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SOLUTIONS TO THE EXERCISES



Important Advice to the Reader

This companion volume tdhe Haskell Road to Logic, Math and Programming will enable you to check

your solutions to the exercises. It should be used wisely. You should only turn to the solution of an exercise
after you have tried to solve the exercise on your own. What the following pagestjwovide is a shortcut to
understanding.

You don'’t expect to improve your swimming or iceskating skills by watching swimming or iceskating contests
on TV. If you want to learn how to swim you must be willing to get wet. If you want to learn how to skate, you
must venture on the ice skating ring and take the risk of falling. Likewise, you can’t expect to improve your skills
in reasoning or programming by watching others reason or program. Just reading through the following pages, to
watch how the authors reason and program, is next to useless. You have to tackle the problems yourself, at the risk
of making mistakes, only using the solutions as checks on your understanding.

We can make this advice still more specific. When learning skills in formal reasoning it is easy to deceive
yourself into thinking you have thought hard enough. Therefore, a honest attempt to solve a problem should
always includea written account of how far you gofrhus, if you find you cannot solve a problem, you should
have an attempted solution on paper. Your account should always end with “I can get this far, but then | am stuck
because ...” or “l follow the rules like on page ...of the book, but then I get the wrong answer because ...".
Proceeding like this, you will make very rapid progress. On the other hand, if you think you can disregard this
advice you might as well not bother with the book at all, for skills in formal reasoning and computation can only
be acquired by training, and without proper exercise you will never be any good at it.

You are completely free to do as you please, of course. Only don't tell anyone you haven't been warned.
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Solutions to the Exercises from Chapter 1

module Soll where

import GS

1.1 The precedences arebinds more strongly thanand/, and these in turn bind more strongly thaand-.
1.6. The type declaration fatem should run something like

rem :: Integer -> Integer -> Integer

In actual fact, the type is slightly more general than this.

1.7. If divides has typeInteger -> Integer -> Bool, this means thadivides takes an argument of type
Integer, and then produces a result of typeteger -> Bool. Thus,divides 5 indeed has this type. In
other wordsdivides 5 is itself a function that expects an argument of typgeger to give a result of type
Bool. Providing this argument creates a boolean expressiondieides 5 7 is of typeBool. This expression
evaluates t&alse, by the way, sincé is not a divisor ofr.

1.9
mxmInt :: [Int] -> Int
mxmInt [] = error "empty list"

mxmInt [x] = x
mxmInt (x:xs) = max x (mxmInt xs)

1.10
removeFst :: Eq a => a -> [a] -> [a]
removeFst x [] = []
removeFst x (y:ys) | x ==y = ys
| otherwise = y : (removeFst x ys)
1.13
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count :: Char -> String -> Int

count ¢ [] =0

count ¢ (x:xs8) | c==x 1 + (count c xs)
| otherwise = (count c¢ xs)

1.14

copy :: Int -> Char -> String
copy 0 c = [1]
copy n ¢ = c:(copy (n-1) c)

blowup :: String -> String
blowup xs = blowup’ xs 1

blowup’ :: String -> Int -> String
blowup’ [1 n = []
blowup’ (x:xs) n = (copy n x) ++ (blowup’ xs (n+1))

Haskell hackers may appreciate the following alternative. To understand the details, look up the cage for
take andrepeat in Prelude.hs

spread :: [a]l -> [al
spread xs = [ x | (n,y) <- zip [1..] xs , x <- take n (repeat y)]

1.15 The best way to approach this is to generatimeInt andsrtInt, and use these to implement a general
sorting algorithm based on insertion. In Haskell, types for which we can do size comparison are put in a so-called
type classthe type clasfrd. In Haskell, we can make this type class requirement part of the type declaration.

f :: Ord a => a means that is a type in clas®rd. £ :: Ord a => [a] -> a means that is a function

from lists overa to a objects, where is a type in clas8rd. In other wordsf picks an object from a list of things,

where the list contains objects that can be compared for size. That is the type we need for the generalized minimum
function.

mnm :: Ord a => [a] -> a
mnm [] = error "empty list"
mnm [x] = x

mnm (x:xs) = min x (mnm xs)

srt :: Ord a => [a] -> [a]
srt [1 = []

srt xs = m : (srt (removeFst m xs)) where m = mnm Xs

1.17



SOLUTIONS TO THE EXERCISES

substring :: String -> String -> Bool

substring [] ys = True

substring (x:xs) [] = False

substring (x:xs) (y:ys) = ((x==y) && (prefix xs ys))

|l (substring (x:xs) ys)

1.18

1.20

. [String] is an abbreviation of [Char]]. We have:

Prelude> :t ["Alan","Turing"]
["Alan","Turing"] :: [[Char]]

. (Bool,String) is an abbreviation ofBool, [Char]). We have:

Prelude> :t (True,"Turing")
(True,"Turing") :: (Bool, [Char])

. [(Bool,String)] is an abbreviation of (Bool, [Char])]. We have:

Prelude> :t [(True,"Turing")]
[(True,"Turing")] :: [(Bool, [Char])]

. ([Booll,String) is an abbreviation of [Bool], [Char]). We have:

Prelude> :t ([True],"Turing")
([Truel ,"Turing") :: ([Bool], [Char])

. Bool -> Bool is the type of the Haskell negation operator:

Prelude> :t not
not :: Bool -> Bool

lengths :: [[al]l -> [Int]
lengths = map length

1.21

sumLengths :: [[al]l -> Int
sumLengths lists = sum (map length lists)

Here is another way to express this, using for function composition:
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sumLengths :: [[al] -> Int
sumLengths = sum . lengths

1.24 The change makes no difference. The final argumémthe definition can be left out, for saying thiadp
is the function that results from applyingpf to primes1 is equivalent to saying thatp is the function that for
any argument does the same as whétdpf primes1) does for argument.



Solutions to the Exercises from Chapter 2

module Sol2 where

import GSWH
import TAMO

2.2
P Q| PaQ
t t f
t f t
fot t
f f f
2.4
P Q| PoQ | Pes@ | (Pe@)
t ot f t f
t f t f t
fot t f t
f f f t f
2.9
P Q| PaoQ | (Po)oqQ
t ot f t
t f t t
fot t f
f f f f
2.13
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tstla = not True <=> False

tstlb = not False <=> True

tst2 = logEquivl (\ p -> p ==> False) (\ p -> not p)
tst3a = logEquivl (\ p -> p || True) (const True)
tst3b = logEquivl (\ p -> p && False) (const False)
tstd4a = logEquivl (\ p -> p || False) id

tstdb = logEquivl (\ p -> p && True) id

tsts = logEquivl excluded_middle (const True)

tst6 = logEquivl (\ p -> p && not p) (const False)

The implementation usesccluded_middle; this is defined in Chapter 2 as a name for the funcéiorp -> p || not p).
const kis the function which gives valuefor any argument.

Note that the implementation akt4a andtst4b makes cleawhy P v 1 = PandP A T = P are called
laws of identity.

2.15

contradl :: (Bool -> Bool) -> Bool
contradl bf = not (bf True) && not (bf False)

contrad2 :: (Bool -> Bool -> Bool) -> Bool
contrad2 bf = and [not (bf p q) | p <- [True,False], q <- [True,False]l]

contrad3 :: (Bool -> Bool -> Bool -> Bool) -> Bool

contrad3 bf = and [ not (bf p q r) | p <~ [True,False],
q <~ [True,False],
r <- [True,False]]

2.16.1 The equation? + 1 = 0 has no solutions.~ —3z(z? + 1 =0).

2.16.2 There is a largest natural number: In(n € NAVm(m € N=m > n)).
2.16.3 The numbet3 is not prime. ~ Im(m e NA1 <mAm < 13 Am|13).
2.16.4 The numbet is not prime. ~ n € NAIm(m e NAL1<mAm < nAm|n).
2.16.5 There are only finitely many primes.»

Ip((peNA-TIm(m eNAL<mAmM<pAmlp))A
Vg((¢eNAg>p)=TIn(n e NAL <nAn<qAn|q))).

2.17 The statement < y < z is an abbreviation of < y Ay < z. The negation of thisn(z < y Ay < z), IS
equivalenttor >y Vy > z.

2.18.1(® & ¥) = (-P & V), for we have:

PV = (P=T)A(T=9)

(=¥ = =P) A (—P = —7)
(=® = V) A (-0 = D)
-® & 0.
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2.18.2(=® < U) = (¢ & V), for we have:

bV = (0= U)A (Y= d)
(¥ = ) A (7P = D)
= ((U=9)A(P=0)

= ¢& 0.

2.19% = V¥ is true iff ® and ¥ are equivalent iff> and¥ have the same truth value no matter what the truth values
are of their proposition letters ifb < W is logically valid.

2.21.1 Here is an example formula:

—h—hr—fr—FgU
—hr—P—hr—F@
'—c-—hr—o-r—rU,

2.21.2 A two-letter formula has a truth table with four rows. The value at every row can beteithirso there
are2* = 16 truth tables altogether.

2.21.3 and 4 To find a formula for a given four-row truth table, construct a formula that describes the table. In the
first item above, the description would ruP? A Q) vV (P A =Q) V (=P A =@Q). In this example, the formula
happens to be equivalent@=- P. Itis clear that the method of describing a truth table always works.

2.21.5 With 3-letter formulas, we get truth tables with= 8 rows, so there arg® different meanings to express,
but these again can be described in so-called disjunctive normal form. And so on: for formuladetiéts, there
are2(2") different truth tables, and any of these tables can be described by a formula in disjunctive normal form.

2.22 '‘Between every two rational numbers there is a third one.” Take two arbitrary rationaldth « < y. Then

zty 1y j i —B —m rty _ l(p 4 m) _ pntgm
r < ¥ <y. H¥isrational, for assume = L andy = 7. Then®% = (& + 1) = B0,

2.23.1 Structure tree fofz(Azx = (Bx = Cx)).

Vz(Az = (Bx = Cz))
Az = (Bx = Cx)
Az Bx = Cx

Bz Cx

2.23.2 Structure tree fatz(Ax A Bx).
Jxz(Ax A Bx)

Ax N Bx

Az Bz
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2.23.3 Structure tree fatz Az A JxBz.
JdzAx A Iz Bz

Jdz Az JdzBx

Az Bz

2.26.13z3y(x € Q Ay € Q A x < y). With restricted quantifiers this becomes:
JxeQIyeQ(z<y).

2.26.2Vz(x € R = Jy(y € R A x < y)). With restricted quantifiers this becomes:
Ve R3Iy eR (z <vy).

2.26.3Vz(x € Z = Im,n(m € NAn € NAz =m — n)). With restricted quantifiers this becomes:

Ve € Z3Im,n € N (x =m —n).

2.27.1¥x € Q3m,n € Z(n # 0 A x = m/n). Without restricted quantifiers this becomes:
Ve(x € Q= Im,n(me€ZAne€ZAn#0Axz=m/n)).
2.27.2Vx € FVy € D(Ozxzy = Bxy). Without restricted quantifiers this becomes:

Ve(Fx = Yy(Dy = (Oxy = Bzy))).

2.31.1 The equation? + 1 = 0 has a solution~+ 3Jx(z% + 1 = 0).
2.31.2 Alargest natural number does not exist —3n(n € NAVm(m € N=m < n)).
2.31.3 The numbel3 is prime (usel|n for ‘d dividesn’) ~»

—Im(m e NA1<mAm <13 Am|13).
2.31.4 The numbet is prime ~ ne€ NA-Im(m e NAL1<mAm <nAmn).
2.31.5 There are infinitely many primes-»

Vp(peN = Fg(¢eNAg>pA-Tn(neNAL<nAR<gAn|q))).

2.32 We assume that the domain of discussion consists of all human beings.
2.32.1 Everyone loved Diana-» VzLzd.

2.32.2 Diana loved everyone.» VxzLdzx.

2.32.3 Man is mortal. ~ Vz(Mxz = M'z).

2.32.4 Some birds do not fly~» 3Jx(Bxz A —~Fx).

2.33.1 Dogs that bark do not bit&for barking, B’ for biting). ~» Vz((Dz A Bz) = —B'z).
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2.32.2 All that glitters is not gold( for glitter, G’ for gold) ~ —Vz(Gz = G'z).
2.32.3 Friends of Diana’s friends are her friends: VaVy((Fzy A Fyd) = Fxd).

2.32.4 The limit of% asn approaches infinity is zero~»

1
Ve>OEInENVkEN(k>n$E<e).

2.34.1 Everyone loved Diana except Charles: Vz(—x = ¢ = Laxd).

2.34.2 Every man adores at least two women. Va(Mz = Jy3z(—z =y AWy AWz A Azy A Axz)).
2.34.3 No man is married to more than one woman. —3z(Max AJy3z(—z = yA\Wy AWz AMazy AMazz).
2.35.1 The King is not raging~ Jz(Kz AVy(Ky = = = y) A ~Rx).

2.35.2 The King is loved by all his subjects> Jz(Kz AVy(Ky = = = y) AVz(Sza = Lzx)).

2.36.13z € R(2? =5). ~ The equation:? = 5 has a real solution.

2.36.2vn € NIm € N(n <m). ~ There s no largest natural number.

2.36.3vn e N-3d e N(1 <d < (2" + 1) Ad|(2" +1)). ~» for all natural numbers it holds that2™ + 1 is
prime (a false statement, by the way; the smallest counterexanmipieHd).

2.36.4vn e Ndm e Nln <m A Vp e N(p <n V m < p)). ~ every natural number has an immediate
successor.

2.36.5Vc € RT3n € NYm > n(|la — an| <e). ~ the sequencey,ay,as, ... converges ta.
As a bonus, here is how to generate primes of the 2fm- 1 in Haskell (assuming you have the code for
prime loaded):

Sol2> [ 2°n + 1 | n <~ [0..], prime (2°n + 1) ]
[2,3,5,17,257,65537

And here is how to generate non-primes of that form:

S012> [ 2°n + 1 | n <= [0..], not (prime (2°n + 1)) ]
[9,33,65,129,513,1025,2049,4097,8193,16385,32769,131073,262145,524289, 1048577,
2097153,4194305,8388609,16777217,33554433,67108865,134217729,268435457,
536870913,1073741825,2147483649,4294967297,8589934593,17179869185,34359738369,
68719476737,137438953473,274877906945,549755813889,1099511627777,
2199023255553,4398046511105,8796093022209,17592186044417,35184372088833,
70368744177665,140737488355329{Interrupted!?}

2.37.a This is the case where the domaiN is- {0,1,2, ...}, and where the meaning & is <.
1. VaVy(zRy) expresses that every pair of natural numbers is in the ‘less than’ relation. This is false.

2. Vz3y(xRy) expresses that for every natural number there is a larger number. This is true.

3. JzVy(xRy) expresses that there is a natural number that is less than any natural number. This is false, for
no natural number is less than itself.
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4.

5.
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JxVy(x = y vV zRy) expresses that there is a natural number that is less than or equal to any natural number.
This is true, for the natural numberhas this property.

VzIy(zRy A —3z(zRz A zRy)) expresses that every natural number has an immediate successor. This
is true.

2.37.b This is the case where the domailis- {0, 1,2, ...}, and where the meaning & is >.

1.
2.
3.

4.

5.

VaVy(xRy) expresses that every pair of natural numbers is in the ‘greater than’ relation. This is false.
VaIy(zRy) expresses that for every natural number there is a smaller number. This is false.

JxVy(xRy) expresses that there is a natural number that is greater than any natural number. This is false,
for there is no largest natural number.

JxvVy(x = y vV zRy) expresses that there is a natural number that is greater than or equal to any natural
number. This is false.

Vzdy(zRy A =3z(zRz A zRy)) expresses that every natural number has an immediate predecessor. This
is false, for0 has no immediate predecessor.

2.37.c This is the case where the domaifpjsand where the meaning & is <.

1.

2
3.
4

VaVy(zRy) expresses that every pair of rational numbers is in the ‘less than’ relation. This is false.

(
. Va3y(zRy) expresses that for every rational number there is a larger number. This is true.
(

JzVy(xRy) expresses that there is a rational number that is less than any rational number. This is false.

. davy(z = y VvV zRy) expresses that there is a rational number that is less than or equal to any rational

number. This is false.

. Vzdy(zRy A —3z(zRz A zRy)) expresses that every rational number has an immediate successor. This

is false.

2.37.d This is the case where the domaik jand where the meaning oRy is % = .

1.
2.

5.

VaVy(zRy). This is false.

VaIy(zRy) expresses that every real number has a real square root. This is false, the square root of a
negative real number is not a real number.

JxVy(xRy) expresses that there is a real number that is a square root of every real number. This is false.

JxvVy(x =y V xRy) expresses that there is a real number that is equal to or is a square root of every real
number. This is false.

Vz3y(zRy A —3z(zRz A zRy)) expresses that for every real numbehere is ay with = = y* and for
all z with z = 22 it holds thatz # 2. This is false, fo) and1 are counterexamples.

2.37.e The case where the domain is the set of all human beings; meaftndather-of.

1.
2.
3.
4.

VaVy(zRy). Everyone is everyone’s father. This is false.

Va3y(zRy). Everyone is the father of a child. This is false.

JxVy(zRy). Somebody is everyone’s father. This is false (we are only talking about earthly matters here).
(

JzVy(z =y V zRy). Somebody is everyone’s self or father. False.
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5. Vz3y(zRy A —3z(zRz A zRy)). Everyone is the father of a child that does not have a sibling that is also
its father. False.

2.37.f This is the case whenRy means that: lovesy. As judgements tend to be subjective here, this is better
left to the imagination of the reader.

2.38.a This is the case where the domaiN iand the meaning dR. is <.

1. Vy(zRy) expresses the property of being smaller than any natural number. No natural number has this
property.

2. Jy(zRy) expresses the property of not being the largest natural number. Every natural number has this
property.

3. Yy(zRy) expresses that the property of being less than any natural number. No natural number has this
property.

4. Vy(x = y vV zRy) expresses that the property of being less than or equal to any natural number. The natural
numbero is the only natural number with this property.

5. Jy(zRy A —Jz(zRz A zRy)) expresses the property of having an immediate successor. Every natural
number has this property.

2.38.b,c,d,e,f: left to the reader.

2.39® = W is true iff ® and ¥ are true in the same structures iff whene®ds true in a structurey is true in that
structure as well and vice versa, #if= ¥ andW¥ = ® are true in any structure, ifp < ¥ is valid.

2.41.1-3x € R(2? = 5) can be expressed equivalentlysase R(z? # 5).
2.41.2-Yn € Nam € N(n < m) can be expressed equivalentlyzase NatVm € N(n > m).
241.3-Vn e N-3d e N(1 < d < (2" + 1) A d|(2™ + 1)) can be expressed equivalently as
¥Yn e NId e N(1 <d < (2" + 1) Ad|(2" + 1)).
2.41.4-Yn e NIm e N(n <m A Vp e N(p <n V m < p)) can be expressed equivalently as
IneNYmeNn=>mVIpeNp>nAm>p)).
2.41.5-Ve € RT3n € NVm > n(|a — a,| < €) can be expressed equivalently as
Je € R™Vn € NIm > n(la — an| > €).

2.46 -3z € A ®(x) is not equivalent tadz ¢ A ®(z). Take A to be the set of all computer scientists, and let
®(x) express that: is clever. It is certainly the case that there are clever people who are not computer scientists
(Fz ¢ A ®(x)), but this is quite different from the statement that no computer scientist is cleverq(A & (x)).

2.473x ¢ A =®(x) is not equivalent tax € A =®(z). ReadingA and® as above we get thatr ¢ A —-®(z)
amounts to “there are stupid people who are not computer scientists”, ihited —®(z) expresses “there are
stupid computer scientists”. Both true, but quite different truths.

2.50 “The sequencey, a1, as, . . . does not converge i@’ can be expressed formally as

360 > 0VnIm = n(la — am| = 9).

251
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unique :: (a -> Bool) -> [a] -> Bool
unique p xs = length (filter p xs) ==

2.52

parity :: [Bool] -> Bool
parity [] = True
parity (x:xs) = x /= (parity xs)

2.53

evenNR :: (a -> Bool) -> [a] -> Bool
evenNR p = parity . map p

The following works as well:

evenNR :: (a —-> Bool) -> [a] -> Bool
evenNR p xs = even (length (filter p xs))




Solutions to the Exercises from Chapter 3

module Sol3
where

import TUOLP

3.2Given:P = Q, P= (Q = R).
To be proved:P = R.
Proof:
SupposeP.
To be provedR.
Proof:
FromP = @ and P we getQ.
FromP = (Q = R) andP we getQ = R.
From@ = R and@ we getR.
ThusP = R.

3.4 Assume that, m € N.
To show: (nis odd A n is odd)= m + n is even.
Proof:
Assume thati: is odd A n is odd)
Forinstance;n =2p+1,n=2¢+ 1,p,q € N.
Thenm +n=2p+2¢+2=2(p+q+1)iseven.

3.5.1 To show: FronP < @ it follows that(P = R) < (Q = R).
Proof:
AssumeP < ()
SupposeP = R.
Assumeq).
Then from@, P & @, we getP, and fromP, P = R we getR.
Thus@ = R.
Suppos&) = R.
AssumeP.
Then fromP, P < @, we getQ, and from@, Q = R we getR.
ThusP = R.
Thus(P = R) & (Q = R).

17
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3.5.2 To show: FronP < @ it follows that(R = P) < (R = Q).
Proof:
AssumeP < @
SupposeR = P.
AssumeR.
Then fromR = P andR we getP, and fromP, P < @, we getQ.
ThusRk = Q.
SupposeRk = Q.
AssumeR.
Then fromR = @ and R we getQ, and fromQ, P < @, we getP.
Thusk = P.
Thus(R = P) & (R= Q).

3.7.1 Given:P = Q.
To show:—Q = —P.
Proof:
Assume-Q
AssumeP
Then fromP = @ and P we getQ, and contradiction with-Q).
Thus—-P.
Thus—-Q = —P.

3.7.2 Given:P < Q.
To show: =P < —(Q.
Proof:
Assume-P
If @ then fromP < @ and@ we getP, and contradiction. Thus@Q.
Thus—-P = -Q.
Assume-(Q
If P,thenfromP < @ andP we getQ, and contradiction. ThusP.
Thus—Q = —P.
Thus—-P & —Q.

3.9Given:(P = Q) = P.

To be proved:P.

Proof:
Assume-P.
If P = @, then from the givenP, and contradiction. Se(P = Q).
But thenP, and contradiction with assumptionP.

ThusP.

3.11.1 Given:A = BV C, B = —A.
To be provedA = C.
Proof:
Supposed.
To be provedC.
FromAandA = BV C,wegetBV C.
If B then from the giverB = —A we get—A, and contradiction. SeB.
From B v C and—B we getC, by the reasoning of 3.10.
ThusA = C.

3.11.2GivennAv B =CVD,C= A, B= -A
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To be provedB = D.
Proof:
AssumeB.
To be proved:D.
FromB, B = - A we get-A.
From—-A4 andC = A we get-C.
FromB we getA v B, and withAv B = C'V D we getC v D.
By the reasoning of 3.10, frofd vV D and—-C, we getD.
Thus,B = D.

3.15 Letn € N. To be proveddivision of n? by 4 gives remainde® or 1.

Proof:
Assumen even.

Thenn = 2m, son? = 4m?2, so division ofn? by 4 gives remainde.

Assumen odd.
Thenn = 2m + 1, son? = 4m? + 4m + 1 = 4(m? + m) + 1.
In this case, division ofi2 by 4 gives remaindet.

Thus division ofn? by 4 gives remainded or 1.

3.17 Left to the reader.

3.18 Given: FronT', P(c) it follows thatQ(c).
To be proved: Fronf' it follows thatVz(P(x) = Q(x)).
Proof:
Assumel’. Let ¢ be arbitrary.
SupposeP(c). Then from the given@(c).
Thus (deduction ruleP(c) = Q(c).
Thus § introduction)Va(P(x) = Q(x)).

3.25.1 Given¥z(P(z) = Q(x)), VzP(z).

To be provedVzQ(x).

Proof:
Let ¢ be arbitrary. Then fronvz P(z) we get thatP(c).
From the givervz(P(z) = Q(x)), we getP(c) = Q(c).
FromP(c) andP(c) = Q(c), we getQ(c).

Thus § introduction)vVzQ(x).

3.25.2 Given3z(P(z) = Q(x)), VzP(x).

To be proved3zQ(x).

Proof:
Suppose: is an object that satisfig(c) = Q(c).
From the givervx P(z) we get thatP(c).
FromP(c) andP(c) = Q(c), we getQ(c).

Thus3zQ(z).
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From3z(P(z) = Q(z)), 3zP(x) it doesnot follow that 3zQ(z). The snag is that i is an object that doesot

have property?, thenc trivially satisfiesP(c) = Q(c). But this situation is consistent withQ(c).

3.26 Given:vzJy(zRy), VaVy(2Ry = yRa), VaVyVz(zRy A yRz = 2Rz).

To be provedVz(zRx).
Proof:
Let ¢ be arbitrary. Then from the giverJy(zRy) we get3y(cRy).
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Letd be such thatRd. Then from this and the givercVy(zRy = yRx), we getdRc.
FromcRd, dRe, and the givezVyvz(zRy A yRz = zRz), we getcRe.
Thus § introduction)vVz(zRx).

3.27.1 Given¥aVyvz(zRy A yRz = zRz2), Ve—aRau.
To be provedvaVy(zRy = —yRxz).
Proof:

Let ¢, d be arbitrary objects such thaRd. We have to show thatdRc.
SupposelRc. Then fromcRd, dRc and the first givengRe.
Contradiction with the second given.

Thus—dRe.

ThusVaVy(zRy = —yRax).

3.27.2 Given¥aVy(zRy = —yRz).
To be proved¥Vz—-zRx.
Proof:
Let ¢ be arbitrary object. We have to show thatRc.
SupposeRc. Then with the given;-cRe, and contradiction. ThuscRe.
ThusVz—zRz.

3.27.3 Given¥aVy(zRy A x # y = —yRx).
To be proved¥zVy(zRy A yRax = x = y).
Proof:
Let c andd be arbitrary objects witaRd anddRc. We have to show that= d.
Suppose: # d. Then from thiscRd, and the given;»dRc¢, and contradiction. Thus= d.
ThusVzVy(zRy A yRx = x = y).

3.27.4 Given¥Vz—aRaz, VaVy(zRy = yRa),VaVyVz(zRy A yRz = 2Rz).
To be proved—3z3y(zRy).
Proof:
Supposelzdy(zRy), e.g.,cRd.
Then from this and the second giveiRc.
FromcRd anddRe, with the third givengcRe, and contradiction with the first given.
So—3JxJy(zRy).

3.28 Given:Vy3zVa P(x, y, 2).

To be proved¥VzVy3zP(z,y, z).

Proof:

Let ¢, d be arbitrary. We have to show thé&tP(c, d, z).
From the givengzvVaP(z, d, z).

Lete be such thatxzP(z,d,e). ThenP(c,d,e).
Thus3zP(c,d, z).

3.31.1 The equivalenc&&Vy®(z,y) = VyVad(z,y) andIzIyP(z,y) = JyIzP(z,y) are straightforward. As
an example, we prove thetVy®(z,y) = VyVzd(z,y).

Given: VaVy®(z,y).
To be proved¥yVz®(z,y)
Proof:
Lety be arbitrary. We have to show thét®(z, y).
Let z be arbitrary. We have to show tha{z, y).
This is immediate from the given.
Thereforevz®(x, y).
ThereforevyVa®(z,y).
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3.31.2 As an example, we prode—®(z) = —Vz®(x).

To be proved3z—®(x) = —~Vzd(x).
Proof:
Supposeélz—®(x). We have to show thatVzd(z).
Assumevz®(x). Then from the given, there is anwith =®(a).
From the assumptiof(a). Contradiction.
Therefore-Va®(z).
Thus3z—®(z) = ~Vzd(z).

3.31.3 As an example, we prove (®(z) A U(x)) = (Vad(z) A VaU(x)).

To be provedvz(®(x) A ¥(z)) = (Vz®(x) A VU (x)).
Proof:
= Assumevz(®(z) A U(x)).
We have to show thatz®(x) A Vo U(x).
Let z be arbitrary. Then from the assumptidr(z) A ¥(x). Thus®(z) and¥(z).
This proves/z®(z) andvVz ¥ (z). ThusVz®(x) A Ve ¥(z).
< Assumevz®(z) A VzU(x).
We have to show thatz(®(xz) A U(z)).
Let x be arbitrary. Then from the assumptidn(z) and ¥ (x). Thus®(z) A ¥(x).
This provesvz(®(x) A ¥(z)).

3.32
Restricted universal quantifier introduction:

Given: ...
To be provedvz € A O(z).
Proof:
What is to be proved is equivalent'ta(z € A = ®(x)).
Let x be arbitrary. We now have to prove that A = &(z).
Assumer € A.
To show: ®(z).
Proof: ...
ThusVz € A O(x).

Restricted universal quantifier elimination:

Given:Vz € A ®(z),t € A.

The first given is equivalent téz(x € A = &(x)).

So it follows that for any we have that € A = ®(¢).

Therefore, from the givengr € A ®(x), ¢t € A, it follows that®(¢).

Restricted existential quantifier introduction:
Given:t € Aand®(t). To be proveddz € AD(z).
Proof:

What is to be proved is equivalentfo:(z € A A ©(2)).
This follows from the givert € A and®(t).

Restricted existential quantifier elimination:

21
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Given: 3z € Ad(z).

To be proved:P.

Proof:

The given is equivalent t8z(z € A A ®(z)).
Suppose: is an object that satisfids € A A ®(c)).
So suppose € A is an object that satisfieB(c).
To be proved.P.
Proof: ...

ThusP.

3.34 To be provedA = {4n + 3 | n € N} contains infinitely many prime numbers.
Proof: A variation on Euclid’s proof of the infinity of primes works.
Assume that there are only finitely many prime numberg.in
l.e., assume thdtps, . . ., pi } is the set of all prime numbers i,
and consideN =4p; -+ -pr — 1 =4(p1---pr — 1) + 3.
If N is prime, we have a contradiction with the assumption, and the result follows.
Otherwise,N has a prime factog, different from all thep;.
This is because each of thedivides N with a remainder-1.
If ¢ has formdn + 3, then done, so suppogéias formdn + 1.
Since(4a + 1)(4b + 1) has the form(4c + 1), we know that% has formdn + 3.
Also, % has a prime factoy; .
After a finite number of steps this will yield a prime factgrof the form4n + 3,

with ¢; # p1, ..., Pk.

3.36 To be proved: ifi is composite, thef™ — 1 is composite as well.
Proof: Assume there atgb € Nwithn = ab. Letz =2° — 1 andy = 1 4 20 4+ 220 4 ... 4 2(a=1),
Thenzy = (2° — 1)(1 +2° + 220 4 ... 4 2(a=1b) =

2b + 22b Lo ¥ 2(0,71)17 + 2ab
- 1 = 2b _ 22b . _ 2(a71)b

Soxy = 2% — 1. In other wordszy = 2" — 1, and2™ — 1 is composite.

3.38
fasterprimes :: [Integer]
fasterprimes = 2 : sieve oddsFrom3
3.39
examples = [ take n primes | n <- [0..],

not (prime (product (take n primes) + 1)) ]

This generates:

([2,3,5,7,11,13],
[2,3,5,7,11,13,17],
[2,3,5,7,11,13,17,19],
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3.41 To be proved: For all € N: if 2" — 1 is prime, ther2”~1(2" — 1) is perfect.
Proof:
Letn € N, with 2" — 1 prime. Then the proper divisors pf~1(2" — 1) are

1,2,2%...,277h 2m —1,2(2" — 1),2%(2" — 1),...,2"72(2" — 1).

Observethat + (1 +2+2%2+ .- +2"71) =27 s0A=1+2+22+ ...+ 2" 1 =27 — 1.
Next, observe that

B=(2"—1)+2(2" 1) +222" = 1)+ - +2"22" = 1) = (1 +2+ 22+ --- £ 2" ) (2" — 1).

By the same observation as above, we seeltha@ + 22 + ... +27~2 = 27~ _ 1, Therefore, the sum of the
proper divisors o2"~1(2" — 1) equals

A+B = "=+ (1 +2+22 4+ +2"72)(2" - 1)
= 2"-D+ - -1)=2""12"-1),

which proves tha2”~1(2" — 1) is perfect.

3.42 We will prove that3, 5, 7) is the only prime triple.
Any prime triple different from(3, 5, 7) has the form(n,n 4+ 2,n + 4), with 3 fn.
There are two cases to consider.
Case 1. There is ane N with n = 3a + 1.
In this casen + 2 = 3a + 3 = 3(a + 1), son + 2 is not a prime.
Case 2. Thereis ane N with n = 3a + 2.
In this caser + 4 = 3a + 6 = 3(a + 2), son + 4 is not a prime.
In either case(n,n + 2,n + 4) is not a prime triple.

3.43 Any prime greater thahhas the forn8g+1 or3¢+2. If p = 3¢+1thenp?+2 = (3¢+1)72 = 9¢>+6¢+3 =
3(3¢%+2q+1), which means that? +2 is composite. Ip = 3¢+2thenp?+2 = (3¢+2)?+2 = 9¢°>+12¢+6 =
3(3¢® + 4q + 2), which means that® + 2 is composite in this case as well.
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Solutions to Exercises from Chapter 4

module Sol4
where
import STAL

import List
import SetEq

4.2 To be provedA D A.
Proof: same as the proof df C A.

TobeprovedAD BABDA— A=B.
Proof: notethad D BAB D A— A = BisequivalenttaB D ANAD B — A =B,
which is in turn equivalenttel C B A B C A = A = B, which is extensionality again.

TobeprovedAD BABDC = ADC.

This is equivalenttd3 C ANC C B= C C A,

which is in turn equivalentt6¢’ C BAB C A= C C A,
i.e., transitivity ofC, and same proof as before.

4.4 To be proved{{1, 2},{0},{2,1}} = {{0}, {1, 2}}.
Proof:
ci{1,2} € {{0}, {1, 2}}, {0} € {{0}, {1, 2}}, and{2,1} € {{0}, {1,2}},

since{1,2} = {2, 1} becausd1, 2} and{2, 1} have the same elements.

D: {0} € {{1,2},{0},{2,1}} and{1,2} € {{1,2},{0},{2,1}}.

4.7 Given:A is a set of sets.
Tobe proved{z € A |z & z} & A.
Proof:
LetB:={zx € A|x ¢z}, and assum® € A.
SupposeB € B. Then, from the definition oB, B ¢ B, and contradiction.
SupposeB ¢ B. Then, sinceB € AandB ¢ B, B € B, and contradiction again.
Therefore{z € A |z & x} € A.

4.8 If we check the type aflem, we find:elem :: Eq a => a -> [a] -> Bool. This means thatlem takes

an object of any type for which == is defined as first argument, a list over the same type as second argument,
and produces a truth value. Therefore, the first argumenlaf constrains the type of list that is needed for a

25
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second argument. Hlem is called withelem 1 1, thenthe second argumentis a numeral (an object of Blags
while the argument that is needed is a list argunieit The error message expresses that the type of the second
argument in the call does not match the type for the second argument that Haskell infers from thesiygpe of

4.10.1 To be provedfa} = {b} iff a = b.
Proof:
= Supposda} = {b}.
Then{a} and{b} have the same elements,se- b.
<: Suppose: = b.
ThenVz(z € {a} & x € {b}).
Therefore, by extensionalitya} = {b}.

4.10.2 To be proved{al,aQ} = {bl,bQ} iff a; = b1 Aas = by, 0ra; = by A ag = by.
Proof:
= Suppos€ay,as} = {b1,b2}.
We ShOWthatll =by ANay =by0Ora; = by Aas = b;.
Assume nota; = by A ag = bs).
To show:a; = by A ag = by.
The assumption is equivalentd # by V as # bs.
Case lua; # b;.
Then sincery € {b1, b2} (from the given)a, = bs.
Sinceb; € {a1, a2} (again from the giveny, = b;.

Case 2y # bs.
Sincebs € {a1, a2} (from the given)a; = bs.
Then sinceiy € {b1, b2} (from the given)as = b;.

This provesy; = ba A as = by.

<~ SUppOSQLl =b1 ANag = by, 0ra; = by A ag = by.
To show:{aj,as} = {b1,b2}.

C:
Supposer; = by A as = bs.
Thena1 € {bl, bg} anda2 € {bl, bg}, SO{CLl, CLQ} - {bl,bg}.
Supposer; = bs A as = by.
Thena1 S {bl,bQ} anda2 € {bl,bQ}, SO{CLl,CLQ} - {bhbg}.

Y

Supposer; = by A as = bs.
Thenb; € {(11,(12} andb, € {a1,a2}, SO{al,ag} D) {b17b2}.
Supposezl = by Nay = by.
Thenb; € {al,ag} andb, € {al,ag}, SO{al,ag} D) {bhbz}.

4.110 # {0}, for @ has no elements, whilgl} has one element, namely
{0} # {{0}}, for although botH ()} and{{(}} are singletons, the elements they contain are different, because,
as we have seefl,# {0}.

4.13 The type of the set difference operatois s — s — s. The type for the inclusion operataris s — s — t.
4.14

lLze{x| E(x)} =t

2. {z | E(x)} = s.

3. (AnB)CC =t
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4. (AUB)NC :: s.
5.Ve(x € A=z € B) :: t.
6. A=B : t.

7.a€c AsaeB it

4.17.1 To show thatl Z B iff A — B # (), we rewrite the two sides as logical formulas. EbxZ B, this gives
—Vz(x € A=z € B). ForA — B # (), this gives:3z(x € A Az ¢ B). That these two formulas are equivalent
can be seen from the quantifier rules in Chapter 2.

4.17.2 Compare the formula fefn B with thatforA— (A—B): € AAx € Bversust € AA—(xz € AAx ¢ B).
Formula—(x € ANz ¢ B)is equivalenttar ¢ AV 2 € B, and thisinturntaxr € A = x € B. Thus,
x€AN-(x € ANz ¢ B)isequivalenttoc € ANz € B.

4.19 With the distributivity law fon, we get that
(AUB)N(CUD)=((AUuB)NC)U((AUB)N D).
By N commutativity we get:
(AUB)NC)U((AUB)ND)=(CN(AUB))U(DnN(AUB)).
UsingN distributivity to rewriteC' N (AU B)) andD N (AU B), we get:
(CN(AUB)U(DNAUB))=(CNnAUCNBYUDNAU(DNB).

4.21 Immediate from the propositional validiti®sp @ = (PA-Q)V(QA—-P)andP&Q = (PVQ)A-(PAQ).
The truth table checks are left to the reader.

4.23 Given:X has at least two elements.

To be provedC on p(X) is not linear.

Proof:

We have to show that there a#e B € p(X) with A ¢ BandB ¢ A.

Leta, b be arbitrary elements of, with a # b (from the given).

DefineA := {a} andB := {b}.

ThenA, B € p(X). Because of: ¢ B, we haveAd ¢ B. Because 0b ¢ A, we haveB ¢ A.

4.26 The translation ohF C UG is:Vz(Vy(y e F = zr €y) = 2(z € GA T € 2)).

4.27 We show thatl = UF fits the bill.

Given: A = UF.
To be proved:F C p(A).
Proof:

Assume thafX is an arbitrary element of.
ThenX C UF,soX € p(A).
This establishe§ C p(A).

Given: A = UF.
To be proved: For all setB: if F C p(B) thenA C B.
Proof:

Let B be an arbitrary set.
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Supposer C p(B).
To show: A C B.
Letz be an arbitrary element of.
To show:x € B.
By the definition ofA we get fromz € A that there is atX € F with z € X.
By F C p(B), X C B. Thereforex € B.
Thus,A C B.

4.29
(A=A, forze (A o ¢ A=z e A
Xe=)forreXsrxeXnz¢ X &zel.
fe=X,forzeldeosreXnz¢dereX.
AUA =X, forre AUA s (zre ANz eX)V(z ¢ AnzeX) & reX.
AnAc=0forre ANA°sreANr ¢ As x el
ACB& BCC A forVa(zr e A= 2 € B) e Ve(x ¢ B=x ¢ A).
(AN B)¢ = A°U B¢, for:

x € (AN B)° —(x € AN B)

—~(r € ANz € B)
xr¢ AVe ¢ B
re AV e B¢
& xe AU BS

t -0

where again, the step) is justified by one of the De Morgan laws of propositional reasoning.

4.30.1p(0) = {0}, pp(0) = p({0}) = {0, {0}}, ppp(0) = p({0,{0}}) = {0, {0}, {{0}}, {0,{0}}}.

4.30.2 We see from the above that()| = 1, |p*(0)| = 2, |¢*(0)| = 4. Since the elements @f**!(()) are the
subsets op" (), we know thaip? ()| = 2* = 16, and|p° ()| = 2¢ = 65536.

4.30.3 Supposel hasn elements. Since the elementsggfd) are the subsets of, how many different subsets
doesA have? To fully determine an arbitrary subgebf A, we have to decide for each of theelements of4
whether to put it inB or not. There ar@™ possible ways of doing this. Thyg(A)| = 2.

4.31 This is true, for here is a proof.

Given: p(A) = p(B).

To be provedA = B.

Proof:

C: Letz € A. Then{x} € p(A), so by the given{z} € p(B), and thus: € B.
D: Letx € B. Then{z} € p(B), so by the given{z} € p(A4), and thust € A.

4.32.1 The proof poses no problem.
To be provedp(A N B) = p(A) N p(B).
Proof:
C:lLetX € o(ANB). ThenX C ANB,i.e, X C AandX C B.
It follows that X € p(A) andX € p(B), and thereforeX € p(A) N p(B).
DiletX € p(A)Np(B). ThenX € p(A) andX € p(B),i.e., X C AandX C B.
It follows thatX C AN B, and thereforeX € p(A N B).

4.32.2 During the proof attempt of the left to right inclusion (the gagé U B) C p(A) U p(B)) we get stuck,
for the assumption thaX' € p(A U B) does yield thatX C A U B, but from this we cannot draw the conclusion
thatX C Aor X C B.
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Indeed, look at the examplé = {1,2} andB = {2,3}. Then{1,3} C AuBbut{1,3} € A, and{1,3} ¢ B.
This provides a counterexampleggA U B) C p(A) U p(B). Note that the inclusion in the other direction still
holds, for the following proof works:

To be provedp(A U B) D p(A) U p(B).

Proof:

Let X € p(A) U p(B). ThenX € p(A)or X € p(B),i.e, X C AorX C B.
It follows that X C AU B, and thereforeX € p(AU B).

4.33.1 To be provedB N (U, Ai) = U (BN Ap).
Proof:
C: Assumer € BN (U, e Ai)-
To show:z € ([, (BN A;).
From the assumptlom; € B,andx € J;c; Ai
Thus,z € B and there is ain € I with z € A
Thus, thereisanc I withz € BN A;,i.e.,x € J;c; (BN A;).
2: Assumer € |J;; (BN A;)
Toshow:z € BN (U, Ai)-
From the assumption, there isaa I withx € BN A;.
Thus,r € B andx € A; for somei € 1.
Thereforer € B andx € (J,o; Ai. Thus,z € BN (U, e; Ai)-

4.33.2 To be provedB U ((;c; Ai) = ;e (B U Ap).
Proof:
C: Assumer € B U (¢ Ai)-
To show:z € ), (BU A4;).

From the assumptlom € Borz e

Thus,x € Borforalli € I x € A;.

Thus, for alli € I we haver € BU A;,i.e.,x € [;c;(BU 4;).
 Assumer € (), (BU A;)

Toshow:z € BU ([, Ai)-

From the assumption, for alle I we havexr € B U A;.

Thus,r € Borx € A; foralli e I.

Thereforer € Borx € (., A;. Thus,z € BU (N

ZGI

U

i€l )

4.33.3Given: Forall e I, A; C X.
To be proved{(|J;c; Ai)¢ = N;cs Af-
C: Assumer € (| J;c; Ai ) .
To show:z € (), AY
From the assumptlom € X andx ¢ |J,c; Ai. Thenthere is ne € I with z € A;.
Therefore, for alk e I it holds thatx € AS, i. e T € (V;er A
: Assumer € [, AS
To show:z € (U,¢; A )e.
From the assumption, it holds for @le I thatz € A,
Therefore, there is noec I with z € A;, i.e.,x ¢ ;o Ai. Thus,z € (U, ¢, Ai)°

U

4.33.4Given: Forall e I, A; C X.

To be proved{(;c; Ai)¢ = U,cs A§.

C: Assumer € (ﬂZEIA ) .
To show:z € (J;; Af
From the assumpnor:l; € X andx ¢ ();c; Ai- Thenthere is ane I with = ¢ A;.
Therefore, for someé € I it holds thatr € Af, i.e.,x € |J,.; Af.
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2: Assumer € J;¢; 45
To show:z € (N, Ai)°
From the assumption, it holds for sore I thatx € AS.
Therefore, there is ahc I with z ¢ A;,i.e.,x & (o, Ai. Thus,z € (), Ai)°.
4.34 To be proved: Any sequence of sdtg Ay, ... with p(A;11) C A; is finite.
Proof:
Assume there exists an infinite sequence of dgtsA;, ... withforalli € N, p(4,4+1) C A;.
Then we can show thai((); . 4i) € (;en Ai-
Indeed, letX € (), A:) be arbitrary.
ThenX C M,y Ai-
We show thatX € A, forall i € N,
Letk € N be arbitrary.
ThenX C Agq, and fromp(Axy1) C A, we getthatX € Ay.
It follows that B = (), .y A; has the property(53) C B, i.e., every subset dB is an element of3.
In particular, the subsdt: € B | « ¢ x} has to be an element &f.
This gives a contradiction with what was established in Exercise 4.7.

4.35 Given: a collectiolC of sets satisfying the conditiond € K(A =0 v 3B € K(A = p(B))).
To be proved: every element &f has the formp™((}) for somen € N.
Proof:
Let Ay € K be arbitrary.
From the previous exercise we know that any sequehicel;, ... with p(A;41) C A; is finite.
Applying this to the sequencéy, 44, ... wherep(A,,1) = A; we get from the condition oft,
this gives am € N, and a sequencéy, ..., A,,
with Vi < n p(A4;4+1) = A;, and for noB, p(B) C A,,.
In particularp(0) Z Ay, i.e.,0 ¢ A,.
FromA, € K andd ¢ A, we getA,, = (). ButthenAy = " ().

4.39 Left to the reader.

4.40 Given:A #0,B#(0,Ax B=B x A.
To be proved:A = B.
Proof:
C: Letx € A be arbitrary. Sincé3 # ) there is any € B,
and we can consider the pait, y) € A x B.
FromA x B = B x A, we gettha(z,y) € B x A, and therefore: € B.
D: Lety € B be arbitrary. Sincel # () there is av € A,
and we can consider the pdiy, z) € B x A.
FromA x B = B x A, we getthaly, z) € A x B, and thereforg € A.

The non-emptiness condition is necessary, fot ¥ § andB = {1}, thenA # B,butA x B=( = B x A.

4.41.1 Given{a, b} = {a, c}.

To be provedd = c.

Proof:

Suppose, for a contradiction, that c.

Assumea # b. Thenb € {a,b}, b ¢ {a,c}, forb # a andb # c.
Contradiction with the given.
Assumen = b. Thenc € {a,c}, ¢ ¢ {a,b} = {b}, forc # b.
Contradiction with the given.
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4.41.2 Given{{a}, {a,b}} = {{z}, {z,y}}.

To be provedu =z Ab=y.

Proof:
Case la = b. In this case{a} = {a, b}, so from the given{{a}} = {{z}, {z,y}}.
This gives{a} = {z}, and therefore = z, and{a} = {z, y}, and therefora = b = y.
Case 2a # b. Inthis case{a} # {a,b}, and{a, b} # {z}, for {a, b} is not a singleton.
Thus, from the given{a} = {z}, and therefore = z.
Also, from the given{a, b} = {z,y}, so from this andi = = we get thab = y.

4.43 To see how the Haskell implementation of list equality accomplishes that lists of different length are classified
as unequal, we distinguish two cases. In case there is a first positidth list; [n] # listz[n], the matter is clear:

at then-th comparison, a call téx:xs) == (y:ys) will yield False. Suppose therefore that we have two lists
listy, listo, with list; a proper prefix of list. In other words, list has lengthk, and for alli < &, list [i] = listy][d].

Then afterk comparison steps we are at the end of Jibut not at the end of list In other words, we now process

a call of the form[1 == (y:ys). This s the case that is covered by the catch-all phrase _ = False, soin

this case the test will yieldalse.

4.44 The definition could run like this:

L<K = |L|<|K|
V(L] = |K|
Az, xS, y,yS(L =z : XSAK =y :ysA(z <y V (z =y AXS<Y9)))).

Here is an implementation:

compare’ :: Ord a => [a] -> [a] -> Ordering

compare’ [] [1 = EQ

compare’ (x:xs) (y:ys) | length (x:xs) < length (y:ys) = LT
| length (x:xs) > length (y:ys) = GT
| otherwise = compare (x:xs) (y:ys)

And here is how it compares with the standard implementatiaronpare:

Main> compare [1,3] [1,2,3]
GT

Main> compare’ [1,3] [1,2,3]
LT

Main> compare [1,3] [1,2]
GT

Main> compare’ [1,3] [1,2]
GT

4.45 Wheninit is called with an empty list, we get an error message (for there is no equation to cover this case).
If init is called with a non-empty list, the list is returned minus its last element.

4.46 Sincereverse is predefined, we call our versiarverse’.

reverse’ :: [a] -> [a]
reverse’ [] = []
reverse’ (x:xs) = reverse’ xs ++ [x]
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4.47

splitList :: [a]l -> [([al,[al)]

splitlist [x,y] = [([x],[yD]
splitList (x:y:zs) = ([x],(y:2zs)): addLeft x (splitList (y:zs))
where addLeft u [] = []
addLeft u ((vs,ws):rest) = (u:vs,ws): addLeft u rest

A neater version results when we avail ourselves ofitiiefunction:

split :: [a] -> [([al,[al)]
split [x,y] = [([x],[y])]

split (x:y:zs) =
([x],(y:2zs)) : (map (\ (us,vs) -> ((x:us),vs)) (split (y:zs)))

4.48

[ y | (x,y) <- act, x == "Robert De Niro" || x == "Kevin Spacey"]

Q
[y
N

1]

4.49

q12 = nub ([ y | ("Quentin Tarantino",y) <- act, releaseP (y,"1994") ]
[ y | ("Quentin Tarantino",y) <- direct, releaseP (y,"1994") 1)

4.50

q1l3 = [ x | (x,y) <- release, y > "1997", not (actP ("William Hurt",x)) ]
451

difference :: Eq a => [a] -> [a] -> [al

difference xs [] = xs

difference xs (y:ys) = difference (delete y xs) ys

4.53
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genUnion :: Eq a => [[a]]l —-> [al

genUnion [] = []

genUnion [xs] = xs

genUnion (xs:xss) = union xs (genUnion xss)

genIntersect :: Eq a => [[a]]l —-> [a]

genIntersect [] = error "list of lists should be non-empty"
genIntersect [xs] = xs

genIntersect (xs:xss) = intersect xs (genIntersect xss)

4.54
unionSet :: (Eq a) => Set a -> Set a -> Set a
unionSet (Set [1) set2 = set2

unionSet (Set (x:xs)) set2 =
insertSet x (unionSet (Set xs) (deleteSet x set2))

intersectSet :: (Eq a) => Set a -> Set a -> Set a
intersectSet (Set [1) set2 = Set []
intersectSet (Set (x:xs)) set2
| inSet x set2 = insertSet x (intersectSet (Set xs) set2)
| otherwise = intersectSet (Set xs) set2

differenceSet :: (Eq a) => Set a -> Set a -> Set a
differenceSet setl (Set []) = setl
differenceSet setl (Set (y:ys)) =

differenceSet (deleteSet y setl) (Set ys)

4.55insertSet will now have to insert an item at the right position to keep the underlying list sorted. This can
be done in terms of an auxiliary functidasertList, as follows:

insertSet :: (0rd a) => a -> Set a -> Set a
insertSet x (Set s) = Set (insertList x s)

insertlist x [] = [x]

insertlist x ys@(y:ys’) = case compare x y of
GT -> y : insertlist x ys’
EQ -> ys

->x : ys

4.56 The only thing that is needed is a small patch in the funefimwSet, like this:
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showSet [] str = showString "O" str
showSet (x:xs) str = showChar ’’ ( shows x ( showl xs str))
where showl [] str = showChar ’’ str

showl (x:xs) str showChar ’,’ (shows x (showl xs str))

4.57.1 Assuming sett hasN elements, and a curly braces representation Withairs of braces. Then fgs(A)
you need:

1. one new pair of outermost braces,
2. for each of the” elements ofy(A) a pair of outermost braces,

3. each of theV elements of4 occurs in half of the elements of(A4), i.e., in2V~! elements ofo(A); for
these we need — 1 brace pairs (all brace pairs df, minus the outermost brace pair); all in all this gives
2N=1(P — 1) brace pairs.

Writing # for number of elements, aridor number of brace pairs, this gives:

Vo=10 #(Vo) =0 1(Vo) =1

Vi=p0) #(i)=1 (V1) =2

Va=*(0) #(V2) =2 §(V2) =4

Va=p*(0) #(V3) =4 4(Vs) =11

Vi=p*0) #(Vy) =16 #(Vy)) =1+16+8 x 10 =97

Vs =0°(0) #(V5) =2'9=65536 #(V5) =1+ 204 215 x 96 = 3211265

4.57.2 AssuméV is the number of elements df, and £ the number of occurrences @fn the standard represen-
tation of A. Thenp(A) has2V~1E + 1 occurrences df, since each element &f occurs in half of the elements of
p(A), and we need one extra occurrencd ébr the empty subset od. Writing b for the number of occurrences
of 0, this gives:

Vo=0 #(Vo) =0 b(Vo) =1

Vi=p0) #(h)=1 (V1) =1

Va=p*(0) #(V2) =2 b(V2) =2

Vs =p*(0) #(V3) =4 (V) =5

Vi=p*(0) #(Vy) =16 b(Vy) =8 x5+ 1 =41

Vs = 0°(0) #(Vs) =26 = 65536 b(Vs) = 2'5 x 41 + 1 = 1343489

4.57.3 The number of brace pairs in the standard representation equals the number of brace pairs in the representa-
tion wheref) appears a$} minus the number of occurrencesfbih the standard representation. Thus, the number
we need ig(V5) — b(Vs) = 3211265 — 1343489 = 1867776.



Solutions to Exercises from Chapter 5

module Solb
where
import SetOrd

import List
import REL

5.13 To be provedvz Vy 3R (zRy).

Proof:

Let ¢, d be arbitrary objects. Consider the $&t= {(c,d)}.
ThencRd. Thus, there is a relatioR with cRd.

5.17 Given:R C A2

To be provedVz—z Rz iff AxNR=10.

Proof:

only if: Suppose/z—xz Rx.
Assume(c,d) € Ay N R. Thenc =d, c € Aand(c,c) € R.
Contradiction withvz—z Rx.

if: SupposeA 4 N R = 0.
AssumecRe. Then, becaus® C A%, c € A.
Therefore(c,c) € Aa, s0(c,c) € Ay NR.
Contradiction withA 4 N R = 0.

5.19.1 Itis easy to prove thatrVy(x Ry < yRx) follows fromVzVy(z Ry = yRz), so that the two formulas are
equivalent.

5.19.2 Note thaz C R~ iff for arbitrary (c,d) € R it holds that(c,d) € R71, i.e., that(d,c) € R. This is
equivalent tovaVy(x Ry = yRx). Similarly, note that? = R~ is equivalent to72Vy(z Ry < yRz). Next, use
the previous item.

5.20 Given:VaVy(x Ry = —yRzx).
To be proved¥z—xRx.
Proof:
Let ¢ be an arbitrary object, and suppose, for a contradiction ctRat
Then from the givenycRce, and contradiction. ThuscRc.
ThereforevVz—x Rzx.

35
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5.22 Given:VaVy(x Ry = —yRx).

To be provedVzVy(zRy A yRx = = = y).
Proof:

Let ¢, d be arbitrary, and assunagid andd Rc.
Then contradiction with the given.

Thus, trivially,c = d.

5.23 This follows from the fact that the formulss, z € A(3y € A(xRy AyRz) = =zRz)andVz,y,z €
A(xRy NyRz) = xRz)are equivalent.

5.28 To show that every strict partial order is asymmetric one has to ptovg(«Ry = —yRax) (asymmetry)
from the givens/zVyVz (zRy A yRz = zRz) (transitivity) andvz—zRa (irreflexivity). You already did this, in
Exercise 3.27.1.

5.29 To show that every transitive and asymmetric relation is a strict partial order, we have to establish that from
VaVyVz(zRy A yRz = zRz) (transitivity) andvzvVy(zRy = —yRx) (asymmetry)Vz—zRz (irreflexivity)
can be proved. In fact, irreflexivity follows already from asymmetry, as you already proved in Exercise 3.27.2.

5.30 Here is the proof:
Given:Vx,y,z € A(xRy N yRz = zRz),Vax € A(—zRz).
To be proved:S = RU A 4 is a partial order (reflexive, transitive, antisymmetric).
Proof:
Reflexivity: immediate from the factthaty C RU A 4.
Transitivity: Assume for arbitrary, d, e € A thateSd anddSe.
We have to show thatSe.
If c =dandd = e, thenc = e, socSe.
If cRd andd = e, thencRe, socSe.
If ¢ = d anddRe, thencRe, socSe.
If cRd anddRe, thencRe by transitivity of R, socSe.
Antisymmetry: AssumeSd anddSc. We have to show = d.
Suppose: # d.
ThencRd anddRc, and by transitivity ofR, cRc. Contradiction with irreflexivity ofR.

5.31 Given:R is transitive, reflexive, and antisymmetric.
To be proved:R~! is transitive, reflexive, and antisymmetric.
Proof:
Transitivity: Assume:R~'d anddR~'e. TheneRd anddRc.
So by transitivity ofR, eRc, and thereforeR~'e.
Reflexivity: Assume:R~!c. ThencRc.
Antisymmetry: AssumeR~'d anddR~!c. ThencRd anddRc.
By antisymmetry ofR, ¢ = d.

5.32 Given:S C A? is reflexive and symmetric, for adl, b € A there is oneS-path connecting with b.
r € A, a < biff ais onthe path connectingwith b.

To be proved:

1. < is reflexive.

Proof: Letc € A be arbitrary. Then there is path. .., cfromr toc, soc < c.

2. < is antisymmetric.

Proof: Letc,d € A be arbitrary, and suppose< d andd < c.

Thenc is on the patlhr, . .., d, andd is on the path, ..., c.

Since the paths, ..., candr,...,d are unique, it follows that = d.

3. < is transitive.
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Proof: Letc, d,e € A be arbitrary, and suppose< d andd < e.

Thenc is on the patlr, ..., d, andd is on the patlr, ...  e.

Since paths are unique, it follows thais on the path, ..., e.

4. Forallae A, r <a.

Proof: Letc € A be arbitrary. Then there is a path fronto ¢, andr is on that path. So < c.
5. Foreverys € A, the setX, = {x € A | z < a} is finite and ifb, c € X, thenb < corc < b.

Proof: Leta € A be arbitrary. Then there is a single patk- a4,...,a, = a.
The setX, consists ofay,...,a,}, because for eaah on the pathuy, ..., a,
there is a single path from the rootdg, namely,r = aq, ..., a;.

Letb,c € X,. Thenb andc are on the same path= a4, ..., a, = a.

Thus,b, ¢ are among the; and we haveé < corc < b.

5.33
< | < | successor divisor | coprime
irreflexive N v/
reflexive v N4
asymmetric | / Vv
antisymmetric| / | / Vv Vv
symmetric Vv
transitive NARYA Vv
linear NARYA

Note that thecoprimerelation is not irreflexive, fot and1 are coprime.
5.35.1 We show thak U A 4 is the reflexive closure aR:

First we show thalz C R U A 4 and thatR U A 4 is reflexive.
Proof: the first is immediate, the second follows from the fact thatC RU A 4.
Next we show thak U A 4 is the smallest reflexive relation havirdgas a subset:
If R C S andS isreflexive,thenrRU A, C S.
Proof: LetS be such thafz C S andS is reflexive. Assuméc,d) € RU A 4.
We have to show thatSd.
From(c,d) € RUA 4 we getcRd or ¢ = d.
If cRdthenbyR C S, ¢Sd.
If ¢ = d then by reflexivity ofS, cSd.

5.35.2 We show thak U R~! is the symmetric closure dt.
To be provedR C RU R~' andR U R~! is symmetric.
Proof: both are immediate.
To be proved: IfR C S and.S is symmetric, thetRU R~ C S.
Proof: LetS be such thafz C S andS is symmetric. Assumée,d) € RU R™L,
We have to show thatSd.
From(c,d) € RU R~! we getcRd or dRc.
If cRdthen byR C S, ¢Sd.
If dRcthenbyR C S, dSe¢, and by symmetry of, ¢Sd.

5.36 From the transitivity of: C A? it does not follow that? U R~ U A 4 is transitive. Consided = {1,2, 3}
with R = {(1,2), (1,3)}. ThenR is transitive, but

RUR'UA, ={(1,1),(1,2),(1,3),(2,1),(2,2),(3,3),(3,1)}

is not, for(2,1) and(1, 3) are in it, but(2, 3) is not.
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5.38 The composition of the relation “father of” with itself gives the relation “paternal grandfather of”. The
composition of “brother of” and “parent of”, in that order, gives the relation “uncle of”. This gives an example
showing thatR o .S and.S o R may well be different: a brother of a parent of mine is an uncle, but a parent of my
brother is my own parent.

5.39R? = {(0,0),(0,3),(1,2),(1,3),(2,2),(2,3)}, R* = {(0,2),(0,3),(1,0), (1,3),(2,0),(2,3)} andR* =
{(0,0),(0,3),(1,2),(1,3),(2,2),(2,3)}. From these results we see ttfat) R? is a good candidate fo¥. And
indeed, if we put

5 =1{(0,0),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0),(2,2),(2,3)},

we getthatR U (So R) = S.

5.40.1 To be provedR is transitive iff R o R C R.
Proof:
Only If: SupposeR is transitive, and assumed are such thatR o Rd.
We have to show thatRd.
Fromc(R o R)d we get that there is anwith cRe andeRd.
But then transitivity ofR givescRd.
If: SupposeR o R C R, and assumeRd anddRe.
We have to show thatRe.
FromcRd anddRe, we getc(R o R)e, and becaus® o R C R this givescRe.

5.40.2 An example of a transitive relatidhfor which Ro R # R is < onN. We have that < 1, but—-0(<o<)1.

5.41.1 Tobe proved o (RoS)=(QoR)o S.

Proof:

C: Let(e,d) € Qo (Ro S). Then there is aa with cQe and(e,d) € Ro S.

Therefore, there is afiwith eRf and fSd.

It follows that(c, f) € Q o R, and(c,d) € (Qo R) o S.

: Let(c,d) € (Q o R) o S. Then there is aa with (c,e) € (Q o R) andeSd.
Therefore, there is afi with ¢Q f and f Re.
It follows that(f,d) € Ro S, and(c,d) € Qo (Ro S).

U

5.41.2 To be proved:Ro S)~! = S~to R7L

Proof:

C: Let(c,d) € (RoS)~t. Then(d,c) € Ro S, so there is am with dRe andeSc.
ThereforecS—te andeR~1d, and thugc,d) € S~1 o RL.

:Let(c,d) € S~' o R~L. Then there is an with cS~'e ande R~ 1d.
Thus,dRe andeSc. Therefore(d, c) € Ro S, and it follows that(c,d) € (Ro S)~ .

U

5.45 Given:R = {(n,n + 1) | n € N}.

To be proved Rt = <.

Proof:

C: Let(n,m) € RT. Thenthereis & € N, k > 0, with (n,m) € R*.
Applying the definition ofR we get thaty + &k = m, i.e.,n < m.

D: Letn <m. Thenthereis& € N, kK > 0, withn + k = m.
Thus,(n,m) € R¥, and thereforén, m) € R*.

5.46 Given:R C A2.
To be proved:R* = RT U A4 is the smallest transitive and reflexive relationthat includesk.
Proof:
First, we have to check th&* includesR, and is reflexive and transitive.
The first two of these are immediate from the definition.
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For transitivity, pick arbitrary:, d, e € A with cR*d anddR*e. We have to show thatR*e.
Putting R’ = A 4, we get that there ane, m > 0 with cR"d anddR™e.
Therefore there is & > 0 with cR”e, i.e.,c = e or cR*e.
Next, letR C S C A2, with S reflexive and transitive.
We have to show thak* C S.
Take an arbitrary pair, d with cR*d. Then there is & > 0 with cR*d.
If & = 0thenc = d, andcSd by reflexivity of S.
If £ > 0thenthere areq,...c,_1 WithcReq, ..., cp_1Rd.
By the fact thatk C S, ¢Sey, ..., cx—1.5d, and by transitivity ofS, c¢Sd.

547 1fR = {(n,n+1) | n € N}, thenR* =<.

5.48.1 Given: for eache I, R; C A2, with R; transitive.

To be proved|,.; R; is transitive.

Proof:
Let (¢, d), (d,e) € ,c; Ri- We have to show thdt, e) € ,.; Ri.
From(c,d), (d,e) € [;c; Ri we get thatR;d, dR;e forall i € 1.
Since eachR; is transitivecR;e for all i € I. Thus(c,e) € ;¢ Ri-

5.48.2 Given:lR C A%, Q =({S | R C S C A2, S transitive.

To be provedR* = Q.

Proof:

SinceA? is transitive {S | R C S C A2, S transitive; # 0.

Immediately from the definition of), we have tha? C Q.

Also, from 5.48.2 we get thd} is transitive.

Rt isincluded in each transitivé with R C S C A2, and therefor&Rt = Q.

5.49.1 To be proved:R*)~! = (R~1)*.
Proof:
C: Suppos€c, d) € (R*)~1. We have to show thdt, d) € (R~1)*.
From(c,d) € (R*)~* we get(d,c) € R*, so there is & > 0 with dRc.
Thus, there arey, ..., c,_1 With dRcy, ..., c_1Re.
ThereforecR™'ci_1, ...,ciR71d, i.e.,c(R~1)*d, and we see thdt, d) € (R™1)*,
: Supposéc,d) € (R~1)*. We have to show thdt, d) € (R*)~!.
From(c,d) € (R~1)* we get that there is & > 0 with ¢(R~1)¥d.
Thus, there arey, ..., c,_1 With cR ey, ..., cp_1 R™1d.
ThereforedRey_1, ...,c1 Re, i.e.,dRFc, sodR*c, and thus(c,d) € (R*)™1.

iel

J

5.49.2 To see thdRUR~1)* = R*UR~1* may be false, note thaRU R~1)* surely is transitive. If we can find a

case wherg?* U R~* is not transitive, we are done. For this, the example used in the solution to Exercise 5.36 may
serve again. Considet = {1,2,3} with R = {(1,2),(1,3)}. ThenR* = {(1,1),(1,2),(1,3),(2,2),(3,3)},

R™' ={(2,1),(3.1)},andR~** = {(1,1),(2,1),(2,2), (3,1),(3,2)}. The union ofR* and R~'* is not transi-

tive, for (2,1) and(1, 3) are in it, but(2, 3) is not.

5.49.3Given'So RC Ro S.
To be proved(R o S)* C R* o S*.
Proof:
Let (¢, d) be an arbitrary element ¢R2 o S)*. We have to show thdt, d) € R* o S*.
Since(c,d) € (Ro S)*, thereis @& > 0 with (c,d) € (Ro S)*.
Thus, there arey, ..., ci—1 With ¢(Ro S)eq, ..., cp—1(R o S)d.
So there ardy, ..., d; with cRd,, d1Scy, ...,ce_1Rdy, dpSd.
By what is given, we can replace any pattey, yRz by xRy, ySz.
After a finite number of such replacements we gét* o S*)d, i.e.,(c,d) € R* o S*.
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5.50
property reflexivity symmetry transitivity
preserved unden? yes yes yes
preserved undep? yes yes no
preserved under inverse? yes yes yes
preserved under complementto yes no
preserved under composition?yes no no

5.52 To definerestrictR, we need a version dintersectSet for sets as ordered lists:

intersectSet :: (Ord a) => Set a -> Set a -> Set a
intersectSet (Set []) set2 = Set []
intersectSet (Set (x:xs)) set2
| inSet x set2 = insertSet x (intersectSet (Set xs) set2)
| otherwise = intersectSet (Set xs) set2

Now computing the restriction of a relatiddito a setA is a matter of intersecting with A2 (the total relation on
A):

restrictR :: Ord a => Set a -> Rel a -> Rel a
restrictR set rel = intersectSet (totalR set) rel

Note that it is assumed that the lists used in the representations of set and relatinteszd

5.53

rclosR :: Ord a => Rel a -> Rel a
rclosR r = unionSet r (idR background)
where background = unionSet (domR r) (ranR r)

sclosR :: Ord a => Rel a -> Rel a
sclosR r = unionSet r (invR r)

5.54

tclosR :: Ord a => Rel a -> Rel a
tclosR r | transRr =r
| otherwise = tclosR (unionSet r (compR r r))

5.55
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inDegree :: (Eq a) => Rel a -> a -> Int
inDegree (Set r) =\ x -> length [y | (_,y) <-r, y ==x ]

outDegree :: (Eq a) => Rel a -> a -> Int
outDegree (Set r) = \ x -> length [y | (y,.) <~ r, y == x ]

5.56

sources :: (Eq a) => Rel a -> Set a

sources (Set r) = Set [ x | x <- union (map fst r) (map snd r),
inDegree (Set r) x == 0,
outDegree (Set r) x >= 1 ]

sinks :: (Eq a) => Rel a -> Set a

sinks (Set r) = Set [ x | x <~ union (map fst r) (map snd r),
outDegree (Set r) x == 0,
inDegree (Set r) x >= 1 ]

5.57 It is not hard to see that the successor relaioa {(n,m) € Z | n+ 1 = m} has the property that
SuS? £ S

successor :: Rel’ Int
successor = \ n m -> n+l ==

rel = unionR’ successor (repeatR’ [0..1000] successor 2)

We get:

REL> rel 1 3
True
REL> rel 1 4
False

This shows thatel is notthe less-than relation dt..1000].

5.58
transClosure’ :: [a] -> Rel’ a -> Rel’ a
transClosure’ xs r | transR’ xs r = r

| otherwise =
transClosure’ xs (unionR’ r (compR’ xs r r))

5.68 We have to check reflexivity, symmetry and transitivity, is reflexive forn | m — m. =, is symmetric, for
n | m — kiff n | k —m. For transitivity of=,,, assume: | m — k andn | k —p. Thenn | (m — k) + (k — p), i.e.,
n|m—op.
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5.71.1{(2,3), (3,5), (5,2) } is not reflexive orN, not symmetric, and not transitive.
5.71.2{(n,m) | In — m| > 3} is not reflexive orN, is symmetric, is not transitive.

5.72.1 Sinced = {1, 2, 3} has three elementd? has 9 elements. The number of relations/oequals the number
of different subsets afi2, so there ar@® = 512 relations onA.

5.72.2 An example of a relation ofhis that is reflexive, but neither symmetric nor transitive is

{(1,1),(1,2),(2,2),(2,3),(3,3)}.
Here is the check by computer:

REL> reflR (Set [1,2,3]) (Set [(1,1),(1,2),(2,2),(2,3),(3,3)])
True

REL> symR (Set [(1,1),(1,2),(2,2),(2,3),(3,3)])

False

REL> transR (Set [(1,1),(1,2),(2,2),(2,3),(3,3)1)

False

5.72.3 An example of a relation on d that is not reflexive, that is symmetric, and that is not transitive is
{(1,2),(2,1),(2,3),(3,2)}. Here is the check by computer:

REL> reflR (Set [1,2,3]) (Set [(1,2),(2,1),(2,3),(3,2)1)
False

REL> symR (Set [(1,2),(2,1),(2,3),(3,2)1)

True

REL> transR (Set [(1,2),(2,1),(2,3),(3,2)1)

False

5.72.4 Reflexive, symmetric, not transitivf(1, 1), (1,2), (2,1), (2,2), (2,3),(3,2), (3, 3)}. Reflexive, symmet-
ric, transitive: the total relation oAd. Reflexive not symmetric, transitivg1, 1), (1,2), (2,2), (3,3)}. Not reflex-
ive, symmetric, transitive: the empty relation dnNot reflexive, not symmetric, transitivé(1, 2), (2, 3), (1, 3)}.
Not reflexive, not symmetric, not transitivé(1, 2), (2, 3)}. The checks are left to the reader.

5.73
Al A2 ©(A?) reflexive symmetric | transitive | equivalence
0| O 1 1 1 1 1
1] 1 2 1 2 2 1
2| 4 16 4 8 13 —
319 512 20 = 64 20 = 64 — —
4 | 16 216 — 65536 212 — 4096 210 = 1024 — —
5 | 25 | 22° = 33554432 | 220 = 1048576 | 215 = 32768 — —
n | n 2(n?) gn(n—1) 2("5") _ _

The explanation for the formulzr(»~1) for the number of reflexive relations over a universeith » elements
is that any relation that contains all objects of the fdmr) is reflexive. Next, observe that? containsn(n — 1)
pairs (c, d) with ¢ # d. All of these pairs may or may not be part of a reflexive relation, so ther@ are )
different reflexive relations od. )

The explanation for the formula*=") for the number of symmetric relations over a universavith n
elements is that any pair of the for(n, ¢) can be in a symmetric relation, and there areuch pairs. Next,

if (c,d) with ¢ # d is in a symmetric relation, the(t, ) has to be in as well, and there afe(n — 1) sets
n2+4n
)

{(c,d), (d,c)} with ¢ # d. Allin all this givesn + in(n — 1) = ”Zﬂ objects to choose from, givingf =
different possibilities.
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5.75 Given:R C A2, R symmetric and transitivéfr € A3y € A(xRy).
To be proved:R is reflexive onA.
Proof:

Letc € A be arbitrary. We have to show thakc.

From3dy € A(cRy), letd € A be an object withkeRd.

FromcRd and symmetry oR?, dRc.

FromcRd, dRc and transitivity ofR, cRc.

5.76 Given:R C A2.
To be proved:R is an equivalence ifA , C RandR = Ro R™!.
Proof:
Only if: SupposeR is an equivalence. We have to shaw, € RandR = Ro R~
A4 C Ris immediate from the reflexivity oR.
Next we showR = Ro R!.
C: AssumecRd. Then by reflexivity ofR, cRc, and by symmetry oR, dRc, henced R~ c.
Thus(c,d) € Ro R
C: Assume(c,d) € Ro R~1. Then there is an with cRe ande R~ d.
FromeR~'d, dRe, and by symmetry oR, eRd. By transitivity of R, cRd.
If: SupposeA 4 C RandR = Ro R~!. We have to show thak is an equivalence.
Reflexivity of R is immediate from the fact that 4, C R.
Symmetry: supposeRd. ThendRd from reflexivity of R, anddR~'c from cRd.
Thus,(c,d) € Ro R~!,andcRd from R = Ro R~!,
Transitivity: supposeRd anddRe. TheneRd from symmetry ofR, sodR ™ 'e.
FromcRd anddR™ e, (¢,d) € Ro R™}, so fromR = Ro R™!, cRe.

5.84

rclass :: Rel’ a -> a -> [a] -> [al
rclass rxys=[y | y<-ys, rxy]l

5.87 Given:{4; | i € I'} is a partition of4, {B; | j € J} is a partition ofB.
To be proved{4; x B; | (i,j) € I x J} is a partition ofA x B.
Proof: we have to check the three properties of a partition.
0 ¢ {A: x By | (i.5) € I x J}:
Immediate from the fact that for nigj, A; = 0 or B; = 0.
\U{Ai x B; | (i,j) € I x J} = A x B:
Immediate from the fact thqt{A4; | i € I} = Aand|J{B, | j € J} = B.
ForallX,Y € {A; x B, | (i,j) e I x J}:if X #Y thenX NY = {:
LetX,Y € {4; x B, | (i,j) € I x J},with X #Y.
We show thatX N'Y = ().
Supposéa,b) € XNY. LetX = A, x B,andY = A, x B,.
Since(a,b) € X = A, x By, a € A, andb € B,.
Since(a,b) € Y = A, x Bs,a € A, andb € B,.
Since{4; | i € I} is a partition,A, N A, # () implies A4, = A,.
Since{B; | j € J} is a partition,B, N B, # () implies B, = B;.
Contradiction with the fact thaX # Y.

5.94R = {(n,m) | n,m € Nandn + m is even} induces the partitiof{2n | n € N}, {2n+ 1 | n € N} }.
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5.98 The relation
{(0,0),(0,3),(0,4), (1,1),(1,2),
(2,1),(2,2),(3,0),(3,3),(3,4),(4,0), (4,3),(4,4)}.

is an equivalence. The corresponding partition(ig, 3,4}, {1,2}}.

5.100.1 The equivalence d0, 1, 2, 3,4} that corresponds t§{0, 3}, {1,2,4}} is:

{(0,0),(0,3),(3,0),(3,3), (1,1),(1,2),(2,1),(2,2), (1,4), (2,4), (4,2), (4, 1), (4,4)}
5.100.2{(n,m) € Z* |[n=m =0V n x m > 0}.
5.100.3 (mod 2).
5.101 The example relatioR is an equivalence ofl, 2, 3,4, 5}. 2|z = {1,2,4}. A/R = {{1,2,4},{3,5}}.

5.103 Given:~ on p(N) defined by:A ~ B := (A — B)U (B — A) is finite.
To be proved:~ is symmetric and transitive.
Proof:
Symmetry: Assumel ~ B. Then(A — B) U (B — A) is finite.
Thus(B — A) U (A — B) isfinite, i.e.,B ~ A.
Transitivity: Assumed ~ B andB ~ C.
Then(A — B)U (B — A) and(B — C) U (C — B) are finite.
Since bothA — B andC — B are finite,(A — B) U (C — B) is finite.
SinceA — C C (A — B)U (C — B), we get thatd — C'is finite.
Similarly, bothB — A andC — B are finite, sd B — A) U (C' — B) is finite.
SinceC — A C (B — A)U (C — B), we get thatC — A is finite.
SinceA — C andC — A are finite,(A — C) U (C — A) is finite, i.e.,A ~ C.

5.104.1 The relatio® on all people given by Rb := a andb have a common ancestor is not transitive. Consider
a case of a mamwho has a half-brothérwho in turn has a half-sister « andb have the same father, but different
mothers, and andc have the same mother, but different fathers. Theandb have a common ancestor (their
father),b andc have a common ancestor (their mother), doandc need not have an ancestor in common.

5.104.2 The relatio$ defined by:aSb := a andb have a common ancestor along the male line is transitive, for
if a andb have a common ancesterlong the male line, anblandc have a common ancestgralong the male
line, thene is an ancestor of along the male line or vice versa, so in either casadc have an ancestor along
the male line in common.

5.106

bell :: Integer -> Integer

bell 0 =1
bell n = sum [stirling n k | k <- [1..n]]
stirling :: Integer -> Integer -> Integer

1
1
k * (stirling (n-1) k) + stirling (n-1) (k-1)

stirling n 1
stirling n k | n ==
| otherwise

5.107 The table can be computed with the Haskell code of the previous exercise:
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Al A2 ©(A?) equivalences
0| O 1 1
1)1 2 1

2| 4 16 2

3] 9 512 5

4 | 16 216 — 65536 15

5 | 25 | 22° = 33554432 52
n|n? 20) > i)

5.108 Given: For allX € A it holds thatX C A.
To be proved{ JA = AandforallX,Y € A:if X #Y thenXNY =1
iff for every a € A there exists exactly ong € A such that € K.
Proof:
Only if: Assumel JA = AandforallX,Y € A:if X #Y thenX NY =,
We show that for every € A there exists exactly onE € A such that € K.
Leta € A be arbitrary. SincgéJ A = A, there isanX € Awitha € X.
Assume there & € A,Y # X with ¢ € Y. Then contradiction witlX N Y = 0.
If: Assume for everys € A there exists exactly on& € A such that € K.
We first show that J A = A.
From the given| J A C A, so we only have to show C [ J A.
Leta € A be arbitrary, and le be the element ofl that has: € K.
Then froma € K € Awe geta € |[J A. ThusA C J A.
Next we show that for alK, Y € A: if X # Y thenX NY = (.
Let X, Y € A, with X #Y,andassume € X NY.
Then contradiction with the fact that there exists exactly Bhe A with a € K.

5.109 If R and.S are equivalencesd? N S is an equivalence as well, for reflexivity, symmetry and transitivity are

all preserved under intersection (see the table of Exercise 5.50). Since, according to that same table, transitivity
is not preserved under union, it should be possible to find relatfanS, with R and S transitive, butk U S

not transitive. E.g., consider the sét= {1,2,3}, and letkR = {(1,2)} andS = {(2,3)}. ThenR, S are

both transitive, but? U S is not, for the pair(1, 3) is lacking. To turn this into an example wheReand S are
equivalences, tak& = {(1,1),(1,2),(2,1),(2,2),(3,3)} andS = {(1,1),(2,2),(2,3),(3,2),(3,3)}. ThenR

andS are equivalences, but

RUS ={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)}

is not an equivalence, because of failure of transitivity.

5.110 Given:R andS are equivalences oA, R C S.
To be proved: Evenp-equivalence class is a union Bfequivalence classes.
Proof:
Letc € A be arbitrary, and considét|s.
We have to show that for all membei®f |c|s, |d|r C |c|s-
Let d be an arbitrary element ¢f|s, and lete € |d|z.
We show that € |c|s.
Frome € |d|r, we geteRd. FromeRd andR C S, eSd.
Fromd € |c|s, we getdSc. FromeSd anddSe, by transitivity ofS, eSec.
Thus,e € |¢|s.

5111
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listPartition :: Eq a => [a] -> [[al] -> Bool
listPartition xs xss =
all (‘elem‘ xs) (concat xss) && all (‘elem‘ (concat xss)) xs
&& listPartition’ xss []
where
listPartition’ [] _
listPartition’ ([]:xss) _
listPartition’ (xs:xss) domain
| intersect xs domain == []
| otherwise

= True
False

listPartition’ xss (union xs domain)
False

5.112

listpart2equiv :: Ord a => [a] -> [[a]] -> Rel a

listpart2equiv dom xss
| not (listPartition dom xss) = error "argument not a list partition"
| otherwise list2set (concat (map f xss))
where f xs = [(x,y) | x <- xs, y <= xs ]

5.113.1 IfR = {(0,3),(1,5),(2,0)}; A = {0,1,2,3,4,5}, then the smallest equivalenée> R on A is the
equivalence that corresponds to the partitjf, 2, 3}, {1,5}, {4} }. Thus, we have:

5 ={(0,0),(0,2),(0,3),(1,1),(1,5),(2,0),(2,2),(2,3),(3,0), (3,2), (3,3), (4,4), (5,1), (5,5)},
as you can check by meansIofstpart2equiv [[0, 2, 3],[1,5],[4]].

5.113.24/S = {{0,2,3},{1,5},{4}}.

5.113.3 The equivalences ohthat includeR correspond to all the ways of makirig2, 3 equivalent, and, 5
equivalent. There are 5 ways of doing this.

5.113.4 The corresponding partitions are

{{0,2,3},{1,5}, {4}},
{{07 27374}7 {]‘7 5}}7
{{0’ 273}’ {1747 5}})
{{07 1’ 27 37 5}7 {4}})
{{0,1,2,3,4,5}}.

5.114

equiv2listpart :: Ord a => Set a -> Rel a -> [[a]]
equiv2listpart s@(Set xs) r | not (equivalenceR s r) =
error "equiv2listpart: relation argument not an equivalence"

| otherwise =
genListpart r xs
where
genListpart r [] =[]

genListpart r (x:xs) = xclass : genListpart r (xs \\ xclass)
where xclass = x : [y | y <- xs, inSet (x,y) r ]
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5.115

equiv2part :: Ord a => Set a -> Rel a -> Set (Set a)
equiv2part s r = list2set (map list2set (equiv2listpart s r))

5.116 Given:R C A2
To be provedA 4 U (RU R~1)* is the smallest equivalence ehthat includesi.
Proof:
In the first placeA 4 U (RU R~1)* includesR, and is an equivalence:
The relation is reflexive becauge, is contained in it.
The relation is symmetric becauge R~ is symmetric.
The relation is transitive because it is a transitive closure.

Next, assumé is an equivalence oA that includesR.

We will show thatA 4 U (RUR™1)*T C S.

Let(c,d) € AxU(RUR™)T. We have to show thatSd.
From(c,d) € AAU(RUR )T, c=dor(c,d) € (RUR™HT.
If ¢ = d, then from reflexivity ofS, cSd.

Otherwise, there is A > 1 with (c,d) € (RU R™1)*.

Thus, there arey, .. ., ci_1 With cR1cy, ..., cL—1 Rid, where eaclR; is eitherR or R—1.
SinceR C S, we get from this thatS;ci, ...,cx_1S,d, Where eacls; is eitherS or S—1.
SinceS is symmetriceSey, ..., cx—1.5d, and from transitivity ofS we geteSd.

5.117.1 Given:R C A2

To be proved:S = R* N R~ is an equivalence oA.

Proof:

We have to show reflexivity, symmetry and transitivitity &f

Reflexivity: sinceAy C R*, A4 C R~ '*, A, CS.

Symmetry: SupposeSd. Then(c,d) € R* and(c,d) € R™'*.

Thus, there aré, 5 > 0 with cR'd andcR~'7d. ThereforedR~c anddR’c.
It follows that(d, ¢) € R* and(d, c) € R~*, sodSc.

Transitivity: SupposeSd anddSe. Then(c,d) € R*, (¢,d) € R~'*, (d,e) € R*, (d,e) € R™1*.
Thus, there aré, j, k, m with cR'd, cR~'d, dRFe, dR™'™e.
ThereforecR' e, cR~17+™¢, and thus:R*e, cR™*e. It follows thatcSe.

5.117.2 GivenR C A%, S = R* N R~'*, |a|sT|b|s := aR*b.

To be provedT is a partial order.

Proof:

We have to show reflexivity, anti-symmetry, and transitivity/of

Reflexivity: letc € A be arbitrary. We have to show|sT'|c|s.
This follows immediately fromz:R*c and the definition of .

Anti-symmetry: letc, d € A be objects withic|sT|d|s, |d|sT|c|s. We show|c|s = |d|s.
From|c|sT|d|s, cR*d, from|d|sT|c|s, dR*c, and thus:R~1*d.
SincecR*d andcR~'*d, ¢Sd, i.e.,c € |d|g, or in other words|c|s = |d|s.

Transitivity: ¢, d, e € A be objects withc|sT'|d|s, |d|sT|e|s. We showc|sT |e]s.
From|c|sT'|d|s, cR*d, from|d|sT|e|s, dR*e, and thus:R*e. It follows that|c|sT'|e|s.

5.119.1 The relation- onR given byp ~ ¢ := p x ¢ € Z is not an equivalence. E.g., reflexivity fails, for, e.g.,
Lyl forle¢z.
2 27 4
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5.119.2 The relationz on R given byp ~ ¢ := p — ¢ € Z is an equivalencex is reflexive, forp —p = 0 € Z,
sop ~ p for anyp € R. = is symmetric, for ifp — ¢ = m € Z, thenq — p = —m € Z. = is transitive, for if
p—qg=méeZandg—r =n € Z,thenp—r = (m—q) — (¢—n) = m+n € Z. The partition that corresponds
with ~ consists of the classes of real numbers that all are at integer distances from one anothes=E%y.and
me={m+m|meZ}.

5.120.1 Given: Relatiof® onR x R, with (z, y) R(u,v) iff 3z —y = 3u — v.

To be proved:R is an equivalence.

Proof: Reflexivity: Let(x,y) € R2. Then3x — y = 3z — vy, So(x,y)R(z,y).
Symmetry: Let(z,y), (u,v) € R?, and supposér, y) R(u, v).

Then3z —y = 3u — v, S03u — v = 3z — y, i.e., (u,v) R(z, y).

Transitivity: Let(z,y), (u,v), (p, ¢) € R?, and supposér, y) R(u,v) and(u,v)R(p, q).
Then3xz —y = 3u —vand3u —v =3p — ¢, S03z —y = 3p — q, i.e.,(x,y)R(p, q).

5.120.2 The equivalence class(0f 0) is the set of points on the real plane given{iy,y) | y = 3z}, i.e., the
straight line through the point§, 0) and(1, 3). The equivalence class ¢f, 1) is the set of points on the real plane
given by{(z,y) | y = 3z — 2}, i.e., the straight line through the poirits 1) and(2, 4).

5.120.3R partitionsR? in the set of all straight lines parallel to the line given by the equagien3z.

5.121 LetR be given by(z, y) R(u, v) := 2% + y? = u? + v2. Then every pointu, v) in the clasg(z, )] is on
the circle with centrg0, 0) and radius,/z2 + y2.

5.122.1 GivenQ = {(0,0), (0, 1), (0,5), (2,4), (5,0)},
Ris an equivalence of0,1,2,3,4,5},Q C R, (0,2) ¢ R.
To be proved(1,5) € Rand(4,5) ¢ R.
Proof:
Since@ C R andR transitive we geQ* C R. Thus,(1,5) € R.
Supposé4, 5) € R. SinceR is an equivalence witf2,4) € R and(5,0) € R, (2,0) € R.
By symmetry ofR, (0,2) € R, and contradiction with the given.

5.122.2 The patrtition corresponding to the smallest equivalen@es the partition induced bg)*. This is:

{{0,1,5},{2,4}, {3}}.

5.122.3 Any equivalencg with @ C S will have @* C S. Any equivalences with (0,2) ¢ S will induce at least
two equivalence classéd]s # [2]s. There are three possibilities altogether: pin a class of its own, put in a
class with0, or put3 in a class with2. The corresponding partitions are:

{{0,1,5},{2,4},{3}},{{0, 1, 3,5}, {2, 4}}, {{0, 1,5}, {2, 3,4} }.

5.123 To be proved: For every partitiohof a setd
there is an equivalence relatidghwith A/R = A.
Proof:
Let R be given byx Ry := 3X € Awithz,y € X.
We first show thaf? is an equivalence.
Reflexivity holds becaudg) A = A; symmetry is immediate from the definition &f
Transitivity: Letx Ry andyRz. We show that:Rz.
FromzRy: 3X € Awith z,y € X. FromyRz: 3Y € Awithy,z €Y.
Sincey € X NY andA is a partition,X =Y. Thus,z, z € X, and therefore:Rz.

Next,A/R = A, since[z] € A/R < {y | yRz} € A/R < {y | yRx} € A.
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5.124 To find a recurrence for the maximum number of enmities ardargpuntries, first observe that certainly,
E(1) = 1, for if there are just two countries, nothing prevents them being at war (the exercise is wonderfully
realistic). Next, given that we know thd(n) is the maximum number of enmities amo®g countries, how

many enmities can be added if we introduce one more pair of countries, &agb? Certainly,a andb can be

at war with each other. Alsa; can only have enemies among the old countries that have mutual peace treaties
(for the countries that have as common enemy are obliged to be at peace with each other). Similady for
Furthermore, the enemies @&mong the old countries have to sign peace treatiesiyéhd vice versa (this is to

avoid war-triangles). Thus, can be at war with at most old countries, and similarly fab. All in all, this gives

E(n+ 1) = E(n) + 2n + 1 possible enmities amorg(n + 1) countries. It is clear that this can be solved by
(n+1)2 = n? +2n + 1, and thatE(n) = n? gives the general solution. The minimal number of peace treaties
among2n countries equals the number of pairs of different countries minus the maximum number of enmities, and
is given byf(n) = 2n(2n — 1) — n? = 3n? — 2n. Forn = 10, this gives300 — 20 = 280 peace treaties at least.
5.125

coins :: [Int]
coins = [1,2,5,10,20,50,100,200]

change :: Int -> [Int]
change n = moneyback n (n,[]) where

moneyback n (m,xs) | m == 0 = xs
| n <= m & elem n coins = moneyback n (m-n,n:xs)
| otherwise = moneyback (n-1) (m,xs)

5.126

packCoins :: Int -> CmprPart -> CmprPart

packCoins k (m,xs) | k == 1 = (m,xs)
| k <= m && elem k coins = packCoins k (m-k,k:xs)
| otherwise packCoins (k-1) (m,xs)

nextCpartition :: CmprPart -> CmprPart
nextCpartition (k,(x:xs)) = packCoins (x-1) ((k+x),xs)

generateCps :: CmprPart -> [Part]

generateCps p@(n,[]) = [expand p]

generateCps p@(n, (x:xs))
| elem x coins = (expand p: generateCps (nextCpartition p))
| otherwise = generateCps (nextCpartition p)

partC :: Int -> [Part]

partCn | n < 1 = error "part: argument <= 0"
| n == = [[1]1]
| otherwise = generateCps (packCoins m (n-m, [m]))
where m = maxInt (filter (<= n) coins)
maxInt [] =0

maxInt (x:xs) = max x (maxInt xs)
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5.127

S0l15> length (partC 100)
4563



Solutions to Exercises from Chapter 6

module Sol6
where
import List

import SetOrd
import FCT

6.10

h’n=mnx* (n+ 1)

6.11

k> n =n"2

6.14.1Ris not a function.

6.14.1R~'is a function.dom (R™!) = {2,3,4} and raiR~*) = {0, 1}.

6.15.1f[A] = {f(z) | x € A} =ran(f[A).

6.15.2f[dom (f)] = f[X] = {f(x) | = € X} = ran().

6.15.3/~'(B] = {f"1(y) | y € B} = {z € X | f(y) € B} = dom (f N (X x B)).
6.15.4f [ran(f)] = f ' [{f(2) |z € X}] = {f7'(f(2)) | 2 € X} = X = dom (f).
6.155f14A = {(z, f(z)) |z € A} ={(z, f(x)) |z € A, f(x) eY} = fN(AXY).

6.16 f1{0,3} = {(0,3),(3,2)}, f[{1,2,3}] = {2,4}, f1[{2,4,5}] = {1, 2,3}. Here is the code for the checks:

51
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1.0 = [(0,3),(1,2),(2,4),(3,2)]

f_0 = list2fct 1_0

test_1 = fct2list (restrict f_0 [0,3]) [0,3]
test_2 = image f_0 [1,2,3]

test_3 = coImage £_0 [0,1,2,3] [2,4,5]

6.17Given:f : A—Y,g: B—Y,andAN B = .

To be provedifUg: AUB — Y.

Proof:

fUg=A{(a f(a)) [ac A} U{(b,g(b)) | b € B}.

To show that this is a function id U B — Y, we must show:
forall x € AU B there is precisely ong € Y with (f U g)(z) = y.
Letz € AU B. SinceA N B = (), there are two cases:

(i) z € A. Inthis cas€ f U g)(z) = f(x).

(i) « € B. Inthis casd f U g)(x) = g(z).

In caseA N B # 0, f U g is a function iff f{(A N B) = g|(A N B).

6.18 Given: A is a partition ofX . For every componem € A there is a functiorf, : A — Y.
To be proved{J c 4 fa: X — Y.

Proof:

Letg = UAeAfA'

We have to show that for any € X there is exactly ong € Y with g(z) = v.

Letx € X be arbitrary.

SinceA is a partition ofX, there is exactly onél € A with z € A.

Thusg(z) = fa(z).

Suppose there is@ # fa(z) with g(z) = ¢/'.

Sinceg(x) = fa(x), this contradicts the fact thgly is a function.

6.20.1aGivenf : X - Y, A B C X.

Tobe provedA C B = f[A] C f[B].

Proof: Lety € f[A]. We have to show that € f[B].
Fromy € f[A]: there is anc € A with f(x) = v.
FromA C Bandz € A: z € B.

Thus, there is an € B with f(z) =y, i.e.,y € f[B].

6.20.1bGivenyf : X - Y,C,D CY.

Tobe provedC C D = f~}C] C f~1[D)].

Proof: Suppos€ C D and assume € f~![C]. We have to show that € f~1[D].
Fromz € f~Y[C], f(z) € C. FromC C D andf(x) € C: f(x) € D.

Thus,z € f~1[D].

6.20.2aGivenf : X - Y, A, BC X.

To be proved;f[AU B] = f[A] U f[B].

Proof:

ye fIJAUB]iff 3z € AUB: f(z)=yiff Iz € A: f(x) =yordz e B: f(z) =y
iff y € f[A] ory € f[B]iff y € fIA]U f[B].
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6.20.2b Givenf : X — Y, A, B C X.

To be proved;f[AN B] C f[A] N f[B].

Proof:

Supposey € f[AN B]. We have to show that € f[A] N f[B].
Fromy € f[ANB]: 3z € AN Bwith f(z) =y

Sox € A: f(z)=y,andz € B : f(z) =

Thereforey € f[A] andy € f[B],i.e.,y € f[A] N f[B].

To see that the inclusion cannot be replaced by an equality, consider the fuficti¢f, 1,2} — {0,1} given

by f(0) = 0, f(1) = 0, f(2) = 1. For thisf we havef[{0,2}] = f[{1,2}] = {0,1} # f[{0,2} Nn{1,2}] =

fl{2}] = {1}. Here is an implementation:

1.1 = [(0,0),(1,0),(2,1)]
f_1 = list2fct 1_1
We get:
Sol6> image f_1 [0,2]
(0,1]
Sol6> image f_1 [1,2]
[0,1]
Sol6> image f_1 (intersect [0,2] [1,2])
(1]

6.20.3aGivenf : X - Y,C,DCY.
To be proved;f ~}[C U D] = f~[C]uU f~[D].

Proof:

fofl[CUD}iffElyECUDWith:c— L(y)

iff 3y € Cwithz = f~ ()OrHyEDWIthx:f 1()
iff z€ f7L[Clorz € f~YD],iff z € f7L[CJuU f[D].

6.20.3bGivenif : X - Y,C,DCY.

To be proved;f ~}[C N D] = f~[C] n f~[D].

Proof:

r € fHonD]iff ye CnDwithe = f~1(y)

iff 3y € C withx = f~1(y) and3y € D with z = f~1(y),
iff 2 € f~'[C]andz € f-1[D), iff x € f~1C]N f[D].

6.20.4aGivenf : X - Y,CCY.

To be proved:f[f~'[C]] C C.

Proof: Suppose € f[f1[C]]. We have to show that € C.
Fromy € f[f~1[C]], thereis anr € f~1[C] with f(z) =
Fromz € f~1[C], we getf(z) € C, and therefore € C.

To see that the inclusion cannot be replaced by an equality, consider again the fyhttianwe used above
(implemented a$_1), but now with co-domaif0, 1, 2}. LettingC = {0, 1,2}, we get:

Sol6> coIlmage f_1 [0,1,2] [0,1,2]
0,1,2]

Sol6> image f_1 [0,1,2]

[0,1]
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6.20.4b Givenyf : X - Y, AC X.

To be proved;f ~[f[A]] D A.

Proof: Suppose € A. We have to show that € f~1[f[A]].
Fromz € A and what is given aboyt, we getf(z) € f[A].
From f(z) € f[A] we getf~'(f(z)) € £~ [f[A]].
Sincef~!(f(x)) = x this means: € f~1[f[A]].

To see that the inclusion cannot be replaced by an equality, look at this:

Sol6> coImage f_1 [0,1,2] (image f_1 [0,2])
[0,1,2]

6.23

bijective :: Eq b => (a -> b) -> [a] -> [b] -> Bool
bijective f xs ys = injective f xs && surjective f xs ys

6.24

injectivePairs :: (Eq a, Eq b) => [(a,b)] -> [a]l] -> Bool
injectivePairs f xs = injective (list2fct f) xs

surjectivePairs :: (Eq a, Eq b) => [(a,b)] -> [a] -> [b] -> Bool
surjectivePairs f xs ys = surjective (list2fct f) xs ys

bijectivePairs :: (Eq a, Eq b) => [(a,b)] -> [a] -> [b] -> Bool
bijectivePairs f xs ys = bijective (list2fct f) xs ys

6.25
1. sin : R — R is not injective, forsin(0) = sin(), and not surjective, for, e.@, is not in the range.
2. sin : R — [—1,+1] is not injective, but is surjective.
3. sin: [-1,+1] — [—1, +1] is both injective and surjective.
4. ¢* : R — R is injective, but not surjective (for the values are always positive).
5. tan : R — Ris not injective, fortan(0) = tan(w), but is surjective.
6. log : Rt — R is injective and surjective.
7. v/ : Rt — RT isinjective and surjective.

6.26 Letf : A — B be an injection, and suppo&é¢| = n and|B| = k. ThenA = {ay,...,a,}, and there aré
possible choices fof (a1 ), k — 1 possible choices fat,, ...,k — n + 1 possible choices fat,,. Thus, all in all,
there arés(k — 1) --- (k —n + 1) suchy.

6.27
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injs :: [Int] -> [Int] -> [[(Int,Int)]]
injs [1 xs = [[]]
injs xs [1 = []
injs (x:xs) ys =
concat [ map ((x,y):) (injs xs (ys \\ [y1)) | y <- ys 1]

6.28

perms :: [al -> [[all]
perms [1 = [[1]
perms (x:xs) = concat (map (insrt x) (perms xs))
where
insrt :: a -> [a] -> [[al]
insrt x [ = [[x]]
insrt x (y:ys) = (x:y:ys) : map (y:) (insrt x ys)

6.32

comp :: Eq b => [(b,c)] -> [(a,b)] -> [(a,c)]
comp g £ = [ (x,list2fct g y) | (x,y) <= £ ]

6.37 Letf : {0} — {0,1} be given byf = {(0,0)}. Thenf is not surjective. Ley : {0,1} — {0} be given by
g ={(0,0),(1,0)}. Theng is not injective. Still,g o f = {(0,0} is a bijection.
Here is the computational check:

S016> comp [(0,0),(1,00] [(0,0)]
[(0,0)]

6.38.1 We can useomp to find the values:

Sol6> comp [(0,1),(1,2),(2,0),(3,0),(4,3)] [(0,1),(1,2),(2,0),(3,0),(4,3)]
[(0,2),(1,0),(2,1),(3,1),(4,0)]
Sol6> comp [(0,1),(1,2),(2,0),(3,0),(4,3)] [(0,2),(1,0),(2,1),(3,1),(4,0)]
[(0,0),(1,1),(2,2),(3,2),(4,1)]
So0l6> comp [(0,1),(1,2),(2,0),(3,0),(4,3)] [(0,0),(1,1),(2,2),(3,2),(4,1)]
[(0,1),(1,2),(2,0),(3,0),(4,2)]

This gives the following table:

x 0 1 2 3 4
7z 1 2 0 0 3
) |2 0 1 1 0
/D@ [0 1 2 2 1
(ffH@) 1 2 0 0 2

6.38.2 Thesetf, fo f,fo fof,...} has 4 elements.
6.38.3 Takg = {(0,1), (1,0),(2,3),(3,4), (4,2)}. Then we get:
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So0l16> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,1),(1,0),(2,3),(3,4),(4,2)]
[(0,0),(1,1),(2,4),(3,2),(4,3)]
S016> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,0),(1,1),(2,4),(3,2),(4,3)]
[¢0,1),(1,0),(2,2),(3,3),(4,4)]
So016> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,1),(1,0),(2,2),(3,3),(4,4)]
[(0,0),(1,1),(2,3),(3,4),(4,2)]
So0l16> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,0),(1,1),(2,3),(3,4),(4,2)]
[(0,1),(1,0),(2,4),(3,2),(4,3)]
Sol6> comp [(0,1),(1,0),(2,3),(3,4),(4,2)] [(0,1),(1,0),(2,4),(3,2),(4,3)]
[¢0,0),(1,1),(2,2),(3,3),(4,4)]

6.39.1 Given:A finite, f : A — Ais a bijection.

To be proved: forsome € N, f™ = 14.

Proof:

Observe that there are only finitely many bijectionsAan
Thus, there must be anwith " equal tof® = 14.

6.39.2 Since the bijections of correspond to permutations df, their number cannot exceéd, the number of
permutations of a domain of size

6.40 Given:h : X — X satisfieshohoh = 1x.

To be proved# is a bijection.

Proof:

To show injectivity, leta;, as € X be arbitrary, and suppo#ga;) = h(as).
Thenh3(a;) = h3(az), and from the given about® we geta; = as.

To show surjectivity, leb € X be arbitrary.
From the given about?, h3(b) = b. Thush(h?(b)) = b, so there is an € X with h(a) = b.

For a simple example of a s&f and a functiom, : X — X such thath o h o h = 1y, whereash # 1y, take
X =40,1,2} andh = {(0,1),(1,2),(2,0)}.

6.41Given:f : X - Y,g:Y — Z, f andg injective.

To be provedy o f injective.

Proof:

Letay,az € X be arbitrary, and suppose o f)(a1) = (g o f)(az).
Theng(f(a1)) = g(f(az)). By injectivity of g, f(a1) = f(az).
From this we geti; = as by injectivity of f.

6.42 Given:f : X —Y,¢g:Y — Z,andg o f bijective.

To be proved;f is surjective iffg is injective.

Proof:

Only if: Supposef is surjective.
To show injectivity ofg, letb,, b, € Y be arbitrary, and assungéb, ) = g(b).
Then by surjectivity off, there arei;, as € X with f(a;) = by and f(az) = bs.
This givesg(f(a1)) = g(f(az2)), so by the fact thag o f is a bijection,a; = as.
From this and the functionality of, b; = bs.

If: Supposey is injective.
To show surjectivity off, letb € Y be arbitrary.
Theng(b) € Z, and by bijectivity ofg o f, there is am € X with (g o f)(a) = g(b).
From(go f)(a) = g(f(a)) = g(b), by injectivity of g, f(a) = b.
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6.43 Givenlim; ., a; = a, f : N — N injective.

To be provedlim; .o as(;) = a.

Proof:

We have to show thate > 0 3n Vi > n (la — az;)| < €).
Let e be arbitary, and let, be such that'i > ng (Ja — a;| < €) (from the first given).
From the injectivity off we get that there is amg with V& > mq (f(k) > no).
It follows that3n Vi > n (la — az@;| < €).

6.48 Given:f : X — Y has left-inverseg and right-inversé.

To be proved:f is a bijection andy = h = f~ .

Proof:

h=1lxoh=(gof)oh=go(foh)=golx =g.

Also, g is the inverse of, for if z € X theng(f(z)) = 1x(z) =z,
andify € Y thenf(g(y)) = f(h(y)) = 1y (y) = v

6.49 Given:f : X — Y andg:Y — X.
To be provedy o f = 1x iff {(f(z),z) |z € X} Cg.
Proof:
Only if: Supposgy o f = 1x. Letx € X be arbitrary.
We have to show thdtf (z), z) € g.
Fromgo f = 1x we getg(f(x)) = z, and we are done.

If: Suppose{(f(z),z) |z € X} Cg.
Thenforallz € X, (go f)(z) = g(f(z)) =z, i.e.,go f = 1x.

6.50 To gety o f = 1y, itis sufficient thaty(3) = 0 andg(4) = 1. The values for the argumeritsand5 are free,
and for both of these there are two possible choices. Thus, all in all there are four fugotithsy o f = 1.

6.51 The successor functien N — N is an injection for which there is ng: N — N with g o s = 1.

6.52 Given:f : X — Y is surjective.

To be proved: thereis@: Y — X with fog=1y.

Proof:

Let g be given byy(y) := an arbitraryr € X with f(z) = y.

By surjectivity of f, this is well-defined.

To showf o g = 1y, take an arbitrary € Y. Theng(y) equals some € X with f(x) = y.
Soindeed(f o g)(y) = f(9(v)) = f(z) = v.

6.53 A right-inversey to the function{(0, 5), (1,5), (2, 5), (3,6), (4,6)} with domain: {0, 1,2, 3,4}, codomain:
{5,6} has to satisfy two properties: @5) € {0,1,2}, and (ii) g(6) € {3,4}. This can be doneif x 2 =6
ways, so there arésuchg.

6.54.1 The followingy, ¢’, ¢” : RT™ — R are all right inverses tg. g(z) := /z, ¢'(z) := —/z, ¢’ (x) :== x if
z > 1, ¢"(z) := —/x otherwise.

6.54.2 The functiomrcsin : [0,1] — [0, 7] is a right inverse ofin, but so are: given byh(z) = 7 — arcsin(z),
and?’ given byh’(z) = arcsin(z) if # < §, h/(z) = m — arcsin(z) otherwise. Notearcsin, the inverse of the
sin function, is predefined in Haskell asin.

6.55 Given:f : X — Y isasurjectionp: Y — X.

To be proved# is right-inverse off iff h C {(f(z),x) | v € X}.
Proof:

Only if: Supposeé is right-inverse off, i.e.,f o h = 1y.
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Let (y,z) € h be arbitrary. We have to show that= f(z).

Sincex = h(y), we getfromf o h = 1y that f(z) = f(h(y)) = (fo h)(y) = 1y (y) = v.
If: Supposeh C {(f(x),z) | z € X}. Lety € Y be arbitrary.

Sinceh C {(f(z),z) | x € X}, thereisarx € X withy = f(z) andh(y) =

Thus f(z) = f(h(y)) = f o h(y) = v.

6.56.1 To be proved: Every function that has a surjective right-inverse is a bijection.
Proof:
Letf: X —-Y,g:Y — X, gsurjective, andf o g = 1y
We show thalf is injective:
Letay,as € X be arbitrary, and suppogéa;) = f(az).
Then, by surjectivity of, there aréh, bo € Y with a; = g(b1) andas = g(bs).
Sincef og =1y, f(a1) = f(g(b1)) = b1, andf(az) = f(g(b2)) = bo.
It follows thatb; = f(a1) = f(a2) = be. By functionality ofg, a1 = g(b1) = g(b2) =

We show thatf is surjective:

Lety € Y be arbitrary. Theg(y) € X, and byf og =1y, f(9(v)) = y.
So there is am € X with f(z) = y.

6.56.2 To be proved: Every function that has an injective left-inverse is a bijection.
Proof:
Letf: X —-Y,g:Y — X, ginjective,andyo f = 1x.
We show thatf is injective:
Letas,as € X be arbitrary, and suppogéa;) = f(az).
Theng(f(a1)) = g(f(az)), andbygo f = 1x, a1 = g(f(a1)) = g(f(az)) = az.
We show thatf is surjective:
Lety € Y be arbitrary. Theg(y) € X. We show thatf (¢(y)) = v.
Bygo f=1x,9(f(g(y))) = g(y). By injectivity of g, we get from this thaf (¢(y)) = y.

6.57

stringCompare :: String -> String -> Maybe Ordering
stringCompare xs ys | any (not . isAlpha) (xs ++ ys) = Nothing
| otherwise = Just (compare xs ys)

6.58.1 Given:f : A — I is a surjectionaRb := f(a) = f(b).

To be proved:R is an equivalence oH.

Proof:

Reflexivity: For alla € A, aRa, sincef(a) = f(a).

Symmetry: Leta Rb. Thenf(a) = f(b). Thusf(b) = f(a), andbRa.

Transitivity: LetaRb andbRc. Thenf(a) = f(b) andf(b) = f(c).
So f(a) = f(c), and therefore Rc.

6.58.2 Given:f : A — [ is a surjectionaRb := f(a) = f(b).
To be proved:A/R = {f~'[{i}] | i € I}.
Proof:
C: Leta € A be arbitrary. We have to show thatz € {f~![{i}] | i € I}.
Sincef(a) € I, thereis an € I with |a|r = {b | f(b) = fla)} = FL[{i}]-
D: Leti € I be arbitrary. We have to show that! [{7}] A/R
From surjectivity off, there is am € A with f(a)

Thusf~1[{i}] = {b | f(b) =i} ={b| f(b) = f(a ) — {b| bRa} = [als.
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6.58.3 Given:S is an equivalence oA.

To be proved: there is a functignon A with aSb < g(a) = g(b).

Proof:

Takeg : A — A/S given byg(a) = |a|s. ThenaSb < b € |a|s < g(a) = g(b).

6.60.1 Given;f : A — B; f an injection.

To be proved: For all set§ and for everyy : A — Cthereisah: B — C withg=ho f.

Proof:

Let C be arbitrary, withy : A — C.

Sincef is an injection, for every € ran(f) there is a uniqua € A with f(a) = b.

Defineh by means of: ib € ran(f) thenh(b) := g(a) for the uniquez with f(a) = b,
otherwiseh(b) = ¢ for some arbitrary: € C.

Leta € A be arbitrary. Therth o f)(a) = h(f(a)) = g(a).

6.60.2 Given:f : A — B;
for all setsC and foreveryy : A — Cthereisah: B — C withg = ho f.
To be proved:f is an injection.
Proof:
Leta,az € A and assumég(a;) = f(az).
Then for anyh, h(f(a1)) = h(f(az2)). Take forg the functionl 4.
Thena; = 14(a1) = (ho f)(a1) = h(f(a1)) = h(f(a2)) = (ho f)(az) = 1a(az) = as.

6.61 Given:R is an equivalence oA.

To be proved: for every equivalen&e2 R on A there exists a function: A/R — A/S
such that, fou € A: |a|s = g(| a |r).

Proof:

All we have to show isthag : A/R — A/S given byg(| a |r) = | a |s is well-defined.

Letx € A be such thatRa. We have to show that(| a |z) = g(| = |r)-

FromzRa, |a|g = |z|r, and fromR C S, |a|s = |z]s.

Thusg(| a |r) = |als = |z|s = g(] = [r).

6.62 Given:~ is an equivalence oA, andf : A2 — A is a binary function such that
foralla,b,z,y€ Aia~z ANb~y = f(a,b) ~ f(z,y).
To be proved: There is a unique functigfr : (A/~)? — B with, for a,b € A:
f~(lal, [b]) = [f(a,b)].
Proof:

We have to show that™ (|al, |b]) = | f(a, b)| defines a function.
Leta ~x,b ~y. Thenla| = |z[, [b] = |y|, and|f(a, b)| = |f(z,y)].

Therefore,f~([al, [b]) = | f(a,b)| = |f(z,y)| = £~ ([, [y]).
This proves that the definition g~ is “independent of the representativegdf |b

6.63 Given:~ is an equivalence od, andR C A? is a relation such that for al, b, z, y € A:

a~x Nb~y A aRb = xRy.

To be proved: there is a unique relatin C (A4/~)?
with for all a,b € A: |a|R™~|b] < aRb.

Proof:
Again, we must show thaR™ is well-defined.
Leta ~ z andb ~ y. ThenaRb < xRy.
Therefore|a|R™|b| < aRb < xRy < |z|R™|y|.
The fact thatR™ C (A/~)? is immediate from the definition a®™.

6.64.1 Given~ on A x B defined by(a,b) ~ (z,y) = a = =z.

59
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To be provedr is an equivalence oA x B.

Proof:

Reflexivity: (a,b) ~ (a,b), sincea = a.

Symmetry: If(a,b) ~ (z,y) thena = z, so alsa(z, y) ~ (a,b).

Transitivity: If (a,b) ~ (z,y) and(z,y) ~ (u,v), thena = x andz = w.
Thereforean = u, and thuga, b) ~ (u,v).

6.64.2 Given:~ on A x B defined by(a,b) ~ (z,y) = a = x. B # .
To be proved: There is a bijectiofA x B)/~ — A.
Proof:
We show thatf(|(a, b)|) = a defines a bijection.
Firstly, this is well-defined, for leta, b) ~ (z,y).
Thena = z, and thereforef (|(a,b)|) = a =2 = f(|(z,9)|).
Next, we show thaf is injective and surjective.
For injectivity, assum¢(|(a,b)|) = f(|(z,y)]).
Thena = z and thereforé(a, b)| = |(z, y)|.
For surjectivity, assume € A.
Then, sinceB # ), there is & € B with (a,b) € A x B, andf(|(a,b)|) = a.

6.64.3 Given~ on A x B defined by(a,b) ~ (z,y) = a = =z.
To be proved: For every equivalence cl§ss b)| there is a bijection betwedfu, b)| and A.
Proof:
Let |(a, b)| be arbitrary. We show thdt : |(a,b)| — A given byF'(z,y) = y is a bijection.
F is injective, for suppos@’(x,y) = F(u,v).

Then, sinc€z, y) € |(a,b)|, = = a, and sincdu, v) € |(a, b)|, u = a.

From the definition o', y = v. So(z,y) = (u,v).
F is surjective, for supposge B.

Then(a,y) € |(a,b)|, andF(a,y) = y.

6.65

fct2listpart :: (Eq a, Eq b) => (a -> b) -> [a] —> [[a]]

fct2listpart £ [1 = []

fct2listpart £ (x:xs) = xclass : fct2listpart f (xs \\ xclass)
where xclass = x : [y | y<-xs, £ x==1£fy]

6.66 Letf : A — B be a surjection, and suppos¢| = n and|B| = k. We can decomposginto h - g, whereg

is the surjectiony : A — A/R (R = {(a,b) € A% | f(a) = f(b)}) given byg(a) = [a]r, andh is the bijection
h: A/R — B, given byh([a]g) = f(a). By Example 5.1054 has{’ } partitions intok blocks, so there ar§] }

suchg. Since there arg! bijectionsh on a set of sizé;, all in all, there arek!{z} surjectionsf.

6.68 There is no harm in the two ways to interpk@tx X, since there is a bijectioft : J[, (o 1, Xi — {(z,y) |
x € Xo Ay € X1}, givenbyF f = (f(0), f(1)).

6.69F : p(A) — {0,1}4 given byF(X) = Xa.(a € AAa € X) is a bijection. Another bijection i€ : p(A) —
{0,1}* given byG(X) = Na.(a € ANa ¢ X).

6.70.1 Given: A relatiome onY X = {f | f: X — Y} defined by
f =~ g =there are bijections: Y — Y andj : X — X suchthato f =goj.
To be proved= is an equivalence.
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Proof:
is reflexive, for sincdy o f = f o 1x we havef ~ f.
is symmetric, for supposg ~ g.
Then there are bijections Y — Y andj : X — X withio f = goj.
Thusf=i"loiof=i"togoj,s0itog=i"togojojt=foj L
It follows thatg ~ f.
~ is transitive, for supposg¢ ~ g andg =~ h
Then there are bijections, iz, j1, jo With i1 o f = g o j; andiz 0 g = h o js.
ThUS,’L'QO’L'l Of:iQOgojl andigogojl = hOjQ 0 Ji.
Thereforejs o iy o f = ho j3 0 41, and it follows thatf ~ h.

~
~
~
~

6.70.2If f,g : X — Y are injective, therf ~ g, for consider the function: Y — Y given by
. if y €ra ,
i(y) = { gly) ify € ran(f)

y otherwise.

From the injectivity ofq it follows thati is a bijection. Moreover,o f = go 1x.

6.70.3.1 Letf = {(0,0),(1,0),(2,1)} andg = {(0,1),(1, 3),(2,3)}. To show thatf ~ g we must find bijections
i,jwithio f = g o j. Taking: = {(0,3), (3,0),(1,1),(2,2)} andj = {(0,2), (1,1),(2,0)} , we get
3

iof:{((),?)),(l, )7( )}:goj,

)
Y

6.70.3.2 There are three equivalence classes: the class of the functions that lump all objects together, the class
of the functions that lump two of the objects together, and the class of the functions that keep the three objects
separate. Representatives for these classeg are{(0,0),(1,0),(2,0)}, f' = {(0,0),(1,0),(2,1)}, f" =
{(0,0),(1,1),(2,2)}.

6.71.1 Given:X,Y andZ are setsh : Y — Z, F : YX — ZX defined byF(g) := hog.

To be proved: ifh is injective, thenF is injective.

Proof:

Supposéh is injective. Letg;, go € YX,i.e.,g1,92 : X — Y, with g; # go.

Fromg; # g» we get that there is an € X with g1 (z) # g2(x).

From the fact thak is injective,h(g1(z)) # h(ga(x)).

But this means tha (g1)(¢) = (h o g1)(z) = h(g1(2)) # h(ga(z)) = (h o g2)(x) = Flg2)().
Thus,F(g1) # F(g2), i.e., F'is an injection.

6.71.2 Given:X,Y andZ are setsh : Y — Z, F : YX — ZX defined byF(g) := hog.
To be proved: ifh is surjective, therF is surjective.

Proof:

Supposeh is surjective. Letf € ZX,i.e.,f: X — Z.

We have to show that there igja X — Y with F(g) = f.

Sinceh is surjective, we can defingby means ofj(z) = somey € Y with h(y) = f(x).
To show thatF'(g) = f, letx € X be arbitrary.

Then: F(g)(x) = (h o g)(x) = h(g(z)) = f(x).

6.72.1 Given:X,Y andZ are setsX # (), h: X — Y, F: Z¥ — 7ZX defined byF(g) := g o h.
To be proved: ifh is injective, thenF is surjective.

Proof:

Supposét is injective. Letf : X — Z. We have to findy : Y — Z with F(g) = f.

Defineg by means of(y) = f o h=1(y) if y € ran(h),

andg(y) = some arbitrary member &f otherwise.

By the injectivity of & this is well-defined.

We have:F (g)(x) = (g o h)(x) = g(h(x)) = (f o h=)(h(x)) = f(x). SOF(g) = f.
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6.72.2 Given:X,Y andZ are setsX # (), h: X — Y, F: Z¥ — ZX defined byF(g) := g o h.

To be proved: ifh is surjective, therF is injective.

Proof:

Supposeh is surjective. Lely;, g2 : Y — Z, with g1 # go.

Sinceg; # go2, thereis ay € Y with g4 (y) # g2(y).

Sinceh is surjective, there is an € X with h(z) =y, s0g1(h(x)) # g2(h(x)).

Now F(g1)(x) = (g1 0 h)(x) = g1 (h(2)) # g2(h(x)) = (g2 0 h)(x) = F(g2)(x). SOF (1) # F(ga).

6.75 Supposer =,, m’ andk =,, ¥’. We have to show that - k =, m’ - &'.

Fromm =,, m’ we get that there is am € Z with m’ = m + an. Fromk =,, k' we get that there isac Z
with &' = k + bn. Thereforen’k’ = mk + akn + bmn + abn® = mk + (ak + bm + abn)n =, mk. It follows
that we can define:

6.78 Given:R onN given by(my,ms)R(n1,ng) := my + na = ma + ny.
:N?2 - N given by(ml, mg) . (TLl,TLQ) = (mml + mang, ming + nlmg).
To be proved:R is a congruence foron N2,
Proof:
/A\SSl,lme‘(Tnl7 mg)R(pl s pz) and(nl, ’I’LQ)R(ql, QQ).
We have to show thdﬁnl, mg) : (Tll, le)R(pl,pQ) : (ql, QQ).
From (my, m2) R(p1,p2) and(ny, n2) R(q1, g2):
(1) mi1 +p2 = p1 +mso and(Q) ni1 +q2 = q1 + na.
Multiplying (1) by n, and byg;, and multiplying(2) by ms andp, we get:

ming +nip2 = Mipr +mang
mony +nep2 = MinN2 + Nap2
P1gi +mip1 = piqi +nepr
D2q1 +n2p2 = nNip2 + P2ga.

Add lefthand and righthand sides, and delete terms that occur both left and right:
ming + maeng + p1g2 + P2g1 = Man1 + min2 + p1q1 + p2qe.

It follows that (min;y + mang, ming + nime) R(p1q1 + p292, 0162 + ¢1p2),

i.e., that(ml,mg) . (nl,ng)R(pl,pz) . (ql, QQ).
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module Sol7
where

import List
import IAR

7.6 To be provedyn : Y5, k2 = 2ntEntl),

Proof:

Basis:Y",_ k2 = 1= 123,

Induction step: Assumg_;_, k
n+1 n+1)(n+2)(2(n+1)+1 n+1)(n+2)(2n+3

We have to show thgE [t} k2 = {nt2) )6( (nt1)+1) _ (L) 5 J@nt3)

2 _ n(nt+1)(2n+1)
=75

We have:S Pl 52 = 7 g2 4 (4 1)2 L ntl@ntD) 4 4 1)2 =
k=1 k=1 6
(n+1)(2n°+7n+6) __ (n+1)(n+2)(2n+3)
6 - 6 :

— (n41)(2n%+n) + (n+1)(6n+6) _ (n+1)(2n>4+n+6n+6)
- 6 6 - 6

2
7.8 To be provedyn : >, k° = (%) :
Proof:
Basis:Y}_, k3 = 1= (42)%.

2
. . n n+1
Induction step: Assumg_;_, k> = (%) :
2
n+1 n+1)(n+2
We have to show thgf, = | k> = (()2#) -

2 2 3
(n(n+1)> F(n41)d= nz(n4+1) n 4(7111) _

>

i

We have:>" 71 k% = SO0 K3 4 (n 4 1)3 x

_ n%(n+1)? + (4n+4)(n+1)? _ (n*+4nt+4)(n+1)? _ (n+1) (n+2)2 ((n+1)(n+2))2
- 4 4 - 4 - 4 - 2 :

7.9 Induction proof that for alh € N: 327+3 4 27 is divisible by7.

Basis:320+3 +20 =33+ 1 =28 =7-4.

Induction step: Assume that" 3 + 27 is divisible by7, i.e.,3a € N : 32"+3 4+ 2" = 7q.
We have to show tha?(»+1)+3 1 2n+1 s divisible by?7.

63
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We have:
32(n+1)+3 4 2n+1 — 32n+2+3 4 2n+1

— 323271+3+322n_(32_2)2n

— 32(32n+3 + 277,) _ 7 . 277,
32(7Ta) —7-2" =7(3%-a —2").
This proves thag?("+1)+3 4 2n+1 jg divisible by?7.
7.121m -1 2 m. (1+0) "2 m. (0+1) 2 (m~0)+mé()+m+cgmmm+0§1m
7.12.2 We proven - (n + k) = (m - n) + (m - k) by induction onk.

Basis:

m~(n—|—0)gm-ngm-n+oém-n+m~0.

Induction step:

+
QD
0
w

m-(n+ (k+1)) m-((n+k)+1)

m-(n+k)+m

o 1l

15

(m-n+m-k)+m

+
Q
0
%]

m-n+ (m-k+m)

o |l

m-n+m-(k+1).

7.12.3 We proven - (n - k) = (m - n) - k by induction onk.
Basis:
m-(n-O)ém~O;O;(m~n)~O.

Induction step:

m-(n-(k+1) 2 m-(n-k+n)
gt m-(n-k)+m-n
th (m-n)-k+m-n

(m-n)-(k+1).

7.12.4 To proven - n = n - m, we use induction on.
Basis:

m-02020-020-(m-0)20-m.
Induction step:

m~(n+1)§m~n+m+:assm+m~n£m.1+m~n'g5tm-(1—|—n).

7.13 We proves™ ™ = k™ . k™ by induction omn.

Basis:

grt0 Bogm o Lopmoy SR pmopo,
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Induction step:

km+(n+1) tass k(m+n)+1

65

9)22 k_m,—i—n . /f
il (k/ﬂn . kn) . k/,
622 km X kn+1
7.14
subtr :: Natural -> Natural -> Natural
subtr Z _ =7
subtr m Z =m
subtr (S m) (S n) = subtr mn
7.15
qrm :: Natural -> Natural -> (Natural,Natural)
gmmn | gt nm = (Z,m)
| otherwise = (S (fst qr), snd qr) where qr = qrm (subtr m n) n
quotient :: Natural -> Natural -> Natural
quotient m n = fst (qrm m n)
remainder :: Natural -> Natural -> Natural
remainder m n = snd (qrm m n)
7.16
pre :: Natural -> Natural
pre Z = Z

pre (Sn) =n

subtr :: Natural -> Natural -> Natural
subtr = foldn pre

7.17 BasisFyFy — FE =0—1=—1=(-1)L.
Induction step: Assume;, ;1 F,,_1 — F? = (—1)". Then:
Fn+2Fn_Fg+1 = (Fn+Fn+1)Fn—FE+1 :Fr%"‘FnFnJrl _F7%+1
- F5 7F"+1(F”+1 7F77«) :Fs 7Fn+1Fn—1
(1) = (-1

I
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7.18.1 The empty list satisfies bittest, &= 1. Both [1] and]0] satisfy bittest, sa; = 2. [1,1],[1, 0], [0, 1] are
the lists of lengti® satisfying bittest, sa, = 3.

[07 ]‘7 1]7 [07 ]‘707 [17 17 ]‘}7 [1’ 170]’ []‘7 07 1]

are the satisfying lists of length soas = 5.

7.18.2 Here is a proof by induction af, = F,; - for alln > 0. Basis:ayg = 1 = F,a; = 2 = Fj.

Induction step: assume that = F,, 5 ena, 1 = F,,1 3. We have to show that, > = F},1 4.

From the bittest we know that the bitlists of length+ 2 satisfying the test can be got by either prefixhpto a
bitlist of lengthn + 1 or prefixing|0, 1] to a bitlist of lengthn. According to the induction hypothesis, the first can
be doneiru, 1 = F, 3 ways, the second i, = F,, 2 ways. Together this gives, 2 = Fr,43+Frni2 = Frya.

7.19 We show that for all, n it holds thatfib2 (fib i) (fib (i+1)) n = fib (i+n), by induction om.
Basis:fib2 (fib i) (fib (i+1)) 0 = fib (i): immediate from the definition afib2.

Induction step: Supposé: £ib2 (fib i) (£fib (i+1)) n = fib (i+n).

We have to show thati: £ib2 (fib i) (fib (i+1)) (n+1) = fib (i+n+1).

Leti be arbitrary.

£ib2 (fib i) (fib (i+1)) (a+1) ™22 £ip2 (£ib (i+1)) ((fib i) + (fib (i+1))) n
3 £ib2 (fib (i+1)) (fib (i+2)) n
ih

= fib (i+n+1)

Note that the induction hypothesis applies to the cagetof since it holds for alk. Sincei was arbitrary we have
established the claim for all ands.

7.20
catalan :: Integer -> Integer
catalan 0 =1

catalan (n+1) sum [ (catalan i) * (catalan (n-i)) | i <- [0..n] ]

7.21 Basis: in case there is just one varialjehere is just one possible bracketing.

Induction step: We assume as induction hypothesis that foi arith 0 < ¢ < n, for any sequence af+ 1
variablesz - - - z; it holds thatC; gives the number of bracketings for that sequence. We have to show,that
is the number of bracketings far+ 2 variables.

Any bracketing for a sequencs - - - z,,+1 Of n 4 2 variables has a main operator: the operator for the final
multiplication that takes place. This is the operator outside brackets. Suppose this operator is betareen
Zi11, With 0 < ¢ < n. Then, by the induction hypothesis, there &tewvays to brackety - - - x; andC,,_; ways to
bracketz; 1 - - - z,,+1. This givesC;C,,_; bracketings. Summing ovemwe get} """, C,;C,_; for the number of
bracketings, which by definition equals, ;.

7.25
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data TernTree = L’ | N’ TernTree TernTree TernTree deriving Show
makeTernTree :: Integer -> TernTree
makeTernTree 0 =L’
makeTernTree (n + 1) = N’
(makeTernTree n) (makeTernTree n) (makeTernTree n)
count3 :: TernTree -> Integer
count3d L’ =1
count3 (N’ t1 t2 t3) = 1 + count3 tl + count3 t2 + count3 t3
n R . i
7.27 Proofthad_, _,¢" = . by induction onn.
fa.x 0 k_ 0_1_ q—1
Basis:) ,_,¢" =¢" =1= =
. . n ko qn+171 i n+1 k n k +1 @ qn+171 +1 _ qn+171
Induction step: Assumg_,_, ¢" = T Then:} , " d"=>,_od"+¢" = e T =

g1 _ grtron
q—1 qg—1 -

7.28

insertTree :: Int -> Tree -> Tree
insertTree n Lf = (Nd n Lf Lf)
insertTree n t@(Nd m left right)

| m<n = Nd m left (insertTree n right)
| m>n = Nd m (insertTree n left) right
| otherwise = t
7.29
list2tree :: [Int] -> Tree

list2tree [] = Lf
list2tree (n:ns) = insertTree n (list2tree ns)

tree2list :: Tree -> [Int]
tree2list Lf = []
tree2list (Nd n left right) = tree2list left ++ [n] ++ tree2list right

7.30

inTree :: Int -> Tree -> Bool
inTree n Lf = False
inTree n (Nd m left right)

= True
inTree n left
inTree n right

BB B
vV A
8 B B
]
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7.31

mergeTrees :: Tree -> Tree -> Tree
mergeTrees tl t2 = foldr insertTree t2 (tree2list tl)

7.32

findDepth :: Int -> Tree -> Int
findDepth _ Lf = -1
findDepth n (Nd m left right)

| n==m=0
| n < m=if dl == -1 then -1 else d1 + 1
| n> m=if d2 == -1 then -1 else d2 + 1

where dl1 = findDepth n left
d2 = findDepth n right

7.33

mapT :: (a ->Db) > Tr a > Tr b
mapT £ Nil = Nil
mapT £ (T x left right) = T (f x) (mapT f left) (mapT f right)

7.34

foldT :: (a -=>b ->b ->b) -=>b -> (Tr a) -> b
foldT h ¢ Nil = ¢
f0oldT h ¢ (T x left right) = h x (£foldT h c left) (foldT h c right)

This gives:

Sol7> foldT (\ x y z -> sum [x,y,z]) 0 (T 4 (T 5 Nil Nil)(T 6 Nil Nil))
15

7.35

preorderT, inorderT, postorderT :: Tr a -> [a]
preorderT = foldT preLists []

where prelists x ys zs = (x:ys) ++ zs
inorderT = foldT inLists []

where inLists x ys zs = ys ++ [x] ++ zs
postorderT = foldT postLists []

where postLists x ys zs = ys ++ zs ++ [x]
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7.36
orderedT :: Ord a => Tr a —-> Bool
orderedT tree = ordered (inorderT tree)
where
ordered xs = (sort (nub xs) == xs)
7.37

lookupD :: String -> Dict -> [String]
lookupD _ Nil = []
lookupD x (T (v,w) left right) | x == v = [w]
| x < v lookupD x left

| otherwise = lookupD x right

7.38

buildTree :: [a]l -> Tr a

buildTree [] = Nil

buildTree xs = T m (buildTree left) (buildTree right)
where (left,m,right) = split xs

7.39

mapLT :: (a -> b) -> LeafTree a -> LeafTree b
mapLT f (Leaf x) = Leaf (f x)
mapLT f (Node left right) = Node (mapLT f left) (mapLT f right)

7.40

reflect :: LeafTree a —-> LeafTree a
reflect (Leaf x) = Leaf x
reflect (Node left right) = Node (reflect right) (reflect left)

7.41 We show with induction on the structuretothatreflect (reflect t) == t.
Basis: Becauseeflect (Leaf x) == (Leaf x) it certainly holds that

reflect (reflect (Leaf x)) == (Leaf x).
Induction step: Assume that

reflect (reflect left) == left
reflect (reflect right) == right.
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Now considetreflect (Node left right). According to the definition ofeflect this is equal to:
Node (reflect right) (reflect left).
Applying reflect on this again gives:
reflect (Node (reflect right) (reflect left)).
Again according to the definition afeflect, this is equal to:
Node (reflect (reflect left)) (reflect (reflect right)).
Applying the induction hypothesis twice we get:
reflect (reflect (Node left right)) == Node left right.

This completes the inductive argument.

7.42

mapR :: (a -> b) -> Rose a -> Rose b
mapR £ (Bud x) = Bud (f x)
mapR f (Br roses) = Br (map (mapR f) roses)

7.44 Proof thatat xs [1 = cat [] xs by listinduction onxs.

Basis: Immediate fronfcat [1 [1) &' 1.

Induction step:

cat (x:xs) [] caLz (cat xs [1)
i x : (cat [] xs)
catl
= (x:x8)

= cat [1 (x:xs).

7.45 Proof thallen (cat xs ys) = (len xs) + (len ys), by listinduction onxs.
Basis: Ifxs = [] then

len (cat [] ys) Al en ys =0+ len ys 2 1en [1 +1en ys.

Induction step: Assumeen (cat xs ys) = (len xs) + (len ys). Then:

len (cat (x:xs) ys) = 1len (x:(cat xs ys))
=" 14 len (cat xs ys)
= 14 1len xs+1len ys
len.2

len (x:xs) + len ys.
7.46

genUnion :: Eq a => [[a]] —-> [al]
genUnion = foldr union []

genIntersect :: Eq a => [[a]]l —> [a]
genlntersect = foldrl intersect
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7.47
insrt :: Ord a => a -> [a] -> [a]
insrt x [] = [x]

insrt x (y:ys) = if x <= y then (x:y:ys) else y : (insrt x ys)

srt :: Ord a => [a] -> [a]
srt = foldr insrt []

7.48 Basis:
z (foldl 7/ y 1) 2% bz y P2 foldl 1/ (h 2 y) [].

Induction step: Assume
h x (foldl h’ y xs) = foldl h’ (h x y) xs
We have to show:
h x (foldl h’ y (x:xs)) = foldl h’ (h x y) (x:x8)

We have:

hx (foldl b y (x:xs)) 22

h z (foldl ' (B’ y x) xs)
foldl ' (hz (b y z)) xs
foldl ' (b z (h x y)) xS

foldl 2/ (h z y) (X:xS).

given
given

fold.2

7.50 In fact,revi follows the recursive definition pattern 861d1, sorev andrevi behave almost the same, and
are both much more effficient tharv’.

7.52 Proof by induction oms that

filter p (map f xs) = mapf (filter (p - f) xs).
Basis:
filter p (mapf 1) = [I = mapf (filter (p.f) [1).

Induction step: Assume
filter p (map f xs) = map (filter (p.f) xs).

Consider(x:xs). There are two cases: @) fz) =t and (ii)p(fz) =f.
In case (i) we have:

filter p (map f (x:xs)) = filter p (f ) : (mapf (x:xs))
e (f @) : (filter p (Mapf (x:xs)))
£ (fa): (mapf (filter (p.f) x9))
= mapf (x: (filter (p.f) xs))
= mapf (filter (p.f) (x:xs)).
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In case (ii) we have:
filter p (map f (X:xs)) P filter p

filter

(f ) : (mapf (x:xs))
filter p (map f (x:xs))

h mapf (filter (p.f) xs)

map

(filter (
=" mapf (filter (p.f) xs)
e map (filter (p.f) (x:xs)).

7.51

In’ :: [a] -> Natural
In’ = foldl (\A\n _ ->Sn) Z

7.53.12™ — 1 moves.

7.53.2 Assume that is the source ped3 the auxiliary peg, and’ the destination peg. We show by induction on
n that2™ — 1 moves suffice for transferring a Hanoi towerroflisks, and that transfer in less thZh— 1 moves

is impossible.

Basis: Transferring a tower with no disks takes no moves at all.

Induction step: Assume that it take® — 1 moves to transfer a Hanoi tower ofdisks.

We have to show that it tak@&+! — 1 moves to transfer a tower af+ 1 disks.

As induction hypothesis we assume thalisks can be moved i&* — 1 moves, but not in less than that. Then to
move the largest disk from to C, all other disks must be stacked &h By the induction hypothesis this can be
done in2™ — 1, and not in less tha@™ — 1 moves. Next, it takes one move to get the largest disk frboto C.
Notice that this disk cannot go anywhere else, for peig occupied by the stadk..n]. Finally, n disks have to
be moved fromB to C'; again this can be done 2% — 1, and not in less tha®™ — 1 moves. This proves that, all
in all, the optimal transfer procedure takes exa¢®y — 1) + 1 + (2" — 1) = 2"*! — 1 moves.

7.53.328 — 1 = 255 moves.

7.54 Diskk makes exactl”~* moves. To prove this with induction, we prove by inductionenhat the disk of
sizen — m makes2™ moves. From this the result follows, sinke= n — m impliesm =n — k.

Basis: Form = 0 we get that the disk of size = n — 0 makes2® = 1 move. This is correct, for the largest disk
moves exactly once, from source to destination.

Induction step: Assume that disk-m make2"~™ moves. Now there are two kinds of moves for disk(m+1):

(i) move it on top of diskn — m, or (ii) remove it from diskn — m. This makes clear that to every single move of
diskn — m there are two moves of disk— (m + 1), giving 2 x 2"~ = 2~ (m+1) moves altogether.

Finally, note that this outcome squares with the result of the previous exercise, for if siake2™—* moves the
total number of moves i§_;_, 2"~*. Sincel + Y_;_, 2"~* = 2" (use binary representation to see this) we get
ZZ:l 271,—k, — M _ 1.

7.55 Complete transfer of the tower of Brahma tak®s— 1 = 18446744073709551615 moves, which, at a rate
of one move per day, keeps the monks occupied®604432782230120 years, taking leap years into account.

7.56 We prove by induction on thatcheck n (xs,ys,zs) givesTrue iff (xs,ys,zs) is a correct configura-
tion.

Basis. The only correct configuration with no disks atalli§, (1, [1).

Induction step. Suppose thalieck n (xs,ys,zs) givesTrue iff check n (xs,ys,zs) is a correct config-
uration. Let(xs,ys,zs) be a configuration with largest disk + 1. Then eitherxs has diskn + 1 at the
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bottom orzs has. In the first case, we are in the process of mouingit xs to ys, with auxiliary stack
zs, andcheck n (xs,ys,zs) holds iff check (n-1) (init xs, zs, ys) does. In the second case, we
are in the process of movings to init zs, usingxs as auxiliary stack, andheck n (xs,ys,zs) holds iff
check (n-1) (ys, xs, init zs) does.

7.57 Here is a proof by induction on

Basis: if (xs,ys,zs) == ([1,[], [1) there is nothing to check.

Induction step: Supposes,ys,zs) with largest diskn is correct iff it holds that every disk: is either on top of

a diskk with k —m odd, or at the bottom of the source or destination peg, with 1) —m odd, or at the bottom of
the auxiliary peg, witlh — k£ odd. We have to show thdks,ys,zs) with largest disk: + 1 is correct iff it holds
that every diskn is either on top of a disk with £ — m odd, or at the bottom of the source or destination peg,
with (n+ 1) — m even, or at the bottom of the auxiliary peg, with+ 1) — k£ odd. Form on top ofk # n+ 1, this
follows from the fact thaxs,ys,zs) is correct iff eitherxs hasn + 1 at the bottom andinit xs, zs, ys)

is correct orzs hasn + 1 at the bottom andys, xs, init zs) is correct. Forn at the bottom of a stack, there
are two casesin = n + 1 andm < n + 1. In the first case, it follows from the fact that+ 1 must be at source
or destatination. In the second casenifs at sourcep + 1 must be at destination, and the claim follows from the
fact that(ys, xs, init zs) is correct. Ifm is at destinationp + 1 must be at source, and the claim follows
from the fact that(init xs, zs, ys) is correct. Ifm is at auxiliary, eithem + 1 is at source and the claim
follows from the fact thatys,xs, init zs) iS correct, om + 1 is at target, and the claim follows from the fact
that (init xs, zs, ys) is correct.

7.58 Supposéxs, zs, ys) isacorrect configuration. Then if all stacks are empty, the law holdgaferty ([1, (1, [1)
equals(1,0,1). Otherwise, one of the stacks ha®n top, so this stack has parity Now suppose either both

other stacks have parityor both other stacks have parity It is easy to check that removing the largest disk and
swapping auxiliary and destination (if the largest disk was on the source) or source and auxiliary (if the largest disk
was on the destination) does not change parity. Afteteps this gives a contradiction with the fact that the parity

of ([1,[1,[1) equals(1,0,1).

7.59 Moving1 to a peg with an even disk at the top, or to an empty peg at even position are the only moves that
will result in a correct configuration.

7.60 If t andt’ are two correct tower configurations, and the numbers of disks is different, then the configuration
with the smallest number of disks comes first.

If the numbers of disks are the same, then configurations with the largest disk at the source are smaller than
configurations with the largest disk at the destination. For the cases with largest disk at the same position we can
use recursion.

In the implementation below, we let the output be of tyjiedering], whereOrdering is the predeclared
type consisting of the constartig, LT andGT. The value[] indicates that at least one of the configurations to be
compared is incorrect. In all other cases a unit list indicating the order is generated.

compareT :: Tower -> Tower -> [Ordering]
compareT t t’ | maxT t < maxT t’ = [ LT | checkT t &% checkT t’ ]
| maxT t > maxT t’ = [ GT | checkT t && checkT t’ ]
| otherwise = [ compare’ t t’ | checkT t && checkT t’ ]
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compare’ :: Tower -> Tower -> Ordering
compare’ ([1,[1,[1> (00,00,01> =EQ
compare’ t@(xs,ys,zs) t’@(xs’,ys’,zs’)
| firstStage t && firstStage t’ =
compare’ (init xs, zs, ys) (init xs’, zs’, ys’)
| lastStage t && lastStage t’ =
compare’ (ys, xs, init zs) (ys’, xs’, init zs’)

| firstStage t && lastStage t’ = LT
| lastStage t && firstStage t’ = GT
where

firstStage (xs,ys,zs) = xs /= [] && last xs == maxT t
lastStage t = not (firstStage t)

7.61

hanoi’’ :: Int -> [Tower]
hanoi’’ n = [ hanoiCount n k | k <- [0..2"(toInteger n)-1] 1]

7.62 The key to the implementation is the observation that the initial configuration of a tower with diskisize
preceded in the ordering of all tower configuration®by- 1 configurations for towers of smaller sizes, as is easily
proved by induction.

fromTower :: Tower -> Integer
fromTower t = (2°n - 1) + (fromT t n) where
n = maxT t
fromT (xs,ys,zs) k
| xs == [1..k]
| elem k xs fromT (init xs, zs, ys) (k-1)
| elem k zs 27 (k-1) + fromT (ys, xs, init zs) (k-1)
| otherwise = error "not a proper tower configuration"

0




Solutions to Exercises from Chapter 8

module Sol8
where
import WWN
8.1
toBase :: Integral a => a -> a -> [Int]
toBase bn | b <2 || b > 16 = error "base not in [2..16]"
| n<O = error '"negative argument"
| otherwise = reverse (toB b n)
where
toBbn | n<b = [toInt n]
| otherwise = toInt (rem n b) : toB b (quot n b)
hex :: (Integral a) => a -> String
hex = showDigits . toBase 16

8.2 Letm,n € N. Then there ara,r € N with m = an +r and0 < r < n. We show that for all € N:
d|mAd|niff d|nAd|r. From this itimmediately follows that GO, n) = GCD(n, r).

Supposel | m andd | n. Then there are, f € Nwith m = ed andn = fd. Thenr = m —an = ed — afd =
(e—af)d,ie.d|r.

Conversely, suppos¢ | n andd | r. Then there are, f € N with n = ed andr = fd. Thenm = an +r =
aed + fd = (ae+ f)d,i.e.,d | m.

8.3 We have to establish thatif andn are coprime them andm + n are.

Assumem andn are coprime. Suppose that there i§ & 1in Nwith d | m andd | (m + n). Then there are
a,b € Nwith m = ad andm 4 n = bd. Thusn = (m +n) —m = bd — ad = (b — a)d. Contradiction with the
fact thatm andn are coprime.

75



76 SOLUTIONS TO THE EXERCISES

8.8 The following establishes associativity of addition for difference pairs:

my,ma) + ((n1, n2) + (k1, k2)) [definition of 4- for difference pairs]
mi,ma) + ((n1 + k1, na + k2))

my + (n1 + k1), ma + (n2 + k2))
(m1 4+ n1) + ki1, (ma 4+ ng) + k2)
(my +mn1), (ma +n2)) + (k1, k2)
(

ml,mg) (Tll,ng)) + (k‘l,k2)~

[definition of + for difference pairs]

[commutativity of+ for N]

[definition of + for difference pairs]

[definition of + for difference pairs]

(
(
(
(
(
(

8.10

leql :: NatPair -> NatPair -> Bool
leql (m1,m2) (n1,n2) = (m1+n2) <= (m2+ni)

gtl :: NatPair -> NatPair -> Bool
gtl pl p2 = not (pl ‘leql p2)

8.13 Brute force comparision of all the decimal expansions of ratignalsvith p andq in the specified range is
computationally unfeasible. Still, the following tool is all we need for finding an answer:

periods :: [Rational] -> [Int]
periods xs = map periodLength xs
where

periodLength x = length (third (decForm x))
third (_,_,c) =c¢

It helps to observe that the periodmfy is always less than or equal to thatlgfy. Next, it helps to observe that
the chances of finding a high period increase with the size ®@herefore, the following query should contain the
answer.

S018> periods [ 1 % q | q <= [971..999] ]
[970,27,138,486,6,60,976,81,44,42,108,490,982,5,98,112,138,18,
462,2,495,15,110,210,99,41,166,498, 3]

The biggest period is that (3% which is982.

2
8.15 Supposeélp, ¢ € N with (%) = 3 andp andq coprime. Then;L; = 3, sop? = 3¢2. It follows that

p has a factos, for if 3 is not a factor ofp then3 is not a factor ofp?. Thereforep = 3a for somea € N.
Thus,p? = (3a)? = 9a% = 3¢%, and we get that?> = 3a>. From this it follows that; also has a facta3, and
contradiction with the assumption thagndg are coprime.

8.16 To be proved: if is prime then,/p ¢ Q.
Proof: Assume prime, and supposg’p € Q. Then there are, m € N with (%)2 = p, with n andm coprime.
Then ]nl—zz = p, and therefore:> = pm?. From the fact thap is prime we get that has a factop, because
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squaring does not introduce any new prime factors. Thus, thereds@amN with n = pa. From this we get
n? = p%a® = pm?, and thusn? = pa?. It follows thatm also hag as a factor, and contradiction with the fact
thatn andm are coprime.

8.17 To be proved: if. € Nand\/n ¢ N, then\/n ¢ Q.
Proof: Assumer € N and/n ¢ N, and supposg¢/n € Q. Then there are, ¢ € N with /n = g, with p and

q coprime. Fronp andq coprime it follows thap? andg? are coprime (squaring does not introduce new prime
2
factors). On the other hand we get frapm = £ thatn = L7, and thereforg? | p?, and contradiction.

8.18 Taker = v/2 andy = —v/2. Thenz +y = 0 € Q, butz andy are both irrational.

8.19.1 Letay > 0. For alln > 0 we get:

1 P a%+p—2an\/f) (an — \/]3)2
ant1 — /P = §(an+;) —Vp= % = % .
Similarly, we get:

(an + v/P)?
Uny1+/p= Tf.

Fromag > 0 and the definition o, 1, it is clear that,, > 0 for all n. Therefore,

Ap+1 — \/}3 _ (an - \/13)2
Ap+1 + \/ﬁ (an + \/13)2 .

8.19.2 Sincery > 0 and,/p > 0, we getlap — /p| < ag + /p. Thus,
ant1 — /D (ao - \/ﬁ>2

ant1+P  \ao+ P
converges td, and thereforéim,” ; a,, = /p.

8.19.3 From the first item we get thét% > 0, for this is a fraction with squares in both numerator and

denominator. This means that,, — \/p > 0, i.e.,a,+1 > /p. In other wordsg,, > /p, foralln > 1.
8.20.1 It is easy to see that, — a,+1 > 0 for everyn > 1. For we haver,, — ap,+1 = a,, — %(an + %) =
2
3(an — ) = %2 >0, because;, > p for everyn > 1.
Because,, ;1 < a, foreveryn > 1, and alsq/p < a1, we get for every: > 1thata,+,/p < a1 +,/p < 2a;.
Together with the result from Exercise 8.19.2, this gives:

an*\/ﬁ< <a0\/]3)2
2a1 = ag + \/ﬁ '
From this we get the following estimate of the approximation:

apg — \/]3>2n
ag + \/]3 '

8.20.2 Now for the concrete case. In the approximatioy®fve start out fromu, = 1 (the biggest natural number
with a square< 2). Thus,a; = 1.5, and2a; = 3. Becausd < /2 < 1.5 we get thatag — v/2| < 0.5 and
ao + V2 > 2. This gives:

Oéan—\/ﬁ<2a1(

n "
0<an\/§<3-<4) =3.472",

With the help of Hugs we can have a quick look at what this gets us ferl..5:
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Prelude> [ 3 * (1 / 4°(2°n)) | n <- [1..5] ]
[0.1875,0.0117188,4.57764e-05,6.98492e-10,1.6263e-19]

The numbers of correct decimals for approximatians. .., as, in that order, aré, 1,4,9,18. The quadratic
convergence property (at every successive approximation step the size of the remaining error gets squared) ensures
that this continues as:

36,72,144,288,576, . ..

It follows that the approximation;, of v/2 is sure to be correct in the first6 decimals.

8.21 Givenilim;_ .., a; = a, lim;_, a; = b.

To be proveda = b.

Proof:
Assume, for a contradiction, that b, i.e., assumén — b| > 0.
From the giverdim; ., a; = a, we getan Vi > n (la — a;| < €).
So somen; exists such thati > ny (|a — a;| < €).
In a similar way, from the givetim; .. a; = b, we get ams with Vi > ns (|b — a;| < €).
Letn = maxz(n1,n2). Then, sincer > ny, ng, bothla — a,| < e and|b — a,| < ¢.
Since|z + y| < |z| + |y|. we getla — b| = |a — ay, + an, — | < |a — an| + |0 — an| < 26 = |a — ],
and contradiction.

This proves: = b.

8.22.1 Givenlim; .-, a; = a.

To be provedlim;_. o, as; = a.

Proof:
Let e be arbitrary, and let, be anng such thati > ng(|la — a;| < €) (from the given).
If i > ng then2i > ng, SOVi > np(|la — ag;| < e.

Thereforeve > 03nVi > n(la — az;| < €), i.€.,lim; o as; = a.

8.22.2 Givenlim; . a; = a, f : N — N with VnImVi > m f(i) > n.

To be provedlim; . as@;) = a.

Proof:
Let e be arbitrary, and let, be such thati > nq(|a — a;| < €) (from the first given).
From the second given we know that there isanwith Vi > mo(f (i) = no).
ThusVi > m0(|a — be(i)| < 6).

Thereforeve > 03nVi > n(la — ayu| <€), i.e.,lim; o0 ayiy = a.

8.23 Givenlim;_,o a; = a,lim; . b; = b, a < b.
To be proved: there is anwith Vm > n(a,, < by,).
Proof:
Letny be such thati > n;(|a — a;| < €) (from the first given).
Letns be such thati > ns(|b — b;| < €) (from the second given).
Let kK = max(n1, no). Sincek > ni, we get from the above that > k(ja — a;| < ¢€).
If a; < athen certainlyu; < a + €. If a < a;, thena; — a < ¢, and alsai; < a + .
Soinany case; < a + e.
Sincek > ny, we get from the above that > k(|b — b;| < €).
If b < b;thenb —e < b;. If b; < b, thenb — b; < ¢€,S0b — € < b;.
Soinany casé — ¢ < b;.
Settinge = “T“’ we get froma < bthata +e¢ =b —¢,S0a; < a+ “T“’ < b;.
This provesim > k(a,, < by,), S0 there is am with Vm = n(a., < by).

8.24 Given:limi_)m a; = a, lim; ..o b; = 0.
To be provedlim; ., (a; + b;) = a + b.
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Proof:
We have to show thate > 03nVi > n(|(a +b) — (a; + b;)| < e.

Let e be arbitrary.

Letn; be such thati > n;(|la — a;| < %¢), from the first given.

Letny be such thati > ny(|b — b;| < 5¢), from the second given.

Let kK = max(ny, ng). Sincek > ny,nq, we get from the above

thatVi > k(la — a;| < 1e) and thatvi > k(|b — b;| < 3e).

ThusYi > k(|la — a;| + |b — b;| < €), and therefor&’i > k(|(a + b) — (a; + b;)| < €).
This provedim;_,,(a; + b;) = a + b.

8.25 To be provedf : R — R is continuous ifflim; ., f(a;) = f(a) whenevelim;_. ., a; = a.
Proof:
=: Supposef : R — R is continuous.
To show: iflim; o a; = a thenlim; o f(a;) = f(a).
Assuméim;_., a; = a.
To show:lim; o f(a;) = f(a).
Proof:
Let e be arbitrary.
We have to show that there is arwith Vi > n(|f(a) — f(a;)| < €).
Sincef is continuous, there is@with |a — a;| < § = |f(a) — f(ai)] < e
From the assumptiolim; ., a; = a, there is am with Vi > n(ja — a;| < 9).
It follows thatVi > n(|f(a) — f(a;)] < €).
This shows thalim; ., f(a;) = f(a).
< Supposéim; ., f(a;) = f(a) whenevelim;_,, a; = a.
To show: f : R — R is continuous.
Leta ande > 0 be arbitrary.
We have to show that there iga> 0 with Vy(la — y| < 6 = |f(a) — f(y)| < €).
Suppose, for a contradiction, that there is no stich
Then for alld, there is ay with |a — y| < d and|f(a) — f(y)| > .
Now we can construct a sequenggaq, as, . . . With aq arbitrary @¢ # a),
ay :=somey with |a — y| < |a — ap| and|f(a) — f(y)| > ¢,
and in generak, ., := somey with |a — y| < |a — a;| and|f(a) — f(y)| > €.
Thenlim; . a; = a, whilelim,_ ., f(a;) # f(a), and contradiction with the given.
Sothereis & > 0 with Vy(la —y| < 0 = |f(a) — f(y)| < €).

8.26.1 Giveni{a, }52 , is Cauchy.
To be proved{a, }52, is bounded.
Proof:
We have to show that there arg: with Vi(b < a; < ¢).
Take some > 0. Then by the given, there is anwith Vi, j > n(|a; — a;| < ¢€).
Letb = min{ayg,...,a,} — ¢. We show that for all, b < a;.
Fori € [0..n] this is immediate from the definition.
If ¢ > n anda, < a;, then agaim < a; is immediate from the definition.
If ¢ > nanda; < a,, then, sincéa,, — a;| < €, a,, — € < a;, SO agair < a;.
Analogously, we can take= max{ay, . .., an,} + €, and prove that; < ¢, for all 4.

8.26.2 Given{a, }22 , is Cauchy; there is am € R with Ve > 0vn3i > n (Ja — a;] < €).
To be provedlim;_,, a; = a.
Proof:
Lete > 0 be arbitrary. We have to prove thatVi > n(ja — a;| < €).
Letn, be such that'i, j > ny(|a; — a;| < %e) (from the fact thafa,, } 32, is Cauchy).
By the second given there iskawith k& > n; and|a — ax| < %e.
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ThenVi > k(|ay — a;| < 3e€), s0Vi > k(la — ax| < e Alagp — a;| < Se).
Sincela — a;| < |a — ag| + |ar — a4, this givesvi > k(Ja — a;] < €).
This proves thatim;_ ., a; = a.

8.27 Take{a, }52 o ~ {bn}22, if {a, — b, }52, converges td). This is easily shown to be an equivalence.
8.29 Left to the reader.

8.30.1 Basis: It is clear that

(cos(p) +isin(p))? = 1 = cos(0) + i sin(0).
Suppose that

(cos(p) + isin(p))™ = cos(np) + isin(ny).
Then:

)" = (cos() +isin(p))" x (cos(p) + isin(p))

(cos(np) + isin(ny)) x (cos(p) + isin(yp))
= cos((n+ 1)¢) + isin((n + 1)p).

(cos(p) +isin(y

.
=

The final step is justified by the fact thats(ny) + i sin(nep) is the number with magnitudeand phasep, while
cos(p) + isin(p) has magnitudé and phase. The result of multiplying them is the number with magnitude
and phasexp + ¢ = (n + 1)y, i.e., the number

cos((n+ 1)p) + isin((n + 1)p).

8.30.2 Ifm € N then:

1
(cos(ip) + isin(p))™
previous item 1
N cos(mep) + i sin(my)
= cos(me) — isin(mep)
= cos((—m)p) + isin((—m)p).

m

(cos(p) +isin(p) ™ =

Draw a picture to see why the penultimate step is justified.



Solutions to Exercises from Chapter 9

module Sol9
where

import POLS

9.3 Next10 elements are{237,367,539,759,1033,1367,1767,2239,2789,3423]. The sequence is of the
form An.n® 4+ 3n + 3.

9.5 Difference analysis yields that this sequence is generated by a polynomial of the third degree, so the sequence
leads to the following set of equations:

a = 13
at+b+c = 21
a+2b+4c = 35
Eliminatea:
b+c = 8
2b+4c = 22

Subtracting the second equation from #hiold of the first give2b = 10, whenceh = 5 andc = 3. The sequence
is generated by the fortn.(3n2 + 5n + 13).

9.6 There is no need for an inductive proof anymore, for this time you did not arrive at the closed form by guess-
work, but by solving a set of linear equations derived from a polynomial sequence for the pie cutting process.

9.9 The implementatiothoose is far more efficient. The computation fekoose n k use2k — 2 multiplication
operations plus one division operation. The computatiorcf@ose’ n k constructs a ‘lozenge’ in the Pascal
triangle with lower corner(}) by means of addition, but with repeated computation of the same intermediate
results. E.g., to computg), the numberg3) and (3) get added. To comput€) the number(3) is needed. To
compute(3), the number(}) is needed as well. S@) gets computed twice.

(Z) T K (nn!— B (n— (n—::;)! (n—k)! <nik)
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9.12

n\ n! n (n—1)! n (n—1)! ~n (n—1
(k:) T K-k k (k=1 (n—k)! _k:'(k:—l)!((n—l)—(k:—l))!_k'(k—l)'

9.13(”) - (7) gives the number of ways of first picking an-sized subseB from ann-sized setd, and next
picking ak-sized subsef’ from B. Alternatively, one might first pick &-sized subsef’ from A, and next select
m — k elements fromAd — C, so that theser — k elements together with' constitute ann-element sef3 with
C C B C A. There arg(}) - ("_*) ways of doing this. Clearly, the two procedures are equivalent.

9.14 First observe thdf') = 1 = ("*]). Next, use the law of additioh times, as follows. Add”"*1) and (")

n+1 1
to yield ("**2). Next add("*?) and ("/?) to yield (%), and so on, and finally ad(’*}) and ("}*) to yield
().

9.20 Puttingl on the positions for the prime exponents, we get:

cor> ([0,0,1,1,0,1,0,1,0,0,0]°3) !! 10
6



Solutions to Exercises from Chapter 10

module So0l10
where

import COR

10.1

evens = 0 : map (+2) evens

10.2

theEvens = iterate (+2) 0

10.3
Swap nn = nn
swap (’1’: xs) = ’0’: swap Xxs
swap (°0’: xs) = ’1°: swap xs

morse Xs = xs ++ morse (xs ++ swap xs)

thue = ’0’ : morse "1"

10.5

random001s :: Int -> [Int]
random0O1s i = map (‘mod‘ 2) (randomInts 2 i)
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10.9 The first machine will always deliver mineral water after insertion of a single coin, while the second machine
may refuse to do so.

10.10
vend, vendl, vend2, vend3, vend4 :: Process
vend (0:xs) = "coin" : vendl xs
vend (1:xs) = "coin" : vend4 xs
vendl (0:xs) = "coin" : vend2 xs
vendl (1:xs) = vendl xs
vend2 (0:xs) = "beer" : vend Xxs
vend2 (1:xs) = "coin" : vend3 xs
vend3 (0:xs) = "moneyback": vend xs
vend3 (1:xs) = vend3 xs
vend4 (0:xs) = "water" : vend xs
vend4 (1:xs) = vend4 xs

10.12 TakeD = Z and A = D, under the standard orderirg The setZ has no greatest and no least element.
10.13 The example of the previous exercise works.

10.14N is not a domain for the set of all natural numbers has no lubNeebe the seN U {oc}, and putn < co
foralln € NU {cc}. Then we have:L = 0, and every chain ilN> has a lub, stN>° is a domain.

10.15 To show that — b is a domain, we must show that there is a bottom element and that every chain has a lub.
Take for_L the partial function that is everywhere undefined. Then it is clear from the definitiontiodt | C f
forany f : a — b. Let A be a chain ime — b. Then we get from the definition &f that for allg, ¢’ € A and for

all z € a it will hold that if g(z) andg’(z) are both defined, theg(z) = ¢’(x). ThereforeJA can be defined as

the functionh given byh(x) := U{g(x) | g € A}.

10.16 The partial list_ is the bottom ofa]. Let A be a chain iffa]. Then{head yg ys € A} is a chain ina, and
{tailys| ys € A} is a chain infa]. Thus, we can defing A as the list xs given by

e head xs= LI{head yg ys € A},
e tail xs:= L{tail ys| ys € A}.

Note that head. = head|] = L, and tail L = tail [| = L.

10.20 Infinite lists always have a first element, so we may assume the list to be of the:fesmMNe give a proof
by approximation that

filter p (map f x:xs) = mapf (filter (p.f) x:xs).

Assume (induction hypothesis) that for any list ys the following holds:

approxn (filter p (mapf ys)) = approxn (map f (filter (p.f) ys)).
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There are two cases: @) fz) =t and (i) p(fz) = f. In case (i) we have:

map

approx(n + 1) (filter p (map f (x:xs))) approx(n + 1) (filter p (f z) : (mapf (x:xs)))
approx(n + 1) ((f x) : (filter p (mapf (x:xs))))
(f x) : approxn (filter p (map f (x:xs)))

= (fz):approxn (mapf (filter (p.f) xs))
approx(n + 1) ((f =) : (mapf (filter (p.f) xs)))
= approx(n+ 1) (mapf (x : (filter (p.f) xs)))

approx(n + 1) (map f (filter (p.f) (x:xs))).

filter

approx

Case (ii) is similar.

10.23 To show thaf\ is a bisimulation or4, we have to check the two bisimulation properties. Assumeb.
1. Suppose —> a’. Froma = b it follows thatb —>- o/, with o’ = a'.
2. Similar.

10.25 Statey; of the second vending machine cannot be linked to any state in the first vending machine. In
particular, it cannot be linked to state in the first machine, for; in the first machine has a water and a coin
transition,q; in the second machine has only a coin transition.

10.26 LetR andS be bisimulations. Assume R U S)b. To show that? U S is a bisimulation, we have to check
the two bisimulation properties.

1. Suppose — a’. Froma(R U S)b, we know that eitheaRb or aSb. In the first case, it follows from the
fact thatR is a bisimulation that there istd with b —> " andbRb'. Henceb(R U S)V'. In the second case, it
follows from the fact thaS is a bisimulation that there istdwith b —* " andbSb’. Henceb(R U S)b'.

2. The reasoning is similar.

10.27 LetR = U{B | B s a bisimulation ord}. We show thatR is a bisimulation, by checking the two bisimu-
lation properties. AssumeRb.

1. Suppose — «’. FromaRb and the definition o we know that there is a bisimulatids on A with a Bb.
It follows from the fact thatB is a bisimulation that there istd with b — v’ andbBb’. Hence, by the definition
of R, bRV .

2. The reasoning is similar.

10.28 TakeBUA 4 U{(cs3, c4), (cq, c3) }, whereA is the list of statege, ¢, ¢1, c2, c3, ¢4}, andB is the bisimulation
given in Example 10.24.

10.30 LetS be given by:
{(filter p (map f xs), map f (filter (p.f) xs)) | f:a — b,p: b — {0,1},xs:: [a], |xg = oo}
Let R be given byA, U S. We show thafR is a bisimulation. Clearly,
filter p (map f xs) R mapf (filter (p.f) xs),

by definition of R. We have to show that head and tail observations on the items relatedatysfy the back and
forth conditions.

Suppose filtep (map f xs) head .

Then, by the definition of filter and map, xs has the fargn: --- : z,, : z : xg, and for alli with 0 < i < n,
p(z;) =0, andp(z) =1, andf(z) = z.

But then also may' (filter (p.f) xs) heag' ., and by the definition oR, zRz.
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Suppose mayg (filter (p. f) xs) head .

Then again, by the definition of filter and map, xs has the fegm --- : z,, : = : x5, and for alli with
0<i<n,p(x;)=0,andp(z) =1,andf(x) = 2.

But then also filtep (map f xs) head z, and by the definition oR, zRz.

The reasoning for tail observations is similar.

10.37 Generating function f¢8,0,0,1,1,1,...] is f_l. Generating function fofl, 1,1,0,0,0,...]is 1+ 2 + 22.

Generating function fofl, 1, 1, %, .. ] is 72-. Here are the checks:

COR> take 20 (z"3 * ones)

(o,o0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11]

COR> 1+z+z~2

[1,1,1]

COR> take 10 (2/(2-z))

(1% 1,1 %2,1%4,1%8,19% 16,1 % 32,1 % 64,1 % 128,1 % 256,1 % 512]

10.40

1. In Example 10.32 we saw thaﬂﬁz is the generating function foxn.1. Multiplication with a constant
gives that;= is the generating function fotn.c.

z

2. ﬁ is the generating function foxn.n: this was shown in Example 10.33.

3. @ is the generating function forn. f,,+1; division by z has the effect of shifting the coefficients one place

to the left.

4. cf(z) + dg(z) is the generating function fotn.cf, + dg,:

cf(z) = cfo + cfiz + cfaz? +
dg(z) = dgo + dg1z + dgsz? +
cf(z) +dg(z) = (cfo+dgo) + (cfi+da)z + (cfz+dga)z® +

5. (1 — 2)f(z) is the generating function for the difference sequekeef,, — f,,—1: page 347, chapter 9.

6. 1%Zf(z) is the generating function for the difference sequehkeef, 1 — f,: from previous item, for
division by z shifts the sequence of coefficients one place to the left.

z

(I+z+22+2°+--)andf(2) = fo+ fiz+ foz® +---iSfo+ fr + -+ fu-

7. L f(z) is the generating function forn. fo + f1 + - - - + fn! then-th coefficient of the product of:- =

8. f(z)g(z) is the generating function forn. fog,+ f1gn—1+- - -+ fn—191+ fngo (the convolution off andg):
then-th coefficient in the list of coefficients gf(z)g(z) has the formfog,, + f1gn—1+- -+ fu_191 + fngo-

9. zf'(z) is the generating function fotn.n f,,: f'(z) generateswn.(n + 1) f,,+1; multiplication with z shifts
one place to the right, and insert$ & the first position.

10. % f?: f|(t3=tdt is the generating function fdm.nf_;l: integration gives\n.%, division by z shifts one place
to the left.

10.45 The appropriate corecursive definition is given by:

COR> take 20 lucs where lucs =2 : 1 : (lucs + tail lucs)
[2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,9349]
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The corresponding instruction for a generating function is:

g(z) = 2° <g(Z) + g(Zz)> +2- 2

Multiplying by 22 inserts twa0’s in front of the lucs sequence; addidghanges the first of these 20subtracting
z indicates that the second coefficient is obtained from the first by subtrakctifge tail of the lucs sequence is

given by@. From this we get:

2—2z
1—2z— 22

This is easily verified, as follows:

COR> take 10 ((2-z)/(1-z-z"2))
(2% 1,1 %1,3% 1,4 % 1,7 % 1,11 % 1,18 % 1,29 % 1,47 % 1,76 % 1]

10.52 The exponential generating function we nee(d;+s+ % + ;—1)3. Again, the idea: if you pick marbles of
the same colour, then! of the marble orderings become indistinguishable. The answer is given by the following

query:

COR> o02e ((z"2/2 + z°3/6 + z~4/24)"3)
[0%1,0% 1,0% 1,0%1,0% 1,0 % 1,90 % 1,630 % 1,2940 % 1,
9240 % 1,22050 % 1,34650 % 1,34650 % 1]

Alternatively, we can express this as follows:

COR> o02e ([0,0,1/2,1/6,1/24]"3)
[0%1,0%1,0%1,0%1,0% 1,07% 1,90 % 1,630 % 1,2940 % 1,
9240 % 1,22050 % 1,34650 % 1,34650 % 1]

Thus, under the given constraints there are 90 different sequences of 6 marbles, 630 of 7 marbles, 2940 of 8
marbles, 9240 of 9 marbles, 22050 of 10 marbles, 34650 of 11 marbles and 34650 again of 12 marbles. The
numbers ofl1-sequences antR-sequences are the same, for dlysequence can be viewed as the result of
extending an 1-sequence with a marble of the only colour that occurs 3 times ihitheequence.



88

SOLUTIONS TO THE EXERCISES



Solutions to Exercises from Chapter 11

module Solll
where

import FAIS

11.5 To be proved: foreverY C N, if me X andvn > m(ne X =n+1€ X), then¥ne Nlm < n=n €

X).
Proof: Assumen € X andvn > m(n € X = n+1 € X). We prove by inductionon thatY = {n | m+n €
X}=N.

Basis:0 € Y. This follows fromm € X.

Induction hypothesisz € Y. Induction step. From the induction hypothesis werget n € X. From the second
assumptiomn +n + 1 € X. From this and the definitiondf: n+1 € Y.

We now show’n € N(m < n = n € X). Now letn an arbitrary natural number with, < n. Thenn —m € N,
son —m € Y. Thus, by the definition o', (n —m) + m =n € X.

116GCGven X CN,1e X,VneNne X =n+2¢€ X).

To be proved: every odd number is .

Proof: We showthat = {n e N|2n—-1€ X} =N.

Basis:0 € Y follows from1 € X.

Induction hypothesisy € Y.

Induction step: From the induction hypothesis we get that- 1 € X. From this and the third giver2n + 1 =
2n+1)—1€ X. Thusn+1€Y.

11.9 To be provedk is well-founded orN.

Proof: We show by strong induction that for noc N is there an infinite sequenee> n; > n2 > .. ..

Basis: Sincd) is the smallest member &F, there is no infinite sequenée> n; > .. ..

Induction hypothesis: For ath < n it holds that there is no infinite sequenee> n; > ny > .. ..

Induction step: Assume there is an infinite sequemce n; > ny > .... Sincen; < n, this contradicts the
induction hypothesis. Thus, there is no infinite sequencen; > ngy > .. ..

11.10.1 Given< on A is well-founded, X C A,Va € A(Vb < a(b € X) = a € X).

To be proved:X = A.

Proof: AssumeX # A. Thenday € A — X. Sinceay ¢ X, by the third given there is amy < ag with a; ¢ X.
Thusag >~ a1 anda; € A — X. Repeating the argument we get an infinite sequepce a; > as > ... In A,
and contradiction with the fact that is well-founded. Thus{ = A.

11.10.2 Given: EverX C A with Va € A(Vb < a(b € X) = a € X) coincides withA.

89
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To be proved= is well-founded.

Proof: Suppose there is an infinite sequenge- a; > as = ...in A. Let X = A — {ag,a1,a2,...}. Let
a € A be arbitrary and assum# < a(b € X). Thena ¢ {ag,a1,as,...}. Thus,a € X. But thenX satisfies
Va € A(Vb < a(b € X) = a € X), so by the givenX = A, and contradiction with the definition df. Thus,
there is no infinite sequeneg > a; > ay > ...In A, i.e., A is well-founded.

11.11.1 Given: LefR be a relation o4 and leta, b1, b2 € A. If aRb; andaRby then there is & € A with b Rc
andbs Re.

To be proved:R is confluent.

Proof: we will proceed by induction on the path length frarto b;. Basis:a = b;. If aR*by, thenb, satisfies
b1 R*by andbgR*bg.

Induction step: The induction hypothesis is that®*b; andaR*b, then there is a with b, R*c and by R*c.
Suppose:R*t1b; andaR*b,. Then there is am with aR™b,. So there is @ with a R*dRb,. By the induction
hypothesis, there isawith dR*c andb, R*c. FromdR*c, there is somg € Nwith dRPc. Letd = co,c1,...,¢p =
¢ be theR-path fromd to c. Then fromd Rb; andd Rcy, by the given abouR there is are; with by Re; ande; Re; .
Similarly, frome; Re; andc; Re; 11, by the given abouk there is are; ;1 with e; Re; 1 andc;+1 Re; 1. This gives
anR-pathby,eq, ..., e, with cRe,,. It follows thatb, R*e, andbs R*e,, which clinches the argument.

11.11.2 Assume® is weakly confluent, and supposés bad. We have to show that there is a basith aRb. If

a is bad, then there atg, b, with aRb,, aRbs, and for noc € A is it the case that; R*c andby R*c. Fromb, R*c
andb, R*c, there arek, m € N with aR™b; andaR¥by. Also, k > 1 andm > 1. For suppose, e.g., that= 1.
Then bym applications of weak confluence we get atcawith b; R*c andb, R* ¢, and contradiction with the fact
thata is bad.

Thus,k = n + 1, and there is & with a RbR™b; andaR™b,. By m applications of weak confluence we get
at ane with bR*e andby R*e. Assumeb is not bad. Then there isawith b R*c andeR*c. SinceaR*b; and
aR*bs R*e this contradicts the assumption abeuiThus,b is bad.

11.11.3 Given:R is weakly confluent an&®~! is well-founded.

To be proved:R is confluent.

Proof: Suppos@R*b; andaR*b,. If a is not bad, there is nothing to be proved. Assume thereforeathet
bad. Then by 11.11.2 there is an with aRa; anda; bad. Continuing like this we get an infinite sequence
ag,ay,as, ..., With a = ag, a; Ra;, 1, with thea; all bad. This gives a contradiction with the assumption fbat

is well-founded.

11.12 Given) # X C N, thereisanm € Nwith foralln € X (n < m).
To be proved: Thereisfac X such that foralh € X (n < k).
def

Proof: We show by induction om that the property®(m) holds, whereF/(m) < every non-emptyX C N
with ¥n € X (n < m) has a maximum.

Basis: E(0) holds by the fact that the only non-empXy C N with Vn € X (n < 0) is the sef0}, and this set has
0 as a maximum.

Induction step: Supposg(m) holds. Assum@ # X C Nandvn € X (n < m+1). We have to show thaX has
amaximum. Assumer+ 1 € X. Thenm + 1 is a maximum ofX. Assumen+1 ¢ X. ThenvVn € X (n < m).
By the induction hypothesisy has a maximum.

11.13Given:f : N — Nwithn <m = f(n) < f(m).

To be proved: for alh € N: n < f(n).

Proof: induction om.

Basis:0 < f(0) holds by virtue of the fact thdt is the smallest member &f.

Induction step: Assume < f(n). We have to show + 1 < f(n + 1). Sincen < n + 1 we get from the
given aboutf that f(n) < f(n + 1). Thereforef(n) + 1 < f(n + 1). From the induction hypothesis we get that
n+1 < f(n) + 1. Combining these gives + 1 < f(n + 1).
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11.14 Letag, a1, az, - . . be an infinite sequence of natural numbers. We have to show that therg ai¢h i < j
anda; < a;. Suppose for a contradiction that for allj with ¢ < j it holds thata; > a;. This gives a contradiction
with the well-foundedness ef onN.

11.15 Letn, m be arbitrary natural numbers. We will show that thét, m) is the gcd ofr andm. Let a sequence
of natural number pairgag, bo), (a1, b1), (az,b2), ... be given by(n,m) = (ag, bo), if a; < b; thena,11 = a;,
bi+1 = b; —a;, if a; > b; thenai“ = b;, bi—i—l = a;, and ifa; = b; thenaiH = as, bi-i—l = b;. Thenitis
immediate from the properties gfthatg(a;,b;) = g(n,m) for all i. Also, by the well-foundedness ef on N
there has to be awith a; = b;. It follows, by the properties of, thatg(n, m) = a;.

It was shown in Section 8.2 thatjf< ¢ thenp, ¢ andp, ¢ — p have the same common divisors. It is clear that
p is the greatest common divisor pfp. It follows thatg(n, m) = a; is the gcd ofn, m.

11.16 To be proved: Smullyan’s ball game terminates for any initial game situation of finitely many balls.
Proof: Assume the game goes on forever. Bgtbe the contents of the box after theh move. Then the initial
situation from which you can play an infinite gameHs. Letn be the greatest number present on one of the balls
in By. We derive L by strong induction om.

Basis:n = 0. In this case the contents of bd¥ consists of a finite number, say, of balls carrying number

0. Now every movanustconsist of removal of one of the balls without replacement (for there are no balls with
smaller numbers available). Thus, the game ends aftaroves, and contradiction with the assumption that we
can go on forever.

Induction step: Assume that the game terminates for all situations where the greatest number on a3 bsll in
< n. Suppose that the greatest number on a baljiis n+ 1. To show.L, we use strong induction on the number
m of balls in By carrying the numben + 1.

Basis:m = 1. There is a single ball carrying number+ 1. The move that replaces this ball cannot

be postponed forever, for otherwise contradiction with the induction hypothesis féhus, after a

finite number of steps, this ball gets replaced by a finite number of balls carrying smaller numbers.
The assumption that the game goes on forever after this leads to a contradiction with the induction
hypothesis for.

Induction step: suppose the game terminates if there are uphalls in By carrying numbemn +

1. Then by the induction hypothesis fot, after a finite number of moves the last ball carrying
numbern + 1 has to be replaced. The assumption that the game goes on forever after this leads to a
contradiction with the induction hypothesis for

Thus, we have proved that the game terminates for every initial situation.

11.17

ball :: Int -> [[Int]]
ball n = ballgame [n]

ballgame :: [Int] -> [[Int]]
ballgame xs | all (==1) xs = [xs]
| otherwise = xs : ballgame (reduce xs)
where
reduce (1 : ys) = 1 : reduce ys
reduce (n : ys) = (n-1) : (n-1) : ys

ball 50 or ballgame [50] takes centuries to terminate, for (as an easy induction argument shows) it will
produce a list o2*? integer lists. Since'® ~ 10% we get:

249 — 99.940 99 . 1012 = 512 10'2.
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512 billion (in American terminology: “512 trillion”) lists is a lot. If 1000 lists are being generated per second,
then this make8600 - 24 - 365 - 103 = 864 - 365 - 10° = 31536 - 106 lists a year, which means that the computation
would go on for more than 160 centuries.

11.18 The argument is flawed, so there is no contradiction with common sense experience. The flaw is in the
sentence ‘choose € A — {p, q}'. This presupposes that — {p, ¢} is non-empty, an assumption not warranted
by what is given about.

11.25 From the gived ~ B we know that there is a bijection: A — B. Let f be defined byf(z) := b if
x =a, f(x) = g(a)if x = g7 1(b) (¢~ 1(b) exists, since is bijective), andf(x) := g(z) in all other cases. Then
f is a bijection, andf (a) = b.

11.26 Given:A ~ B.

To be provedip(A) ~ p(B).

Proof: Letf be a bijection that witnesses ~ B. Definef* : p(A) — (B), by means off*(X) := f[X]. We
show thatf* is a bijection. LetX # Y, e.g., suppose thate X,a ¢ Y. Thenf(a) € f[X], f(a) ¢ f[Y]. SO
fIX] # fIY]. Thusf*(X) # f*(Y), which proves injectivity off*. Next, take an arbitrary” € p(B). Consider
the setX = f~![V], and observe that[X] = f[f~'[V]] = V. Thus, there is aX € p(A4)w h (X)) =V.
This proves surjectivity of *.

11.27 The functionf : p(A) — {0,1}# given by f(X) := chary, where chag : A — {0,1} is given by
charx(a) := 1iff a € X (chary is the characteristic function of in A), is a bijection.

11.28.1 Given:A ~ B.

To be proved: ifA hasn elements,then so hds.

Proof: Letf : B — A be a bijection that withesses ~ B. From the fact thatl hasn elements we get that there
is a bijectiong : A — {0,...,n — 1}. But theng o f is a bijection betwee® and{0,...,n — 1}, which shows
that B hasn elements.

11.28.2 Given:A ~ B.

To be proved: ifA is finite, then so is3.

Proof: If A is finite then there is some € N such that4d hasn elements. By 11.28.1, in that caBealso has
elements, s@® is finite.

11.28.3 Given'A ~ B.
To be proved: ifA is infinite, then so isB.
Proof: follows by contraposition from ‘if3 is finite, then so isA’ (see 11.28.2).

11.29 If f is a function, them\z.(x, f(x)) is a bijection betweedom (f) and f. This establisheg ~ dom (f).

11.30 LetR be an equivalence oA, and letl” = A/R. Let X be the set of all partitions oW and letY” be the set
of all equivalences) with R C Q. Consider the functiorf : X — Y given by

f(B) ={(a,b) € A> |IB € B: [alr € BA[b|r € B}.

Then f is well-defined, for every) = f(B) is an equivalence wittR C Q. The latter fact holds becausadb
implies[a] r = [b] r, together with the fact that5 = V' = A/R for any partition.

We have to show that is bijective. For injectivity, supposg(B) = f(B’) = Q. Let B € B. ThenB # (), by
the fact that3 is a partition. Lefb]z € B. Then by the definition of and the fact thaf (8’) = Q there is aB’ in
B’ with [b]r € B’. SoB C B'. Let[a]gr € B'. ThenaQb, so[a]r € B. Thus,B’ C B, and therefore3 = B’.
This showsB C B’. In a similar way we can show th& C B. Therefore3 = B’, which clinches the argument
for injectivity of f. For surjectivity, let)) be an equivalence oA with @ 2 R. Then

B={{lblr[bec[dq}|ac A}
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is a partition ofA/ R with f(B) = Q.

11.31 Letm, m € N and suppose < m. We show that'n < m {0,...,n — 1} # {0,...,m — 1} by induction
onm.

Basis: Ifm = 0 there is nov < m so the statemeitn < m {0,...,n — 1} # {0,...,m — 1} trivially holds.
Induction step. Assume thet < m {0,...,n—1} «£ {0,...,m—1}. We showthat/n < m+1{0,...,n—1} %
{0,...,m}.

Suppose for a contradiction that for somec m + 1 a bijectionf from {0,...,n — 1} to {0,...,m} exists. We
may assume that(n — 1) = m (exercise 11.25). Thefi | {0,...,n — 2} is a bijection from{0,...,n — 2} to
{0,...,m — 1}, and contradiction with the induction hypothesis.

11.32 LetX C N and assume that for some € N Vn € X (n < m). We show thafX is finite by establishing a
bijection f betweenX and{0,...,n — 1}, for somen.

We first define a sequence of séfs, ..., X,,_1, as follows. If X is empty then puh = 0. Otherwise, put
X = Xp andX; = X, — {min X}, wheremin(Xj) is the least element oX, that is guaranteed to exist by
Fact 11.4. In general, iX; = 0, then putn = 4, otherwise putX;;; = X; — {min X;}. This defines the
sequenceXy, ..., X,—1. For everyi, every non-emptyX;, min X; < m, son < m. The functionf given by
f(4) = min X; is a bijection betweef0,...,n — 1} and X.

11.33 LetE be a property of sets such that
1. E(),
2. for every setd and every object ¢ A: if E(A), then alsaE(A U {z}).

DefineE’(n) asVA (if A hasn elements thetit(A)). We show by induction on that for alln € N, E’(n). From
this it follows immediately thatr holds for any finite se#.

Basis: E’(0) states that ifA has0 elements therz(A). This follows immediately fron¥(0).

Induction step: Assumé&’(n). We have to showt’(n + 1). Let A be an arbitrary set with + 1 elements, and
letz € A. ThenA — {z} hasn elements, so the induction hypothesis applies, and wé&gdt— {x}). By the
second property of’, we get fromE(A — {z}) andx ¢ A — {z} that E(A). This establishe&’(n + 1).

11.34 We use 11.33. Léf( A) be the property ‘all subsets df are finite'. It is clear thafZ(()) holds, for() has) as
its only subset, anf is finite. Suppose that all subsetsAfre finite. Letz ¢ A. Then all subsets ol U {z} are
finite. For letB C A. Then by assumptiof0,...,n — 1} ~ B for somen. Sincex ¢ B, {0,...,n} ~ BU {z}.
This establishe& for every finite A.

11.35 Again, we use 11.33. Let be a finite set. We show that for every finite $&tA U B is finite. LetE(B)
be the propertyA U B is finite’. ThenE() follows from the fact that4 is finite. AssumeE(B). Letz ¢ B.
We have to show that U B U {z} is finite. If x € AthenAU B U {z} = AU B, which is finite by assumption
E(B) . If z ¢ A, then we get from assumptiafi(B) that{0,...,n — 1} ~ AU B for somen. Therefore,
{0,...,n} ~ AUBU{z},ie,AUBU{x} is finite.

11.36 Leth be a finite injection withdom (k) C A andrng (k) C B. Supposed ~ B. We prove by induction on
the size ofh that a bijectionf : A — B exists withf D h. If h = () then everyf fits the bill. Suppose that i
hasn elements, the property holds. Liethaven + 1 elements. Let’ = h — {(a,b)}, for some pait(a,b) € h.
Then by i.h. there is a bijectioff : A — B with f' D h/. Let f’_l(b) = a’. Thena' ¢ dom (f’) by injectivity of
f'. Definef by means of:f (z) := f/(z) forz # a,x # «’, f(a) := b, f(a') := f'(a). Thenf is a bijection and
f2h

Note that the result does not extend to infinite injectiansConsiderh = An.2n on N. Thenh is injective,
dom (h) C N andrng (h) C N, but clearly there is no bijectiofi on N that extendg.

11.37 A proper subset of a finite set never is equipollent to that set. We prove by induction on the/siteif
A C B, A # B, Bfinite, thenA « B.
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Basis: If B = () the property holds sindkhas no proper subsets.

Induction step: Assume the property holds for s8tsf sizen. Let B be a set withB| = n + 1. Suppose, for a
contradiction, thaff : B — A is a bijection for somel C B, A # B. SinceA # B, thereis & € B with b ¢ A.
Thenf(b) = a € A. Consider the set of paifg = f — {(b,a)}. The functionf’ is a bijection betwee® — {b}
andA — {a}. Also, A — {a} C B — {b}, by the fact thalf (b)) = a« and f is injective. SincdB — {b}| = n, this
gives a contradiction with the induction hypothesis.

11.38.1 Letd andB be finite sets andl : A — B a bijection. Definé, : AN B — B by means ofi(z) = . Then
h is a finite injection ofA N B into B, so by Exercise 11.36 there is a bijectipn A — B with ¢ O h. Consider
g | A — B. Itis easy to see that this is a bijection between B andB — A. This established — B ~ B — A.

11.38.2 LetA and B be finite sets and : A — B a bijection. Then by the previous item there is a bijection
h:B—A— A—B.Defineg: AUB — AUBbymeans ofg(z) = f(z)if x € 4, g(z) = h(z) if z € B— A.
Thenf C g andg is a bijection onA U B.

11.39 LetA be finite. LetE C p(A). Supposd) € E, and assumgB € EVa € A : BU {a} € E. We prove by
induction on the size ofl thatA € E.

Basis: if|A| = 0 then the claim follows fronf) € E.

Induction step: Suppose the property holds fordallith |A| = n. Let Abe asetwitjA| = n+1. LetE C p(A)
with ) € EandVB € EVa € A: BU{a} € E. Letx € A. ConsiderE’ = {B — {z} | B € E}. Then( € E’,
VB € E'Va € A—{z} : BU{a} € E. Thus, by induction hypothesid,— {«} € E’. Therefore, by the definition
of F/, A€ E.

Conversely, supposd infinite. Let E C p(A) be the collection of all finite subsets a@f. Then®) € FE, and
VB € EVa € A: BU{a} € E. Still, A ¢ E, by the fact thatd is infinite.

11.43.1A < A sincel 4 is an injection fromA to A.
11.43.2A ~ Bimplies A < B since every bijection is an injection.

11.43.3A < BA B 2 C = A < (C, sinceifthere are injection$: A — Bandg: B — C,thengof: A — C
also is an injection.

11.43.4A C B = A < B, sinceA C B implies that the function : A — B given byi(x) = x is an injection.

11.44 To show thalN < A implies thatA is infinite, we prove by induction on that for alln € N, N £
{0,...,n — 1}. From this we get immediately that for alle N, A £ {0,...,n — 1}, i.e., thatA is infinite.
Basis:N £ (. Obvious.

Inductions step: Assumi A {0,...,,n — 1}. We have to shoWN £ {0,...,n}. Suppose for a contradiction
that there is an injectiofi : N — {0,...,,n}. Then an injectiory : N — {0, ...,n} exists withg(0) = n (swap
the values off on0 and f~!(n), if necessary). Defing : N — {0,...,n — 1} by means ofi(k) = g(k + 1).
Thenh is an injection, and contradiction with the induction hypothesis.

11.45 Leth : A — A be an injection that is not surjective, anddet A — rng (f). Let f be given byf(0) = b
andf(n + 1) = h(f(n)). We prove by induction on that f(n) is different fromf(0), ..., f(n — 1).

Basis: trivially true.

Induction step. Assumg(n) is different fromf(0), ..., f(n — 1). We have to show thaf(n + 1) is different
from f(0), ..., f(n). By definition ofh, f(1) = h(f(0),...,f(n + 1) = h(f(n)). By induction hypothesis,
f(n) is different fromf(0), ..., f(n — 1), so by injectivity ofh, f(n + 1) = h(f(n)) is different fromh(f(0)) =
f),...,h(f(n—1)) = f(n). Bythefactthab ¢ rng (f), f(n+1) = h(f(n)) # b, sof(n+1) is also different
from f(0).

11.46 LetN < A. Then there is an injectiofi: N — A. Consider the functioh = f o s, wheres is the successor
function onN. Thenh is inejective becauseand f are, andf(0) ¢ rng (h).
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11.47 LetA be infinite. Then (Thm 11.42) < A. Thus (Ex 11.46) there is a hon-surjective injectionA — A.
But thenA ~ rng (h) # A, i.e., A is equipollent with one of its proper subsets.

Conversely, letd be equipollent with one of its proper subsBtsThen a bijectiory : A — Bexists,sth: A — A
given byh(xz) = f(z) is an injection that is not surjective. Thus (Ex 11.48)< 4, i.e., A is infinite.

11.48 LetA be infinite, and leff : A — A. We show thaff is surjective iff f is injective.

= Sinced isinfinite there isam € Nwith A = {aq, ...,a,—1}. By surjectivity of f, A = {f(ag), ..., f(an—1)}-
Since this set has elements; # j implies f(a;) # f(a;), i.e., f is injective.

<: Supposef : A — A is surjective but not injective. Then (Ex 11.45) < A and therefore (Ex 11.44)
contradiction with the finiteness of.

11.50 LetB C A andA ~ N. Then there is a bijectiofi : A — N. Define an enumeration @ as follows.by, =
theb € B such thatf (b) < f(a) for all « € B, providedB is non-emptyb,,+1 = theb € B’ = B — {by, ..., b,}
such thatf(b) < f(a) for alla € B’, providedB’ is non-empty. Then either there igcawith B = {by, ..., by},
in which caseB is finite, or there is no such, in which caseB ~ N.

11.51.17 is countably infinite, forf : Z — N given by f(p) = 2pif p > 0andf(p) = —(2p+ 1)if p<Oisa
bijection. This maps the non-negative integers to the even naturals, and the negative integers to the odd naturals.

11.51.2 LetA and B are both countably infinite. Assumé&n B = (). Then there are bijections: N — A and
g : N — B. Define a bijectiorh : N — AU B by means oh(2n) = f(n) andh(2n + 1) = g(n).

If AN B # 0, then putd’ = A — BandB’ = AN B, and enumeratd’ U B’, next enumerate the union of
A’UB andC’ = B — A.

11.54 Map the non-negative rationals to the even naturals, and the negative rationals to the odd naturals.

11.55 By repeated application of the enumeration procefifer pairs we get enumeratior of N3, F; of N4,
and so on. To enumeral¥, first take[], next use the functiorfi(k) = F,,(m), wherej(n, m) = k. Note that;j is
the function defined in Theorem 11.52. This generates the list

[H’ [0]7 [1]’ [07 0}’ [2]7 [0’ 1]’ [07 O) 0]7 [3]’ []‘70]7 [0’ 0’ 1]7 [O’ O’O’ 0]’ [4}’ [0’2]7 [1707 0}7 [070? 07 ]‘}’ M

which is the result of taking” slices from the following table, starting from the top left corner.

(0], 1], 2], 3, [4], [5],

[0, 0], [0,1], [1,0], [0,2], [1,1], [2,0],
[05070]a [0307 ]a [1707 ]a [03170]7 [1107 1]; [27070]7
[0707070]7 [ana al]a [1707 70]7 [071,0,0], [150707 1}, [27()’070]’
[0,0,0,0,0], --

11.56 A union of countably infinitely many countably infinite sets is countably infinite, by an obvious variation on
the procedure of the previous exercise.

11.63.1 Sinced ~ A, it is notthe case that no bijection fronh to A exists. Thereforel £ A.

11.63.2A < Biff aninjectionh : A — B exists iff either an injectio : A — B exists whileA and B are not
equipollent, orA and B are equipollent, iffA < BV A ~ B.

11.63.3 Supposd < B andB ~ C. Then an injectiorh : A — B exists, but there is no bijection betwedn
andB. There is a bijectiory : B — C. Thusf o h : A — C'is an injection. Suppose for a contradiction that a
bijectiong : C — A exists. Theryo f : B — A'is a bijection, and contradiction with ;¢ B. ThusA < C.

11.63.4 The flaw in the argument is that the fact that a particular inje¢tiold — B is not surjective does not
warrant the conclusion thab function f : A — B is a bijection.



96 SOLUTIONS TO THE EXERCISES

11.64 Supposél is finite. Then there is an € N with A = {ay,...,a,}, and thereforef : A — N given by
f(a;) = iis aninjection. From Thm 11.28(« {0,...,n — 1}) it follows thatN # {ao,...,a,}. Thus,A < N.

11.65 The reals in the intervéd, %] are exactly the numbers with decimal expansionsgrirs - - - with decimal
digits ; € {0,1,2}. The proof of uncountability of0, g] can therefore proceed exactly as the proof for the

uncountability ofR, only with the decimal digits restricted {®, 1, 2}.

11.66 LetA be a set,and It : A — p(A) be given byh(a) = {a}. We show thafa € A | a & h(a)} = 0. For
suppose, to the contrary, thaEe {a € A | a € h(a)}. Thenb € A andb ¢ h(b). Thus,b ¢ {b}, and therefore
b # b, and contradiction.

11.67 ClearlyN =< {0, 1}V, for the function : N — {0, 1} given by
h(k) = An. if n = k then1 else0

is an injection. To see that £ {0,1}", assume for a contradiction that: N — {0, 1}" is a bijection. Define a
fucntiong : N — {0,1} by means ofy(i) = 0if f(i)(¢) = 1, = 1 otherwise. Thew ¢ rng (f), and contradiction
with the assumption that is a bijection.

11.68 ClearlyN < NV, for the functionk : N — N given by
h(k) = An. if n = k then1 else0

is an injection. To see that « NV, assume for a contradiction that: N — NY is a bijection. Define a function
f N — N by means off (i) = k for somek € N with k& # ¢(i)(). Thenf ¢ rng (), and contradiction with
the assumption that is a bijection.

11.69 A surjectiomh : N — Q exists. Now assume we produce a redly the procedure from the proof of
Theorem 11.60. Then it follows immediately from the procedure that rng (k). Sinceh is surjective, this
means that ¢ Q.

11.74 LetA < B C A. Then there is an injectioh : A — B, andrng (h) C B C A. Let X, = A — B, and
in general, letX,,;; = h[X,]. Let X = J, .y X». Define a functionf : A — B as follows. Ifa ¢ X then
fla) = a,ifa € X thenf(a) = h(a). Verify that f is a bijection. For injectivity, let # b.

a#b= f(b).
h(a) # h(b) = f(b), by injectivity of h.

Ifa¢ X,b¢ X, thenf(a

(a)
Ifa € X,be X, thenf(a)
Ifa ¢ X,be X, thenf(a) = a # h(b) = f(b) by the fact thatr ¢ X while h(b) € X by definition of X.
)

R A

Ifae X,b¢ X,thenf(a) = h(a) # b= f(b) by the fact thab ¢ X while h(a) € X by definition of X.

For surjectivity, leth € B. Thenb ¢ X,. If b ¢ X thenf(b) = b, otherwiseb € X, with £ > 0, and therefore
there is ac € X1 with f(c) = h(c) =b.

11.75 LetA < B andB =< A. Then there are injections: A — Bandg : B — A. Sof : B — rng(g)
given by f(b) = g(b) is a bijection, i.e.B ~ rng (g). Therefore,f o h : A — rng (g) is an injection. Applying
Lemma 11.73 to the injectiofioh : A — rng (g) € Awe getthatd ~ rng (g), which, together wittB ~ rng (g)
givesA ~ B.

11.76.1 By Cantor-Bernstein it is enough to give injectigns [0,1] — [0,2) andg : [0,2) — [0,1]. Thisis

easy. Letf = Aa:.%x and letg = Az.z. This shows that a bijection betwe@n 1] and|0, %) must exist. For good
measure, we also give an explicit definition of such a bijection.ctet[0, 1] — [0, 2] be the bijection: — 2,
and letH : [0,1] — [0,1] be the injectionz — Lz. Then letF : [0,1] — [0, %) be given byF(z) = G(x) for
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all z not of the form2=" - 2, andF(z) = H o G(x) for all z of the form2™" - 2. It is easily checked thaf is a
bijection.

11.76.2 By Cantor-Bernstein it is enough to give injectigns{(x,y) | 22 + y*> < 1} — {(z,y) | 22 + y* < 1}
andg : {(z,y) | 22 +9y* < 1} — {(z,y) | 22 +y* < 1}. Thisis easy: puff = )\(z,y)(%x,%y) and
9= z,y).(z,y).

11.76.3 Again, Cantor-Bernstein makes this easy. Here is a fungtiod(z,y) | 22 + y? < 1} — {(=,7) |
|z|,ly| < 3} thatinjects the disK(z, y) | * + y* < 1} into a disk within the squarg(z,y) | |z|,|y| < 3}. Let
f=Xz,y).(3z, Ly). Since the square is already contained in the disk the fungtiof(z,y) | |z, |y| < 3} —
{(z,y) | 2% + y* < 1} given byg = A\(z, y).(z, ) is an injection.

11.77 LetA be finite or countably infinite. To show that = R — A is uncountable, suppose for a contradiction
thatf : N — X is a bijection. As in the proof of Theorem 11.60, evé(y.) can be written ag,, + 0.rjryry - - -,
with p,, € Z andp,, < f(n) < p, + 1. Define a real numbef = 0.ror;7r2 - - - by means of picking:,, different
fromr?, r, # 0, r, # 9. Thenr is different from everyf(n), and contradiction with the fact thétis a bijection.
The above does not yet show thiatandR — A are equipollent, for it does not exclude the possiblity<
R — A < R (we don't assume Cantor’s continuum hypothesis).
To show thalR ~ R — A, we need to establish an injection frdkninto R — A. The result then follows from
R <R — A andR — A < R by Cantor-Bernstein. 14 = {ag,...,an—1},thenR — A ~ R — {po,...,pn-1}
where thep, are different prime numbers. Define a functionR — R — {po, ..., pn—1} by puttingh(z) = z if
x is not of the formp¥, with 0 < i < n andk > 0, and lettingh(p¥) = pF™!. Thenh is an injection. Suppose
A ~ N. To showR < R — A we will show thatR < R — P, whereP is the set of prime numbers. Since
P ~ N~ A, this givesR < R — A. Define a functiorh : R — R — P as follows. Leth(z) = z if x is not of the
form p™, with n > 0, and leth(p™) = p"*1. Thenh is an injection.

11.78(R — Q) ~ R is a special case ¢R — A) ~ R, with A countably infinite: see previous exercise.

11.79 The functiompair is nothing but the functior defined in Theorem 11.52. Here it is (to check that it is the
inverse ofhatpairs, you can useap pair natpairs):

pair (n,m) = (@ +m) * (n +m + 1) ‘div‘ 2 + n

11.79 First, we need code for enumeratiig N3, .. ., as lists:

natpairs2 = [(x, toInt z-x) | z <- [0..], x <= [0..z]]

natlist O
natlist k

[ 0] | n<=1[0..7]1
[ n: (natlist (k-1) !!' m) | (n,m) <- natpairs2 ]

Next,natstar can be defined in terms abtlist:

natstar = [] : [ natlist n !'m | (n,m) <- natpairs2 ]
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11.84.1 Unter the given assumptions we havl: N By| = |A1| + |B1| = |Az2| + |B2| = |A2 N By|. It follows
thatA; N By ~ As N Bs.

11842|A1 X Bl| = |A1| X |Bl| = |A2| X |BQ| = |A2 X BQ| It follows thatA1 X By ~ A2 X Bs.

11.84.3 Letf : A} — A, andg : B, — B, be bijections. Establish a bijectidn : A%+ — A2? as follows. For
©: By — Ay, let F(p) be the functiorny o p o f~1. Itis routine to check that this is a bijection. It follows that
AP~ AP

11.85.1 Given:4; < A; andB; =< By, As N By = (. We show thatd; U B; < As U Bs by establishing an
injection. Letf : Ay — Ay andg : By — B, be injections. Definé : A; U By — A, U By by means of:
h(z) = f(x)if x ¢ By, h(z) = g(x) if z € By. By the injectivity of f, g and the fact thatl, N By = §, this is an
injection.

11.85.2 Letf, g be as before. Defink: A; x By — Ay x By by means ofh(z,y) = (f(z),g(y)). Thenhis an
injection.

11.85.3 Letf : A; — A, be aninjection. Theh : p(A;) — p(As) defined byh(X) = f[X] is an injection.

11.85.4 Assumeds # 0. Leta € Ay, let f : A1 — Ay andg : By — Bs be injections. Define a mapping
F : APv < AD> asfollows. Ifp : By — A, thenF(y) is the function inB, — A, given by F(p)(z) =
g(p(f~1(x))) if z € mg (f), andF(p)(x) = a otherwise. By injectivity off this is well-defined. We show
that F' is an injection. Letpy,ps : By — Az with o1 # po. We have to showF'(p1) # F(p2). From
©1 # @2 We get that there isc By with ;1 (b) # 2(b). By the definition ofF', F(p1(f(b))) = g(¢1(b)) and
F(a(f(5))) = g2 (b)), and by injectivity ofg we get fromp: (b) # 2 (b) that F(p1 (f()) = glp1 (b)) #
9(@2(b)) = F(p2(f(b)))-

11.86.10 < {1}, but UN =N ~ {3} UN.

11.86.2{0} < {0,1}, but{0} x N~ N~ Z ~ {0,1} x N.
11.86.3{0,1} < {0, 1,2}, but{0, 1}V ~ {0, 1, 2}".

11.86.4{0} < {0, 1}, butN{0} ~ N ~ N2 ~ N{01},
11.87.11f BN C = 0 then|B U C| = |B| 4 |C|, and therefore:

[ABUC| = |A]IBUC1 = [A]IBIHCT = | 4]1B1 x 4] = | 45| x |A°| = |45 x A°).

11.87.2 Cardinal arithmetic:

(A x B)Y| =]Ax B|I! = (4] x |B)'“l = 4]l x |B|I.

11.87.3 Note that a bijection betweeA? )¢ and A“* B is provided by theurry operation that linkg : C x B —
Ato (curryf) : C — B — A. This gives(AB)¢ ~ ACXB ~ ABXC,

11.88.1 Clearly{0, 1} < {0,...,n}¥ < N¥ < RN, so if we can shovR™ ~ R we are done, for together
with {0, 1} ~ ©(N) ~ R this gives the desired result, by Cantor-Bernstein. IEér~ R we can use cardinal
arithmetic:

URN| — |R‘|N| — NlNo — (QNO)NO — 9RoxRo _ 9o _ |R|

11.88.2 Clearly,
{0,1}% < {0,...,n}® < N® < RE < (p(R))* < (R®)E,
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It is therefore enough to sho@®®)® ~ {0, 1}¥. Here is a proof by cardinal arithmetic:
|(R]R)R| — (|R‘|R|)|R| — (Nlbh)&l — NlleNl _ le*h — (QNO)Nl _ QNOXNl — 2N1 — |{O, 1}]R|
11.89.1 We show by induction onthatRX," = X, for all n > 0. Basis: clearlyR," = &,. Induction step: suppose

Non = Ng. Then: '
N0n+1 = NO X Non Z:h NO X NQ = No.

11.89.2 We show by induction onthatX,™ = X, for all n > 0. Basis: clearly®;' = ;. Induction step: suppose
Nln = N;. Then: ‘
N1n+1 = Nl X Nln il Nl X Nl = Nl.

To showRY ~ R, use cardinal arithmetic:

RN = [RIM = 18, M0 = (2Mo)o = oo — g% — xy — R,

11.90 Both sets have cardinality .

11.91 If A is infinite andB finite, then there are, m € Nwith |B| = n and|B — A| = m. Since(A— B)N (B —
A) = 0 and A is infinite, we have:

[((A-=B)U(B—-A)|=|A-=B|+|B-A|=(A4|—n)+m=|A|+m = |A].



