) ∈ R ◦R−1. Then there is ane with cRe andeR−1d.

FromeR−1d, dRe, and by symmetry ofR, eRd. By transitivity ofR, cRd.
If: Suppose∆A ⊆ R andR = R ◦R−1. We have to show thatR is an equivalence.

Reflexivity ofR is immediate from the fact that∆A ⊆ R.
Symmetry: supposecRd. ThendRd from reflexivity ofR, anddR−1c from cRd.
Thus,(c, d) ∈ R ◦R−1, andcRd from R = R ◦R−1.
Transitivity: supposecRd anddRe. TheneRd from symmetry ofR, sodR−1e.
FromcRd anddR−1e, (c, d) ∈ R ◦R−1, so fromR = R ◦R−1, cRe.

5.84

rclass :: Rel’ a -> a -> [a] -> [a]

rclass r x ys = [ y | y <- ys, r x y ]

5.87 Given:{Ai | i ∈ I} is a partition ofA, {Bj | j ∈ J} is a partition ofB.
To be proved:{Ai ×Bj | (i, j) ∈ I × J} is a partition ofA×B.
Proof: we have to check the three properties of a partition.
∅ /∈ {Ai ×Bj | (i, j) ∈ I × J}:
Immediate from the fact that for noi, j, Ai = ∅ or Bj = ∅.⋃
{Ai ×Bj | (i, j) ∈ I × J} = A×B:

Immediate from the fact that
⋃
{Ai | i ∈ I} = A and

⋃
{Bj | j ∈ J} = B.

For allX, Y ∈ {Ai ×Bj | (i, j) ∈ I × J}: if X 6= Y thenX ∩ Y = ∅:
Let X, Y ∈ {Ai ×Bj | (i, j) ∈ I × J}, with X 6= Y .
We show thatX ∩ Y = ∅.

Suppose(a, b) ∈ X ∩ Y . Let X = Ap ×Bq andY = Ar ×Bs.
Since(a, b) ∈ X = Ap ×Bq, a ∈ Ap andb ∈ Bq.
Since(a, b) ∈ Y = Ar ×Bs, a ∈ Ar andb ∈ Bs.
Since{Ai | i ∈ I} is a partition,Ap ∩Ar 6= ∅ impliesAp = Ar.
Since{Bj | j ∈ J} is a partition,Bq ∩Bs 6= ∅ impliesBq = Bs.
Contradiction with the fact thatX 6= Y .

5.94R = {(n, m) | n, m ∈ N andn + m is even} induces the partition{{2n | n ∈ N}, {2n + 1 | n ∈ N}}.
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5.98 The relation
{(0, 0), (0, 3), (0, 4), (1, 1), (1, 2),

(2, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}.

is an equivalence. The corresponding partition is:{{0, 3, 4}, {1, 2}}.

5.100.1 The equivalence on{0, 1, 2, 3, 4} that corresponds to{{0, 3}, {1, 2, 4}} is:

{(0, 0), (0, 3), (3, 0), (3, 3), (1, 1), (1, 2), (2, 1), (2, 2), (1, 4), (2, 4), (4, 2), (4, 1), (4, 4)}

5.100.2{(n, m) ∈ Z2 | n = m = 0 ∨ n×m > 0}.

5.100.3 (mod 2).

5.101 The example relationR is an equivalence on{1, 2, 3, 4, 5}. |2|R = {1, 2, 4}. A/R = {{1, 2, 4}, {3, 5}}.

5.103 Given:∼ on℘(N) defined by:A ∼ B :≡ (A−B) ∪ (B −A) is finite.
To be proved:∼ is symmetric and transitive.
Proof:
Symmetry: AssumeA ∼ B. Then(A−B) ∪ (B −A) is finite.

Thus(B −A) ∪ (A−B) is finite, i.e.,B ∼ A.
Transitivity: AssumeA ∼ B andB ∼ C.

Then(A−B) ∪ (B −A) and(B − C) ∪ (C −B) are finite.
Since bothA−B andC −B are finite,(A−B) ∪ (C −B) is finite.
SinceA− C ⊆ (A−B) ∪ (C −B), we get thatA− C is finite.
Similarly, bothB −A andC −B are finite, so(B −A) ∪ (C −B) is finite.
SinceC −A ⊆ (B −A) ∪ (C −B), we get thatC −A is finite.
SinceA− C andC −A are finite,(A− C) ∪ (C −A) is finite, i.e.,A ∼ C.

5.104.1 The relationR on all people given byaRb :≡ a andb have a common ancestor is not transitive. Consider
a case of a mana who has a half-brotherb who in turn has a half-sisterc; a andb have the same father, but different
mothers, andb andc have the same mother, but different fathers. Thena andb have a common ancestor (their
father),b andc have a common ancestor (their mother), buta andc need not have an ancestor in common.

5.104.2 The relationS defined by:aSb :≡ a andb have a common ancestor along the male line is transitive, for
if a andb have a common ancestore along the male line, andb andc have a common ancestorf along the male
line, thene is an ancestor off along the male line or vice versa, so in either casea andc have an ancestor along
the male line in common.

5.106

bell :: Integer -> Integer

bell 0 = 1

bell n = sum [stirling n k | k <- [1..n]]

stirling :: Integer -> Integer -> Integer

stirling n 1 = 1

stirling n k | n == k = 1

| otherwise = k * (stirling (n-1) k) + stirling (n-1) (k-1)

5.107 The table can be computed with the Haskell code of the previous exercise:
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A A2 ℘(A2) equivalences
0 0 1 1
1 1 2 1
2 4 16 2
3 9 512 5
4 16 216 = 65536 15
5 25 225 = 33554432 52
n n2 2(n2)

∑n
k=1

{
n
k

}
5.108 Given: For allX ∈ A it holds thatX ⊆ A.
To be proved:

⋃
A = A and for allX, Y ∈ A: if X 6= Y thenX ∩ Y = ∅

iff for every a ∈ A there exists exactly oneK ∈ A such thata ∈ K.
Proof:
Only if: Assume

⋃
A = A and for allX, Y ∈ A: if X 6= Y thenX ∩ Y = ∅.

We show that for everya ∈ A there exists exactly oneK ∈ A such thata ∈ K.
Let a ∈ A be arbitrary. Since

⋃
A = A, there is anX ∈ A with a ∈ X.

Assume there aY ∈ A, Y 6= X with a ∈ Y . Then contradiction withX ∩ Y = ∅.
If: Assume for everya ∈ A there exists exactly oneK ∈ A such thata ∈ K.

We first show that
⋃
A = A.

From the given,
⋃
A ⊆ A, so we only have to showA ⊆

⋃
A.

Let a ∈ A be arbitrary, and letK be the element ofA that hasa ∈ K.
Then froma ∈ K ∈ A we geta ∈

⋃
A. ThusA ⊆

⋃
A.

Next we show that for allX, Y ∈ A: if X 6= Y thenX ∩ Y = ∅.
Let X, Y ∈ A, with X 6= Y , and assumea ∈ X ∩ Y .
Then contradiction with the fact that there exists exactly oneK ∈ A with a ∈ K.

5.109 IfR andS are equivalences,R ∩ S is an equivalence as well, for reflexivity, symmetry and transitivity are
all preserved under intersection (see the table of Exercise 5.50). Since, according to that same table, transitivity
is not preserved under union, it should be possible to find relationsR, S, with R andS transitive, butR ∪ S
not transitive. E.g., consider the setA = {1, 2, 3}, and letR = {(1, 2)} andS = {(2, 3)}. ThenR, S are
both transitive, butR ∪ S is not, for the pair(1, 3) is lacking. To turn this into an example whereR andS are
equivalences, takeR = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} andS = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)}. ThenR
andS are equivalences, but

R ∪ S = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}

is not an equivalence, because of failure of transitivity.

5.110 Given:R andS are equivalences onA, R ⊆ S.
To be proved: EveryS-equivalence class is a union ofR-equivalence classes.
Proof:
Let c ∈ A be arbitrary, and consider|c|S .
We have to show that for all membersd of |c|S , |d|R ⊆ |c|S .

Let d be an arbitrary element of|c|S , and lete ∈ |d|R.
We show thate ∈ |c|S .
Frome ∈ |d|R, we geteRd. FromeRd andR ⊆ S, eSd.
Fromd ∈ |c|S , we getdSc. FromeSd anddSc, by transitivity ofS, eSc.
Thus,e ∈ |c|S .

5.111
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listPartition :: Eq a => [a] -> [[a]] -> Bool

listPartition xs xss =

all (‘elem‘ xs) (concat xss) && all (‘elem‘ (concat xss)) xs

&& listPartition’ xss []

where

listPartition’ [] _ = True

listPartition’ ([]:xss) _ = False

listPartition’ (xs:xss) domain

| intersect xs domain == [] = listPartition’ xss (union xs domain)

| otherwise = False

5.112

listpart2equiv :: Ord a => [a] -> [[a]] -> Rel a

listpart2equiv dom xss

| not (listPartition dom xss) = error "argument not a list partition"

| otherwise = list2set (concat (map f xss))

where f xs = [(x,y) | x <- xs, y <- xs ]

5.113.1 IfR = {(0, 3), (1, 5), (2, 0)}; A = {0, 1, 2, 3, 4, 5}, then the smallest equivalenceS ⊇ R on A is the
equivalence that corresponds to the partition{{0, 2, 3}, {1, 5}, {4}}. Thus, we have:

S = {(0, 0), (0, 2), (0, 3), (1, 1), (1, 5), (2, 0), (2, 2), (2, 3), (3, 0), (3, 2), (3, 3), (4, 4), (5, 1), (5, 5)},

as you can check by means oflistpart2equiv [[0, 2, 3],[1,5],[4]].

5.113.2A/S = {{0, 2, 3}, {1, 5}, {4}}.

5.113.3 The equivalences onA that includeR correspond to all the ways of making0, 2, 3 equivalent, and1, 5
equivalent. There are 5 ways of doing this.

5.113.4 The corresponding partitions are

{{0, 2, 3}, {1, 5}, {4}},
{{0, 2, 3, 4}, {1, 5}},
{{0, 2, 3}, {1, 4, 5}},
{{0, 1, 2, 3, 5}, {4}},
{{0, 1, 2, 3, 4, 5}}.

5.114

equiv2listpart :: Ord a => Set a -> Rel a -> [[a]]

equiv2listpart s@(Set xs) r | not (equivalenceR s r) =

error "equiv2listpart: relation argument not an equivalence"

| otherwise =

genListpart r xs

where

genListpart r [] = []

genListpart r (x:xs) = xclass : genListpart r (xs \\ xclass)

where xclass = x : [ y | y <- xs, inSet (x,y) r ]
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5.115

equiv2part :: Ord a => Set a -> Rel a -> Set (Set a)

equiv2part s r = list2set (map list2set (equiv2listpart s r))

5.116 Given:R ⊆ A2.
To be proved:∆A ∪ (R ∪R−1)+ is the smallest equivalence onA that includesR.
Proof:

In the first place,∆A ∪ (R ∪R−1)+ includesR, and is an equivalence:
The relation is reflexive because∆A is contained in it.
The relation is symmetric becauseR ∪R−1 is symmetric.
The relation is transitive because it is a transitive closure.

Next, assumeS is an equivalence onA that includesR.
We will show that∆A ∪ (R ∪R−1)+ ⊆ S.
Let (c, d) ∈ ∆A ∪ (R ∪R−1)+. We have to show thatcSd.
From(c, d) ∈ ∆A ∪ (R ∪R−1)+, c = d or (c, d) ∈ (R ∪R−1)+.
If c = d, then from reflexivity ofS, cSd.
Otherwise, there is ak > 1 with (c, d) ∈ (R ∪R−1)k.
Thus, there arec1, . . . , ck−1 with cR1c1, . . . ,ck−1Rkd, where eachRi is eitherR or R−1.
SinceR ⊆ S, we get from this thatcS1c1, . . . ,ck−1Skd, where eachSi is eitherS or S−1.
SinceS is symmetric,cSc1, . . . ,ck−1Sd, and from transitivity ofS we getcSd.

5.117.1 Given:R ⊆ A2.
To be proved:S = R∗ ∩R−1∗ is an equivalence onA.
Proof:
We have to show reflexivity, symmetry and transitivitity ofS.
Reflexivity: since∆A ⊆ R∗, ∆A ⊆ R−1∗, ∆A ⊆ S.
Symmetry: SupposecSd. Then(c, d) ∈ R∗ and(c, d) ∈ R−1∗.
Thus, there arei, j > 0 with cRid andcR−1jd. Therefore,dR−1ic anddRjc.
It follows that(d, c) ∈ R∗ and(d, c) ∈ R−1∗, sodSc.
Transitivity: SupposecSd anddSe. Then(c, d) ∈ R∗, (c, d) ∈ R−1∗, (d, e) ∈ R∗, (d, e) ∈ R−1∗.
Thus, there arei, j, k,m with cRid, cR−1jd, dRke, dR−1me.
Therefore,cRi+ke, cR−1j+me, and thuscR∗e, cR−1∗e. It follows thatcSe.

5.117.2 Given:R ⊆ A2, S = R∗ ∩R−1∗, |a|ST |b|S :≡ aR∗b.
To be proved:T is a partial order.
Proof:
We have to show reflexivity, anti-symmetry, and transitivity ofT .
Reflexivity: letc ∈ A be arbitrary. We have to show|c|ST |c|S .

This follows immediately fromcR∗c and the definition ofT .
Anti-symmetry: letc, d ∈ A be objects with|c|ST |d|S , |d|ST |c|S . We show|c|S = |d|S .

From |c|ST |d|S , cR∗d, from |d|ST |c|S , dR∗c, and thuscR−1∗d.
SincecR∗d andcR−1∗d, cSd, i.e.,c ∈ |d|S , or in other words,|c|S = |d|S .

Transitivity: c, d, e ∈ A be objects with|c|ST |d|S , |d|ST |e|S . We show|c|ST |e|S .
From |c|ST |d|S , cR∗d, from |d|ST |e|S , dR∗e, and thuscR∗e. It follows that|c|ST |e|S .

5.119.1 The relation∼ on R given byp ∼ q :≡ p × q ∈ Z is not an equivalence. E.g., reflexivity fails, for, e.g.,
1
2 6∼

1
2 , for 1

4 /∈ Z.
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5.119.2 The relation≈ on R given byp ≈ q :≡ p − q ∈ Z is an equivalence.≈ is reflexive, forp − p = 0 ∈ Z,
sop ≈ p for anyp ∈ R. ≈ is symmetric, for ifp − q = m ∈ Z, thenq − p = −m ∈ Z. ≈ is transitive, for if
p− q = m ∈ Z andq− r = n ∈ Z, thenp− r = (m− q)− (q−n) = m+n ∈ Z. The partition that corresponds
with ≈ consists of the classes of real numbers that all are at integer distances from one another. E.g.,≈0= Z, and
≈π= {π + m | m ∈ Z}.

5.120.1 Given: RelationR onR× R, with (x, y)R(u, v) iff 3x− y = 3u− v.
To be proved:R is an equivalence.
Proof: Reflexivity: Let(x, y) ∈ R2. Then3x− y = 3x− y, so(x, y)R(x, y).
Symmetry: Let(x, y), (u, v) ∈ R2, and suppose(x, y)R(u, v).
Then3x− y = 3u− v, so3u− v = 3x− y, i.e.,(u, v)R(x, y).
Transitivity: Let(x, y), (u, v), (p, q) ∈ R2, and suppose(x, y)R(u, v) and(u, v)R(p, q).
Then3x− y = 3u− v and3u− v = 3p− q, so3x− y = 3p− q, i.e.,(x, y)R(p, q).

5.120.2 The equivalence class of(0, 0) is the set of points on the real plane given by{(x, y) | y = 3x}, i.e., the
straight line through the points(0, 0) and(1, 3). The equivalence class of(1, 1) is the set of points on the real plane
given by{(x, y) | y = 3x− 2}, i.e., the straight line through the points(1, 1) and(2, 4).

5.120.3R partitionsR2 in the set of all straight lines parallel to the line given by the equationy = 3x.

5.121 LetR be given by(x, y)R(u, v) :≡ x2 + y2 = u2 + v2. Then every point(u, v) in the class[(x, y)]R is on
the circle with centre(0, 0) and radius

√
x2 + y2.

5.122.1 Given:Q = {(0, 0), (0, 1), (0, 5), (2, 4), (5, 0)},
R is an equivalence on{0, 1, 2, 3, 4, 5}, Q ⊆ R, (0, 2) /∈ R.

To be proved:(1, 5) ∈ R and(4, 5) /∈ R.
Proof:
SinceQ ⊆ R andR transitive we getQ+ ⊆ R. Thus,(1, 5) ∈ R.
Suppose(4, 5) ∈ R. SinceR is an equivalence with(2, 4) ∈ R and(5, 0) ∈ R, (2, 0) ∈ R.
By symmetry ofR, (0, 2) ∈ R, and contradiction with the given.

5.122.2 The partition corresponding to the smallest equivalence⊇ Q is the partition induced byQ∗. This is:

{{0, 1, 5}, {2, 4}, {3}}.

5.122.3 Any equivalenceS with Q ⊆ S will haveQ∗ ⊆ S. Any equivalenceS with (0, 2) /∈ S will induce at least
two equivalence classes[0]S 6= [2]S . There are three possibilities altogether: put3 in a class of its own, put3 in a
class with0, or put3 in a class with2. The corresponding partitions are:

{{0, 1, 5}, {2, 4}, {3}}, {{0, 1, 3, 5}, {2, 4}}, {{0, 1, 5}, {2, 3, 4}}.

5.123 To be proved: For every partitionA of a setA
there is an equivalence relationR with A/R = A.

Proof:
Let R be given byxRy :≡ ∃X ∈ A with x, y ∈ X.
We first show thatR is an equivalence.
Reflexivity holds because

⋃
A = A; symmetry is immediate from the definition ofR.

Transitivity: LetxRy andyRz. We show thatxRz.
FromxRy: ∃X ∈ A with x, y ∈ X. FromyRz: ∃Y ∈ A with y, z ∈ Y .
Sincey ∈ X ∩ Y andA is a partition,X = Y . Thus,x, z ∈ X, and thereforexRz.

Next,A/R = A, since[x] ∈ A/R ⇔ {y | yRx} ∈ A/R ⇔ {y | yRx} ∈ A.
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5.124 To find a recurrence for the maximum number of enmities among2n countries, first observe that certainly,
E(1) = 1, for if there are just two countries, nothing prevents them being at war (the exercise is wonderfully
realistic). Next, given that we know thatE(n) is the maximum number of enmities among2n countries, how
many enmities can be added if we introduce one more pair of countries, saya andb? Certainly,a andb can be
at war with each other. Also,a can only have enemies among the old countries that have mutual peace treaties
(for the countries that havea as common enemy are obliged to be at peace with each other). Similarly forb.
Furthermore, the enemies ofa among the old countries have to sign peace treaties withb, and vice versa (this is to
avoid war-triangles). Thus,a can be at war with at mostn old countries, and similarly forb. All in all, this gives
E(n + 1) = E(n) + 2n + 1 possible enmities among2(n + 1) countries. It is clear that this can be solved by
(n + 1)2 = n2 + 2n + 1, and thatE(n) = n2 gives the general solution. The minimal number of peace treaties
among2n countries equals the number of pairs of different countries minus the maximum number of enmities, and
is given byf(n) = 2n(2n− 1)− n2 = 3n2 − 2n. Forn = 10, this gives300− 20 = 280 peace treaties at least.
5.125

coins :: [Int]

coins = [1,2,5,10,20,50,100,200]

change :: Int -> [Int]

change n = moneyback n (n,[]) where

moneyback n (m,xs) | m == 0 = xs

| n <= m && elem n coins = moneyback n (m-n,n:xs)

| otherwise = moneyback (n-1) (m,xs)

5.126

packCoins :: Int -> CmprPart -> CmprPart

packCoins k (m,xs) | k == 1 = (m,xs)

| k <= m && elem k coins = packCoins k (m-k,k:xs)

| otherwise = packCoins (k-1) (m,xs)

nextCpartition :: CmprPart -> CmprPart

nextCpartition (k,(x:xs)) = packCoins (x-1) ((k+x),xs)

generateCps :: CmprPart -> [Part]

generateCps p@(n,[]) = [expand p]

generateCps p@(n,(x:xs))

| elem x coins = (expand p: generateCps (nextCpartition p))

| otherwise = generateCps (nextCpartition p)

partC :: Int -> [Part]

partC n | n < 1 = error "part: argument <= 0"

| n == 1 = [[1]]

| otherwise = generateCps (packCoins m (n-m,[m]))

where m = maxInt (filter (<= n) coins)

maxInt [] = 0

maxInt (x:xs) = max x (maxInt xs)



50 SOLUTIONS TO THE EXERCISES

5.127

Sol5> length (partC 100)
4563



Solutions to Exercises from Chapter 6

module Sol6

where

import List

import SetOrd

import FCT

6.10

h’ n = n * (n + 1)

6.11

k’ n = n^2

6.14.1R is not a function.

6.14.1R−1 is a function.dom (R−1) = {2, 3, 4} and ran(R−1) = {0, 1}.

6.15.1f [A] = {f(x) | x ∈ A} = ran(f�A).

6.15.2f [dom (f)] = f [X] = {f(x) | x ∈ X} = ran(f).

6.15.3f−1[B] = {f−1(y) | y ∈ B} = {x ∈ X | f(y) ∈ B} = dom (f ∩ (X ×B)).

6.15.4f−1[ran(f)] = f−1[{f(x) | x ∈ X}] = {f−1(f(x)) | x ∈ X} = X = dom (f).

6.15.5f�A = {(x, f(x)) | x ∈ A} = {(x, f(x)) | x ∈ A, f(x) ∈ Y } = f ∩ (A× Y ).

6.16f�{0, 3} = {(0, 3), (3, 2)}, f [{1, 2, 3}] = {2, 4}, f−1[{2, 4, 5}] = {1, 2, 3}. Here is the code for the checks:
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l_0 = [(0,3),(1,2),(2,4),(3,2)]

f_0 = list2fct l_0

test_1 = fct2list (restrict f_0 [0,3]) [0,3]

test_2 = image f_0 [1,2,3]

test_3 = coImage f_0 [0,1,2,3] [2,4,5]

6.17 Given:f : A → Y , g : B → Y , andA ∩B = ∅.
To be proved:f ∪ g : A ∪B → Y .
Proof:
f ∪ g = {(a, f(a)) | a ∈ A} ∪ {(b, g(b)) | b ∈ B}.
To show that this is a function inA ∪B → Y , we must show:
for all x ∈ A ∪B there is precisely oney ∈ Y with (f ∪ g)(x) = y.
Let x ∈ A ∪B. SinceA ∩B = ∅, there are two cases:
(i) x ∈ A. In this case(f ∪ g)(x) = f(x).
(ii) x ∈ B. In this case(f ∪ g)(x) = g(x).

In caseA ∩B 6= ∅, f ∪ g is a function ifff�(A ∩B) = g�(A ∩B).

6.18 Given:A is a partition ofX. For every componentA ∈ A there is a functionfA : A → Y .
To be proved:

⋃
A∈A fA : X → Y .

Proof:
Let g =

⋃
A∈A fA.

We have to show that for anyx ∈ X there is exactly oney ∈ Y with g(x) = y.
Let x ∈ X be arbitrary.
SinceA is a partition ofX, there is exactly oneA ∈ A with x ∈ A.
Thusg(x) = fA(x).
Suppose there is ay′ 6= fA(x) with g(x) = y′.
Sinceg(x) = fA(x), this contradicts the fact thatfA is a function.

6.20.1a Given:f : X → Y , A,B ⊆ X.
To be proved:A ⊆ B ⇒ f [A] ⊆ f [B].
Proof: Lety ∈ f [A]. We have to show thaty ∈ f [B].
Fromy ∈ f [A]: there is anx ∈ A with f(x) = y.
FromA ⊆ B andx ∈ A: x ∈ B.
Thus, there is anx ∈ B with f(x) = y, i.e.,y ∈ f [B].

6.20.1b Given:f : X → Y , C,D ⊆ Y .
To be proved:C ⊆ D ⇒ f−1[C] ⊆ f−1[D].
Proof: SupposeC ⊆ D and assumex ∈ f−1[C]. We have to show thatx ∈ f−1[D].
Fromx ∈ f−1[C], f(x) ∈ C. FromC ⊆ D andf(x) ∈ C: f(x) ∈ D.
Thus,x ∈ f−1[D].

6.20.2a Given:f : X → Y , A,B ⊆ X.
To be proved:f [A ∪B] = f [A] ∪ f [B].
Proof:
y ∈ f [A ∪B] iff ∃x ∈ A ∪B : f(x) = y iff ∃x ∈ A : f(x) = y or ∃x ∈ B : f(x) = y
iff y ∈ f [A] or y ∈ f [B] iff y ∈ f [A] ∪ f [B].
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6.20.2b Given:f : X → Y , A,B ⊆ X.
To be proved:f [A ∩B] ⊆ f [A] ∩ f [B].
Proof:
Supposey ∈ f [A ∩B]. We have to show thaty ∈ f [A] ∩ f [B].
Fromy ∈ f [A ∩B]: ∃x ∈ A ∩B with f(x) = y.
Sox ∈ A : f(x) = y, andx ∈ B : f(x) = y.
Therefore,y ∈ f [A] andy ∈ f [B], i.e.,y ∈ f [A] ∩ f [B].

To see that the inclusion cannot be replaced by an equality, consider the functionf : {0, 1, 2} → {0, 1} given
by f(0) = 0, f(1) = 0, f(2) = 1. For thisf we havef [{0, 2}] = f [{1, 2}] = {0, 1} 6= f [{0, 2} ∩ {1, 2}] =
f [{2}] = {1}. Here is an implementation:

l_1 = [(0,0),(1,0),(2,1)]

f_1 = list2fct l_1

We get:

Sol6> image f_1 [0,2]
[0,1]
Sol6> image f_1 [1,2]
[0,1]
Sol6> image f_1 (intersect [0,2] [1,2])
[1]

6.20.3a Given:f : X → Y , C,D ⊆ Y .
To be proved:f−1[C ∪D] = f−1[C] ∪ f−1[D].
Proof:
x ∈ f−1[C ∪D] iff ∃y ∈ C ∪D with x = f−1(y)
iff ∃y ∈ C with x = f−1(y) or ∃y ∈ D with x = f−1(y),
iff x ∈ f−1[C] or x ∈ f−1[D], iff x ∈ f−1[C] ∪ f−1[D].

6.20.3b Given:f : X → Y , C,D ⊆ Y .
To be proved:f−1[C ∩D] = f−1[C] ∩ f−1[D].
Proof:
x ∈ f−1[C ∩D] iff ∃y ∈ C ∩D with x = f−1(y)
iff ∃y ∈ C with x = f−1(y) and∃y ∈ D with x = f−1(y),
iff x ∈ f−1[C] andx ∈ f−1[D], iff x ∈ f−1[C] ∩ f−1[D].

6.20.4a Given:f : X → Y , C ⊆ Y .
To be proved:f [f−1[C]] ⊆ C.
Proof: Supposey ∈ f [f−1[C]]. We have to show thaty ∈ C.
Fromy ∈ f [f−1[C]], there is anx ∈ f−1[C] with f(x) = y.
Fromx ∈ f−1[C], we getf(x) ∈ C, and thereforey ∈ C.

To see that the inclusion cannot be replaced by an equality, consider again the functionf that we used above
(implemented asf_1), but now with co-domain{0, 1, 2}. LettingC = {0, 1, 2}, we get:

Sol6> coImage f_1 [0,1,2] [0,1,2]
[0,1,2]
Sol6> image f_1 [0,1,2]
[0,1]
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6.20.4b Given:f : X → Y , A ⊆ X.
To be proved:f−1[f [A]] ⊇ A.
Proof: Supposex ∈ A. We have to show thatx ∈ f−1[f [A]].
Fromx ∈ A and what is given aboutf , we getf(x) ∈ f [A].
Fromf(x) ∈ f [A] we getf−1(f(x)) ∈ f−1[f [A]].
Sincef−1(f(x)) = x this meansx ∈ f−1[f [A]].

To see that the inclusion cannot be replaced by an equality, look at this:

Sol6> coImage f_1 [0,1,2] (image f_1 [0,2])
[0,1,2]

6.23

bijective :: Eq b => (a -> b) -> [a] -> [b] -> Bool

bijective f xs ys = injective f xs && surjective f xs ys

6.24

injectivePairs :: (Eq a, Eq b) => [(a,b)] -> [a] -> Bool

injectivePairs f xs = injective (list2fct f) xs

surjectivePairs :: (Eq a, Eq b) => [(a,b)] -> [a] -> [b] -> Bool

surjectivePairs f xs ys = surjective (list2fct f) xs ys

bijectivePairs :: (Eq a, Eq b) => [(a,b)] -> [a] -> [b] -> Bool

bijectivePairs f xs ys = bijective (list2fct f) xs ys

6.25

1. sin : R+ → R is not injective, forsin(0) = sin(π), and not surjective, for, e.g.,2, is not in the range.

2. sin : R → [−1,+1] is not injective, but is surjective.

3. sin : [−1,+1] → [−1,+1] is both injective and surjective.

4. ex : R → R is injective, but not surjective (for the values are always positive).

5. tan : R → R is not injective, fortan(0) = tan(π), but is surjective.

6. log : R+ → R is injective and surjective.

7.
√

: R+ → R+ is injective and surjective.

6.26 Letf : A → B be an injection, and suppose|A| = n and|B| = k. ThenA = {a1, . . . , an}, and there arek
possible choices forf(a1), k − 1 possible choices fora2, . . . ,k − n + 1 possible choices foran. Thus, all in all,
there arek(k − 1) · · · (k − n + 1) suchf .
6.27
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injs :: [Int] -> [Int] -> [[(Int,Int)]]

injs [] xs = [[]]

injs xs [] = []

injs (x:xs) ys =

concat [ map ((x,y):) (injs xs (ys \\ [y])) | y <- ys ]

6.28

perms :: [a] -> [[a]]

perms [] = [[]]

perms (x:xs) = concat (map (insrt x) (perms xs))

where

insrt :: a -> [a] -> [[a]]

insrt x [] = [[x]]

insrt x (y:ys) = (x:y:ys) : map (y:) (insrt x ys)

6.32

comp :: Eq b => [(b,c)] -> [(a,b)] -> [(a,c)]

comp g f = [ (x,list2fct g y) | (x,y) <- f ]

6.37 Letf : {0} → {0, 1} be given byf = {(0, 0)}. Thenf is not surjective. Letg : {0, 1} → {0} be given by
g = {(0, 0), (1, 0)}. Theng is not injective. Still,g ◦ f = {(0, 0} is a bijection.

Here is the computational check:

Sol6> comp [(0,0),(1,0)] [(0,0)]
[(0,0)]

6.38.1 We can usecomp to find the values:

Sol6> comp [(0,1),(1,2),(2,0),(3,0),(4,3)] [(0,1),(1,2),(2,0),(3,0),(4,3)]
[(0,2),(1,0),(2,1),(3,1),(4,0)]
Sol6> comp [(0,1),(1,2),(2,0),(3,0),(4,3)] [(0,2),(1,0),(2,1),(3,1),(4,0)]
[(0,0),(1,1),(2,2),(3,2),(4,1)]
Sol6> comp [(0,1),(1,2),(2,0),(3,0),(4,3)] [(0,0),(1,1),(2,2),(3,2),(4,1)]
[(0,1),(1,2),(2,0),(3,0),(4,2)]

This gives the following table:

x 0 1 2 3 4
f(x) 1 2 0 0 3

(ff)(x) 2 0 1 1 0
(fff)(x) 0 1 2 2 1
(ffff)(x) 1 2 0 0 2

6.38.2 The set{f, f ◦ f, f ◦ f ◦ f, . . .} has 4 elements.
6.38.3 Takeg = {(0, 1), (1, 0), (2, 3), (3, 4), (4, 2)}. Then we get:
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Sol6> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,1),(1,0),(2,3),(3,4),(4,2)]
[(0,0),(1,1),(2,4),(3,2),(4,3)]
Sol6> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,0),(1,1),(2,4),(3,2),(4,3)]
[(0,1),(1,0),(2,2),(3,3),(4,4)]
Sol6> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,1),(1,0),(2,2),(3,3),(4,4)]
[(0,0),(1,1),(2,3),(3,4),(4,2)]
Sol6> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,0),(1,1),(2,3),(3,4),(4,2)]
[(0,1),(1,0),(2,4),(3,2),(4,3)]
Sol6> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,1),(1,0),(2,4),(3,2),(4,3)]
[(0,0),(1,1),(2,2),(3,3),(4,4)]

6.39.1 Given:A finite, f : A → A is a bijection.
To be proved: for somen ∈ N, fn = 1A.
Proof:
Observe that there are only finitely many bijections onA.
Thus, there must be ann with fn equal tof0 = 1A.

6.39.2 Since the bijections onA correspond to permutations ofA, their number cannot exceedk!, the number of
permutations of a domain of sizek.

6.40 Given:h : X → X satisfiesh ◦ h ◦ h = 1X .
To be proved:h is a bijection.
Proof:
To show injectivity, leta1, a2 ∈ X be arbitrary, and supposeh(a1) = h(a2).
Thenh3(a1) = h3(a2), and from the given abouth3 we geta1 = a2.

To show surjectivity, letb ∈ X be arbitrary.
From the given abouth3, h3(b) = b. Thush(h2(b)) = b, so there is ana ∈ X with h(a) = b.

For a simple example of a setX and a functionh : X → X such thath ◦ h ◦ h = 1X , whereash 6= 1X , take
X = {0, 1, 2} andh = {(0, 1), (1, 2), (2, 0)}.

6.41 Given:f : X → Y , g : Y → Z, f andg injective.
To be proved:g ◦ f injective.
Proof:
Let a1, a2 ∈ X be arbitrary, and suppose(g ◦ f)(a1) = (g ◦ f)(a2).
Theng(f(a1)) = g(f(a2)). By injectivity of g, f(a1) = f(a2).
From this we geta1 = a2 by injectivity of f .

6.42 Given:f : X → Y , g : Y → Z, andg ◦ f bijective.
To be proved:f is surjective iffg is injective.
Proof:
Only if: Supposef is surjective.

To show injectivity ofg, let b1, b2 ∈ Y be arbitrary, and assumeg(b1) = g(b2).
Then by surjectivity off , there area1, a2 ∈ X with f(a1) = b1 andf(a2) = b2.
This givesg(f(a1)) = g(f(a2)), so by the fact thatg ◦ f is a bijection,a1 = a2.
From this and the functionality off , b1 = b2.

If: Supposeg is injective.
To show surjectivity off , let b ∈ Y be arbitrary.
Theng(b) ∈ Z, and by bijectivity ofg ◦ f , there is ana ∈ X with (g ◦ f)(a) = g(b).
From(g ◦ f)(a) = g(f(a)) = g(b), by injectivity of g, f(a) = b.



SOLUTIONS TO THE EXERCISES 57

6.43 Given:limi→∞ ai = a, f : N → N injective.
To be proved:limi→∞ af(i) = a.
Proof:
We have to show that∀ε > 0 ∃n ∀i > n (|a− af(i)| < ε).

Let ε be arbitary, and letn0 be such that∀i > n0 (|a− ai| < ε) (from the first given).
From the injectivity off we get that there is anm0 with ∀k > m0 (f(k) > n0).
It follows that∃n ∀i > n (|a− af(i)| < ε).

6.48 Given:f : X → Y has left-inverseg and right-inverseh.
To be proved:f is a bijection andg = h = f−1.
Proof:
h = 1X ◦ h = (g ◦ f) ◦ h = g ◦ (f ◦ h) = g ◦ 1X = g.
Also, g is the inverse off , for if x ∈ X theng(f(x)) = 1X(x) = x,
and ify ∈ Y thenf(g(y)) = f(h(y)) = 1Y (y) = y.

6.49 Given:f : X → Y andg : Y → X.
To be proved:g ◦ f = 1X iff {(f(x), x) | x ∈ X} ⊆ g.
Proof:
Only if: Supposeg ◦ f = 1X . Let x ∈ X be arbitrary.

We have to show that(f(x), x) ∈ g.
Fromg ◦ f = 1X we getg(f(x)) = x, and we are done.

If: Suppose{(f(x), x) | x ∈ X} ⊆ g.
Then for allx ∈ X, (g ◦ f)(x) = g(f(x)) = x, i.e.,g ◦ f = 1X .

6.50 To getg ◦ f = 1X , it is sufficient thatg(3) = 0 andg(4) = 1. The values for the arguments2 and5 are free,
and for both of these there are two possible choices. Thus, all in all there are four functionsg with g ◦ f = 1X .

6.51 The successor functions : N → N is an injection for which there is nog : N → N with g ◦ s = 1N.

6.52 Given:f : X → Y is surjective.
To be proved: there is ag : Y → X with f ◦ g = 1Y .
Proof:
Let g be given byg(y) := an arbitraryx ∈ X with f(x) = y.
By surjectivity off , this is well-defined.
To showf ◦ g = 1Y , take an arbitraryy ∈ Y . Theng(y) equals somex ∈ X with f(x) = y.
So indeed,(f ◦ g)(y) = f(g(y)) = f(x) = y.

6.53 A right-inverseg to the function{(0, 5), (1, 5), (2, 5), (3, 6), (4, 6)} with domain:{0, 1, 2, 3, 4}, codomain:
{5, 6} has to satisfy two properties: (i)g(5) ∈ {0, 1, 2}, and (ii) g(6) ∈ {3, 4}. This can be done in3 × 2 = 6
ways, so there are6 suchg.

6.54.1 The followingg, g′, g′′ : R+ → R are all right inverses tof . g(x) :=
√

x, g′(x) := −
√

x, g′′(x) :=
√

x if
x > 1, g′′(x) := −

√
x otherwise.

6.54.2 The functionarcsin : [0, 1] → [0, π] is a right inverse ofsin, but so areh given byh(x) = π − arcsin(x),
andh′ given byh′(x) = arcsin(x) if x < 1

2 , h′(x) = π − arcsin(x) otherwise. Note:arcsin, the inverse of the
sin function, is predefined in Haskell asasin.

6.55 Given:f : X → Y is a surjection,h : Y → X.
To be proved:h is right-inverse off iff h ⊆ {(f(x), x) | x ∈ X}.
Proof:
Only if: Supposeh is right-inverse off , i.e.,f ◦ h = 1Y .
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Let (y, x) ∈ h be arbitrary. We have to show thaty = f(x).
Sincex = h(y), we get fromf ◦ h = 1Y thatf(x) = f(h(y)) = (f ◦ h)(y) = 1Y (y) = y.

If: Supposeh ⊆ {(f(x), x) | x ∈ X}. Let y ∈ Y be arbitrary.
Sinceh ⊆ {(f(x), x) | x ∈ X}, there is anx ∈ X with y = f(x) andh(y) = x.
Thusf(x) = f(h(y)) = f ◦ h(y) = y.

6.56.1 To be proved: Every function that has a surjective right-inverse is a bijection.
Proof:
Let f : X → Y , g : Y → X, g surjective, andf ◦ g = 1Y .
We show thatf is injective:

Let a1, a2 ∈ X be arbitrary, and supposef(a1) = f(a2).
Then, by surjectivity ofg, there areb1, b2 ∈ Y with a1 = g(b1) anda2 = g(b2).
Sincef ◦ g = 1Y , f(a1) = f(g(b1)) = b1, andf(a2) = f(g(b2)) = b2.
It follows thatb1 = f(a1) = f(a2) = b2. By functionality ofg, a1 = g(b1) = g(b2) = a2.

We show thatf is surjective:
Let y ∈ Y be arbitrary. Theng(y) ∈ X, and byf ◦ g = 1Y , f(g(y)) = y.
So there is anx ∈ X with f(x) = y.

6.56.2 To be proved: Every function that has an injective left-inverse is a bijection.
Proof:
Let f : X → Y , g : Y → X, g injective, andg ◦ f = 1X .
We show thatf is injective:

Let a1, a2 ∈ X be arbitrary, and supposef(a1) = f(a2).
Theng(f(a1)) = g(f(a2)), and byg ◦ f = 1X , a1 = g(f(a1)) = g(f(a2)) = a2.

We show thatf is surjective:
Let y ∈ Y be arbitrary. Theng(y) ∈ X. We show thatf(g(y)) = y.
By g ◦ f = 1X , g(f(g(y))) = g(y). By injectivity of g, we get from this thatf(g(y)) = y.

6.57

stringCompare :: String -> String -> Maybe Ordering

stringCompare xs ys | any (not . isAlpha) (xs ++ ys) = Nothing

| otherwise = Just (compare xs ys)

6.58.1 Given:f : A → I is a surjection.aRb :≡ f(a) = f(b).
To be proved:R is an equivalence onA.
Proof:
Reflexivity: For alla ∈ A, aRa, sincef(a) = f(a).
Symmetry: LetaRb. Thenf(a) = f(b). Thusf(b) = f(a), andbRa.
Transitivity: LetaRb andbRc. Thenf(a) = f(b) andf(b) = f(c).

Sof(a) = f(c), and thereforeaRc.

6.58.2 Given:f : A → I is a surjection.aRb :≡ f(a) = f(b).
To be proved:A/R = {f−1[{i}] | i ∈ I}.
Proof:
⊆: Let a ∈ A be arbitrary. We have to show that|a|R ∈ {f−1[{i}] | i ∈ I}.

Sincef(a) ∈ I, there is ani ∈ I with |a|R = {b | f(b) = f(a)} = f−1[{i}].
⊇: Let i ∈ I be arbitrary. We have to show thatf−1[{i}] ∈ A/R.

From surjectivity off , there is ana ∈ A with f(a) = i.
Thusf−1[{i}] = {b | f(b) = i} = {b | f(b) = f(a)} = {b | bRa} = |a|R.
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6.58.3 Given:S is an equivalence onA.
To be proved: there is a functiong onA with aSb ⇔ g(a) = g(b).
Proof:
Takeg : A → A/S given byg(a) = |a|S . ThenaSb ⇔ b ∈ |a|S ⇔ g(a) = g(b).

6.60.1 Given:f : A → B; f an injection.
To be proved: For all setsC and for everyg : A → C there is ah : B → C with g = h ◦ f .
Proof:
Let C be arbitrary, withg : A → C.
Sincef is an injection, for everyb ∈ ran(f) there is a uniquea ∈ A with f(a) = b.
Defineh by means of: ifb ∈ ran(f) thenh(b) := g(a) for the uniquea with f(a) = b,

otherwiseh(b) = c for some arbitraryc ∈ C.
Let a ∈ A be arbitrary. Then(h ◦ f)(a) = h(f(a)) = g(a).

6.60.2 Given:f : A → B;
for all setsC and for everyg : A → C there is ah : B → C with g = h ◦ f .

To be proved:f is an injection.
Proof:
Let a1, a2 ∈ A and assumef(a1) = f(a2).
Then for anyh, h(f(a1)) = h(f(a2)). Take forg the function1A.
Thena1 = 1A(a1) = (h ◦ f)(a1) = h(f(a1)) = h(f(a2)) = (h ◦ f)(a2) = 1A(a2) = a2.

6.61 Given:R is an equivalence onA.
To be proved: for every equivalenceS ⊇ R onA there exists a functiong : A/R → A/S

such that, fora ∈ A: | a |S = g(| a |R).
Proof:
All we have to show is thatg : A/R → A/S given byg(| a |R) = | a |S is well-defined.
Let x ∈ A be such thatxRa. We have to show thatg(| a |R) = g(| x |R).
FromxRa, |a|R = |x|R, and fromR ⊆ S, |a|S = |x|S .
Thusg(| a |R) = |a|S = |x|S = g(| x |R).

6.62 Given:∼ is an equivalence onA, andf : A2 → A is a binary function such that
for all a, b, x, y ∈ A: a ∼ x ∧ b ∼ y =⇒ f(a, b) ∼ f(x, y).

To be proved: There is a unique functionf∼ : (A/∼)2 → B with, for a, b ∈ A:
f∼(|a|, |b|) = |f(a, b)|.

Proof:
We have to show thatf∼(|a|, |b|) = |f(a, b)| defines a function.
Let a ∼ x, b ∼ y. Then|a| = |x|, |b| = |y|, and|f(a, b)| = |f(x, y)|.
Therefore,f∼(|a|, |b|) = |f(a, b)| = |f(x, y)| = f∼(|x|, |y|).
This proves that the definition off∼ is “independent of the representatives of|a|, |b|”.

6.63 Given:∼ is an equivalence onA, andR ⊆ A2 is a relation such that for alla, b, x, y ∈ A:
a ∼ x ∧ b ∼ y ∧ aRb ⇒ xRy.

To be proved: there is a unique relationR∼ ⊆ (A/∼)2

with for all a, b ∈ A: |a|R∼|b| ⇔ aRb.
Proof:
Again, we must show thatR∼ is well-defined.
Let a ∼ x andb ∼ y. ThenaRb ⇔ xRy.
Therefore,|a|R∼|b| ⇔ aRb ⇔ xRy ⇔ |x|R∼|y|.
The fact thatR∼ ⊆ (A/∼)2 is immediate from the definition ofR∼.

6.64.1 Given:∼ onA×B defined by(a, b) ∼ (x, y) ≡ a = x.
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To be proved:∼ is an equivalence onA×B.
Proof:
Reflexivity: (a, b) ∼ (a, b), sincea = a.
Symmetry: If(a, b) ∼ (x, y) thena = x, so also(x, y) ∼ (a, b).
Transitivity: If (a, b) ∼ (x, y) and(x, y) ∼ (u, v), thena = x andx = u.

Thereforea = u, and thus(a, b) ∼ (u, v).

6.64.2 Given:∼ onA×B defined by(a, b) ∼ (x, y) ≡ a = x. B 6= ∅.
To be proved: There is a bijection: (A×B)/∼ −→ A.
Proof:
We show thatf(|(a, b)|) = a defines a bijection.
Firstly, this is well-defined, for let(a, b) ∼ (x, y).
Thena = x, and thereforef(|(a, b)|) = a = x = f(|(x, y)|).
Next, we show thatf is injective and surjective.
For injectivity, assumef(|(a, b)|) = f(|(x, y)|).

Thena = x and therefore|(a, b)| = |(x, y)|.
For surjectivity, assumea ∈ A.

Then, sinceB 6= ∅, there is ab ∈ B with (a, b) ∈ A×B, andf(|(a, b)|) = a.

6.64.3 Given:∼ onA×B defined by(a, b) ∼ (x, y) ≡ a = x.
To be proved: For every equivalence class|(a, b)| there is a bijection between|(a, b)| andA.
Proof:
Let |(a, b)| be arbitrary. We show thatF : |(a, b)| → A given byF (x, y) = y is a bijection.
F is injective, for supposeF (x, y) = F (u, v).

Then, since(x, y) ∈ |(a, b)|, x = a, and since(u, v) ∈ |(a, b)|, u = a.
From the definition ofF , y = v. So(x, y) = (u, v).

F is surjective, for supposey ∈ B.
Then(a, y) ∈ |(a, b)|, andF (a, y) = y.

6.65

fct2listpart :: (Eq a, Eq b) => (a -> b) -> [a] -> [[a]]

fct2listpart f [] = []

fct2listpart f (x:xs) = xclass : fct2listpart f (xs \\ xclass)

where xclass = x : [ y | y <- xs, f x == f y ]

6.66 Letf : A → B be a surjection, and suppose|A| = n and|B| = k. We can decomposef into h · g, whereg
is the surjectiong : A → A/R (R = {(a, b) ∈ A2 | f(a) = f(b)}) given byg(a) = [a]R, andh is the bijection
h : A/R → B, given byh([a]R) = f(a). By Example 5.105,A has

{
n
k

}
partitions intok blocks, so there are

{
n
k

}
suchg. Since there arek! bijectionsh on a set of sizek, all in all, there arek!

{
n
k

}
surjectionsf .

6.68 There is no harm in the two ways to interpretX0×X1, since there is a bijectionF :
∏

i∈{0,1} Xi → {(x, y) |
x ∈ X0 ∧ y ∈ X1}, given byFf = (f(0), f(1)).

6.69F : ℘(A) → {0, 1}A given byF (X) = λa.(a ∈ A∧ a ∈ X) is a bijection. Another bijection isG : ℘(A) →
{0, 1}A given byG(X) = λa.(a ∈ A ∧ a /∈ X).

6.70.1 Given: A relation≈ onY X = {f | f : X → Y } defined by
f ≈ g ≡ there are bijectionsi : Y → Y andj : X → X such thati ◦ f = g ◦ j.

To be proved:≈ is an equivalence.
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Proof:
≈ is reflexive, for since1Y ◦ f = f ◦ 1X we havef ≈ f .
≈ is symmetric, for supposef ≈ g.

Then there are bijectionsi : Y → Y andj : X → X with i ◦ f = g ◦ j.
Thusf = i−1 ◦ i ◦ f = i−1 ◦ g ◦ j, soi−1 ◦ g = i−1 ◦ g ◦ j ◦ j−1 = f ◦ j−1.
It follows thatg ≈ f .

≈ is transitive, for supposef ≈ g andg ≈ h.
Then there are bijectionsi1, i2, j1, j2 with i1 ◦ f = g ◦ j1 andi2 ◦ g = h ◦ j2.
Thus,i2 ◦ i1 ◦ f = i2 ◦ g ◦ j1 andi2 ◦ g ◦ j1 = h ◦ j2 ◦ j1.
Therefore,i2 ◦ i1 ◦ f = h ◦ j2 ◦ j1, and it follows thatf ≈ h.

6.70.2 Iff, g : X → Y are injective, thenf ≈ g, for consider the functioni : Y → Y given by

i(y) =
{

g(y) if y ∈ ran(f),
y otherwise.

From the injectivity ofg it follows thati is a bijection. Moreover,i ◦ f = g ◦ 1X .

6.70.3.1 Letf = {(0, 0), (1, 0), (2, 1)} andg = {(0, 1), (1, 3), (2, 3)}. To show thatf ≈ g we must find bijections
i, j with i ◦ f = g ◦ j. Takingi = {(0, 3), (3, 0), (1, 1), (2, 2)} andj = {(0, 2), (1, 1), (2, 0)} , we get

i ◦ f = {(0, 3), (1, 3), (2, 1)} = g ◦ j.

6.70.3.2 There are three≈ equivalence classes: the class of the functions that lump all objects together, the class
of the functions that lump two of the objects together, and the class of the functions that keep the three objects
separate. Representatives for these classes aref = {(0, 0), (1, 0), (2, 0)}, f ′ = {(0, 0), (1, 0), (2, 1)}, f ′′ =
{(0, 0), (1, 1), (2, 2)}.

6.71.1 Given:X, Y andZ are sets,h : Y → Z, F : Y X → ZX defined byF (g) := h ◦ g.
To be proved: ifh is injective, thenF is injective.
Proof:
Supposeh is injective. Letg1, g2 ∈ Y X , i.e.,g1, g2 : X → Y , with g1 6= g2.
Fromg1 6= g2 we get that there is anx ∈ X with g1(x) 6= g2(x).
From the fact thath is injective,h(g1(x)) 6= h(g2(x)).
But this means thatF (g1)(x) = (h ◦ g1)(x) = h(g1(x)) 6= h(g2(x)) = (h ◦ g2)(x) = F (g2)(x).
Thus,F (g1) 6= F (g2), i.e.,F is an injection.

6.71.2 Given:X, Y andZ are sets,h : Y → Z, F : Y X → ZX defined byF (g) := h ◦ g.
To be proved: ifh is surjective, thenF is surjective.
Proof:
Supposeh is surjective. Letf ∈ ZX , i.e.,f : X → Z.
We have to show that there is ag : X → Y with F (g) = f .
Sinceh is surjective, we can defineg by means ofg(x) = somey ∈ Y with h(y) = f(x).
To show thatF (g) = f , let x ∈ X be arbitrary.
Then:F (g)(x) = (h ◦ g)(x) = h(g(x)) = f(x).

6.72.1 Given:X, Y andZ are sets,X 6= ∅, h : X → Y , F : ZY → ZX defined byF (g) := g ◦ h.
To be proved: ifh is injective, thenF is surjective.
Proof:
Supposeh is injective. Letf : X → Z. We have to findg : Y → Z with F (g) = f .
Defineg by means ofg(y) = f ◦ h−1(y) if y ∈ ran(h),
andg(y) = some arbitrary member ofZ otherwise.
By the injectivity ofh this is well-defined.
We have:F (g)(x) = (g ◦ h)(x) = g(h(x)) = (f ◦ h−1)(h(x)) = f(x). SoF (g) = f .
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6.72.2 Given:X, Y andZ are sets,X 6= ∅, h : X → Y , F : ZY → ZX defined byF (g) := g ◦ h.
To be proved: ifh is surjective, thenF is injective.
Proof:
Supposeh is surjective. Letg1, g2 : Y → Z, with g1 6= g2.
Sinceg1 6= g2, there is ay ∈ Y with g1(y) 6= g2(y).
Sinceh is surjective, there is anx ∈ X with h(x) = y, sog1(h(x)) 6= g2(h(x)).
Now F (g1)(x) = (g1 ◦ h)(x) = g1(h(x)) 6= g2(h(x)) = (g2 ◦ h)(x) = F (g2)(x). SoF (g1) 6= F (g2).

6.75 Supposem ≡n m′ andk ≡n k′. We have to show thatm · k ≡n m′ · k′.
Fromm ≡n m′ we get that there is ana ∈ Z with m′ = m + an. Fromk ≡n k′ we get that there is ab ∈ Z

with k′ = k + bn. Thereforem′k′ = mk + akn + bmn + abn2 = mk + (ak + bm + abn)n ≡n mk. It follows
that we can define:

[m]n · [k]n := [m · k]n.

6.78 Given:R onN given by(m1,m2)R(n1, n2) :≡ m1 + n2 = m2 + n1.
· : N2 → N given by(m1,m2) · (n1, n2) = (m1n1 + m2n2,m1n2 + n1m2).

To be proved:R is a congruence for· onN2.
Proof:
Assume(m1,m2)R(p1, p2) and(n1, n2)R(q1, q2).
We have to show that(m1,m2) · (n1, n2)R(p1, p2) · (q1, q2).
From(m1,m2)R(p1, p2) and(n1, n2)R(q1, q2):
(1) m1 + p2 = p1 + m2 and(2) n1 + q2 = q1 + n2.
Multiplying (1) by n1 and byq1, and multiplying(2) by m2 andp2 we get:
m1n1 + n1p2 = n1p1 + m2n1

m2n1 + n2p2 = m1n2 + n2p2

p1q1 + n1p1 = p1q1 + n2p1

p2q1 + n2p2 = n1p2 + p2q2.
Add lefthand and righthand sides, and delete terms that occur both left and right:
m1n1 + m2n2 + p1q2 + p2q1 = m2n1 + m1n2 + p1q1 + p2q2.
It follows that(m1n1 + m2n2,m1n2 + n1m2)R(p1q1 + p2q2, p1q2 + q1p2),
i.e., that(m1,m2) · (n1, n2)R(p1, p2) · (q1, q2).
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module Sol7

where

import List

import IAR

7.6 To be proved:∀n :
∑n

k=1 k2 = n(n+1)(2n+1)
6 .

Proof:
Basis:

∑1
k=1 k2 = 1 = 1·2·3

6 .

Induction step: Assume
∑n

k=1 k2 = n(n+1)(2n+1)
6 .

We have to show that
∑n+1

k=1 k2 = (n+1)(n+2)(2(n+1)+1)
6 = (n+1)(n+2)(2n+3)

6 .

We have:
∑n+1

k=1 k2 =
∑n

k=1 k2 + (n + 1)2 ih= n(n+1)(2n+1)
6 + (n + 1)2 =

= (n+1)(2n2+n)
6 + (n+1)(6n+6)

6 = (n+1)(2n2+n+6n+6)
6 = (n+1)(2n2+7n+6)

6 = (n+1)(n+2)(2n+3)
6 .

7.8 To be proved:∀n :
∑n

k=1 k3 =
(

n(n+1)
2

)2

.

Proof:

Basis:
∑1

k=1 k3 = 1 =
(

1·2
2

)2
.

Induction step: Assume
∑n

k=1 k3 =
(

n(n+1)
2

)2

.

We have to show that
∑n+1

k=1 k3 =
(

(n+1)(n+2)
2

)2

.

We have:
∑n+1

k=1 k3 =
∑n

k=1 k3 + (n + 1)3 ih=
(

n(n+1)
2

)2

+ (n + 1)3 = n2(n+1)2

4 + 4(n+1)3

4 =

= n2(n+1)2

4 + (4n+4)(n+1)2

4 = (n2+4n+4)(n+1)2

4 = (n+1)2(n+2)2

4 =
(

(n+1)(n+2)
2

)2

.

7.9 Induction proof that for alln ∈ N: 32n+3 + 2n is divisible by7.
Basis:32·0+3 + 20 = 33 + 1 = 28 = 7 · 4.
Induction step: Assume that32n+3 + 2n is divisible by7, i.e.,∃a ∈ N : 32n+3 + 2n = 7a.
We have to show that32(n+1)+3 + 2n+1 is divisible by7.

63
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We have:

32(n+1)+3 + 2n+1 = 32n+2+3 + 2n+1

= 32 · 32n+3 + 32 · 2n − (32 − 2) · 2n

= 32(32n+3 + 2n)− 7 · 2n

ih= 32(7a)− 7 · 2n = 7(32 · a− 2n).

This proves that32(n+1)+3 + 2n+1 is divisible by7.

7.12.1m · 1 +1= m · (1 + 0) +comm= m · (0 + 1) ·2= (m · 0) + m
·1= 0 + m

+comm= m + 0 +1= m.

7.12.2 We provem · (n + k) = (m · n) + (m · k) by induction onk.
Basis:

m · (n + 0) +1= m · n +1= m · n + 0 ·1= m · n + m · 0.

Induction step:

m · (n + (k + 1)) +ass= m · ((n + k) + 1)
·2= m · (n + k) + m
ih= (m · n + m · k) + m

+ass= m · n + (m · k + m)
·2= m · n + m · (k + 1).

7.12.3 We provem · (n · k) = (m · n) · k by induction onk.
Basis:

m · (n · 0) ·1= m · 0 ·1= 0 ·1= (m · n) · 0.

Induction step:

m · (n · (k + 1)) ·2= m · (n · k + n)
· dist= m · (n · k) + m · n
ih= (m · n) · k + m · n
·2= (m · n) · (k + 1).

7.12.4 To provem · n = n ·m, we use induction onn.
Basis:

m · 0 ·1= 0 ·1= 0 · 0 ·1= 0 · (m · 0) ·1= 0 ·m.

Induction step:

m · (n + 1) ·2= m · n + m
+ass= m + m · n · id= m · 1 + m · n · dist= m · (1 + n).

7.13 We provekm+n = km · kn by induction onn.
Basis:

km+0 +1= km · id= km · 1 exp1
= km · k0.
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Induction step:

km+(n+1) +ass= k(m+n)+1

exp2
= km+n · k
ih= (km · kn) · k
· ass= km · (kn · k)
exp2
= km · kn+1.

7.14

subtr :: Natural -> Natural -> Natural

subtr Z _ = Z

subtr m Z = m

subtr (S m) (S n) = subtr m n

7.15

qrm :: Natural -> Natural -> (Natural,Natural)

qrm m n | gt n m = (Z,m)

| otherwise = (S (fst qr), snd qr) where qr = qrm (subtr m n) n

quotient :: Natural -> Natural -> Natural

quotient m n = fst (qrm m n)

remainder :: Natural -> Natural -> Natural

remainder m n = snd (qrm m n)

7.16

pre :: Natural -> Natural

pre Z = Z

pre (S n) = n

subtr :: Natural -> Natural -> Natural

subtr = foldn pre

7.17 Basis:F2F0 − F 2
1 = 0− 1 = −1 = (−1)1.

Induction step: AssumeFn+1Fn−1 − F 2
n = (−1)n. Then:

Fn+2Fn − F 2
n+1 = (Fn + Fn+1)Fn − F 2

n+1 = F 2
n + FnFn+1 − F 2

n+1

= F 2
n − Fn+1(Fn+1 − Fn) = F 2

n − Fn+1Fn−1

ih= −(−1)n = (−1)n+1
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7.18.1 The empty list satisfies bittest, soa0 = 1. Both [1] and[0] satisfy bittest, soa1 = 2. [1, 1], [1, 0], [0, 1] are
the lists of length2 satisfying bittest, soa2 = 3.

[0, 1, 1], [0, 1, 0, [1, 1, 1], [1, 1, 0], [1, 0, 1]

are the satisfying lists of length3, soa3 = 5.

7.18.2 Here is a proof by induction ofan = Fn+2 for all n > 0. Basis:a0 = 1 = F2, a1 = 2 = F3.
Induction step: assume thatan = Fn+2 enan+1 = Fn+3. We have to show thatan+2 = Fn+4.
From the bittest we know that the bitlists of lengthn + 2 satisfying the test can be got by either prefixing[1] to a
bitlist of lengthn + 1 or prefixing[0, 1] to a bitlist of lengthn. According to the induction hypothesis, the first can
be done inan+1 = Fn+3 ways, the second inan = Fn+2 ways. Together this givesan+2 = Fn+3+Fn+2 = Fn+4.

7.19 We show that for alli, n it holds thatfib2 (fib i) (fib (i+1)) n = fib (i+n), by induction onn.
Basis:fib2 (fib i) (fib (i+1)) 0 = fib (i): immediate from the definition offib2.
Induction step: Suppose∀i: fib2 (fib i) (fib (i+1)) n = fib (i+n).
We have to show that∀i: fib2 (fib i) (fib (i+1)) (n+1) = fib (i+n+1).
Let i be arbitrary.

fib2 (fib i) (fib (i+1)) (n+1)
fib2 2= fib2 (fib (i+1)) ((fib i) + (fib (i+1))) n
fib 3= fib2 (fib (i+1)) (fib (i+2)) n
ih= fib (i+n+1)

Note that the induction hypothesis applies to the case ofi + 1 since it holds for alli. Sincei was arbitrary we have
established the claim for alln andi.

7.20

catalan :: Integer -> Integer

catalan 0 = 1

catalan (n+1) = sum [ (catalan i) * (catalan (n-i)) | i <- [0..n] ]

7.21 Basis: in case there is just one variablex0 there is just one possible bracketing.

Induction step: We assume as induction hypothesis that for anyi with 0 6 i 6 n, for any sequence ofi + 1
variablesx0 · · ·xi it holds thatCi gives the number of bracketings for that sequence. We have to show thatCn+1

is the number of bracketings forn + 2 variables.

Any bracketing for a sequencex0 · · ·xn+1 of n + 2 variables has a main operator: the operator for the final
multiplication that takes place. This is the operator outside brackets. Suppose this operator is betweenxi and
xi+1, with 0 6 i 6 n. Then, by the induction hypothesis, there areCi ways to bracketx0 · · ·xi andCn−i ways to
bracketxi+1 · · ·xn+1. This givesCiCn−i bracketings. Summing overi we get

∑n
i=0 CiCn−i for the number of

bracketings, which by definition equalsCn+1.

7.25
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data TernTree = L’ | N’ TernTree TernTree TernTree deriving Show

makeTernTree :: Integer -> TernTree

makeTernTree 0 = L’

makeTernTree (n + 1) = N’

(makeTernTree n) (makeTernTree n) (makeTernTree n)

count3 :: TernTree -> Integer

count3 L’ = 1

count3 (N’ t1 t2 t3) = 1 + count3 t1 + count3 t2 + count3 t3

7.27 Proof that
∑n

k=0 qk = qn+1−1
q−1 , by induction onn.

Basis:
∑0

k=0 qk = q0 = 1 = q−1
q−1 .

Induction step: Assume
∑n

k=0 qk = qn+1−1
q−1 . Then:

∑n+1
k=0 qk =

∑n
k=0 qk + qn+1 ih= qn+1−1

q−1 + qn+1 = qn+1−1
q−1 +

qn+1(q−1)
q−1 = qn+2−1

q−1 .

7.28

insertTree :: Int -> Tree -> Tree

insertTree n Lf = (Nd n Lf Lf)

insertTree n t@(Nd m left right)

| m < n = Nd m left (insertTree n right)

| m > n = Nd m (insertTree n left) right

| otherwise = t

7.29

list2tree :: [Int] -> Tree

list2tree [] = Lf

list2tree (n:ns) = insertTree n (list2tree ns)

tree2list :: Tree -> [Int]

tree2list Lf = []

tree2list (Nd n left right) = tree2list left ++ [n] ++ tree2list right

7.30

inTree :: Int -> Tree -> Bool

inTree n Lf = False

inTree n (Nd m left right) | n == m = True

| n < m = inTree n left

| n > m = inTree n right
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7.31

mergeTrees :: Tree -> Tree -> Tree

mergeTrees t1 t2 = foldr insertTree t2 (tree2list t1)

7.32

findDepth :: Int -> Tree -> Int

findDepth _ Lf = -1

findDepth n (Nd m left right)

| n == m = 0

| n < m = if d1 == -1 then -1 else d1 + 1

| n > m = if d2 == -1 then -1 else d2 + 1

where d1 = findDepth n left

d2 = findDepth n right

7.33

mapT :: (a -> b) -> Tr a -> Tr b

mapT f Nil = Nil

mapT f (T x left right) = T (f x) (mapT f left) (mapT f right)

7.34

foldT :: (a -> b -> b -> b) -> b -> (Tr a) -> b

foldT h c Nil = c

foldT h c (T x left right) = h x (foldT h c left) (foldT h c right)

This gives:

Sol7> foldT (\ x y z -> sum [x,y,z]) 0 (T 4 (T 5 Nil Nil)(T 6 Nil Nil))
15

7.35

preorderT, inorderT, postorderT :: Tr a -> [a]

preorderT = foldT preLists []

where preLists x ys zs = (x:ys) ++ zs

inorderT = foldT inLists []

where inLists x ys zs = ys ++ [x] ++ zs

postorderT = foldT postLists []

where postLists x ys zs = ys ++ zs ++ [x]
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7.36

orderedT :: Ord a => Tr a -> Bool

orderedT tree = ordered (inorderT tree)

where

ordered xs = (sort (nub xs) == xs)

7.37

lookupD :: String -> Dict -> [String]

lookupD _ Nil = []

lookupD x (T (v,w) left right) | x == v = [w]

| x < v = lookupD x left

| otherwise = lookupD x right

7.38

buildTree :: [a] -> Tr a

buildTree [] = Nil

buildTree xs = T m (buildTree left) (buildTree right)

where (left,m,right) = split xs

7.39

mapLT :: (a -> b) -> LeafTree a -> LeafTree b

mapLT f (Leaf x) = Leaf (f x)

mapLT f (Node left right) = Node (mapLT f left) (mapLT f right)

7.40

reflect :: LeafTree a -> LeafTree a

reflect (Leaf x) = Leaf x

reflect (Node left right) = Node (reflect right) (reflect left)

7.41 We show with induction on the structure oft thatreflect (reflect t) == t.
Basis: Becausereflect (Leaf x) == (Leaf x) it certainly holds that

reflect (reflect (Leaf x)) == (Leaf x).

Induction step: Assume that

reflect (reflect left) == left
reflect (reflect right) == right.
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Now considerreflect (Node left right). According to the definition ofreflect this is equal to:

Node (reflect right) (reflect left).

Applying reflect on this again gives:

reflect (Node (reflect right) (reflect left)).

Again according to the definition ofreflect, this is equal to:

Node (reflect (reflect left)) (reflect (reflect right)).

Applying the induction hypothesis twice we get:

reflect (reflect (Node left right)) == Node left right.

This completes the inductive argument.

7.42

mapR :: (a -> b) -> Rose a -> Rose b

mapR f (Bud x) = Bud (f x)

mapR f (Br roses) = Br (map (mapR f) roses)

7.44 Proof thatcat xs [] = cat [] xs by list induction onxs.

Basis: Immediate from(cat [] [])
cat.1= [].

Induction step:

cat (x:xs) []
cat.2= x : (cat xs [])
ih= x : (cat [] xs)

cat.1= (x:xs)
cat.1= cat [] (x:xs).

7.45 Proof thatlen (cat xs ys) = (len xs) + (len ys), by list induction onxs.
Basis: Ifxs = [] then

len (cat [] ys)
cat.1= len ys = 0 + len ys

len.1= len [] + len ys.

Induction step: Assumelen (cat xs ys) = (len xs) + (len ys). Then:

len (cat (x:xs) ys)
cat.2= len (x:(cat xs ys))
len.2= 1 + len (cat xs ys)
ih= 1 + len xs + len ys

len.2= len (x:xs) + len ys.

7.46

genUnion :: Eq a => [[a]] -> [a]

genUnion = foldr union []

genIntersect :: Eq a => [[a]] -> [a]

genIntersect = foldr1 intersect
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7.47

insrt :: Ord a => a -> [a] -> [a]

insrt x [] = [x]

insrt x (y:ys) = if x <= y then (x:y:ys) else y : (insrt x ys)

srt :: Ord a => [a] -> [a]

srt = foldr insrt []

7.48 Basis:
h x (foldl h′ y []) foldl.1= h x y

foldl.1= foldl h′ (h x y) [] .

Induction step: Assume

h x (foldl h’ y xs) = foldl h’ (h x y) xs

We have to show:

h x (foldl h’ y (x:xs)) = foldl h’ (h x y) (x:xs)

We have:

h x (foldl h′ y (x:xs)) foldl.2= h x (foldl h′ (h′ y x) xs)
given
= foldl h′ (h x (h′ y x)) xs

given
= foldl h′ (h′ x (h x y)) xs

foldl.2= foldl h′ (h x y) (x:xs).

7.50 In fact,rev1 follows the recursive definition pattern offoldl, sorev andrev1 behave almost the same, and
are both much more effficient thanrev’.

7.52 Proof by induction onxs that

filter p (mapf xs) = mapf (filter (p · f) xs).

Basis:
filter p (mapf []) = [] = mapf (filter (p.f) []).

Induction step: Assume
filter p (mapf xs) = mapf (filter (p.f) xs).

Consider(x:xs). There are two cases: (i)p(fx) = t and (ii)p(fx) = f.
In case (i) we have:

filter p (mapf (x:xs))
map
= filter p (f x) : (mapf (x:xs))

filter= (f x) : (filter p (mapf (x:xs)))
ih= (f x) : (mapf (filter (p.f) xs))

map
= mapf (x : (filter (p.f) xs))

filter= mapf (filter (p.f) (x:xs)).
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In case (ii) we have:

filter p (mapf (x:xs))
map
= filter p (f x) : (mapf (x:xs))

filter= filter p (mapf (x:xs))
ih= mapf (filter (p.f) xs)

map
= mapf (filter (p.f) xs)

filter= mapf (filter (p.f) (x:xs)).

7.51

ln’ :: [a] -> Natural

ln’ = foldl (\ n _ -> S n) Z

7.53.12n − 1 moves.

7.53.2 Assume thatA is the source peg,B the auxiliary peg, andC the destination peg. We show by induction on
n that2n − 1 moves suffice for transferring a Hanoi tower ofn disks, and that transfer in less than2n − 1 moves
is impossible.
Basis: Transferring a tower with no disks takes no moves at all.
Induction step: Assume that it takes2n − 1 moves to transfer a Hanoi tower ofn disks.
We have to show that it takes2n+1 − 1 moves to transfer a tower ofn + 1 disks.
As induction hypothesis we assume thatn disks can be moved in2n − 1 moves, but not in less than that. Then to
move the largest disk fromA to C, all other disks must be stacked onB. By the induction hypothesis this can be
done in2n − 1, and not in less than2n − 1 moves. Next, it takes one move to get the largest disk fromA to C.
Notice that this disk cannot go anywhere else, for pegB is occupied by the stack[1..n]. Finally, n disks have to
be moved fromB to C; again this can be done in2n − 1, and not in less than2n − 1 moves. This proves that, all
in all, the optimal transfer procedure takes exactly(2n − 1) + 1 + (2n − 1) = 2n+1 − 1 moves.

7.53.328 − 1 = 255 moves.

7.54 Diskk makes exactly2n−k moves. To prove this with induction, we prove by induction onm that the disk of
sizen−m makes2m moves. From this the result follows, sincek = n−m impliesm = n− k.
Basis: Form = 0 we get that the disk of sizen = n− 0 makes20 = 1 move. This is correct, for the largest disk
moves exactly once, from source to destination.
Induction step: Assume that diskn−m makes2n−m moves. Now there are two kinds of moves for diskn−(m+1):
(i) move it on top of diskn−m, or (ii) remove it from diskn−m. This makes clear that to every single move of
diskn−m there are two moves of diskn− (m + 1), giving 2× 2n−m = 2n−(m+1) moves altogether.
Finally, note that this outcome squares with the result of the previous exercise, for if diskk makes2n−k moves the
total number of moves is

∑n
k=1 2n−k. Since1 +

∑n
k=1 2n−k = 2n (use binary representation to see this) we get∑n

k=1 2n−k = 2n − 1.

7.55 Complete transfer of the tower of Brahma takes264 − 1 = 18446744073709551615 moves, which, at a rate
of one move per day, keeps the monks occupied for50504432782230120 years, taking leap years into account.

7.56 We prove by induction onn thatcheck n (xs,ys,zs) givesTrue iff (xs,ys,zs) is a correct configura-
tion.
Basis. The only correct configuration with no disks at all is([],[],[]).
Induction step. Suppose thatcheck n (xs,ys,zs) givesTrue iff check n (xs,ys,zs) is a correct config-
uration. Let(xs,ys,zs) be a configuration with largest diskn + 1. Then eitherxs has diskn + 1 at the
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bottom orzs has. In the first case, we are in the process of movinginit xs to ys, with auxiliary stack
zs, andcheck n (xs,ys,zs) holds iff check (n-1) (init xs, zs, ys) does. In the second case, we
are in the process of movingys to init zs, usingxs as auxiliary stack, andcheck n (xs,ys,zs) holds iff
check (n-1) (ys, xs, init zs) does.

7.57 Here is a proof by induction onn.
Basis: if(xs,ys,zs) == ([],[],[]) there is nothing to check.
Induction step: Suppose(xs,ys,zs) with largest diskn is correct iff it holds that every diskm is either on top of
a diskk with k−m odd, or at the bottom of the source or destination peg, with(n+1)−m odd, or at the bottom of
the auxiliary peg, withn− k odd. We have to show that(xs,ys,zs) with largest diskn + 1 is correct iff it holds
that every diskm is either on top of a diskk with k −m odd, or at the bottom of the source or destination peg,
with (n+1)−m even, or at the bottom of the auxiliary peg, with(n+1)−k odd. Form on top ofk 6= n+1, this
follows from the fact that(xs,ys,zs) is correct iff eitherxs hasn + 1 at the bottom and(init xs, zs, ys)
is correct orzs hasn + 1 at the bottom and(ys, xs, init zs) is correct. Form at the bottom of a stack, there
are two cases:m = n + 1 andm < n + 1. In the first case, it follows from the fact thatn + 1 must be at source
or destatination. In the second case, ifm is at source,n + 1 must be at destination, and the claim follows from the
fact that(ys, xs, init zs) is correct. Ifm is at destination,n + 1 must be at source, and the claim follows
from the fact that(init xs, zs, ys) is correct. Ifm is at auxiliary, eithern + 1 is at source and the claim
follows from the fact that(ys,xs, init zs) is correct, orn + 1 is at target, and the claim follows from the fact
that(init xs, zs, ys) is correct.

7.58 Suppose(xs, zs, ys) is a correct configuration. Then if all stacks are empty, the law holds, forparity ([],[],[])
equals(1, 0, 1). Otherwise, one of the stacks has1 on top, so this stack has parity1. Now suppose either both
other stacks have parity1 or both other stacks have parity0. It is easy to check that removing the largest disk and
swapping auxiliary and destination (if the largest disk was on the source) or source and auxiliary (if the largest disk
was on the destination) does not change parity. Aftern steps this gives a contradiction with the fact that the parity
of ([],[],[]) equals(1, 0, 1).

7.59 Moving1 to a peg with an even disk at the top, or to an empty peg at even position are the only moves that
will result in a correct configuration.

7.60 If t andt′ are two correct tower configurations, and the numbers of disks is different, then the configuration
with the smallest number of disks comes first.

If the numbers of disks are the same, then configurations with the largest disk at the source are smaller than
configurations with the largest disk at the destination. For the cases with largest disk at the same position we can
use recursion.

In the implementation below, we let the output be of type[Ordering], whereOrdering is the predeclared
type consisting of the constantsEQ, LT andGT. The value[] indicates that at least one of the configurations to be
compared is incorrect. In all other cases a unit list indicating the order is generated.

compareT :: Tower -> Tower -> [Ordering]

compareT t t’ | maxT t < maxT t’ = [ LT | checkT t && checkT t’ ]

| maxT t > maxT t’ = [ GT | checkT t && checkT t’ ]

| otherwise = [ compare’ t t’ | checkT t && checkT t’ ]
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compare’ :: Tower -> Tower -> Ordering

compare’ ([],[],[]) ([],[],[]) = EQ

compare’ t@(xs,ys,zs) t’@(xs’,ys’,zs’)

| firstStage t && firstStage t’ =

compare’ (init xs, zs, ys) (init xs’, zs’, ys’)

| lastStage t && lastStage t’ =

compare’ (ys, xs, init zs) (ys’, xs’, init zs’)

| firstStage t && lastStage t’ = LT

| lastStage t && firstStage t’ = GT

where

firstStage (xs,ys,zs) = xs /= [] && last xs == maxT t

lastStage t = not (firstStage t)

7.61

hanoi’’ :: Int -> [Tower]

hanoi’’ n = [ hanoiCount n k | k <- [0..2^(toInteger n)-1] ]

7.62 The key to the implementation is the observation that the initial configuration of a tower with disk sizen is
preceded in the ordering of all tower configurations by2n−1 configurations for towers of smaller sizes, as is easily
proved by induction.

fromTower :: Tower -> Integer

fromTower t = (2^n - 1) + (fromT t n) where

n = maxT t

fromT (xs,ys,zs) k

| xs == [1..k] = 0

| elem k xs = fromT (init xs, zs, ys) (k-1)

| elem k zs = 2^(k-1) + fromT (ys, xs, init zs) (k-1)

| otherwise = error "not a proper tower configuration"



Solutions to Exercises from Chapter 8

module Sol8

where

import WWN

8.1

toBase :: Integral a => a -> a -> [Int]

toBase b n | b < 2 || b > 16 = error "base not in [2..16]"

| n < 0 = error "negative argument"

| otherwise = reverse (toB b n)

where

toB b n | n < b = [toInt n]

| otherwise = toInt (rem n b) : toB b (quot n b)

hex :: (Integral a) => a -> String

hex = showDigits . toBase 16

8.2 Letm,n ∈ N. Then there area, r ∈ N with m = an + r and0 6 r < n. We show that for alld ∈ N:
d | m ∧ d | n iff d | n ∧ d | r. From this it immediately follows that GCD(m,n) = GCD(n, r).

Supposed | m andd | n. Then there aree, f ∈ N with m = ed andn = fd. Thenr = m − an = ed − afd =
(e− af)d, i.e.,d | r.
Conversely, supposed | n andd | r. Then there aree, f ∈ N with n = ed andr = fd. Thenm = an + r =
aed + fd = (ae + f)d, i.e.,d | m.

8.3 We have to establish that ifm andn are coprime thenm andm + n are.
Assumem andn are coprime. Suppose that there is ad > 1 in N with d | m andd | (m + n). Then there are
a, b ∈ N with m = ad andm + n = bd. Thusn = (m + n)−m = bd− ad = (b− a)d. Contradiction with the
fact thatm andn are coprime.
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8.8 The following establishes associativity of addition for difference pairs:

(m1,m2) + ((n1, n2) + (k1, k2)) = [definition of+ for difference pairs]

(m1,m2) + ((n1 + k1, n2 + k2)) = [definition of+ for difference pairs]

(m1 + (n1 + k1),m2 + (n2 + k2)) = [commutativity of+ for N]

((m1 + n1) + k1, (m2 + n2) + k2) = [definition of+ for difference pairs]

((m1 + n1), (m2 + n2)) + (k1, k2) = [definition of+ for difference pairs]

((m1,m2) + (n1, n2)) + (k1, k2).

8.10

leq1 :: NatPair -> NatPair -> Bool

leq1 (m1,m2) (n1,n2) = (m1+n2) <= (m2+n1)

gt1 :: NatPair -> NatPair -> Bool

gt1 p1 p2 = not (p1 ‘leq1‘ p2)

8.13 Brute force comparision of all the decimal expansions of rationalsp/q with p andq in the specified range is
computationally unfeasible. Still, the following tool is all we need for finding an answer:

periods :: [Rational] -> [Int]

periods xs = map periodLength xs

where

periodLength x = length (third (decForm x))

third (_,_,c) = c

It helps to observe that the period ofp/q is always less than or equal to that of1/q. Next, it helps to observe that
the chances of finding a high period increase with the size ofq. Therefore, the following query should contain the
answer.

Sol8> periods [ 1 % q | q <- [971..999] ]
[970,27,138,486,6,60,976,81,44,42,108,490,982,5,98,112,138,18,
462,2,495,15,110,210,99,41,166,498,3]

The biggest period is that of1983 , which is982.

8.15 Suppose∃p, q ∈ N with
(

p
q

)2

= 3 andp and q coprime. Thenp2

q2 = 3, so p2 = 3q2. It follows that

p has a factor3, for if 3 is not a factor ofp then3 is not a factor ofp2. Thereforep = 3a for somea ∈ N.
Thus,p2 = (3a)2 = 9a2 = 3q2, and we get thatq2 = 3a2. From this it follows thatq also has a factor3, and
contradiction with the assumption thatp andq are coprime.

8.16 To be proved: ifp is prime then
√

p /∈ Q.

Proof: Assumep prime, and suppose
√

p ∈ Q. Then there aren, m ∈ N with
(

n
m

)2 = p, with n andm coprime.

Then n2

m2 = p, and thereforen2 = pm2. From the fact thatp is prime we get thatn has a factorp, because
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squaring does not introduce any new prime factors. Thus, there is ana ∈ N with n = pa. From this we get
n2 = p2a2 = pm2, and thusm2 = pa2. It follows thatm also hasp as a factor, and contradiction with the fact
thatn andm are coprime.

8.17 To be proved: ifn ∈ N and
√

n /∈ N, then
√

n /∈ Q.
Proof: Assumen ∈ N and

√
n /∈ N, and suppose

√
n ∈ Q. Then there arep, q ∈ N with

√
n = p

q , with p and
q coprime. Fromp andq coprime it follows thatp2 andq2 are coprime (squaring does not introduce new prime
factors). On the other hand we get from

√
n = p

q thatn = p2

q2 , and thereforeq2 | p2, and contradiction.

8.18 Takex =
√

2 andy = −
√

2. Thenx + y = 0 ∈ Q, butx andy are both irrational.

8.19.1 Leta0 > 0. For alln > 0 we get:

an+1 −
√

p =
1
2
(an +

p

an
)−√p =

a2
n + p− 2an

√
p

2an
=

(an −
√

p)2

2an
.

Similarly, we get:

an+1 +
√

p =
(an +

√
p)2

2an
.

Froma0 > 0 and the definition ofan+1, it is clear thatan > 0 for all n. Therefore,

an+1 −
√

p

an+1 +
√

p
=

(an −
√

p)2

(an +
√

p)2
.

8.19.2 Sincea0 > 0 and
√

p > 0, we get|a0 −
√

p| < a0 +
√

p. Thus,

an+1 −
√

p

an+1 +
√

p
=

(
a0 −

√
p

a0 +
√

p

)2n

converges to0, and thereforelim∞
n=0 an =

√
p.

8.19.3 From the first item we get thatan+1−
√

p

an+1+
√

p > 0, for this is a fraction with squares in both numerator and
denominator. This means thatan+1 −

√
p > 0, i.e.,an+1 >

√
p. In other words,an >

√
p, for all n > 1.

8.20.1 It is easy to see thatan − an+1 > 0 for everyn > 1. For we havean − an+1 = an − 1
2 (an + p

an
) =

1
2 (an − p

an
) = a2

n−p
2an

> 0, becausea2
n > p for everyn > 1.

Becausean+1 6 an for everyn > 1, and also
√

p 6 a1, we get for everyn > 1 thatan+
√

p 6 a1+
√

p 6 2a1.
Together with the result from Exercise 8.19.2, this gives:

an −
√

p

2a1
6

(
a0 −

√
p

a0 +
√

p

)2n

.

From this we get the following estimate of the approximation:

0 6 an −
√

p 6 2a1

(
a0 −

√
p

a0 +
√

p

)2n

.

8.20.2 Now for the concrete case. In the approximation of
√

2 we start out froma0 = 1 (the biggest natural number
with a square6 2). Thus,a1 = 1.5, and2a1 = 3. Because1 <

√
2 < 1.5 we get that|a0 −

√
2| < 0.5 and

a0 +
√

2 > 2. This gives:

0 < an −
√

2 < 3 ·
(

1
4

)2n

= 3 · 4−2n

.

With the help of Hugs we can have a quick look at what this gets us forn = 1..5:



78 SOLUTIONS TO THE EXERCISES

Prelude> [ 3 * (1 / 4^(2^n)) | n <- [1..5] ]
[0.1875,0.0117188,4.57764e-05,6.98492e-10,1.6263e-19]

The numbers of correct decimals for approximationsa1, . . . , a5, in that order, are0, 1, 4, 9, 18. The quadratic
convergence property (at every successive approximation step the size of the remaining error gets squared) ensures
that this continues as:

36, 72, 144, 288, 576, . . .

It follows that the approximationa10 of
√

2 is sure to be correct in the first576 decimals.

8.21 Given:limi→∞ ai = a, limi→∞ ai = b.
To be proved:a = b.
Proof:

Assume, for a contradiction, thata 6= b, i.e., assume|a− b| > 0.
From the givenlimi→∞ ai = a, we get∃n ∀i > n (|a− ai| < ε).
So somen1 exists such that∀i > n1 (|a− ai| < ε).
In a similar way, from the givenlimi→∞ ai = b, we get ann2 with ∀i > n2 (|b− ai| < ε).
Let n = max(n1, n2). Then, sincen > n1, n2, both|a− an| < ε and|b− an| < ε.
Since|x + y| 6 |x|+ |y|, we get|a− b| = |a− an + an − b| 6 |a− an|+ |b− an| < 2ε = |a− b|,
and contradiction.

This provesa = b.

8.22.1 Given:limi→∞ ai = a.
To be proved:limi→∞ a2i = a.
Proof:

Let ε be arbitrary, and letn0 be ann0 such that∀i > n0(|a− ai| < ε) (from the given).
If i > n0 then2i > n0, so∀i > n0(|a− a2i| < ε.

Therefore∀ε > 0∃n∀i > n(|a− a2i| < ε), i.e.,limi→∞ a2i = a.

8.22.2 Given:limi→∞ ai = a, f : N → N with ∀n∃m∀i > m f(i) > n.
To be proved:limi→∞ af(i) = a.
Proof:

Let ε be arbitrary, and letn0 be such that∀i > n0(|a− ai| < ε) (from the first given).
From the second given we know that there is anm0 with ∀i > m0(f(i) > n0).
Thus∀i > m0(|a− af(i)| < ε).

Therefore∀ε > 0∃n∀i > n(|a− af(i)| < ε), i.e.,limi→∞ af(i) = a.

8.23 Given:limi→∞ ai = a, limi→∞ bi = b, a < b.
To be proved: there is ann with ∀m > n(am < bm).
Proof:

Let n1 be such that∀i > n1(|a− ai| < ε) (from the first given).
Let n2 be such that∀i > n2(|b− bi| < ε) (from the second given).
Let k = max(n1, n2). Sincek > n1, we get from the above that∀i > k(|a− ai| < ε).

If ai < a then certainlyai < a + ε. If a < ai, thenai − a < ε, and alsoai < a + ε.
So in any caseai < a + ε.
Sincek > n2, we get from the above that∀i > k(|b− bi| < ε).

If b < bi thenb− ε < bi. If bi < b, thenb− bi < ε, sob− ε < bi.
So in any caseb− ε < bi.
Settingε = a+b

2 we get froma < b thata + ε = b− ε, soai < a + a+b
2 < bi.

This proves∀m > k(am < bm), so there is ann with ∀m > n(am < bm).

8.24 Given:limi→∞ ai = a, limi→∞ bi = b.
To be proved:limi→∞(ai + bi) = a + b.
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Proof:
We have to show that∀ε > 0∃n∀i > n(|(a + b)− (ai + bi)| < ε.

Let ε be arbitrary.
Let n1 be such that∀i > n1(|a− ai| < 1

2ε), from the first given.
Let n2 be such that∀i > n2(|b− bi| < 1

2ε), from the second given.
Let k = max(n1, n2). Sincek > n1, n2, we get from the above
that∀i > k(|a− ai| < 1

2ε) and that∀i > k(|b− bi| < 1
2ε).

Thus∀i > k(|a− ai|+ |b− bi| < ε), and therefore∀i > k(|(a + b)− (ai + bi)| < ε).
This proveslimi→∞(ai + bi) = a + b.

8.25 To be proved:f : R → R is continuous ifflimi→∞ f(ai) = f(a) wheneverlimi→∞ ai = a.
Proof:
⇒: Supposef : R → R is continuous.

To show: iflimi→∞ ai = a thenlimi→∞ f(ai) = f(a).
Assumelimi→∞ ai = a.
To show:limi→∞ f(ai) = f(a).
Proof:

Let ε be arbitrary.
We have to show that there is ann with ∀i > n(|f(a)− f(ai)| < ε).
Sincef is continuous, there is aδ with |a− ai| < δ ⇒ |f(a)− f(ai)| < ε.
From the assumptionlimi→∞ ai = a, there is ann with ∀i > n(|a− ai| < δ).
It follows that∀i > n(|f(a)− f(ai)| < ε).

This shows thatlimi→∞ f(ai) = f(a).
⇐: Supposelimi→∞ f(ai) = f(a) wheneverlimi→∞ ai = a.

To show:f : R → R is continuous.
Let a andε > 0 be arbitrary.
We have to show that there is aδ > 0 with ∀y(|a− y| < δ ⇒ |f(a)− f(y)| < ε).

Suppose, for a contradiction, that there is no suchδ.
Then for allδ, there is ay with |a− y| < δ and|f(a)− f(y)| > ε.
Now we can construct a sequencea0, a1, a2, . . . with a0 arbitrary (a0 6= a),
a1 := somey with |a− y| < |a− a0| and|f(a)− f(y)| > ε,
and in generalai+1 := somey with |a− y| < |a− ai| and|f(a)− f(y)| > ε.
Thenlimi→∞ ai = a, while limi→∞ f(ai) 6= f(a), and contradiction with the given.

So there is aδ > 0 with ∀y(|a− y| < δ ⇒ |f(a)− f(y)| < ε).

8.26.1 Given:{an}∞n=0 is Cauchy.
To be proved:{an}∞n=0 is bounded.
Proof:
We have to show that there areb, c with ∀i(b < ai < c).
Take someε > 0. Then by the given, there is ann with ∀i, j > n(|ai − aj | < ε).
Let b = min{a0, . . . , an} − ε. We show that for alli, b < ai.

For i ∈ [0..n] this is immediate from the definition.
If i > n andan < ai, then againb < ai is immediate from the definition.
If i > n andai < an, then, since|an − ai| < ε, an − ε < ai, so againb < ai.

Analogously, we can takec = max{a0, . . . , an}+ ε, and prove thatai < c, for all i.

8.26.2 Given:{an}∞n=0 is Cauchy; there is ana ∈ R with ∀ε > 0∀n∃i > n (|a− ai| < ε).
To be proved:limi→∞ ai = a.
Proof:

Let ε > 0 be arbitrary. We have to prove that∃n∀i > n(|a− ai| < ε).
Let n1 be such that∀i, j > n1(|ai − aj | < 1

2ε) (from the fact that{an}∞n=0 is Cauchy).
By the second given there is ak with k > n1 and|a− ak| < 1

2ε.
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Then∀i > k(|ak − ai| < 1
2ε), so∀i > k(|a− ak| < 1

2ε ∧ |ak − ai| < 1
2ε).

Since|a− ai| 6 |a− ak|+ |ak − ai|, this gives∀i > k(|a− ai| < ε).
This proves thatlimi→∞ ai = a.

8.27 Take{an}∞n=0 ∼ {bn}∞n=0 if {an − bn}∞n=0 converges to0. This is easily shown to be an equivalence.

8.29 Left to the reader.

8.30.1 Basis: It is clear that
(cos(ϕ) + i sin(ϕ))0 = 1 = cos(0) + i sin(0).

Suppose that
(cos(ϕ) + i sin(ϕ))n = cos(nϕ) + i sin(nϕ).

Then:

(cos(ϕ) + i sin(ϕ))n+1 = (cos(ϕ) + i sin(ϕ))n × (cos(ϕ) + i sin(ϕ))
ih= (cos(nϕ) + i sin(nϕ))× (cos(ϕ) + i sin(ϕ))
= cos((n + 1)ϕ) + i sin((n + 1)ϕ).

The final step is justified by the fact thatcos(nϕ)+ i sin(nϕ) is the number with magnitude1 and phasenϕ, while
cos(ϕ) + i sin(ϕ) has magnitude1 and phaseϕ. The result of multiplying them is the number with magnitude1
and phasenϕ + ϕ = (n + 1)ϕ, i.e., the number

cos((n + 1)ϕ) + i sin((n + 1)ϕ).

8.30.2 Ifm ∈ N then:

(cos(ϕ) + i sin(ϕ))−m =
1

(cos(ϕ) + i sin(ϕ))m

previous item
=

1
cos(mϕ) + i sin(mϕ)

= cos(mϕ)− i sin(mϕ)
= cos((−m)ϕ) + i sin((−m)ϕ).

Draw a picture to see why the penultimate step is justified.



Solutions to Exercises from Chapter 9

module Sol9

where

import POLS

9.3 Next10 elements are:[237,367,539,759,1033,1367,1767,2239,2789,3423]. The sequence is of the
form λn.n3 + 3n + 3.

9.5 Difference analysis yields that this sequence is generated by a polynomial of the third degree, so the sequence
leads to the following set of equations:

a = 13
a + b + c = 21

a + 2b + 4c = 35

Eliminatea:

b + c = 8
2b + 4c = 22

Subtracting the second equation from the4-fold of the first gives2b = 10, whenceb = 5 andc = 3. The sequence
is generated by the formλn.(3n2 + 5n + 13).

9.6 There is no need for an inductive proof anymore, for this time you did not arrive at the closed form by guess-
work, but by solving a set of linear equations derived from a polynomial sequence for the pie cutting process.

9.9 The implementationchoose is far more efficient. The computation forchoose n k uses2k−2 multiplication
operations plus one division operation. The computation forchoose’ n k constructs a ‘lozenge’ in the Pascal
triangle with lower corner

(
n
k

)
by means of addition, but with repeated computation of the same intermediate

results. E.g., to compute
(
5
3

)
, the numbers

(
4
2

)
and

(
4
3

)
get added. To compute

(
4
2

)
the number

(
3
2

)
is needed. To

compute
(
4
3

)
, the number

(
3
2

)
is needed as well. So

(
3
2

)
gets computed twice.

9.10 (
n

k

)
=

n!
k! (n− k)!

=
n!

(n− (n− k))! (n− k)!
=

(
n

n− k

)
.
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9.12 (
n

k

)
=

n!
k! (n− k)!

=
n

k
· (n− 1)!
(k − 1)! (n− k)!

=
n

k
· (n− 1)!
(k − 1)! ((n− 1)− (k − 1))!

=
n

k
·
(

n− 1
k − 1

)
.

9.13
(

n
m

)
·
(
m
k

)
gives the number of ways of first picking anm-sized subsetB from ann-sized setA, and next

picking ak-sized subsetC from B. Alternatively, one might first pick ak-sized subsetC from A, and next select
m − k elements fromA − C, so that thesem − k elements together withC constitute anm-element setB with
C ⊆ B ⊆ A. There are

(
n
k

)
·
(

n−k
m−k

)
ways of doing this. Clearly, the two procedures are equivalent.

9.14 First observe that
(
n
n

)
= 1 =

(
n+1
n+1

)
. Next, use the law of additionk times, as follows. Add

(
n+1
n+1

)
and

(
n+1

n

)
to yield

(
n+2
n+1

)
. Next add

(
n+2
n+1

)
and

(
n+2

n

)
to yield

(
n+3
n+1

)
, and so on, and finally add

(
n+k
n+1

)
and

(
n+k

n

)
to yield(

n+k+1
n+1

)
.

9.20 Putting1 on the positions for the prime exponents, we get:

COR> ([0,0,1,1,0,1,0,1,0,0,0]^3) !! 10
6



Solutions to Exercises from Chapter 10

module Sol10

where

import COR

10.1

evens = 0 : map (+2) evens

10.2

theEvens = iterate (+2) 0

10.3

swap "" = ""

swap (’1’: xs) = ’0’: swap xs

swap (’0’: xs) = ’1’: swap xs

morse xs = xs ++ morse (xs ++ swap xs)

thue = ’0’ : morse "1"

10.5

random001s :: Int -> [Int]

random001s i = map (‘mod‘ 2) (randomInts 2 i)
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10.9 The first machine will always deliver mineral water after insertion of a single coin, while the second machine
may refuse to do so.

10.10

vend, vend1, vend2, vend3, vend4 :: Process

vend (0:xs) = "coin" : vend1 xs

vend (1:xs) = "coin" : vend4 xs

vend1 (0:xs) = "coin" : vend2 xs

vend1 (1:xs) = vend1 xs

vend2 (0:xs) = "beer" : vend xs

vend2 (1:xs) = "coin" : vend3 xs

vend3 (0:xs) = "moneyback": vend xs

vend3 (1:xs) = vend3 xs

vend4 (0:xs) = "water" : vend xs

vend4 (1:xs) = vend4 xs

10.12 TakeD = Z andA = D, under the standard ordering6. The setZ has no greatest and no least element.

10.13 The example of the previous exercise works.

10.14N is not a domain for the set of all natural numbers has no lub. LetN∞ be the setN∪ {∞}, and putn 6 ∞
for all n ∈ N ∪ {∞}. Then we have:⊥ = 0, and every chain inN∞ has a lub, soN∞ is a domain.

10.15 To show thata → b is a domain, we must show that there is a bottom element and that every chain has a lub.
Take for⊥ the partial function that is everywhere undefined. Then it is clear from the definition ofv that⊥ v f
for anyf : a → b. Let A be a chain ina → b. Then we get from the definition ofv that for allg, g′ ∈ A and for
all x ∈ a it will hold that if g(x) andg′(x) are both defined, theng(x) = g′(x). Therefore,tA can be defined as
the functionh given byh(x) := t{g(x) | g ∈ A}.

10.16 The partial list⊥ is the bottom of[a]. Let A be a chain in[a]. Then{head ys| ys∈ A} is a chain ina, and
{tail ys | ys∈ A} is a chain in[a]. Thus, we can definetA as the list xs given by

• head xs:= t{head ys| ys∈ A},

• tail xs := t{tail ys | ys∈ A}.

Note that head⊥ = head[] = ⊥, and tail⊥ = tail [] = ⊥.

10.20 Infinite lists always have a first element, so we may assume the list to be of the formx:xs. We give a proof
by approximation that

filter p (mapf x:xs) = mapf (filter (p.f) x:xs).

Assume (induction hypothesis) that for any list ys the following holds:

approxn (filter p (mapf ys)) = approxn (mapf (filter (p.f) ys)).
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There are two cases: (i)p(fx) = t and (ii)p(fx) = f. In case (i) we have:

approx(n + 1) (filter p (mapf (x:xs)))
map
= approx(n + 1) (filter p (f x) : (mapf (x:xs)))

filter= approx(n + 1) ((f x) : (filter p (mapf (x:xs))))
approx
= (f x) : approxn (filter p (mapf (x:xs)))
ih= (f x) : approxn (mapf (filter (p.f) xs))

approx
= approx(n + 1) ((f x) : (mapf (filter (p.f) xs)))

map
= approx(n + 1) (mapf (x : (filter (p.f) xs)))

filter= approx(n + 1) (mapf (filter (p.f) (x:xs))).

Case (ii) is similar.

10.23 To show that∆ is a bisimulation onA, we have to check the two bisimulation properties. Assumea = b.
1. Supposea

o−→ a′. Froma = b it follows thatb
o−→ a′, with a′ = a′.

2. Similar.

10.25 Stateq1 of the second vending machine cannot be linked to any state in the first vending machine. In
particular, it cannot be linked to stateq1 in the first machine, forq1 in the first machine has a water and a coin
transition,q1 in the second machine has only a coin transition.

10.26 LetR andS be bisimulations. Assumea(R ∪ S)b. To show thatR ∪ S is a bisimulation, we have to check
the two bisimulation properties.

1. Supposea
o−→ a′. Froma(R ∪ S)b, we know that eitheraRb or aSb. In the first case, it follows from the

fact thatR is a bisimulation that there is ab′ with b
o−→ b′ andbRb′. Henceb(R ∪ S)b′. In the second case, it

follows from the fact thatS is a bisimulation that there is ab′ with b
o−→ b′ andbSb′. Henceb(R ∪ S)b′.

2. The reasoning is similar.

10.27 LetR = ∪{B | B is a bisimulation onA}. We show thatR is a bisimulation, by checking the two bisimu-
lation properties. AssumeaRb.

1. Supposea
o−→ a′. FromaRb and the definition ofR we know that there is a bisimulationB onA with aBb.

It follows from the fact thatB is a bisimulation that there is ab′ with b
o−→ b′ andbBb′. Hence, by the definition

of R, bRb′.
2. The reasoning is similar.

10.28 TakeB∪∆A∪{(c3, c4), (c4, c3)}, whereA is the list of states{c, c0, c1, c2, c3, c4}, andB is the bisimulation
given in Example 10.24.

10.30 LetS be given by:

{(filter p (mapf xs), mapf (filter (p.f) xs)) | f : a → b, p : b → {0, 1}, xs :: [a], |xs| = ∞}

Let R be given by∆b ∪ S. We show thatR is a bisimulation. Clearly,

filter p (mapf xs) R mapf (filter (p.f) xs),

by definition ofR. We have to show that head and tail observations on the items related byR satisfy the back and
forth conditions.

Suppose filterp (mapf xs) head−→ z.
Then, by the definition of filter and map, xs has the formx0 : · · · : xn : x : xs′, and for alli with 0 6 i 6 n,

p(xi) = 0, andp(x) = 1, andf(x) = z.

But then also mapf (filter (p.f) xs) head−→ z, and by the definition ofR, zRz.
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Suppose mapf (filter (p.f) xs) head−→ z.
Then again, by the definition of filter and map, xs has the formx0 : · · · : xn : x : xs′, and for alli with

0 6 i 6 n, p(xi) = 0, andp(x) = 1, andf(x) = z.

But then also filterp (mapf xs) head−→ z, and by the definition ofR, zRz.
The reasoning for tail observations is similar.

10.37 Generating function for[0, 0, 0, 1, 1, 1, . . .] is z3

1−z . Generating function for[1, 1, 1, 0, 0, 0, . . .] is 1 + z + z2.
Generating function for[1, 1

2 , 1
4 , 1

8 , . . .] is 2
2−z . Here are the checks:

COR> take 20 (z^3 * ones)
[0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
COR> 1+z+z^2
[1,1,1]
COR> take 10 (2/(2-z))
[1 % 1,1 % 2,1 % 4,1 % 8,1 % 16,1 % 32,1 % 64,1 % 128,1 % 256,1 % 512]

10.40

1. In Example 10.32 we saw that11−z is the generating function forλn.1. Multiplication with a constantc
gives that c

1−z is the generating function forλn.c.

2. z
(1−z)2 is the generating function forλn.n: this was shown in Example 10.33.

3. f(z)
z is the generating function forλn.fn+1; division byz has the effect of shifting the coefficients one place

to the left.

4. cf(z) + dg(z) is the generating function forλn.cfn + dgn:

cf(z) = cf0 + cf1z + cf2z
2 + · · ·

dg(z) = dg0 + dg1z + dg2z
2 + · · ·

cf(z) + dg(z) = (cf0 + dg0) + (cf1 + dg1)z + (cf2 + dg2)z2 + · · ·

5. (1− z)f(z) is the generating function for the difference sequenceλn.fn − fn−1: page 347, chapter 9.

6. 1−z
z f(z) is the generating function for the difference sequenceλn.fn+1 − fn: from previous item, for

division byz shifts the sequence of coefficients one place to the left.

7. 1
1−z f(z) is the generating function forλn.f0 + f1 + · · ·+ fn: then-th coefficient of the product of11−z =
(1 + z + z2 + z3 + · · · ) andf(z) = f0 + f1z + f2z

2 + · · · is f0 + f1 + · · ·+ fn.

8. f(z)g(z) is the generating function forλn.f0gn+f1gn−1+· · ·+fn−1g1+fng0 (the convolution off andg):
then-th coefficient in the list of coefficients off(z)g(z) has the formf0gn +f1gn−1 + · · ·+fn−1g1 +fng0.

9. zf ′(z) is the generating function forλn.nfn: f ′(z) generatesλn.(n + 1)fn+1; multiplication withz shifts
one place to the right, and inserts a0 in the first position.

10. 1
z

∫ z

0
f(t)dt is the generating function forλn. fn

n+1 : integration givesλn. fn−1
n , division byz shifts one place

to the left.

10.45 The appropriate corecursive definition is given by:

COR> take 20 lucs where lucs = 2 : 1 : (lucs + tail lucs)
[2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,9349]
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The corresponding instruction for a generating function is:

g(z) = z2

(
g(z) +

g(z)
z

)
+ 2− z.

Multiplying by z2 inserts two0’s in front of the lucs sequence; adding2 changes the first of these to2; subtracting
z indicates that the second coefficient is obtained from the first by subtracting1. The tail of the lucs sequence is
given by g(z)

z . From this we get:

g(z)− zg(z)− z2g(z) = 2− z

g(z) =
2− z

1− z − z2

This is easily verified, as follows:

COR> take 10 ((2-z)/(1-z-z^2))
[2 % 1,1 % 1,3 % 1,4 % 1,7 % 1,11 % 1,18 % 1,29 % 1,47 % 1,76 % 1]

10.52 The exponential generating function we need is( z2

2 + z3

6 + z4

24 )3. Again, the idea: if you pickn marbles of
the same colour, thenn! of the marble orderings become indistinguishable. The answer is given by the following
query:

COR> o2e ((z^2/2 + z^3/6 + z^4/24)^3)
[0 % 1,0 % 1,0 % 1,0 % 1,0 % 1,0 % 1,90 % 1,630 % 1,2940 % 1,
9240 % 1,22050 % 1,34650 % 1,34650 % 1]

Alternatively, we can express this as follows:

COR> o2e ([0,0,1/2,1/6,1/24]^3)
[0 % 1,0 % 1,0 % 1,0 % 1,0 % 1,0 % 1,90 % 1,630 % 1,2940 % 1,
9240 % 1,22050 % 1,34650 % 1,34650 % 1]

Thus, under the given constraints there are 90 different sequences of 6 marbles, 630 of 7 marbles, 2940 of 8
marbles, 9240 of 9 marbles, 22050 of 10 marbles, 34650 of 11 marbles and 34650 again of 12 marbles. The
numbers of11-sequences and12-sequences are the same, for any12-sequence can be viewed as the result of
extending an11-sequence with a marble of the only colour that occurs 3 times in the11-sequence.
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Solutions to Exercises from Chapter 11

module Sol11

where

import FAIS

11.5 To be proved: for everyX ⊆ N, if m ∈ X and∀n > m(n ∈ X ⇒ n + 1 ∈ X), then∀n ∈ N(m 6 n ⇒ n ∈
X).
Proof: Assumem ∈ X and∀n > m(n ∈ X ⇒ n + 1 ∈ X). We prove by induction onn thatY = {n | m + n ∈
X} = N.
Basis:0 ∈ Y . This follows fromm ∈ X.
Induction hypothesis:n ∈ Y . Induction step. From the induction hypothesis we getm + n ∈ X. From the second
assumption,m + n + 1 ∈ X. From this and the definition ofY : n + 1 ∈ Y .
We now show∀n ∈ N(m 6 n ⇒ n ∈ X). Now letn an arbitrary natural number withm 6 n. Thenn−m ∈ N,
son−m ∈ Y . Thus, by the definition ofY , (n−m) + m = n ∈ X.

11.6 Given:X ⊆ N, 1 ∈ X, ∀n ∈ N(n ∈ X ⇒ n + 2 ∈ X).
To be proved: every odd number is inX.
Proof: We show thatY = {n ∈ N | 2n− 1 ∈ X} = N.
Basis:0 ∈ Y follows from1 ∈ X.
Induction hypothesis:n ∈ Y .
Induction step: From the induction hypothesis we get that2n − 1 ∈ X. From this and the third given:2n + 1 =
2(n + 1)− 1 ∈ X. Thusn + 1 ∈ Y .

11.9 To be proved:< is well-founded onN.
Proof: We show by strong induction that for non ∈ N is there an infinite sequencen > n1 > n2 > . . ..
Basis: Since0 is the smallest member ofN, there is no infinite sequence0 > n1 > . . ..
Induction hypothesis: For allm < n it holds that there is no infinite sequencem > n1 > n2 > . . ..
Induction step: Assume there is an infinite sequencen > n1 > n2 > . . .. Sincen1 < n, this contradicts the
induction hypothesis. Thus, there is no infinite sequencen > n1 > n2 > . . ..

11.10.1 Given:≺ onA is well-founded,X ⊆ A, ∀a ∈ A(∀b ≺ a(b ∈ X) ⇒ a ∈ X).
To be proved:X = A.
Proof: AssumeX 6= A. Then∃a0 ∈ A−X. SIncea0 /∈ X, by the third given there is ana1 ≺ a0 with a1 /∈ X.
Thusa0 � a1 anda1 ∈ A −X. Repeating the argument we get an infinite sequencea0 � a1 � a2 � . . . in A,
and contradiction with the fact thatA is well-founded. ThusX = A.

11.10.2 Given: EveryX ⊆ A with ∀a ∈ A(∀b ≺ a(b ∈ X) ⇒ a ∈ X) coincides withA.

89
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To be proved:≺ is well-founded.
Proof: Suppose there is an infinite sequencea0 � a1 � a2 � . . . in A. Let X = A − {a0, a1, a2, . . .}. Let
a ∈ A be arbitrary and assume∀b ≺ a(b ∈ X). Thena /∈ {a0, a1, a2, . . .}. Thus,a ∈ X. But thenX satisfies
∀a ∈ A(∀b ≺ a(b ∈ X) ⇒ a ∈ X), so by the given,X = A, and contradiction with the definition ofX. Thus,
there is no infinite sequencea0 � a1 � a2 � . . . in A, i.e.,A is well-founded.

11.11.1 Given: LetR be a relation onA and leta, b1, b2 ∈ A. If aRb1 andaRb2 then there is ac ∈ A with b1Rc
andb2Rc.
To be proved:R is confluent.
Proof: we will proceed by induction on the path length froma to b1. Basis:a = b1. If aR∗b2, thenb2 satisfies
b1R

∗b2 andb2R
∗b2.

Induction step: The induction hypothesis is that ifaRkb1 andaR∗b2 then there is ac with b1R
∗c andb2R

∗c.
SupposeaRk+1b1 andaR∗b2. Then there is anm with aRmb2. So there is ad with aRkdRb1. By the induction
hypothesis, there is ac with dR∗c andb2R

∗c. FromdR∗c, there is somep ∈ N with dRpc. Letd = c0, c1, . . . , cp =
c be theR-path fromd to c. Then fromdRb1 anddRc1, by the given aboutR there is ane1 with b1Re1 andc1Re1.
Similarly, fromciRei andciRci+1, by the given aboutR there is anei+1 with eiRei+1 andci+1Rei+1. This gives
anR-pathb1, e1, . . . , ep with cRep. It follows thatb1R

∗ep andb2R
∗ep, which clinches the argument.

11.11.2 AssumeR is weakly confluent, and supposea is bad. We have to show that there is a badb with aRb. If
a is bad, then there areb1, b2 with aRb1, aRb2, and for noc ∈ A is it the case thatb1R

∗c andb2R
∗c. Fromb1R

∗c
andb2R

∗c, there arek,m ∈ N with aRmb1 andaRkb2. Also, k > 1 andm > 1. For suppose, e.g., thatk = 1.
Then bym applications of weak confluence we get at anc with b1R

∗c andb2R
∗c, and contradiction with the fact

thata is bad.

Thus,k = n + 1, and there is ab with aRbRnb1 andaRmb2. By m applications of weak confluence we get
at ane with bR∗e andb2R

∗e. Assumeb is not bad. Then there is ac with b1R
∗c andeR∗c. SinceaR∗b1 and

aR∗b2R
∗e this contradicts the assumption abouta. Thus,b is bad.

11.11.3 Given:R is weakly confluent andR−1 is well-founded.
To be proved:R is confluent.
Proof: SupposeaR∗b1 andaR∗b2. If a is not bad, there is nothing to be proved. Assume therefore thata is
bad. Then by 11.11.2 there is ana1 with aRa1 anda1 bad. Continuing like this we get an infinite sequence
a0, a1, a2, . . ., with a = a0, aiRai+1, with theai all bad. This gives a contradiction with the assumption thatR−1

is well-founded.

11.12 Given:∅ 6= X ⊆ N, there is anm ∈ N with for all n ∈ X (n 6 m).
To be proved: There is ak ∈ X such that for alln ∈ X (n 6 k).
Proof: We show by induction onm that the propertyE(m) holds, whereE(m) def⇐⇒ every non-emptyX ⊆ N
with ∀n ∈ X(n 6 m) has a maximum.
Basis:E(0) holds by the fact that the only non-emptyX ⊆ N with ∀n ∈ X (n 6 0) is the set{0}, and this set has
0 as a maximum.
Induction step: SupposeE(m) holds. Assume∅ 6= X ⊆ N and∀n ∈ X (n 6 m+1). We have to show thatX has
a maximum. Assumem+1 ∈ X. Thenm+1 is a maximum ofX. Assumem+1 /∈ X. Then∀n ∈ X (n 6 m).
By the induction hypothesis,X has a maximum.

11.13 Given:f : N → N with n < m ⇒ f(n) < f(m).
To be proved: for alln ∈ N: n 6 f(n).
Proof: induction onn.
Basis:0 6 f(0) holds by virtue of the fact that0 is the smallest member ofN.
Induction step: Assumen 6 f(n). We have to shown + 1 6 f(n + 1). Sincen < n + 1 we get from the
given aboutf thatf(n) < f(n + 1). Thereforef(n) + 1 6 f(n + 1). From the induction hypothesis we get that
n + 1 6 f(n) + 1. Combining these givesn + 1 6 f(n + 1).
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11.14 Leta0, a1, a2, . . . be an infinite sequence of natural numbers. We have to show that there arei, j with i < j
andai 6 aj . Suppose for a contradiction that for alli, j with i < j it holds thatai > aj . This gives a contradiction
with the well-foundedness of< onN.

11.15 Letn, m be arbitrary natural numbers. We will show that thatg(n, m) is the gcd ofn andm. Let a sequence
of natural number pairs(a0, b0), (a1, b1), (a2, b2), . . . be given by(n, m) = (a0, b0), if ai < bi thenai+1 = ai,
bi+1 = bi − ai, if ai > bi thenai+1 = bi, bi+1 = ai, and if ai = bi thenai+1 = ai, bi+1 = bi. Then it is
immediate from the properties ofg thatg(ai, bi) = g(n, m) for all i. Also, by the well-foundedness of< on N
there has to be aj with aj = bj . It follows, by the properties ofg, thatg(n, m) = aj .

It was shown in Section 8.2 that ifp < q thenp, q andp, q − p have the same common divisors. It is clear that
p is the greatest common divisor ofp, p. It follows thatg(n, m) = aj is the gcd ofn, m.

11.16 To be proved: Smullyan’s ball game terminates for any initial game situation of finitely many balls.
Proof: Assume the game goes on forever. LetBk be the contents of the box after thek-th move. Then the initial
situation from which you can play an infinite game isB0. Let n be the greatest number present on one of the balls
in B0. We derive⊥ by strong induction onn.
Basis: n = 0. In this case the contents of boxB0 consists of a finite number, saym, of balls carrying number
0. Now every movemustconsist of removal of one of the balls without replacement (for there are no balls with
smaller numbers available). Thus, the game ends afterm moves, and contradiction with the assumption that we
can go on forever.
Induction step: Assume that the game terminates for all situations where the greatest number on any ball inB0 is
6 n. Suppose that the greatest number on a ball inB0 is n+1. To show⊥, we use strong induction on the number
m of balls inB0 carrying the numbern + 1.

Basis:m = 1. There is a single ball carrying numbern + 1. The move that replaces this ball cannot
be postponed forever, for otherwise contradiction with the induction hypothesis forn. Thus, after a
finite number of steps, this ball gets replaced by a finite number of balls carrying smaller numbers.
The assumption that the game goes on forever after this leads to a contradiction with the induction
hypothesis forn.
Induction step: suppose the game terminates if there are up tom balls in B0 carrying numbern +
1. Then by the induction hypothesis form, after a finite number of moves the last ball carrying
numbern + 1 has to be replaced. The assumption that the game goes on forever after this leads to a
contradiction with the induction hypothesis forn.

Thus, we have proved that the game terminates for every initial situation.

11.17

ball :: Int -> [[Int]]

ball n = ballgame [n]

ballgame :: [Int] -> [[Int]]

ballgame xs | all (==1) xs = [xs]

| otherwise = xs : ballgame (reduce xs)

where

reduce (1 : ys) = 1 : reduce ys

reduce (n : ys) = (n-1) : (n-1) : ys

ball 50 or ballgame [50] takes centuries to terminate, for (as an easy induction argument shows) it will
produce a list of249 integer lists. Since210 ≈ 103 we get:

249 = 29 · 240 ≈ 29 · 1012 = 512 · 1012.



92 SOLUTIONS TO THE EXERCISES

512 billion (in American terminology: “512 trillion”) lists is a lot. If 1000 lists are being generated per second,
then this makes3600 · 24 · 365 · 103 = 864 · 365 · 105 = 31536 · 106 lists a year, which means that the computation
would go on for more than 160 centuries.

11.18 The argument is flawed, so there is no contradiction with common sense experience. The flaw is in the
sentence ‘chooser ∈ A − {p, q}’. This presupposes thatA − {p, q} is non-empty, an assumption not warranted
by what is given aboutA.

11.25 From the givenA ∼ B we know that there is a bijectiong : A → B. Let f be defined byf(x) := b if
x = a, f(x) := g(a) if x = g−1(b) (g−1(b) exists, sinceg is bijective), andf(x) := g(x) in all other cases. Then
f is a bijection, andf(a) = b.

11.26 Given:A ∼ B.
To be proved:℘(A) ∼ ℘(B).
Proof: Letf be a bijection that witnessesA ∼ B. Definef∗ : ℘(A) → ℘(B), by means off∗(X) := f [X]. We
show thatf∗ is a bijection. LetX 6= Y , e.g., suppose thata ∈ X, a /∈ Y . Thenf(a) ∈ f [X], f(a) /∈ f [Y ], so
f [X] 6= f [Y ]. Thusf∗(X) 6= f∗(Y ), which proves injectivity off∗. Next, take an arbitraryV ∈ ℘(B). Consider
the setX = f−1[V ], and observe thatf [X] = f [f−1[V ]] = V . Thus, there is anX ∈ ℘(A) with f∗(X) = V .
This proves surjectivity off∗.

11.27 The functionf : ℘(A) → {0, 1}A given byf(X) := charX , where charX : A → {0, 1} is given by
charX(a) := 1 iff a ∈ X (charX is the characteristic function ofX in A), is a bijection.

11.28.1 Given:A ∼ B.
To be proved: ifA hasn elements,then so hasB.
Proof: Letf : B → A be a bijection that witnessesA ∼ B. From the fact thatA hasn elements we get that there
is a bijectiong : A → {0, . . . , n − 1}. But theng ◦ f is a bijection betweenB and{0, . . . , n − 1}, which shows
thatB hasn elements.

11.28.2 Given:A ∼ B.
To be proved: ifA is finite, then so isB.
Proof: If A is finite then there is somen ∈ N such thatA hasn elements. By 11.28.1, in that caseB also hasn
elements, soB is finite.

11.28.3 Given:A ∼ B.
To be proved: ifA is infinite, then so isB.
Proof: follows by contraposition from ‘ifB is finite, then so isA’ (see 11.28.2).

11.29 Iff is a function, thenλx.(x, f(x)) is a bijection betweendom (f) andf . This establishesf ∼ dom (f).

11.30 LetR be an equivalence onA, and letV = A/R. LetX be the set of all partitions onV and letY be the set
of all equivalencesQ with R ⊆ Q. Consider the functionf : X → Y given by

f(B) = {(a, b) ∈ A2 | ∃B ∈ B : [a]R ∈ B ∧ [b]R ∈ B}.

Thenf is well-defined, for everyQ = f(B) is an equivalence withR ⊆ Q. The latter fact holds becauseaRb
implies[a]R = [b]R, together with the fact that∪B = V = A/R for any partitionB.

We have to show thatf is bijective. For injectivity, supposef(B) = f(B′) = Q. Let B ∈ B. ThenB 6= ∅, by
the fact thatB is a partition. Let[b]R ∈ B. Then by the definition off and the fact thatf(B′) = Q there is aB′ in
B′ with [b]R ∈ B′. SoB ⊂ B′. Let [a]R ∈ B′. ThenaQb, so[a]R ∈ B. Thus,B′ ⊆ B, and thereforeB = B′.
This showsB ⊆ B′. In a similar way we can show thatB′ ⊆ B. Therefore,B = B′, which clinches the argument
for injectivity of f . For surjectivity, letQ be an equivalence onA with Q ⊇ R. Then

B = {{[b]R | b ∈ [a]Q} | a ∈ A}
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is a partition ofA/R with f(B) = Q.

11.31 Letm,m ∈ N and supposen < m. We show that∀n < m {0, . . . , n− 1} 6∼ {0, . . . ,m− 1} by induction
onm.
Basis: Ifm = 0 there is non < m so the statement∀n < m {0, . . . , n− 1} 6∼ {0, . . . ,m− 1} trivially holds.
Induction step. Assume that∀n < m {0, . . . , n−1} 6∼ {0, . . . ,m−1}. We show that∀n < m+1 {0, . . . , n−1} 6∼
{0, . . . ,m}.
Suppose for a contradiction that for somen < m + 1 a bijectionf from {0, . . . , n− 1} to {0, . . . ,m} exists. We
may assume thatf(n − 1) = m (exercise 11.25). Thenf � {0, . . . , n − 2} is a bijection from{0, . . . , n − 2} to
{0, . . . ,m− 1}, and contradiction with the induction hypothesis.

11.32 LetX ⊆ N and assume that for somem ∈ N ∀n ∈ X(n < m). We show thatX is finite by establishing a
bijectionf betweenX and{0, . . . , n− 1}, for somen.
We first define a sequence of setsX0, . . . , Xn−1, as follows. IfX is empty then putn = 0. Otherwise, put
X = X0 andX1 = X0 − {minX0}, wheremin(X0) is the least element ofX0 that is guaranteed to exist by
Fact 11.4. In general, ifXi = 0, then putn = i, otherwise putXi+1 = Xi − {minXi}. This defines the
sequenceX0, . . . , Xn−1. For everyi, every non-emptyXi, minXi < m, son < m. The functionf given by
f(i) = minXi is a bijection between{0, . . . , n− 1} andX.

11.33 LetE be a property of sets such that

1. E(∅),

2. for every setA and every objectx 6∈ A: if E(A), then alsoE(A ∪ {x}).

DefineE′(n) as∀A (if A hasn elements thenE(A)). We show by induction onn that for alln ∈ N, E′(n). From
this it follows immediately thatE holds for any finite setA.
Basis:E′(0) states that ifA has0 elements thenE(A). This follows immediately fromE(∅).
Induction step: AssumeE′(n). We have to showE′(n + 1). Let A be an arbitrary set withn + 1 elements, and
let x ∈ A. ThenA − {x} hasn elements, so the induction hypothesis applies, and we getE(A − {x}). By the
second property ofE, we get fromE(A− {x}) andx /∈ A− {x} thatE(A). This establishesE′(n + 1).

11.34 We use 11.33. LetE(A) be the property ‘all subsets ofA are finite’. It is clear thatE(∅) holds, for∅ has∅ as
its only subset, and∅ is finite. Suppose that all subsets ofA are finite. Letx /∈ A. Then all subsets ofA ∪ {x} are
finite. For letB ⊆ A. Then by assumption{0, . . . , n− 1} ∼ B for somen. Sincex /∈ B, {0, . . . , n} ∼ B ∪ {x}.
This establishesE for every finiteA.

11.35 Again, we use 11.33. LetA be a finite set. We show that for every finite setB, A ∪ B is finite. LetE(B)
be the property ‘A ∪ B is finite’. ThenE(∅) follows from the fact thatA is finite. AssumeE(B). Let x /∈ B.
We have to show thatA ∪ B ∪ {x} is finite. If x ∈ A thenA ∪ B ∪ {x} = A ∪ B, which is finite by assumption
E(B) . If x /∈ A, then we get from assumptionE(B) that {0, . . . , n − 1} ∼ A ∪ B for somen. Therefore,
{0, . . . , n} ∼ A ∪B ∪ {x}, i.e.,A ∪B ∪ {x} is finite.

11.36 Leth be a finite injection withdom (h) ⊆ A andrng (h) ⊆ B. SupposeA ∼ B. We prove by induction on
the size ofh that a bijectionf : A → B exists withf ⊇ h. If h = ∅ then everyf fits the bill. Suppose that ifh
hasn elements, the property holds. Leth haven + 1 elements. Leth′ = h − {(a, b)}, for some pair(a, b) ∈ h.
Then by i.h. there is a bijectionf ′ : A → B with f ′ ⊇ h′. Let f ′−1(b) = a′. Thena′ /∈ dom (f ′) by injectivity of
f ′. Definef by means of:f(x) := f ′(x) for x 6= a, x 6= a′, f(a) := b, f(a′) := f ′(a). Thenf is a bijection and
f ⊇ h.
Note that the result does not extend to infinite injectionsh. Considerh = λn.2n on N. Thenh is injective,
dom (h) ⊆ N andrng (h) ⊆ N, but clearly there is no bijectionf onN that extendsh.

11.37 A proper subset of a finite set never is equipollent to that set. We prove by induction on the size ofB that if
A ⊆ B, A 6= B, B finite, thenA 6∼ B.
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Basis: IfB = ∅ the property holds since∅ has no proper subsets.
Induction step: Assume the property holds for setsB of sizen. Let B be a set with|B| = n + 1. Suppose, for a
contradiction, thatf : B → A is a bijection for someA ⊆ B, A 6= B. SinceA 6= B, there is ab ∈ B with b /∈ A.
Thenf(b) = a ∈ A. Consider the set of pairsf ′ = f − {(b, a)}. The functionf ′ is a bijection betweenB − {b}
andA − {a}. Also, A − {a} ⊆ B − {b}, by the fact thatf(b) = a andf is injective. Since|B − {b}| = n, this
gives a contradiction with the induction hypothesis.

11.38.1 LetA andB be finite sets andf : A → B a bijection. Defineh : A∩B → B by means ofh(x) = x. Then
h is a finite injection ofA ∩ B into B, so by Exercise 11.36 there is a bijectiong : A → B with g ⊇ h. Consider
g � A−B. It is easy to see that this is a bijection betweenA−B andB −A. This establishesA−B ∼ B −A.

11.38.2 LetA andB be finite sets andf : A → B a bijection. Then by the previous item there is a bijection
h : B−A → A−B. Defineg : A∪B → A∪B by means of:g(x) = f(x) if x ∈ A, g(x) = h(x) if x ∈ B−A.
Thenf ⊂ g andg is a bijection onA ∪B.

11.39 LetA be finite. LetE ⊆ ℘(A). Suppose∅ ∈ E, and assume∀B ∈ E∀a ∈ A : B ∪ {a} ∈ E. We prove by
induction on the size ofA thatA ∈ E.
Basis: if|A| = 0 then the claim follows from∅ ∈ E.
Induction step: Suppose the property holds for allA with |A| = n. LetA be a set with|A| = n+1. LetE ⊆ ℘(A)
with ∅ ∈ E and∀B ∈ E∀a ∈ A : B ∪ {a} ∈ E. Let x ∈ A. ConsiderE′ = {B − {x} | B ∈ E}. Then∅ ∈ E′,
∀B ∈ E′∀a ∈ A−{x} : B∪{a} ∈ E. Thus, by induction hypothesis,A−{x} ∈ E′. Therefore, by the definition
of E′, A ∈ E.
Conversely, supposeA infinite. Let E ⊆ ℘(A) be the collection of all finite subsets ofA. Then∅ ∈ E, and
∀B ∈ E∀a ∈ A : B ∪ {a} ∈ E. Still, A /∈ E, by the fact thatA is infinite.

11.43.1A � A since1A is an injection fromA to A.

11.43.2A ∼ B impliesA � B since every bijection is an injection.

11.43.3A � B ∧ B � C =⇒ A � C, since if there are injectionsf : A → B andg : B → C, theng◦f : A → C
also is an injection.

11.43.4A ⊆ B =⇒ A � B, sinceA ⊆ B implies that the functioni : A → B given byi(x) = x is an injection.

11.44 To show thatN � A implies thatA is infinite, we prove by induction onn that for all n ∈ N, N 6�
{0, . . . , n− 1}. From this we get immediately that for alln ∈ N, A 6∼ {0, . . . , n− 1}, i.e., thatA is infinite.
Basis:N 6� ∅. Obvious.
Inductions step: AssumeN 6� {0, . . . , , n − 1}. We have to showN 6� {0, . . . , n}. Suppose for a contradiction
that there is an injectionf : N → {0, . . . , , n}. Then an injectiong : N → {0, . . . , n} exists withg(0) = n (swap
the values off on 0 andf−1(n), if necessary). Defineh : N → {0, . . . , n − 1} by means ofh(k) = g(k + 1).
Thenh is an injection, and contradiction with the induction hypothesis.

11.45 Leth : A → A be an injection that is not surjective, and letb ∈ A − rng (f). Let f be given byf(0) = b
andf(n + 1) = h(f(n)). We prove by induction onn thatf(n) is different fromf(0), . . . ,f(n− 1).
Basis: trivially true.
Induction step. Assumef(n) is different fromf(0), . . . , f(n − 1). We have to show thatf(n + 1) is different
from f(0), . . . , f(n). By definition ofh, f(1) = h(f(0), . . . , f(n + 1) = h(f(n)). By induction hypothesis,
f(n) is different fromf(0), . . . , f(n− 1), so by injectivity ofh, f(n + 1) = h(f(n)) is different fromh(f(0)) =
f(1), . . . , h(f(n−1)) = f(n). By the fact thatb /∈ rng (f), f(n+1) = h(f(n)) 6= b, sof(n+1) is also different
from f(0).

11.46 LetN � A. Then there is an injectionf : N → A. Consider the functionh = f ◦ s, wheres is the successor
function onN. Thenh is inejective becauses andf are, andf(0) /∈ rng (h).
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11.47 LetA be infinite. Then (Thm 11.42)N � A. Thus (Ex 11.46) there is a non-surjective injectionh : A → A.
But thenA ∼ rng (h) 6= A, i.e.,A is equipollent with one of its proper subsets.
Conversely, letA be equipollent with one of its proper subsetsB. Then a bijectionf : A → B exists, soh : A → A
given byh(x) = f(x) is an injection that is not surjective. Thus (Ex 11.45),N � A, i.e.,A is infinite.

11.48 LetA be infinite, and letf : A → A. We show thatf is surjective ifff is injective.
⇒: SinceA is infinite there is ann ∈ N with A = {a0, . . . , an−1}. By surjectivity off , A = {f(a0), . . . , f(an−1)}.
Since this set hasn elements,i 6= j impliesf(ai) 6= f(aj), i.e.,f is injective.
⇐: Supposef : A → A is surjective but not injective. Then (Ex 11.45)N � A and therefore (Ex 11.44)
contradiction with the finiteness ofA.

11.50 LetB ⊆ A andA ∼ N. Then there is a bijectionf : A → N. Define an enumeration ofB as follows.b0 =
theb ∈ B such thatf(b) 6 f(a) for all a ∈ B, providedB is non-empty,bn+1 = theb ∈ B′ = B − {b0, . . . , bn}
such thatf(b) 6 f(a) for all a ∈ B′, providedB′ is non-empty. Then either there is ak with B = {b0, . . . , bk},
in which caseB is finite, or there is no suchk, in which caseB ∼ N.

11.51.1Z is countably infinite, forf : Z → N given byf(p) = 2p if p > 0 andf(p) = −(2p + 1) if p < 0 is a
bijection. This maps the non-negative integers to the even naturals, and the negative integers to the odd naturals.

11.51.2 LetA andB are both countably infinite. AssumeA ∩ B = ∅. Then there are bijectionsf : N → A and
g : N → B. Define a bijectionh : N → A ∪B by means ofh(2n) = f(n) andh(2n + 1) = g(n).

If A ∩ B 6= ∅, then putA′ = A − B andB′ = A ∩ B, and enumerateA′ ∪ B′, next enumerate the union of
A′ ∪B′ andC ′ = B −A.

11.54 Map the non-negative rationals to the even naturals, and the negative rationals to the odd naturals.

11.55 By repeated application of the enumeration procedureF2 for pairs we get enumerationsF3 of N3, F4 of N4,
and so on. To enumerateN∗, first take[], next use the functionf(k) = Fn(m), wherej(n, m) = k. Note thatj is
the function defined in Theorem 11.52. This generates the list

[[], [0], [1], [0, 0], [2], [0, 1], [0, 0, 0], [3], [1, 0], [0, 0, 1], [0, 0, 0, 0], [4], [0, 2], [1, 0, 0], [0, 0, 0, 1], . . .

which is the result of taking↙ slices from the following table, starting from the top left corner.

[0], [1], [2], [3], [4], [5], · · ·
[0, 0], [0, 1], [1, 0], [0, 2], [1, 1], [2, 0], · · ·
[0, 0, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 1], [2, 0, 0], · · ·
[0, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 1], [2, 0, 0, 0], · · ·
[0, 0, 0, 0, 0], · · ·

11.56 A union of countably infinitely many countably infinite sets is countably infinite, by an obvious variation on
the procedure of the previous exercise.

11.63.1 SinceA ∼ A, it is not the case that no bijection fromA to A exists. ThereforeA 6≺ A.

11.63.2A � B iff an injectionh : A → B exists iff either an injectionh : A → B exists whileA andB are not
equipollent, orA andB are equipollent, iffA ≺ B ∨A ∼ B.

11.63.3 SupposeA ≺ B andB ∼ C. Then an injectionh : A → B exists, but there is no bijection betweenA
andB. There is a bijectionf : B → C. Thusf ◦ h : A → C is an injection. Suppose for a contradiction that a
bijectiong : C → A exists. Theng ◦ f : B → A is a bijection, and contradiction withA 6∼ B. ThusA ≺ C.

11.63.4 The flaw in the argument is that the fact that a particular injectionf : A → B is not surjective does not
warrant the conclusion thatno functionf : A → B is a bijection.
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11.64 SupposeA is finite. Then there is ann ∈ N with A = {a0, . . . , an}, and thereforef : A → N given by
f(ai) = i is an injection. From Thm 11.24 (N 6∼ {0, . . . , n− 1}) it follows thatN 6∼ {a0, . . . , an}. Thus,A ≺ N.

11.65 The reals in the interval(0, 2
9 ] are exactly the numbers with decimal expansions0, r0r1r2 · · · with decimal

digits ri ∈ {0, 1, 2}. The proof of uncountability of(0, 2
9 ] can therefore proceed exactly as the proof for the

uncountability ofR, only with the decimal digits restricted to{0, 1, 2}.

11.66 LetA be a set, and leth : A → ℘(A) be given byh(a) = {a}. We show that{a ∈ A | a 6∈ h(a)} = ∅. For
suppose, to the contrary, thatb ∈ {a ∈ A | a 6∈ h(a)}. Thenb ∈ A andb /∈ h(b). Thus,b /∈ {b}, and therefore
b 6= b, and contradiction.

11.67 Clearly,N � {0, 1}N, for the functionh : N → {0, 1}N given by

h(k) = λn. if n = k then1 else0

is an injection. To see thatN 6∼ {0, 1}N, assume for a contradiction thatf : N → {0, 1}N is a bijection. Define a
fucntiong : N → {0, 1} by means ofg(i) = 0 if f(i)(i) = 1, = 1 otherwise. Theng /∈ rng (f), and contradiction
with the assumption thatf is a bijection.

11.68 Clearly,N � NN, for the functionh : N → NN given by

h(k) = λn. if n = k then1 else0

is an injection. To see thatN 6∼ NN, assume for a contradiction thatϕ : N → NN is a bijection. Define a function
f : N → N by means off(i) = k for somek ∈ N with k 6= ϕ(i)(i). Thenf /∈ rng (ϕ), and contradiction with
the assumption thatϕ is a bijection.

11.69 A surjectionh : N → Q exists. Now assume we produce a realr by the procedure from the proof of
Theorem 11.60. Then it follows immediately from the procedure thatr /∈ rng (h). Sinceh is surjective, this
means thatr /∈ Q.

11.74 LetA � B ⊆ A. Then there is an injectionh : A → B, andrng (h) ⊆ B ⊂ A. Let X0 = A − B, and
in general, letXn+1 = h[Xn]. Let X =

⋃
n∈N Xn. Define a functionf : A → B as follows. Ifa /∈ X then

f(a) = a, if a ∈ X thenf(a) = h(a). Verify thatf is a bijection. For injectivity, leta 6= b.

1. If a /∈ X, b /∈ X, thenf(a) = a 6= b = f(b).

2. If a ∈ X, b ∈ X, thenf(a) = h(a) 6= h(b) = f(b), by injectivity of h.

3. If a /∈ X, b ∈ X, thenf(a) = a 6= h(b) = f(b) by the fact thata /∈ X while h(b) ∈ X by definition ofX.

4. If a ∈ X, b /∈ X, thenf(a) = h(a) 6= b = f(b) by the fact thatb /∈ X while h(a) ∈ X by definition ofX.

For surjectivity, letb ∈ B. Thenb /∈ X0. If b /∈ X thenf(b) = b, otherwiseb ∈ Xk with k > 0, and therefore
there is ac ∈ Xk−1 with f(c) = h(c) = b.

11.75 LetA � B andB � A. Then there are injectionsh : A → B andg : B → A. Sof : B → rng (g)
given byf(b) = g(b) is a bijection, i.e.,B ∼ rng (g). Therefore,f ◦ h : A → rng (g) is an injection. Applying
Lemma 11.73 to the injectionf ◦h : A → rng (g) ⊆ A we get thatA ∼ rng (g), which, together withB ∼ rng (g)
givesA ∼ B.

11.76.1 By Cantor-Bernstein it is enough to give injectionsf : [0, 1] → [0, 2
3 ) andg : [0, 2

3 ) → [0, 1]. This is
easy. Letf = λx. 13x and letg = λx.x. This shows that a bijection between[0, 1] and[0, 2

3 ) must exist. For good
measure, we also give an explicit definition of such a bijection. LetG : [0, 1] → [0, 2

3 ] be the bijectionx 7→ 2
3x,

and letH : [0, 1] → [0, 1] be the injectionx 7→ 1
2x. Then letF : [0, 1] → [0, 2

3 ) be given byF (x) = G(x) for
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all x not of the form2−n · 2
3 , andF (x) = H ◦G(x) for all x of the form2−n · 2

3 . It is easily checked thatF is a
bijection.

11.76.2 By Cantor-Bernstein it is enough to give injectionsf : {(x, y) | x2 + y2 6 1} → {(x, y) | x2 + y2 < 1}
and g : {(x, y) | x2 + y2 < 1} → {(x, y) | x2 + y2 6 1}. This is easy: putf = λ(x, y).( 1

2x, 1
2y) and

g = λ(x, y).(x, y).

11.76.3 Again, Cantor-Bernstein makes this easy. Here is a functionf : {(x, y) | x2 + y2 6 1} → {(x, y) |
|x|, |y| < 1

2} that injects the disk{(x, y) | x2 + y2 6 1} into a disk within the square{(x, y) | |x|, |y| < 1
2}. Let

f = λ(x, y).( 1
2x, 1

2y). Since the square is already contained in the disk the functiong : {(x, y) | |x|, |y| < 1
2} →

{(x, y) | x2 + y2 6 1} given byg = λ(x, y).(x, y) is an injection.

11.77 LetA be finite or countably infinite. To show thatX = R − A is uncountable, suppose for a contradiction
thatf : N → X is a bijection. As in the proof of Theorem 11.60, everyf(n) can be written aspn + 0.rn

0 rn
2 rn

2 · · · ,
with pn ∈ Z andpn 6 f(n) < pn + 1. Define a real numberf = 0.r0r1r2 · · · by means of pickingrn different
from rn

n, rn 6= 0, rn 6= 9. Thenr is different from everyf(n), and contradiction with the fact thatf is a bijection.
The above does not yet show thatR andR − A are equipollent, for it does not exclude the possiblityN ≺

R−A ≺ R (we don’t assume Cantor’s continuum hypothesis).
To show thatR ∼ R − A, we need to establish an injection fromR into R − A. The result then follows from

R � R − A andR − A � R by Cantor-Bernstein. IfA = {a0, . . . , an−1}, thenR − A ∼ R − {p0, . . . , pn−1},
where thepi are different prime numbers. Define a functionh : R → R− {p0, . . . , pn−1} by puttingh(x) = x if
x is not of the formpk

i , with 0 6 i < n andk > 0, and lettingh(pk
i ) = pk+1

i . Thenh is an injection. Suppose
A ∼ N. To showR � R − A we will show thatR � R − P , whereP is the set of prime numbers. Since
P ∼ N ∼ A, this givesR � R− A. Define a functionh : R → R− P as follows. Leth(x) = x if x is not of the
form pn, with n > 0, and leth(pn) = pn+1. Thenh is an injection.

11.78(R−Q) ∼ R is a special case of(R−A) ∼ R, with A countably infinite: see previous exercise.

11.79 The functionpair is nothing but the functionj defined in Theorem 11.52. Here it is (to check that it is the
inverse ofnatpairs, you can usemap pair natpairs):

pair (n,m) = (n + m) * (n + m + 1) ‘div‘ 2 + n

11.79 First, we need code for enumeratingN2, N3, . . . , as lists:

natpairs2 = [(x, toInt z-x) | z <- [0..], x <- [0..z]]

natlist 0 = [ [n] | n <- [0..] ]

natlist k = [ n : (natlist (k-1) !! m) | (n,m) <- natpairs2 ]

Next,natstar can be defined in terms ofnatlist:

natstar = [] : [ natlist n !! m | (n,m) <- natpairs2 ]
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11.84.1 Unter the given assumptions we have:|A1 ∩ B1| = |A1| + |B1| = |A2| + |B2| = |A2 ∩ B2|. It follows
thatA1 ∩B1 ∼ A2 ∩B2.

11.84.2|A1 ×B1| = |A1| × |B1| = |A2| × |B2| = |A2 ×B2|. It follows thatA1 ×B1 ∼ A2 ×B2.

11.84.3 Letf : A1 → A2 andg : B1 → B2 be bijections. Establish a bijectionF : AB1
1 → AB2

2 as follows. For
ϕ : B1 → A1, let F (ϕ) be the functiong ◦ ϕ ◦ f−1. It is routine to check that this is a bijection. It follows that
A1

B1 ∼ A2
B2 .

11.85.1 Given:A1 � A2 andB1 � B2, A2 ∩ B2 = ∅. We show thatA1 ∪ B1 � A2 ∪ B2 by establishing an
injection. Letf : A1 → A2 andg : B1 → B2 be injections. Defineh : A1 ∪ B1 → A2 ∪ B2 by means of:
h(x) = f(x) if x /∈ B1, h(x) = g(x) if x ∈ B1. By the injectivity off, g and the fact thatA2 ∩B2 = ∅, this is an
injection.

11.85.2 Letf, g be as before. Defineh : A1 ×B1 → A2 ×B2 by means of:h(x, y) = (f(x), g(y)). Thenh is an
injection.

11.85.3 Letf : A1 → A2 be an injection. Thenh : ℘(A1) → ℘(A2) defined byh(X) = f [X] is an injection.

11.85.4 AssumeA2 6= ∅. Let a ∈ A2, let f : A1 → A2 andg : B1 → B2 be injections. Define a mapping
F : AB1

1 � AB2
2 as follows. Ifϕ : B1 → A2, thenF (ϕ) is the function inB2 → A2 given byF (ϕ)(x) =

g(ϕ(f−1(x))) if x ∈ rng (f), andF (ϕ)(x) = a otherwise. By injectivity off this is well-defined. We show
that F is an injection. Letϕ1, ϕ2 : B1 → A2 with ϕ1 6= ϕ2. We have to showF (ϕ1) 6= F (ϕ2). From
ϕ1 6= ϕ2 we get that there is ab ∈ B1 with ϕ1(b) 6= ϕ2(b). By the definition ofF , F (ϕ1(f(b))) = g(ϕ1(b)) and
F (ϕ2(f(b))) = g(ϕ2(b)), and by injectivity ofg we get fromϕ1(b) 6= ϕ2(b) thatF (ϕ1(f(b))) = g(ϕ1(b)) 6=
g(ϕ2(b)) = F (ϕ2(f(b))).

11.86.1∅ ≺ { 1
2}, but∅ ∪ N = N ∼ { 1

2} ∪ N.

11.86.2{0} ≺ {0, 1}, but{0} × N ∼ N ∼ Z ∼ {0, 1} × N.

11.86.3{0, 1} ≺ {0, 1, 2}, but{0, 1}N ∼ {0, 1, 2}N.

11.86.4{0} ≺ {0, 1}, butN{0} ∼ N ∼ N2 ∼ N{0,1}.

11.87.1 IfB ∩ C = ∅ then|B ∪ C| = |B|+ |C|, and therefore:

|AB∪C | = |A||B∪C| = |A||B|+|C| = |A||B| × |A||C| = |AB | × |AC | = |AB ×AC |.

11.87.2 Cardinal arithmetic:

|(A×B)C | = |A×B||C| = (|A| × |B|)|C| = |A||C| × |B||C|.

11.87.3 Note that a bijection between(AB)C andAC×B is provided by thecurry operation that linksf : C×B →
A to (curryf) : C → B → A. This gives(AB)C ∼ AC×B ∼ AB×C .

11.88.1 Clearly{0, 1}N � {0, . . . , n}N � NN � RN, so if we can showRN ∼ R we are done, for together
with {0, 1}N ∼ ℘(N) ∼ R this gives the desired result, by Cantor-Bernstein. ForRN ∼ R we can use cardinal
arithmetic:

|RN| = |R||N| = ℵ1
ℵ0 = (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 = |R|.

11.88.2 Clearly,
{0, 1}R � {0, . . . , n}R � NR � RR � (℘(R))R � (RR)R.
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It is therefore enough to show(RR)R ∼ {0, 1}R. Here is a proof by cardinal arithmetic:

|(RR)R| = (|R||R|)|R| = (ℵ1
ℵ1)ℵ1 = ℵ1

ℵ1×ℵ1 = ℵ1
ℵ1 = (2ℵ0)ℵ1 = 2ℵ0×ℵ1 = 2ℵ1 = |{0, 1}R|.

11.89.1 We show by induction onn thatℵ0
n = ℵ0 for all n > 0. Basis: clearly,ℵ0

1 = ℵ0. Induction step: suppose
ℵ0

n = ℵ0. Then:

ℵ0
n+1 = ℵ0 × ℵ0

n ih= ℵ0 × ℵ0 = ℵ0.

11.89.2 We show by induction onn thatℵ1
n = ℵ1 for all n > 0. Basis: clearly,ℵ1

1 = ℵ1. Induction step: suppose
ℵ1

n = ℵ1. Then:

ℵ1
n+1 = ℵ1 × ℵ1

n ih= ℵ1 × ℵ1 = ℵ1.

To showRN ∼ R, use cardinal arithmetic:

|RN| = |R||N| = ℵ1
ℵ0 = (2ℵ0)ℵ0 = 2ℵ0×ℵ0 = 2ℵ0 = ℵ1 = |R|.

11.90 Both sets have cardinalityℵ1.

11.91 IfA is infinite andB finite, then there aren, m ∈ N with |B| = n and|B−A| = m. Since(A−B)∩ (B−
A) = ∅ andA is infinite, we have:

|(A−B) ∪ (B −A)| = |A−B|+ |B −A| = (|A| − n) + m = |A|+ m = |A|.


