
December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

1

sdlsimpledirectmedialayergraphicslibrary

crossplatform2dsamlantimgaportvideoeve

nthandlingjoystickfileioaudiocdromtimer

wxdevcppruthfigueroalivesmp3wavrawau

diosamplesoggvorbiscreativemusicboxga

meloopsetcaptionfreesurfacepolleventuser

templateinitializesdlreleaseresourcespixel

sinittimersdlcolordirectxopenglpixelforma

tlocksurfacesetcliprectvideoinfoloadbmpb

litsurfacesetcolorkeyframespersecondgetti

cksdoublebufferingpageflippinggifpngjpe

gpcxtiffalphablendingtransparentopaques

pritesprocessingeventskeyboardsystemarti

ficalintelligencepointatexitrectwhilenoteof

randommaskpalettepitchvideoaccelerators

Beginner‘s Guide to SDL

Building Games with SDL and C++

11/11/11

nyguerrillagirl@brainycode.com

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

2

Copyright © 2011 brainycode.com

 Permission is granted to copy and distribute an electronic version of this document.

Permission is NOT granted for commercial use.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

3

Dedication to those learning C++ ... 6

Chapter 0: Introduction ... 7

Purpose .. 7

Prerequisite ... 8

What is out there now on SDL? .. 8

Why SDL? .. 9

A Bit of History .. 9

The Components of SDL .. 10

Chapter 1 – Installing SDL ... 14

Obtaining copies of all the libraries .. 14

Installing to work with Code::Blocks ... 17

Using the Code::Blocks SDL wizard .. 28

Creating your own SDL Custom Template ... 28

Installing to work with WxDev-C++ .. 29

Creating a WxDev-Cpp SDL template file ... 39

Installing and Testing SDL_Image ... 41

Installing and Testing SDL_tff ... 44

Installing and Testing SDL_mixer .. 47

Installing and Testing SDL_net .. 48

Summary ... 48

Chapter 2 - Getting started with SDL .. 49

Initializing SDL .. 49

Initializing and Closing SDL Subsystems .. 53

The Video Component .. 58

SDL Video Structures ... 59

Making Improvements to our Video Programs ... 64

How the display screen is organized ... 66

Understanding how to write to the Display .. 67

Drawing a Line ... 78

A Little History on Drawing Lines ... 78

A Simple Algorithm – Slope-Intercept Algorithm.. 79

A Simple Algorithm #2 – Using Symmetry .. 83

SDL_Rect .. 84

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

4

Clipping .. 87

SDL_VideoInfo... 89

Loading Images ... 91

Moving a ―Ball‖ around on the screen .. 94

Double Buffering and Page Flipping .. 101

Double Buffering .. 101

Page Flipping .. 102

Displaying Other Types of Images ... 104

Alpha Blending ... 109

Other Topics.. 114

Summary ... 114

Review Questions ... 115

Programming Exercises .. 116

Circle-Drawing Algorithms .. 117

Chapter 3 - Sprites, A Simple View ... 123

Chapter 4 - Processing Events ... 124

Keyboard Events ... 126

Joystick Events.. 130

System Events ... 131

Mouse Events .. 131

Chapter 5 – How to organize a game .. 131

Creating a Game Template ... 131

Sample Games .. 131

Chapter 6 – Creating Pong .. 131

Using SDL_TTF ... 131

SDL Audio .. 131

Some Audio Basics ... 132

Using SDL primitive functions ... 134

SDL Joystick ... 136

Chapter 7 – Creating MindSweeper .. 136

Chapter 8 – Creating Breakout.. 136

Chapter 9 – Creating Tetris ... 136

Chapter 10 – SDL Threads and Timers .. 136

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

5

Chapter 11 – Building a multiplayer online game .. 136

SDL_NET ... 136

SDL_MIXER .. 136

Chapter 12 – Building a Platform Game ... 136

Why I love Crisis Mountain! .. 136

Why I love Mario!! ... 136

Chapter 13 – Other libraries and tools to build games .. 137

Chapter 14 – What comes next? ... 137

Last Chapter .. 137

Bibliography ... 138

Appendix A: Places to visit on the Web ... 139

Appendix B – Microsoft Visual C++ 2010 Express ... 140

Appendix C – Pong, Breakout and MindSweeper .. 141

Pong .. 141

Breakout .. 141

MindSweeper .. 142

Appendix D – Unzipping files .. 145

Appendix E – Structs .. 150

What are structs? ... 150

Why use structs? ... 150

In summary ... 154

Things you can do with structs ... 155

Things you can‘t do with structs ... 156

Using typedef with structs .. 156

Appendix F – Pointers .. 158

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

6

Dedication to those learning C++
I wrote this with the students of Ocean

County College
1
 in mind. I wanted to create

something that complemented the material

they were learning in their second C++

course. The C++ course series at the college

is partitioned into three courses:

 Course 1 – covers simple data types,

user-defined data types, string, operators,

input, output, control structures, the

ifStatement, switchStatement, loops using

forStatement, whileStatements, and functions.

 Course 2 – covers arrays, strings,

vectors, structs, classes, pointers, overloading

and virtual functions

 Course 3 – covers over templates, exception handling, recursion, linked lists, stacks, and queues

The book used in the course is a good one – ―C++ Programming: From Analysis to Program Design‖ by

D.S. Malik. The only problem I saw with the book is that many students were looking for problems to

solve that they could relate to – games. I originally wrote a set of notes on Windows Console

Programming that demonstrated how to build Pong, Breakout and Mindsweeper with just the Windows

Console. I did not realize until recently that a better way to stimulate thinking and usage of the C++

constructs we were learning in the second course was to use a tool as simple and as powerful as SDL.

SDL provides the capability for students to learn the key concepts of classes, pointers, and arrays and

actually enjoy the programs they build since most can relate to the elements of a game. I don‘t see these

notes as a replacement of the material in the book. In fact, a good C++ student should read the material,

look over the exercises and do as many programs as they can fit into their schedule.

The second goal is to explain in some detail the new C++ constructs starting in Course #2. So if you are

more experienced and you don‘t need an explanation of classes or pointers or other features I may think

someone just learning C++ may not know then feel free to skip over those sections.

Have fun and build a fun game!

1
 These notes began at the time the students at OCC were required to learn C++, since that time they have moved to

using Java as the programming language to start the program. I still highly recommend C++ for future game

programmers.

Figure 1 - C++ image

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

7

Chapter 0: Introduction

Figure 2 - SDL Logo (http://www.libsdl.org/)

Purpose

This book discusses how to build 2D games using free compiler IDEs and graphics libraries. The specific

graphics tool we address in these notes is SDL which is an acronym for Simple Directmedia Layer

graphics library. A key thing to note about SDL is that it is cross-

platform. A program written using SDL can be re-compiled to run

on various operating systems platforms such as Windows, Mac,

and many UNIX variants with little to no changes to the code.

The SDL library provides functions that make it easy to build 2D

type games. A 2D game is a game that takes place on a static

playing field (e.g. Pong, Donkey Kong) or scrolls (e.g. Mario

Bros.). The graphics are simple due to the initial limitation of the

game systems and computers that were used when they were first

designed. The action and game play can be as enjoyable as any

modern 3D game made today. A testimony to the fun and success

of 2D games is their resurgence and popularity on Xbox Live

Arcade and Wii Virtual Console.

The exercises and programs we build will be created using the

free C++ compilers and IDE such as WxDev-C++ or

Code::Blocks. In addition the SDL library and all additional supporting libraries designed to work with

SDL will be utilized. We will build some simple games – Pong, Breakout, Minesweeper and Tetris. In

addition, at the end we build a platform scrolling game to demonstrate some more advance game

techniques.

Figure 3 - Nintendo Donkey Kong

http://upload.wikimedia.org/wikipedia/en/a/a1/Donkey_Kong_Screen_3.png

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

8

We will be using Windows
2
 version of tools and libraries in our discussion. But, since all the tools and

libraries have cross-platform versions users preferring to use a different operating system should have no

program following along.

Prerequisite

In order for these notes to make sense and be worth your investment in time

and energy is for you to have at least one semester of C++ under your belt.

There are many useful websites if you are learning C++ on your own. I

recommend http://www.steveheller.com/cppad/Output/dialogTOC.html. Of

course, the best way to learn your first programming language is to take a

course at your local college. The only downside to that suggestion is that the

typical college text book tends to be over $100. There will be plenty of

exercises as we move along. I highly recommend doing all the exercises in

order to build up a working knowledge of C++ and SDL.

All the programs will be explained in detail and you are encouraged to

complete each one as a working model.

What is out there now on SDL?

There are few books on learning SDL only one directs itself to Windows environment, the book, ―Focus

on SDL‖ by Ernest Pazera. The book was published in 2003 and is currently out of print. It can only be

obtained used over the Internet. I think the book should have been at least double its current size, in fact; I

felt it was pared down to fit into the ―Focus On‖ series which consists of small books that take a look at a

topic. In any case, I found it a great source of information but wish the author had more examples and

would have built a game from beginning to end in order to solidify all the new concepts being presented.

There are other books that cover SDL ―Linux Game Programming‖ by Mark ―Nurgle‖ Collins, et al. The

book is of course Linux focused but the SDL material will work on Windows as well since of course it is

cross-platform. The book presents a rather well designed code structure for games (you can‘t ever go

wrong using it!). This book is also out of print.
3
 The other two book I found with several chapters

dedicated to SDL are both by the same author – Erik Yuzwa. ―Game Programming in C++: Start to

Finish‖ and ―Learn C++ by Making Games‖. I think both books are great additions to anyone learning to

program in C++ and also interested in making games in the process. The only difference between them

and this book is that this book is FREE and I hope a valuable resource.

There are several websites you should be able to find on the Internet. One website has a rather good set of

tutorials - http://ww.sdltutorials.com. In fact, I use its class layout as a basis for the game programs later

in this book. Another website you should visit is http://www.libsdl.org/ to obtain the latest version of SDL

and more information on the library. The key advantage to using this book is that it presents a detailed

2
 We are of course referring to Microsoft Windows. All code has been tested on Windows XP, Windows Vista and

Windows 7 version of Windows.
3
 My favorite place to purchase out of print books is amazon.com. You can always find 3

rd
 party merchants to

purchase new or used copies of books, of course the rarer the book is the more expensive it will be! I think all out of

print books should find themselves in an electronics book cemetery.

Figure 4 - Getting things

together

http://www.steveheller.com/cppad/Output/dialogTOC.html
http://ww.sdltutorials.com/
http://www.libsdl.org/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

9

explanation of the SDL functions and gently guides you in using more advanced C++ constructs and

additionally presents the mechanics for building a 2D game.

Why SDL?

I started to investigate SDL in order to understand its use in a

game named Klone Keen. The game is a free version of the

game engine that runs the game Commander Keen by Id

Software. The game Commander Keen was released as

shareware
4
 in a series of games in the early 1990‘s. The game

was notable for being able to replicate ―the side-scrolling action

of the Nintendo Entertainment System Super Mario Bros. games

in DOS.‖ You will need the original data files in order to run

Klone Keen. The game made use of several free libraries one of

which was SDL for sound, video and keyboard processing. In my quest to learn SDL I purchased several

books that referenced or used SDL and checked out all the online resources. I felt that SDL was the

perfect library for students to learn in order to be

able to build programs that were more

interesting than the typical programming

assignments we usually give students in their

second C++ course. The goal I had was to create

a comprehensive book that was not restricted in

size by any publishing constraints and would

present several game variations in order to

addressing different programming techniques

that are useful in the creation of 2D games. The

greatest difference is my intention to make this

book available for free.

A Bit of History

SDL was created by Sam Lantinga and released to the public in 1998. He has worked on many game

projects and has been with Blizzard Entertainment since 2009
5
. You can check out his resume online at

http://www.devolution.com. I was impressed to see that he made major contributions to my favorite game

of all time – World of Warcraft.

Lantinga was inspired to create the SDL in order to support his efforts in

porting applications from Windows to the Mac. The library was created to

facilitate creating and porting applications, esp. games to different platforms

with minimal code changes. Today, many applications use various

4
 Shareware is ―try before you buy‖ software. Programmers release the first couple of levels of a game for free for

users to play and evaluate, many users would purchase the entire game especially if the free portion was enjoyable.
5
 This is true as of April 2010

Figure 5 - Commander Keen

Figure 6 - A level in Commander Keen

http://www.devolution.com/
http://upload.wikimedia.org/wikipedia/en/3/35/Keen5.png

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

10

components of SDL to perform functions such as keyboard handling or joystick support and complement

it with OpenGL
6
 or other libraries.

SDL was written in C but can be used with C++ (as we plan on doing here), Perl, C, Python , etc.

The Components of SDL

SDL is composed of eight subsystems:

 Video – This subsystem deals with the things you see on the screen. The windows, colors, and

sprites that make up the visual components of a game. This component is only intended to

support simple graphics operation and the user is assumed to be sophisticated enough to be able

to create additional functions to draw lines, circles, etc. In our case, we will see how we can

augment this library with additional free libraries written and released by others.

 Event Handling – This subsystem handles how the user interacts with the game. The user

generates events whenever they minimize the window,

move the mouse or press a key. You will find this

component of SDL useful to employ even if you plan on

moving on to build 3D games with other libraries.

 Joystick Handling – This subsystem deals with the various

complexities involved in today‘s joysticks. Each joystick

has a different number of buttons, dials, switches,

joysticks and wheels. This component provides a set of

functions to manage a joystick.

 File I/O – This subsystem handles the reading in of bmp

files. I should note that since SDL is typically used to

create a multimedia application such as a game it has a wonderful feature that programmers can

use cout and cerr to write messages and the messages get automatically saved into the data files –

stdout.txt and stderr.txt. This is a great ready-to-use logging system.

 Audio – This subsystem supports sound you may want to add to your game.

 CDROM – This neat subsystem supports access and communication to a users CD ROM device.

 Timers – This subsystem provides functions to set and control when a sequence of events or

processes takes place in a periodic fashion. It is similar to you alarm clock which you set

everyday to wake you up at a certain time. You might set timers in a game program to update the

screen, move the monsters, etc.

 Threading – SDL provides functions to handle establish and control more than one thread of

execution. A ―thread of execution‖ is a sub process that exists within a large process that runs

independently. This feature provides the programmer the capability to do more than one thing at a

time. Using threads adds a layer of complexity to your program since you will need to manage

communication and access to resources.

6
 OpenGL (Open Graphics Library) is another cross-platform graphics library used to build 2D and 3D applications.

I plan on covering in my planned second book on building games.

Figure 7 - WOW

Figure 8 - A souped up joystick!

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

11

There are additional libraries that complement SDL and the next chapter (Installing and Testing) will

have you install them all in addition to SDL. The libraries are:

 SDL_image - This library has support for image formats other than bmp, such as PNG, GIF,

JPEG and many others.

 SDL_mixer – This library provides support for playing music and sound samples from a greater

set of formats, e.g. WAV, MOD, MP3, etc. ―It supports any number of simultaneously playing

channels of 16 bit stereo audio, plus a single channel of music, mixed by the popular MikMod

MOD, Timidity MIDI, Ogg Vorbis, and SMPEG MP3 libraries.‖

 SDL_net – This library provides a ―small cross-platform networking‖ set of function. It includes

a chat client and server application.

 SDL_ttf – This library provides you the capability to use TrueType fonts. We will use this to

display text on our game screens.

 These libraries serve to provide a layer or wrapper

around operating system functionality. The libraries

provide a set of common functions that hide the

complexity and differences between platforms such as

Macintosh and Windows.

―On Microsoft Windows, SDL uses a GDI backend by

default.‖ GDI stands for Graphics Device Interface and

it is an API that comes with Windows to provide

programming support for the representation of

graphical objects to be shown or displayed on

computer monitors of printers. GDI is not known to be

fast or the best way of building games on a Windows

platform. The other two popular options are DirectX and OpenGL. The current version of SDL was

designed to use DirectX
7
. You may be wondering why we would choose to discuss SDL on Windows

rather than just directly learn the latest DirectX. There are several reasons:

 I like the idea that SDL is cross-platform. It means students can use Windows in class or at home

but those that prefer other operating systems platforms such as Linux can do all the programming

examples on them. There is nothing in here that is Windows specific other than the detailed

installation instructions that assume you will be installing all the software in Windows operating

systems.

 Students don‘t have to learn WinMain just yet. The entry point for your SDL windows

application remains the main function:

int main(int argc, char* argv[])

{

}

7
 DirectX is an API created by Microsoft for handling tasks related to multimedia, especially game programming.

Figure 9 - Image of sample game created with SDL

http://upload.wikimedia.org/wikipedia/commons/d/de/Battle_for_Wesnoth_0.9.6_tutorial.png

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

12

The use of main avoids all the explanations that would be required if we had to get into the details

on how to build a typical program to run under Windows.

 I can‘t say enough on how I really appreciate the fact that

you can use cout and cerr for output and view the results in

a file after the program executes or as more often happens

– does not work as expected. It helps in debugging and

troubleshooting the code. TIP: If you get into a situation

where ―nothing‖ happens then go to the directory where

the *.exe file resides and search for the stderr.txt file for

error messages.

 Someone learning C++ with the intention of building their

own games can set up and start coding pretty quickly with

these free tools.

I am going to assume you know the following C++ concepts:

 Data Types

 Input/Output

 Arithmetic Operators

 Control Structures

o if, if..else,

o switch

o while

o for

 Functions

The topics above cover the knowledge the typical computer science student learns in their first

programming course.

Along the way, you will also use the following additional topics:

 Enumeration Types

 Using typedef

 Pointers

 Arrays

 Records (struct)

 Classes

The topics above are covered in an Appendix in enough detail to

understand these notes. Of course the best thing to do is the read the

corresponding chapter in any good C++ book if you need more

information and exercises or start reading these notes when you start

working on the second half of your C++ course(s). All the problems and

exercises in these notes relate to building the games we have in mind, in

Figure 10 - An image of nothing?

Figure 11 - Another C++ logo

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

13

addition the programs will help you to understand how useful the computer constructs above are in

developing fun programs. But, there is more….

In addition to discussing how to use SDL and the helper libraries you will need to create games. We will

also cover topics probably not covered in enough detail in your programming course:

 how to build and use your own .h files

 how to build and use your own libraries

 how a program evolves and develops in order to make it easier to change and expand

 how to use the joystick and mouse

The good news for novice programmers is that these topics are covered without getting into the ugly

details of Windows Programming!

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

14

Chapter 1 – Installing SDL

Obtaining copies of all the libraries

You will need to obtain copies of SDL, SDL_image, SDL_mixer, SDL_net and SDL_ttf. Visit the

following pages and download the Windows V6 version of each file referenced:

 SDL - http://www.libsdl.org/download-1.2.php

o Download the file SDL-devel-1.2.14.mingw32.tar.gz

o Unzip
8
 (see Appendix D for instructions) the file to your C:\ drive.

o You will have a directory similar to SDL-1.2.14 (whatever the latest version of SDL

you downloaded to your computer)

 SDL_image - http://www.libsdl.org/projects/SDL_image/

o Download the file SDL_image-devel-1.2.10-VC

o Unzip the file to your C:\ drive

o You will have a directory similar to SDL_image-1.2.10 with two folders – \include

and \lib.

 SDL_mixer - http://www.libsdl.org/projects/SDL_mixer/

o Download the file SDL_mixer-devel-1.2.11-VC

o Unzip the file to your C:\ drive

o You will have a directory similar to SDL_mixer-1.2.11 with two folders - \include

and \lib.

 SDL_net – http://www.libsdl.org/projects/SDL_net/

o Download the file SDL_net-devel-1.2.7-VC8

o Unzip the file to your C:\ drive

o You will have a directory similar to SDL_net-1.2.7 with two folders - \include and

\lib

 SDL_ttf – http://www.libsdl.org/projects/SDL_ttf/

o Download the file SDL_ttf-devel-2.0.9-VC8

o Unzip the file to your C:\ drive

o You will have directory similar to SDL_ttf-2.0.9

o You will also need to obtain a font libray, go to http://www.freetype.org/ or the

FreeType project on SourceForge http://sourceforge.net/projects/freetype/.

To save time and to use all the tools and libraries referenced in these notes you can simply visit

http://www.brainycode.com and follow the ―Learning SDL – A Beginner‘s Guide‖ link on that website.

The page will have links you can use to download the same exact versions. If you encounter a problem

then I encourage you to visit the SDL forum on brainycode.com and post a question. I will try to respond

and help out.

8
 I use the term ―unzip‖ to mean uncompress or open the files in a compressed archive. The file may be a *.zip file

but it may be *.tar or *.gz format. The term is not intended to imply the file will always be in *.zip format.

http://www.libsdl.org/download-1.2.php
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_mixer/
http://www.libsdl.org/projects/SDL_net/
http://www.libsdl.org/projects/SDL_ttf/
http://www.freetype.org/
http://sourceforge.net/projects/freetype/
http://www.brainycode.com/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

15

The first thing to do is to go to http://www.libsdl.org and download the latest copy of the SDL library.

SDL supports many different platforms – Windows (our preference), Linux, MacOS, and many more.

Download the file SDL-1.2.14-win32.zip for Windows. I unzipped under the C:\ directory to get:

Figure 12 - Installation of SDL 1.2.14

You will need to either direct or copy the following files:

 SDL.dll – This file is located in the \bin subdirectory. All your SDL exe applications will need to

be able to access this file. If you place it in C:\Windows then the operating system will have no

problem locating it. I favor using the wxDev-Cpp IDE since all I have to do is copy this file to the

IDE‘s bin directory and I have no problem running any program I am working on from within the

http://www.libsdl.org/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

16

IDE. If you give your SDL game program to your best friend to play don‘t forget to include this

file.

 SDL.h – This file in located in the \include\SDL directory. This needs to be accessed when your

program is being compiled. I found the easy way is to copy the entire SDL subdirectory under

the IDE‘s include directory. (This works with no extra effort with wxDev-Cpp but you will have

to set this include directory using Code::Blocks)

 *.a – There are two library files you will need to have the IDE find in order to complete the link

process of your SDL application – libSDL.dll.a and libSDLmain.a. I found the easiest thing to do

is to copy into the IDE‘s \lib directory.

You must now decide what Windows IDE you will be using. I recommend one of the following:

 Code::Blocks

This IDE is available at

http://www.codeblocks.org/. It is free and operates

across many operating systems – Windows, Linux

and Mac. The IDE uses wxWidgets, which is a

C++ library which is –yes – cross-platform GUI

library. You can create a workspace that combines

one or more projects. Each project is a collection

of files making up your application. You can

easily import your Dev-C++ or MSVC project

files.

It also has a fully functional debugger that allows

you to set code breakpoints, the call stack and

disassembly of the code. You can even view the

CPU registers. The reason I highly

recommend it is because it is supported and

can be extended through the use of plug-ins.

http://www.codeblocks.org/screenshots

 WxDev-C++

Figure 13 - CODE::BLOCKS IDE

Figure 14 - WxDev-C++ IDE

http://www.codeblocks.org/
http://www.codeblocks.org/screenshots
http://www.codeblocks.org/screenshots

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

17

wx-Dev-C++ is an extension of Dev-C++. It is similar to Code::Blocks in that it uses wxWidgets and is a

free open-source IDE. It has a form designer, integrated debugging and nice editor features. Unlike Dev-

C++ this product is currently supported and grows. You can pick up a copy at

http://wxdsgn.sourceforge.net/.

I prefer to use WxDev-C++ throughout these notes but will try to switch over to Code::Blocks (if I see the

latest version works well on Vista). The next sections show how to install and test the SDL libraries on

both IDEs.

Regardless of which IDE you choose to use we will direct the IDE to search the include files under the

SDL /include directory.

This will mean that when we create our C++ programs we will add the following include statement:

#include “SDL\SDL.h”

or

#include “SDL\SDL_ttf.h”

Installing to work with Code::Blocks

Steps for getting SDL program to compile and execute using Code::Blocks.

1. Obtain an install the latest version of Code::Blocks C++ IDE from http://www.codeblocks.org/

a. Note: I installed under the directory C:\CodeBlocks since some Windows operating

systems create unnecessary
9
 problems when trying to change or add files under

C:\Program Files.

b. Note: Install the version with MingGW, codeblocks-8,02mingw-setup.exe

 Double click on the setup program

9
 I hate having to click through dialog boxes to install files under C:\Program Files under Windows Vista.

http://wxdsgn.sourceforge.net/
http://www.codeblocks.org/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

18

Figure 15 - Code::Blocks setup Wizard screen

 Select Next>

Figure 16 - GNU License Agreement

 Most people don‘t read this screen. The GNU GENERAL PUBLIC LICENSE is quite different

than your typical agreement. Read it. Then click on ―I Agree‖.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

19

Figure 17 - Choose Components Dialog Box

 I clicked on the Default Installation node in order to select more shortcuts. Select what makes

sense and click on ―Next>‖

Figure 18 - Choose Install Location Dialog Box

 I decided to save under C:\CodeBlocks rather than in the default directory C:\Program

Files\CodeBlocks. Click on ―Install‖.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

20

Figure 19 - Installing progress dialog box

Figure 20 - Final Code::Blocks dialog

 I selected ―Yes‖ in order to see how the IDE starts up and Finish installing. Make sure you close

out and set the default compiler you want Code::Blocks to use.

Figure 21 - Set GNU GCC Compiler as the default compiler

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

21

Figure 22 - Tip of the Day message

I recommend letting the IDE startup with the ―Tip of the Day‖.

Figure 23 - Code::Blocks start up screen

2. Copy SDL.dll under C:\SDL-1.2.14\bin to Code::Blocks bin directory.

a. This will allow the IDE to find the SDL.dll when you execute from the IDE, otherwise

you will always have to copy the SDL.dll into the same directory as the exe file.

We have now completed all the steps that need only happen one time.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

22

Figure 24 - Creating a Console Application

3. Create a C++ Project to test simple SDL application. Select File | New Project. Click on ―Console

Project‖ icon in the dialog box that appears.

Figure 25 - TestingCodeBlocks Project

I decided to give my project title the name ―TestingCodeBlocks‖ . Select a folder to insert the new

project. I usually create a folder with the same name as the project.

4. Take the defaults and click on ―Finish‖.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

23

Figure 26 - Creating Console Applications

5. In order to locate the SDL header files you will need to locate

6. Set up your project‘s specific libraries. Select ―Project‖, choose ―Build options‖, select the main

project (TestingCodeBlocks). Click on the ―Linker settings‖ tab. Click on ―Add‖ button. Add

mingw32 first followed by the two SDL libraries. Add ―-lmingw32 –lSDLmain –lSDL‖ to the

―Other linker options‖. Click on OK

Figure 27 - Selecting the main "TestingCodeBlocks"

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

24

Figure 28 - Adding linker options

7. Replace the code in the default main.cpp with the sample SDL code.

Table 1 - TestingCodeBlocks (main.cpp)

#include <cstdlib>

#include <iostream>

#include "SDL\SDL.h"

using namespace std;

 // screen dimensions

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

//display surface

SDL_Surface* pDisplaySurface = NULL;

//event structure

SDL_Event event;

int main(int argc, char *argv[])

{

 //initialize SDL

 if (SDL_Init(SDL_INIT_VIDEO)==-1) {

 cerr << "Could not initialize SDL!" << SDL_GetError() << endl;

 exit(1);

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

25

 } else {

 cout << "SDL initialized properly!" << endl;

 }

 //create windowed environment

 pDisplaySurface =

 SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,SDL_ANYFORMAT);

 //error check

 if (pDisplaySurface == NULL) {

 //report error

 cerr << "Could not set up display surface!" << SDL_GetError()

 << endl;

 exit(1);

 }

 // set caption

 SDL_WM_SetCaption("Template", NULL);

 //repeat forever

 for(;;) {

 //wait for an event

 if(SDL_PollEvent(&event)==0) {

 // DO OUR THING . . .

 //update the screen

 SDL_UpdateRect(pDisplaySurface,0,0,0,0);

 } else {

 //event occurred, check for quit

 if(event.type==SDL_QUIT) break;

 }

 }

 SDL_FreeSurface(pDisplaySurface);

 SDL_Quit();

 //normal termination

 cout << "Terminating normally." << endl;

 return EXIT_SUCCESS;

}

If you try to build the program (Build | Build) you will see many errors. The main reason is the inability

to find the file ―SDL\SDL.h‖.

8. Open Project | Build Options and click on ―Search directories‖ tab. Click on ―Add‖ and navigate

to ―C:\SDL-1.2.14\include‖. Click OK

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

26

Figure 29 - Adding SDL include file to compiler "search directory" list

If you try to build the program again it will fail with the message ―…cannot find –lSDLmain‖. In the

same screen as shown in Figure 29 click on ―Linker‖ sub-tab and navigate to SDL\lib directory.

Figure 30 - Add SDL lib to Linker "search directory"

The program should now successfully build with the Build log showing:

-------------- Build: Debug in TestingCodeBlocks ---------------

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

27

Linking console executable: bin\Debug\TestingCodeBlocks.exe

Output size is 831.02 KB

Process terminated with status 0 (0 minutes, 0 seconds)

0 errors, 0 warnings

The program is a very simple SDL program that:

 Initializes SDL for video

 Creates a window

 The for loop constantly looks for events but the only one it is handling is the event that gets

generated when you close the window or when you quit (SDL_QUIT) the application window.

8. Compile and execute

Figure 31 - Test SDL Program Window

If you followed the directions you should see a window similar to the above. If you see the following

message:

Figure 32 - Execution error

Copy the file C:\SDL-1.2.14\bin\SDL.dll into C:\Windowscan you

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

28

What is a wizard?

Many applications have wizards, which are programming aids

implemented as a set of dialog boxes that are used to automate things

for you. For example, when you create programs using SDL you will

find that unless you use a wizard you will always need to add the

same set of include files, link the same libraries and dlls. Using a

wizard to create a project specifically for SDL will get all these

mundane tasks done for you at the start. In addition, you can specify

a start-up main file to be used as the template for all your SDL

programs. No need to add main and all the startup SDL code – it will

be all done by the wizard!

Using the Code::Blocks SDL wizard

 Create a Project and select ―SDL Project‖

Figure 33 - Creating an SDL project

There seems to be a problem with the Code::Blocks wizard on Windows. So I will skip using it. Follow

the following instructions to create your own user template.

Creating your own SDL Custom Template

 Open the last project (if it is not open).

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

29

Figure 34 - Save Project as User-Template

 Select File | Save Project as User-Template

Figure 35 - Giving user-template a name

Now when you start a Simple SDL Project (something we will do for all our non-game programs) you

can just start the project by selecting: File | New | From user template and select ―Simple SDL Project‖.

This will create a starting project for a simple SDL Project. In chapter TBD we will create another user-

template for our games. Click OK to create your own SDL Project.

How do we use this template?

Now when you create a new SDL program by selecting File | New Project. Select User templates and

select ―Simple SDL Project‖.

Installing to work with WxDev-C++

1. Remove any previous copy of Dev-C++.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

30

2. Obtain and install the latest version of wxDev-C++ from http://wxdsgn.sourceforge.net/.

a. Note: I installed under the directory C:\Dev-Cpp. You can choose to save under the

default directory under C:\Program Files.

b. Install the version wxdevcpp_7.2.0.2_full_setup

 Double click on the setup program

Figure 36 - WxDev-C++ License Agreement

The starting point for this IDE is the popular and free IDE Bloodshed Dev-C++.

 Click on ―I Agree‖

http://wxdsgn.sourceforge.net/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

31

Figure 37 - Component selection screen

 Select the components that make sense. I suggest you take the defaults.

Figure 38 - Start Menu Folder name dialog box

 Click Next> to accept the default start menu folder name

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

32

Figure 39 - Install location dialog box

 I installed under C:\Dev-Cpp instead of the default C:\Program Files\Dev-Cpp due to problems

that came up under some Windows Vista installations. I suggest you take the default if you are

sure you will not encounter similar problems. Click on ―Install‖

Figure 40 - message box prompt to obtain latest devpaks

 If you prompted to download the latest devpaks, click on ―Yes‖.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

33

Figure 41 - Installation progress bar

 Click ―Close‖ once the installation completes

Figure 42 - Install for all users dialog box

 Click ―Yes‖

2. Copy the directory folder C:\SDL-1.2.14\include\SDL to a new \SDL include directory under

C:\Dev-Cpp\include. This will make it easy for the compiler to locate the SDL header files.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

34

Figure 43- The result of copying /include/SDL under Dev-Cpp include directory

3. Copy the *.a files (libSDL.dll.a,libSDLmain.a) in C:\SDL-1.2.14\lib to C:\Dev-Cpp\lib directory.

4. Copy SDL.dll under C:\SDL-1.2.14\bin to Dev-Cpp bin directory.

a. This will allow the IDE to find the SDL.dll when you execute from the IDE, otherwise

you will always have to copy the SDL.dll into the same directory as the exe file.

5. Open WxDev-C++. The next couple of screen only occur when you start wxDev-C++ for the first

time.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

35

Figure 44 - Selecting language dialog box

 Select the language and click > Next.

Figure 45 - Using a cool feature

 Click > Next

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

36

Figure 46 - Creating a cache dialog box

 Click > Next. It will take a while to parse the files.

Figure 47 - Final installation dialog box

 Click OK

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

37

Figure 48 - Your first "tip of the day"

 I always read the ―Tip of the day‖ in order to learn something new about the application I am

using.

6. Open a new Project by selecting File | New | Project

Figure 49 - New Project dialog box

7. Select ―Console Application‖ from the list project type icons and enter a name for your Project.

8. Copy the program in Error! Reference source not found. into the default main.cpp program that

as created for you when you selected Console program.

9. Add the following under: Project | Project Options. Select Parameters tab: In

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

38

-mwindows

-lmingw32

-lSDLmain

-SDL

C:\Dev-Cpp\lib\libmingw32.a

C:\Dev-Cpp\lib\libSDL.dll.a

C:\Dev-Cpp\lib\libSDLmain.a

Figure 50 - Saving the "main.cpp" file

 Save the program file main.cpp

Figure 51 - Result of compiling and running the program

10. Compile and Run.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

39

Creating a WxDev-Cpp SDL template file

You can easily create a WxDev-Cpp SDL template file to use.

 Open up the last project if it is not already opened.

 Select File | New and select Template

Figure 52 - New Template dialog box

 Click on the ―Empty Template Icon‖ and then click Library

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

40

Figure 53 - Selecting template Icon

 Double click on any icon you want.

 Click on Empty New Project icon and select any icon (the same one?)

If you want more of a selection you can go online and obtain free icons to use.

 Click ―Create‖

You can now easily create Simple SDL Project by selecting it from the Multimedia tab when you start

with File | New | Project

Figure 54 - Creating a Simple SDL Project

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

41

Which IDE should you use? The choice is all yours. All the code samples and screens will be from the

IDE Wx-Dev++. The instructions for setting it up to use the additional libraries will be quite similar.

Installing and Testing SDL_Image

The next library to setup and test is SDL_Image.

 Copy the file in the <SDL_Image Directory>\include\SDL_image.h to the <IDE

Directory>\include\SDL directory. For me the above required that I move C:\SDL_image-

1.2.10\include to C:\Dev-Cpp\include\SDL.

 Copy the files in <SDL_Image Directory>\lib*.dll to <IDE Directory>\bin

 Copy the file in <SDL_Image Directory>\lib\SDL_image.lib (the object file library) to <IDE

Directory>\lib

To test that you can read PNG or JPEG files find some files online by going to http://www.bing.com and

searching for an image. I found a wallpaper of Betty Boop.

Figure 55 - My Betty Boop Wallpaper

 Create an SDL Project ―TestSDLImage‖

 Since my image is 1024 x 768 I will create a window large enough to accommodate this test

image.

 Copy the code below as your main.

Table 2 – TestSDLImage Project

// Purpose: Demostrate the use of SDL Image library

#include <iostream>

http://www.bing.com/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

42

#include "SDL\sdl.h"

#include "SDL\SDL_image.h"

using namespace std;

int main(int argc, char* argv[])

{

 SDL_Surface* pDisplaySurface = NULL; //display surface

 SDL_Event event; //event structure

 //initialize SDL

 if (SDL_Init(SDL_INIT_VIDEO)==-1) {

 cerr << "Could not initialize SDL!" << endl;

 exit(1);

 } else {

 //report success

 cout << "SDL initialized properly!" << endl;

 }

 //create the window

 pDisplaySurface = SDL_SetVideoMode(1024,768,0,SDL_ANYFORMAT);

 //error check

 if (pDisplaySurface == NULL) {

 //report error on the creation of video display

 cerr << "Could not set up display surface!" << endl;

 exit(1);

 }

 // Read in the image

 SDL_Surface* pJpegimage = IMG_Load("wallpaperBettyBoop.jpg");

 if (pJpegimage == NULL) {

 // report error trying to read in image file

 cerr << "Could not read image file" << endl;

 exit(1);

 }

 // Get image ready for display on the screen

 SDL_Surface* pDisplayFormat = SDL_DisplayFormat(pJpegimage);

 // show on display screen

 SDL_Rect DestR;

 DestR.x = 0;

 DestR.y = 0;

 SDL_BlitSurface(pDisplayFormat, NULL, pDisplaySurface, &DestR);

 // process events until user closes the window

 for(;;) {

 //wait for an event

 if(SDL_WaitEvent(&event)==0) {

 cerr << "Error while waiting for an event!" << endl;

 exit(1);

 }

 //check for a quit event

 if(event.type==SDL_QUIT) break;

 //update the screen

 SDL_UpdateRect(pDisplaySurface,0,0,0,0);

 }

 // unload the dynamically loaded image libraries

 SDL_FreeSurface(pJpegimage);

 IMG_Quit();

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

43

 // close SDL

 SDL_Quit();

 // we are done

 cout << "Terminating normally." << endl;

 //return 0

 return(0);

}

 Add the library SDL_image.lib to the linker parameters

Figure 56 - Add SDL_iimage to linker parameters

We will explain how the program works later. The new code has been highlighted. If something does not

work for you, I recommend you go and check the directory where the exe resides and check for an

stderr.txt file. That file will contain any error messages if the program had problems locating your image

file.

Figure 57 shows the result of executing the program.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

44

Figure 57 – Testing SDL_Image library

Installing and Testing SDL_tff

The next library to setup and test is SDL_tff.

 Copy the file in the <SDL_tff Directory>\include\SDL_tff.h to the <IDE Directory>\include\SDL

directory. For me the above required that I move C:\SDL_tff-2.0.9\include to C:\Dev-

Cpp\include\SDL.

 Copy the files in <SDL_tff Directory>\lib*.dll to <IDE Directory>\bin

 Copy the file in <SDL_tff Directory>\lib\SDL_ttf.lib (the object file library) to <IDE

Directory>\lib

I will test installation of SDL_tff by adding code to my previous program to display some text at the

bottom left corner of the Betty Boop image. I will need to download a true type font for my program to

use. You can go online and get a free font libraries or just copy the Arial true type font I used.

 Create a new project ―TestSDLTFF‖ using the main.cpp below. Copy the image file and font file

to the directory where the exe will reside

Table 3 - TestSDLTff

// Purpose: Demostrate the use of SDL Image library

#include <iostream>

#include "SDL\sdl.h"

#include "SDL\SDL_image.h"

#include "SDL\SDL_ttf.h"

using namespace std;

int main(int argc, char* argv[])

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

45

{

 SDL_Surface* pDisplaySurface = NULL; //display surface

 SDL_Event event; //event structure

 //initialize SDL

 if (SDL_Init(SDL_INIT_VIDEO)==-1) {

 cerr << "Could not initialize SDL!" << endl;

 exit(1);

 }

 //initialize SDL_ttf

 if(TTF_Init() == -1) {

 cerr << "TTF_Init: " << TTF_GetError() << endl;

 exit(2);

 }

 //create the window

 pDisplaySurface = SDL_SetVideoMode(1024,768,0,SDL_ANYFORMAT);

 //error check

 if (pDisplaySurface == NULL) {

 //report error on the creation of video display

 cerr << "Could not set up display surface!" << endl;

 exit(1);

 }

 // load font.ttf at size 16 into font

 TTF_Font *pfont;

 pfont=TTF_OpenFont("ARIAL.ttf", 24);

 if(!pfont) {

 cerr << "TTF_OpenFont: " << TTF_GetError() << endl;

 // handle error

 }

 // let's create white text

 SDL_Color color={255,255,255};

 SDL_Surface *ptext_surface = NULL;

 ptext_surface=TTF_RenderText_Solid(pfont,"Pass the Mojito!",color) ;

 if(ptext_surface == NULL) {

 //handle error here, perhaps print TTF_GetError at least

 cerr << "Could not create text_surface error: "

 << TTF_GetError() << endl;

 exit(3);

 }

 // Read in the image

 SDL_Surface* pJpegimage = IMG_Load("wallpaperBettyBoop.jpg");

 if (pJpegimage == NULL) {

 // report error trying to read in image file

 cerr << "Could not read image file" << endl;

 exit(1);

 }

 // Get image ready for display on the screen

 SDL_Surface* pDisplayFormat = SDL_DisplayFormat(pJpegimage);

 // show on display screen

 SDL_Rect DestR;

 DestR.x = 0;

 DestR.y = 0;

 SDL_BlitSurface(pDisplayFormat, NULL, pDisplaySurface, &DestR);

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

46

 // print the message

 DestR.y = 600;

 DestR.x = 100;

 SDL_BlitSurface(ptext_surface,NULL,pDisplaySurface,&DestR);

 // process events until user closes the window

 for(;;) {

 //wait for an event

 if(SDL_WaitEvent(&event)==0) {

 cerr << "Error while waiting for an event!" << endl;

 exit(1);

 }

 //check for a quit event

 if(event.type==SDL_QUIT) break;

 //update the screen

 SDL_UpdateRect(pDisplaySurface,0,0,0,0);

 } // end for

 // free text message

 // unload the dynamically loaded image libraries

 SDL_FreeSurface(pJpegimage);

 IMG_Quit();

 // free text message

 SDL_FreeSurface(ptext_surface);

 // free the font

 TTF_CloseFont(pfont);

 pfont=NULL; // to be safe...

 // close TTF

 TTF_Quit();

 // close SDL

 SDL_Quit();

 // we are done

 cout << "Terminating normally." << endl;

 //return 0

 return(0);

}

 Add the library SDL_tff.lib to Project | Project Options, Parameters tab.

 Compile and Run.

The results:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

47

Figure 58 - Testing SDL_tff library

Installing and Testing SDL_mixer

Obtain the latest copy of SDL_mixer from http://www.libsdl.org/projects/SDL_mixer. Install the version

for your system. For window users just unpack the windows file (SDL_mixer-devel-1.2.11-VC) to the C:\

drive (e.g. C:\SDL_mixer-1.2.11).

The extraction creates both an \include and \lib directory. We will just add these directories to the compile

and link path. Copy the *.dll‘s into the bin directory, SDL_mixer object file library into the IDE‘s lib

diretoty and SDL_mixer.h into the IDE‘s \include\SDL directory.

 To test create an SDL project named TestSDL_mixer

 Copy the code below into your new main.cpp

 Move the file Halo.mp3 and Halo.jpg to the directory containing this project

…More information on installing SDL Libraries

I discovered a wonderful website with tons of information on SDL. The page

http://lazyfoo.net/SDL_tutorials/lesson03/index.php explains how to install the correct version of an SDL

library for Windows, Linux and Mac OS X. For Windows Dev C++ you should download the following

files:

 SDL_image_develp-1.2.4-VC6.zip (or something similar for the target library)

When you unzip the file you will get the following three parts:

 Header files (usually under /include)

 Lib files (usually under /lib)

http://www.libsdl.org/projects/SDL_mixer
http://lazyfoo.net/SDL_tutorials/lesson03/index.php

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

48

 The *.dll files

I usually extract each library under the C: directory with a corresponding name.

The notes on this web site recommends the following steps:

 Copy the *.h files under the same directory you maintain the SDL header files (for me that under

the development directory e.g. C:\Dev-Cpp\include\SDL)

 Copy the lib file (e.g. SDL_mixer.lib) to the lib directory you keep the SDL libs (again, I just

copy what I need to C:\Dev-Cpp\lib)

 Copy the *.dll files to the same directory where you exe will be. (Since I usually test while in

Dev-Cpp I just move the files to C:\Dev-Cpp\bin but this will not allow the program to run

outside of Dev-Cpp). Note: You can always move the *.dll to C:\Windows to run from any

directory.

 Under the Project | Project Options | Parameters tab enter –lmingw32 –lSDLmain –lSDL

 Add –lSDL_tff if you are using that library in your program

 Add –lSDL_mixer if you are using that library in your program

Installing and Testing SDL_net

TBD

Summary

At this point you should have selected one IDE to use to compile and build you SDL programs. I will be

using wxDev-Cpp throughout these notes. If you want to set up the free Microsoft compiler Microsoft

Visual C++ 2010 Express please see Appendix B. I personally did not like CODE::BLOCKS since it

displayed problems in the editing window that proved irritating and troublesome. I do like Microsoft C++

IDE but you will only find cross-platform versions of the two IDEs highlighted in this chapter. You are

not expected to understand any of the code you used to test the installation. I recommend you come back

and take a look at the code after you have completed Chapter 2.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

49

Chapter 2 - Getting started with SDL
This chapter presents an initial overview of the video component of SDL. We will cover:

 How to initialize SDL and the video subsystem

 How to properly release SDL resources

 How the video display is organized

 How to output pixels, draw lines, circles

 How to draw rectangles

 How to load and display bmp and other images

 How to plot pixels and lines

 How to perform simple animation

Initializing SDL

An SDL application must first use the function SDL_Init() to initialize the library.

Function Name: SDL_Init()

Format:

 int SDL_Init(Uint32 flags);

Description:

The function accepts a Uint32 which is an unsigned 32-bit value that represents a one or more pieces of

information shown in Table 5. On success the function returns 0

otherwise -1.

How do we represent one or more pieces of information in one

variable?

“In the early days of sailing, before there were radios and cell

phones, communication at anything more than the distance a man

could shout was accomplished by signal flags. Each navy and

most merchant fleets had their own code of flags and often the

codes changed on a regular basis. The flags could be used to

deliver messages, direct fleet operations and exchange

information about weather and other conditions. By the early

1880s, the British merchant fleet was able to send more than

70,000 different messages, using only 18 flags. ”
10

As a programmers we use boolean variables to convey or indicate if

something is true or false (e.g. isEOF
11

, isGameOver) or if something

is on or off or there or not (e.g. hasUserFlashLight). A bool data type is used as in

10

 http://madmariner.com/seamanship/piloting/story/SIGNAL_FLAGS_010510_SP
11

 EOF stands for END OF FILE, isEOF is a Boolean that when true means we have reached the end of the file

Figure 59 - The use of flags in the

Navy

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

50

bool hasUserFlashLight = false;

One characteristic of the programming spirit is to try to maintain information in a concise and compact

form. It is not uncommon to use an unsigned byte to represent several pieces of information of on-off

values. The way it works is to use bits of the byte (or larger) to represent different information or in other

words to act as ―flags.‖ For example, suppose we were designing an application that will display a

window and you wanted to capture the different styles you are willing to support in a byte value. You

could set things up in the following manner:

Table 4 – Sample flags for windows

Style meaning Value

WIN_BORDER – window has a border Bit 0 is 1 or 00000001

WIN_CAPTION – window has caption/title Bit 1 is 1 or 00000010

WIN_RESIZE – window can be resized Bit 2 is 1 or 00000100

WIN_MENU – window has a system menu Bit 3 is 1 or 00001000

The real advantage of using this method is that the values you are maintaining are similar (all relate to the

same object or function – a window) and yet all are mutually exclusive, that is, one or more can be ―on‖

at the same time. So if someone wanted to create a window with a border and caption the byte value

would hold 00000011. To make setting and checking the byte value you can create the following #define

statements:

#define WIN_BORDER 0x01

#define WIN_CAPTION 0x02

#define WIN_RESIZE 0x04

#define WIN_MENU 0x08

You can then ‗or‘ or | a combination of these values when setting a window style for example:

WIN_BORDER | WIN_RESIZE will set the value to 00000101 which will indicate that we want the

window to have a border and be re-sizable. It is also easy to determine if a particular flag is set or not by

just using the ‗and‘ & operation. For example:

if (windowFlag & WIN_RESIZE) {

 // Re-size the window

}

If the user did not create the window for re-sizing (suppose they selected only WIN_BORDER and

WIN_CAPTION) then the ‗&‘ would be 00000011 & 00000100 would create the value 0 which will then

bypass the ifstatement. Isn‘t this cool!

So when you see a function argument referred to as a flag and you can set one or more values you now

know that it is set up as a bits representing one of more mutually exclusive values.

The other fact to note is the use in SDL of the following data types:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

51

Sint8 - signed 8-bit integer

Uint8 - unsigned 8-bit integer

Sint16 - signed 16-bit integer

I think you can guess at what Uint16, Sint32, and Uint32 mean. Using these variables hides the

differences between machines and platforms. In addition, SDL hides issues around byte-order or big-

endian and little-endian.

What is big-endian and little-endian?
12

The terms big-endian and little-endian ―introduced in 1980 by Danny Cohen in his paper ‗On Holy Wars

and Plea for Peace‘‖ In the paper Cohen references the classic novel Gulliver‘s Travels to get the terms

big-endian and little-endian. In the novel there is a ―satirical conflicts ..between two religious sects ..

some of whom prefer cracking their soft-boiled eggs from the little end, while others prefer the big end.

Most computer processors represent numbers the same way inside the CPU. For example, the number

10,000 represented as a 32-bit number will appear as:

00000000 00000000 00100111 00010000

If a machine expects the integer value to be stored in memory where the ―increasing numeric significance

with increasing memory addresses‖ or as

MEMORY_ADDRESS: 100 102 103 104

INTEGER_VALUE: 00010000 00100111 00000000 00000000

The above is known as little-endian.

Little-endian was used by x86, 6502, Z80 processors (used by Intel PC based-machines, Apple II, Radio

Shack TRS-80, respectively)

―It‘s opposite, most-significant byte first‖ is called big-endian.

MEMORY_ADDRESS: 100 102 103 104

INTEGER_VALUE: 00000000 00000000 00100111 00010000

Big-endian was used by many Motorola processors (6800, 68000, and PowerPC) used by Macintosh

machines before the switch to the x86 family of processors).

In order for SDL to be cross-platform it must support and successfully hide from developers this big

difference between machines.

12

 This part references http://en.wikipedia.org/wiki/Endianness

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

52

Returning back to the SDL_Init function the first argument of that function flags is used to

indicate which of the SDL subsystems to initialize. The table below lists all the possible

flags that can be used alone or in combination when invoking SDL_Init.

Table 5 - SDL_Init initialization flags

#define SDL_INIT_TIMER 0x00000001

#define SDL_INIT_AUDIO 0x00000010

#define SDL_INIT_VIDEO 0x00000020

#define SDL_INIT_CDROM 0x00000100

#define SDL_INIT_JOYSTICK 0x00000200

#define SDL_INIT_NOPARACHUTE 0x00100000 /**< Don't catch fatal signals */

#define SDL_INIT_EVENTTHREAD 0x01000000 /**< Not supported on all OS's */

#define SDL_INIT_EVERYTHING 0x0000FFFF

When you initialize SDL using SDL_Init you have the option of using one or more of the flags above to

initialize one or more subsystems. For example, if all you wanted to use was the video functions then you

could use:

int retValue = SDL_Init(SDL_INIT_VIDEO);

If you wanted to use the video and JOYSTICK subsystem then you can use:

int retValue = SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK);

Most times you will just use SDL_INIT_EVERYTHING. It is advisable that you check the integer return

value. On success the function returns 0 otherwise -1. You can obtain the error message by calling

SDL_GetError.

Function Name: SDL_GetError()

Format:

 char* SDL_GetError();

Description:

The function returns a c-character string that describes the last SDL error.

All you SDL programs should start with the following code before you start using any SDL functions:

If (SDL_Init(SDL_INIT_EVERYTHING) == -1) {

 // darn something went wrong

 cerr << “SDL_Init failed error message: “ << SDL_GetError() << endl;

 exit(1);

}

// . . . rest of program . . .

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

53

SDL_Quit();

Note, the use of SDL_Quit() to close all SDL systems. This must be at the end of your program when you

are done using SDL functions. In addition, if an error were to occur you would see the creation of the file

stderr.txt file populated with the error message.

Using atexit()

There is a C++ function you can use to execute functions that require no arguments. The function is

atexit(). So instead of having to remember to insert the SDL_Quit() function at the end of your program

you can set it up so when your program terminates (for whatever reason) the function will always get

called.

Function Name: atexit

Format:

 int atexit(void (* function) (void));

Description:

 The function pointer provided as an argument is called when the program terminates. Note, that

the function must be a void argument function. You can use atexit as many times as you need to ensure

that all functions (usually clean-up functions) execute when the program ends.

Example Usage:

 atexit(SDL_Quit);

I don‘t use this function in any of my examples but you may encounter it while inspecting SDL example

programs.

Initializing and Closing SDL Subsystems

SDL also allows you to open and close one or more subsystems directly at the points in your program

when you need them.

Function Name: SDL_InitSubSystem

Format:

 SDL_InitSubSystem(Uint32 flags)

Description:

This function initializes one or more SDL subsystems specified in the argument flags. The return value is

0 on success, otherwise -1. You can use the function SDL_GetError() to obtain the last error message.

The arguments will be one of the flag values show in Table 5.

You would use SDL_InitSubsystem if after using SDL_Init() at the start of your program you want to

open and close the CDROM system in a small section of your program.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

54

Example Usage:

If (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK) == -1) {

 // darn something went wrong

 cerr << “SDL_Init failed error message: “ << SDL_GetError() << endl;

 exit(1);

}

// . . . rest of program . . .

// we need to use the CDROM here

If(SDL_InitSubSystem(SDL_INIT_CDROM) == -1) {

 // something went wrong on CD...just write to log file

 cerr << “Failed to initialize CDROM “ << SDL_GetError() << endl;

 exit(2);

}

// . . . do our thing with CDROM

SDL_QuitSubsystem(SDL_INIT_CDROM);

// . . . finish up the program . . .

SDL_Quit();

Once you are done with the subsystem you directly close it using SDL_QuitSubsystem function.

Function Name: SDL_QuitSubSystem

Format:

 SDL_QuitSubSystem(Uint32 flags)

Description:

This function shuts down the one or more designated subsystems as specified in the flags argument. The

argument value is one of the values shown in Table 5.

If you did not want to exit the program if a particular subsystem failed to be opened (could not get that

great background music from the CDROM) you can check later in the program (when you are ready to

play the music) by using the function SDL_WasInit.

Function Name: SDL_WasInit

Format:

 Uint32 SDL_WasInit(Uint32 flags)

Description:

This function returns a Uint32 value a mask or flag indicating which subsystems specified in the

argument flags have been initialized. For example suppose you separately initialized the CDROM and

AUDIO subsystems in order to obtain and play some sounds in your game. Before you actually tried to

obtain and play the music you want to check if these subsystems where properly initialized by using one

of the values listed in Table 5.

Example Usage:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

55

If (SDL_InitSubSystem(SDL_INIT_CDROM | SDL_INIT_AUDIO) == -1) {

 cerr << “Unable to initialize CDROM and/or AUDIO. “ << SDL_GetError()

<< endl;

}

 . . .

// check if we can get and play the wild tune

Uint32 retValue = SDL_WasInit(SDL_INIT_CDROM | SDL_INIT_AUDIO);

if (retValue & SDL_INIT_CDROM) {

 // we successfully initialized CDROM so let’s get the music off the

 // CDROM

 . . .

 if (retValue & SDL_INIT_AUDIO) {

 // let’s play that tune

 }

}

SDL_QuitSubsystem(SDL_INIT_CDROM | SDL_INIT_AUDIO);

Let‘s create our first program to initialize and close SDL.

LAB #1: Program 2_1 – Test Initializing SDL.

 Create a new project named Program2_1 using the template Simple SDL Project template you

created in the previous chapter (see page 39)

Figure 60 - Creating an SDL application

Replace the text with the following program:

Table 6 - PROGRAM 2_1

// Program: PROGRAM2_1

// Purpose: Initializing and closing SDL

#include <iostream>

#include "SDL\sdl.h"

using namespace std;

int main(int argc, char* argv[])

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

56

{

 //initialize SDL

 if (SDL_Init(SDL_INIT_EVERYTHING)==-1) {

 cerr << "Could not initialize SDL" << endl << SDL_GetError()

 << endl;

 exit(1);

 } else {

 //report success

 cout << "SDL_INIT_EVERYTHING worked." << endl;

 }

 cout << "Preparing to close SDL..." << endl;

 SDL_Quit();

 cout << "Terminating normally." << endl;

 return(0);

}

 Compile and execute

You will not see anything on the screen but if you open up the directory where the *.exe file is located

you will see the file stdout.txt.

Figure 61 - Finding the stdout.txt file

Open the file and you will see the messages you generated with cout.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

57

Figure 62 - Contents of stdout.txt

As you can see the program records all the messages you printed out with cout into the file stdout.txt.

TIP: Using cout throughout your program to record important events and progress is a good way to ―see‖

what is going on. Try not to have too many statements in the game loop since that will generate many

statements.

What is a game loop?

The key component of any game is the game loop. ―The game loop allows the game to run smoothly

regardless of a user‘s input or lack thereof.‖
13

 Inside the game loop the game either responds to user input

(pressing the joystick to fire a missile at the aliens coming down) or to figure out what directions and how

fast to move the ghosts or monsters so they make life miserable for the hero (this is called AI for artificial

intelligence). The traditional game loop is something like this:

While (the game is not over)

 Check and process any user input;

 Compute AI;

 Move the monsters or enemies;

 Resolve collisions;

 Draw graphics;

 Play sounds;

End While

13

 http://en.wikipedia.org/wiki/Game_programming

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

58

The Video Component

Since we really want to create games we need to first learn how to start working with the video display.

This is where we will have the hero shoot the monsters streaming down the screen or the heroine grapple

the walls as she dodges boulders and bullets, so we will investigate this first.

The computer monitor is most often used to provide users with feedback on what is going on with the

application or game that is running by displaying text and graphics on the screen. Monitors are either the

liquid crystal displays (LCD) or cathode ray tube (CRT).

Most of today‘s computers come with LCD monitors since they are

slimmer and require less energy than the classic CRT monitor. There is

usually several things users care about when about when they purchase a

monitor - the screen size and aspect ratio. Typically the aspect ratio is 4:3

which means the width to length ratio is 4 to 3. The screen is usually

slightly wider 15, 17, 19 inches or more. Resolution refers to the number

of individual dots of color (pixels) that the screen can display. Resolution

is expressed as number on the horizontal axis times the number on the

vertical axis. Many older games used 320x240
14

 and for many of our SDL

based games we will use the resolution 640x480. You read this as 640 pixels across and 480 pixels down.

―The combination of the display modes supported by your graphics adapter and the color capability of

your monitor determine how many colors it displays. For example, a display operates in SuperVGA

(SVGA) mode can display up to 16,777,216 (usually rounded to 16.8 million) colors because it can

process a 24-bit long description of a pixel. The number of bits used to describe a pixel is known as its bit

depth.‖
15

When you video adapter card supports 24-bit depth, then 8-bits is used to describe each of the primary

colors – red, green and blue.

Table 7 - Chart from HowStuffHowWorks

Bit-Depth Number of Colors

1 2

(monochrome)

2 4

(CGA)

4 16

(EGA)

8 256

(VGA)

16 65,536

(High Color, XGA)

24 16,777,216

(True Color, SVGA)

32 16,777,216

14

 This screen mode was known as Mode X. Its primary advantage was that the pixels were square.
15

 From HowStuffWorks - http://computer.howstuffworks.com/monitor4.htm

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

59

(True Color + Alpha Channel)

Most of today‘s monitors and video cards usually use bit-depth 24 or 32.

What is a pixel?

The video display or monitor is composed of thousands (or millions) of pixels. A pixel is short for picture

element, it represents a single point in a graphic image. A pixel can be constructed by one or more dots on

the screen. As programmers we conceptualize or think of the screen as being composed of these pixels,

where each pixel can be a particular color.

SDL Video Structures

There are seven key structures that you use to manage the video display, if you don‘t know what a

struct is then please read Appendix E for a comprehensive introduction. We will discuss each structure

in detail but for now they are:

1. SDL_Rect – represents a rectangular area on the screen

2. SDL_Color – A structure to represent a color in a platform-independent way

3. SDL_Palette – Used to hold a palette or the set of colors your game is using. In the olden days

(1990‘s) you had to manage the color palette but with higher graphics system of today we rarely

concern ourselves with this anymore.

4. SDL_PixelFormat – This structure is used to hold the details of the pixels pertaining to the

user‘s video system.

5. SDL_Surface – This represents a block of pixels. We use this to represent the display surface, the

image surface, etc. Your application may contain many surfaces in memory. One main surface

will be the surface that represents the SDL window. A surface can hold images from files or

rectangular regions from other surfaces.

6. SDL_VideoInfo – This structure holds the details about the user‘s video system

7. SDL_Overlay – This structure is used for data streaming

 SDL_Color – This structure is used to hold color information

in a platform-independent way.

typedef struct SDL_Color {

 Uint8 r;

 Uint8 g;

 Uint8 b;

 Uint8 unused;

} SDL_Color;

The struct members r, g, and b stand for red, green and blue

respectively. Each member can be a value from 0..255, where 0 means

lack of intensity and 255 is maximum intensity for that particular

color. SDL_Color describes a color in a format independent way. We
Figure 63 - RGB to make colors

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

60

usually represent a color by using a triple (r, g, b). For example, (255,0, 0) represents red, (255,255,255)

is white. You will need to convert an SDL_Color variable to a pixel value for the display format to use by

using the function SDL_MapRGB. That is, in order to use an SDL_Color variable you will need to

convert it into a pixel color to be used for the video display by using SDL_MapRGB.

A large percentage of the visible spectrum can be represented by mixing red, green, and blue (RGB)

colored light in various proportions and intensities. Where the colors overlap, they create cyan, magenta,

and yellow. RGB colors are called additive colors because you create white by adding R, G, and B

together—that is, all light is reflected back to the eye. Additive colors are used for lighting, television,

and computer monitors. Your monitor, for example, creates color by emitting light through red, green,

and blue phosphors. You can work with color values using the RGB color mode, which is based on the

RGB color model. In RGB mode, each of the RGB components can use a value ranging from 0 (black) to

255 (white). For example, a bright red color might have an R value of 246, a G value of 20, and a B value

of 50. When the values of all three components are equal, the result is a shade of gray. When the value of

all components is 255, the result is pure white; when all components have values of 0, the result is pure

black.
16

In our programs we will typically create an SDL_Color object and set it to some color:

SDL_Color redColor = { 255, 0, 0 } ;

Then we will need to convert redColor into a value that can be written to the screen. We will see how

to do that later when we discuss SDL_MapRGB.

 SDL_Surface – This structure represents ―areas of ‗graphical‘ memory, memory that can be

drawn to. The surface represents a rectangular area representing the screen or graphics area.

typedef struct SDL_Surface {

 Uint32 flags; /**< Read-only */

 SDL_PixelFormat *format; /**< Read-only */

 int w, h; /**< Read-only */

 Uint16 pitch; /**< Read-only */

 void *pixels; /**< Read-write */

 /** clipping information */

 SDL_Rect clip_rect; /**< Read-only */

 /** Reference count -- used when freeing surface */

 int refcount; /**< Read-mostly */

 /* -- other members that are private -- */

} SDL_Surface;

The flags is a value that indicates one or more aspects of the surface that gets established when you

create the SDL_Surface object. The possible values are:

16

 From http://help.adobe.com/en_US/Illustrator/14.0/WS714a382cdf7d304e7e07d0100196cbc5f-6293a.html

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

61

Table 8 - SDL_Surface flags

SDL_Surface flags value

SDL_ANYFORMAT Allow any pixel-format (display surface)

SDL_ASYNCBLIT The surface uses asynchronous blit if possible

SDL_DOUBLEBUF Specifies that the surface is double buffered (display surface)

SDL_HWACCEL Use hardware acceleration blit

SDL_HWPALETTE Specifies that the surface has an exclusive palette

SDL_HWSURFACE Specifies that the surface is stored in video memory

SDL_FULLSCREEN Specifies that the surface uses the full screen (display surface)

SDL_OPENGL Specifies that the surface has an OpenGL context (display surface)

SDL_OPENGLBLIT Specifies that the surface supports OpenGL blitting (display surface). NOTE:

This option is kept for compatibility only, and is not recommended for new

code.

SDL_RESIZEABLE Specifies that the surface is resizeable (display surface)

SDL_RLEACCEL Specifies that accelerated colorkey blitting with RLE is being used.

SDL_SRCALPHA Specifies that surface blit uses alpha blending

SDL_SRCCOLORKEY Specifies that the surface uses colorkey blitting

SDL_SWSURFACE Specifies that the surface is stored in the system memory. SDL_SWSURFACE

is not actually a flag, when SDL_HWSURFACE is not set then this implies

that SDL_SWSURFACE is true.

SDL_PREALLOC Specifies that the surface uses preallocated memory

We will not get into each item above in detail but will point out the SDL functions we use specify or set

one of more of these flags.

The format member specifies the format of the pixels stored on the surface. The field value is a pointer

to an SDL_PixelFormat struct (more on this later).

The w and h member indicates the width and height of pixels on the surface.

The member pitch specifies the surface scanline in bytes. This value indicates the number of bytes you

would have to add to a pixel at location x,y on the screen in order to get the pixel position immediately

below it. We discuss this in more detail later.

The member pixels is a pointer to the actual pixels making up the surface or image.

The clip_rect member is actually another SDL structure SDL_Rect, which is a rectangular area

which specifies an area on the surface that will be affected by blitting. That is, the clip area describes a

subset of the display area where changes will take place and any area outside the clip_rect will not be

changed. This help to restrict changes to only the clip_rect area.

The refcount member tracks the number of references to the SDL_Surface object. This int value

allows you to keep track how many elements depend on or use this surface. When an object requires the

SDL_Surface the refcount should be incremented by 1, when an object no longer requires the

SDL_Surface then it should decrement this member by 1. When the refcount value is 0 it is safe to delete

or destroy the surface.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

62

The primary and first use of this structure in your SDL program is when we establish the video mode

using the function SDL_SetVideoMode. SDL_SetVideoMode function is used to set up the video mode,

that is, the width, height and bits-per-pixel or color depth.

Function Name: SDL_SetVideoMode

Format:

 SDL_Surface *SDL_SetVideoMode(int width, int height, int bpp, Uint32 flags);

Description:

This function is used to set up the video mode display. Clients specify the width and height of the video

display they want SDL to create and bpp is the bits per pixel value. If bpp is 0 then SDL uses the current

display bits per pixel. The flag is a combination of one or more (or‘d or |) values specified in Error!

eference source not found..

The function returns a pointer to an SDL_Surface that represents our display video surface

Example Usage:

SDL_Surface *pDisplaySurface = NULL;

pDisplaySurface = SDL_SetVideoMode(640, 480, 0, SDL_ANYFORMAT);

You should check that it really worked by checking that the pDisplaySurface != NULL, otherwise

generate an error message and stop the program. See Appendix F if you need a review or need more

information on pointers. In this example we are specifying that a 640x480 video display be setup. The

third argument, bits per pixel is 0 which means we will use the current display default value (in this day

and age this value defaults to 32). The last argument SDL_ANYFORMAT specifies that the current

format of the display is taken as the format for the video display surface we are creating. We can add

additional flags to this argument but for now we will just use SDL_ANYFORMAT.

Before we do our next program using this function, let‘s cover two additional functions we will need to

use.

Function Name: SDL_FreeSurface

Format:

 void SDL_FreeSurface(SDL_Surface *surface);

Description:

This function frees (deletes) an SDL_Surface surface. You are responsible for freeing ALL SDL_Surface

variables that you create. So must make sure to do:

SDL_FreeSurface(pDisplaySurface);

after you are done with a surface.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

63

In order to keep our next program simple and ensure that we see the display window we will add a delay

statement into our first program. SDL provides the function SDL_Delay to manage this.

Function Name: SDL_Delay

Format:

 void SDL_Delay(Uint32 ms);

Description:

This function waits a specified number of milliseconds before returning. If you want to wait 1 sec you

would specifiy:

 SDL_Delay(1000);

LAB #2: Program 2_2 – Create a display window

 Create a new project named Program2_2 using the template Simple SDL Project template.

 Enter the following lines into the main.cpp

Table 9 - PROGRAM2_2

// Program: PROGRAM2_2

// Purpose: Demonstrates creating a window and displaying for 1 second

#include <iostream>

#include "SDL\sdl.h"

using namespace std;

int main(int argc, char* argv[])

{

 //initialize SDL

 if (SDL_Init(SDL_INIT_EVERYTHING)==-1) {

 cerr << "Could not initialize SDL" << endl

 << SDL_GetError() << endl;

 exit(1);

 } else {

 //report success

 cout << "SDL_INIT_EVERYTHING worked." << endl;

 }

 // Create SDL Surface

 SDL_Surface *pDisplaySurface = NULL;

 pDisplaySurface = SDL_SetVideoMode(640,480, 0, SDL_ANYFORMAT);

 if (pDisplaySurface == NULL) {

 cerr << "SetVideoMode failed. " << SDL_GetError() << endl;

 exit(2);

 }

 SDL_Delay(1000); // wait 1 second before ending the program

 cout << "free the SDL Surface..." << endl;

 SDL_FreeSurface(pDisplaySurface);

 cout << "Preparing to close SDL..." << endl;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

64

 SDL_Quit();

 cout << "Terminating normally." << endl;

 return(0);

}

 Compile and execute

You will see a window quickly appear for 1 second. If you want the window to appear longer just change

the value provided to SDL_Delay.

Making Improvements to our Video Programs

You really can‘t do anything with the window in the last example – not even close it! The reason is we

have not written code to have the program respond to events. The next chapter gets into more details on

the different types of events that a program can handle. For now we will make two improvements to the

program.

1. Create consts for the SCREEN_WIDTH and SCREEN_HEIGHT

2. Add a game loop that handles the close window event

The first improvement is just plain good coding practice. Whenever I see numbers in my program (other

than 0 and -1 for checks on return values) I ask myself one question – would I ever want to change it? If

the answer is ―yes‖ than I create a const in the program. The second one will allow you to decide when to

close the window rather than inserting a delay in your program.

LAB #3: Program 2_3 – Making improvements

 Create a new project named Program2_3 using the template Simple SDL Project template.

 Enter the following lines into the main.cpp

Table 10 - PROGRAM2_3

// Program: PROGRAM2_3

// Purpose: Demonstrates creating a window and having it wait for you to

close

#include <iostream>

#include "SDL\sdl.h"

using namespace std;

const int SCREEN_WIDTH = 640;

const int SCREEN_HEIGHT = 480;

const int BITS_PER_PIXEL = 0; // set to current display value

int main(int argc, char* argv[])

{

 //initialize SDL

 if (SDL_Init(SDL_INIT_EVERYTHING)==-1) {

 cerr << "Could not initialize SDL" << endl

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

65

 << SDL_GetError() << endl;

 exit(1);

 }

 // Create SDL Surface

 SDL_Surface *pDisplaySurface = NULL;

 pDisplaySurface = SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,

 BITS_PER_PIXEL, SDL_ANYFORMAT);

 if (pDisplaySurface == NULL) {

 cerr << "SetVideoMode failed. " << SDL_GetError() << endl;

 exit(2);

 }

 // Set up game loop waiting for window to close

 SDL_Event event;

 for(;;) {

 if (SDL_PollEvent(&event) == 0) {

 // no event so DO YOUR THING!

 // . . . nothing yet . . .

 } else {

 // an event ...let's check if user has closed the window

 // if so ..exit the loop ...BYE!

 if (event.type == SDL_QUIT) break;

 }

 }

 // wrap things up

 SDL_FreeSurface(pDisplaySurface);

 SDL_Quit();

 cout << "Terminating normally." << endl;

 return(0);

}

Let me state again the improvements we made to the program:

 Added const values

 Added a game loop

o The game loop consists of an ifStatement that tests if an event occurred and if so to

process it.

for(;;) { // forever loop

 if (no event exists) {

 Do game related things – AI, collision detection, etc.

 } else {

 Check if the event was a “close window” request.

 }

} // end for loop

The only way to exit the game loop is for the user to close the window – doing so generates an

SDL_QUIT event. All our programs in this chapter will have this form. Later we will adopt a different

format that supports a more solid design involving C++ classes.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

66

How the display screen is organized

For this discussion we will assume our screen size is 640x480, that is, there are 640 pixels across and 480

pixels down.

The direction across the screen from left-to-right is regarded as the X  direction.

X -> direction

0 1 2

. . .

639

Figure 64 – 640 pixels in the x direction

Each pixel cell across is numbered from 0 to MAX_WIDTH-1 which for our example will be from 0 to

639.

This direction is referred to as the y  direction and the rows are numbered from 0 through

MAX_HEIGHT-1.

Y

|

\/

D

I

R

E

C

T

I

O

N

0

1

2

.
 .

.

479

Figure 65 - Rows or y direction

In our example, the y value will be from 0 to 479.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

67

You can view the video display as consisting of a grid of pixels.

0,0

0,1

0,479

0

1

.
 .

.

479

1,0

1,1

639, 0

639, 479

(X, Y)

0

0 1 639

. . .

Figure 66 - Grid of pixels

Each pixel is addressable and can be set to a specific color. We usually refer to the pixel address as a tuple

(x,y) the first number specifies the x location and the second the y location. The top-left most location (as

shown in Figure 66) is location (0,0) and the rightmost address on that row has the address (639,0). On

the second row the pixel address starts at (0,1) and goes through to (639,1). The bottom-right most pixel

has the address (639, 470). It would be nice if we could just use a function like:

 drawPixel(pDisplaySurface, x, y, color);

where the pDisplaySurface is the SDL_Surface we get from the function SDL_SetVideoMode but such a

function does not exist in SDL. How to actually get this done is the topic of the next section

Understanding how to write to the Display

In this section we are going to build a program that draws a random pixel on the screen with a random

color. Once we get that done we will write a general function we can call on later to just draw a pixel

color on the screen. Lastly you will be challenged to come up with a general functions to draw a line
17

and a circle to the screen.

What do you need to know in order to set a pixel on the screen to a particular color?

 The pixel location on the screen

o The x location, which in our case will be a value from 0..SCREEN_WIDTH-1

o The y location, which in our case will be a value from 0..SCREEN_HEIGHT-1

 The color – we can use SDL_Color and convert into a color for the display

 The video display surface

From the previous section we know that the line:

17

 These functions are already available in graphics libraries that supplement SDL but it is interesting see how it is

done.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

68

 pDisplaySurface = SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,

 BITS_PER_PIXEL, SDL_ANYFORMAT);

returns our display surface in a SDL_Surface struct.

typedef struct SDL_Surface {

 Uint32 flags; /**< Read-only */

 SDL_PixelFormat *format; /**< Read-only */

 int w, h; /**< Read-only */

 Uint16 pitch; /**< Read-only */

 void *pixels; /**< Read-write */

 /** clipping information */

 SDL_Rect clip_rect; /**< Read-only */

 /** Reference count -- used when freeing surface */

 int refcount; /**< Read-mostly */

 /* -- other members that are private -- */

} SDL_Surface;

The SDL_Color structure is defined as:

typedef struct{

 Uint8 r;

 Uint8 g;

 Uint8 b;

 Uint8 unused;

} SDL_Color;

We will use this structure to specify a particular color. The variables r, g, b will hold some value from

0..255. Here are some examples on how it works:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

69

Figure 67 - Hex table of colors

The numbers are in hex and a number like 99FFCC means r=99 or decimal 153, g=FF or decimal 255,

b=CC or 204, which on the chart comes out to a washed out green color (I am not good at naming colors).

Here is a block
18

 using 99FFCC or (153,255,204):

Figure 68- The color 99FFCC (153, 255, 204)

We could create an SDL_Color object to hold our intended color:

SDL_Color myColor;

myColor.r = 153;

myColor.g = 255;

myColor.b = 204;

or

SDL_Color myColor = {153, 255, 204};

18

 I used Windows Paint program to create the block image.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

70

SDL_Color allows us to describe a color in a format independent way, but we will need to convert it to a

pixel value for a certain pixel format that can be sent to the actual video display using SDL_MapRGB

function.

Function Name: SDL_MapRGB

Format:

 Uint32 SDL_MapRGB(SDL_PixelFormat fmt*, Uint8 r, Uint8 g, Uint8 b);

Description:

This function maps the RGB color to the specified pixel format and returns the pixel value as a 32-bit int.

We know that the bits per pixel (bpp also known as color depth) can be less than 32 bits, if so we can just

ignore the upper-portion of the return value that does not pertain to the number of BytesPerPixel we

require (or just save into a Uint16 for 16 bpp or Uint8 for 8 bpp). The troublesome format will be 24bpp

since we don‘t have a natural datatype to express. The SDL_PixelFormat we will use is the one we

obtained in the SDL_Surface structure returned from calling SDL_SetVideoMode, that is,

pDisplaySurface->format.

We will need to use the function SDL_MapRGB in order to obtain a pixel format we can send to the

screen:

Uint32 displayColor = SDL_MapRGB(pDisplaySurface->format, myColor.r,

 myColor.g, myColor.b);

So now the next question is how do we get this Uint32 displayColor value displayed at pixel location

(x,y)? In other words, we have the representation for the pixel color we want to display so where exactly

is the location of (x,y)?

The SDL_Surface holds the area representing our surface or screen in void *pixels. Life would be easy if

the location *(pixel+0) corresponded to location (0,0) and the location *(pixel+1) was pixel location (1,0),

etc. but the location of the next pixel position in the memory area pointed to by pixels is determined by

the number of bytes per pixel. How do we get that information? The information is contained right

inside the SDL_Surface struct in the SDL_PixelFormat *format struct.

The SDL_PixelFormat:

/** Everything in the pixel format structure is read-only */

typedef struct SDL_PixelFormat {

 SDL_Palette *palette;

 Uint8 BitsPerPixel;

 Uint8 BytesPerPixel;

 Uint8 Rloss;

 Uint8 Gloss;

 Uint8 Bloss;

 Uint8 Aloss;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

71

 Uint8 Rshift;

 Uint8 Gshift;

 Uint8 Bshift;

 Uint8 Ashift;

 Uint32 Rmask;

 Uint32 Gmask;

 Uint32 Bmask;

 Uint32 Amask;

 /** RGB color key information */

 Uint32 colorkey;

 /** Alpha value information (per-surface alpha) */

 Uint8 alpha;

} SDL_PixelFormat;

We will not cover all the fields in SDL_PixelFormat in this section. The key one we will need for this

exercise is BytesPerPixel. The BytesPerPixel tells us the number of bytes used to represent color for each

pixel in a surface. This number will usually be some number from 1 to 4. So the way to get to this

information is to use the format:

pDisplaySurface->format->BytesPerPixel

We can imagine display memory as:

Screen

4
8

0

640

Border 2
0

40

720

pixels

Figure 69 - Screen Memory layout

Now it would be easy to think that the formula for computing the memory address of pixel (x,y) would

just be the following:

start_memory_of_display_memory + offset_for_starting_row(using y) + offset_in_row (using x)

We will use the fact that the display memory pixels start at address pointed to by pDisplaySurface->pixels

(see Figure 69), which corresponds to the pixel at screen location (0,0).

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

72

char* pPixelAddress; // variable to hold hold the

//starting pixelAddress for the pixel at (x,y)

// initialize to the starting location of the display surface address

pPixelAddress = (char*)pDisplaySurface->pixels;

// add horizontal offset – x

pPixelAddress = pPixelAddress + (x * pDisplaySurface->format->BytesPerPixel);

// add vertical offset - y

pPixelAddress = pPixelAddress

+ (y * MAX_WIDTH * pDisplaySurface->format->BytesPerPixel);

Let‘s see if we can make sense out of the above which as seen in a more mathematical light would be

expressed as:

pPixelAddress = startingPixelAddress + x * BYTESPERPIXEL + y * MAX_WIDTH *

BYTESPERPIXEL;

Using BYTESPERPIXEL = 3 (24bpp) and MAX_WIDTH=640

for (0,0) we would get

pPixelAddress = startingPixelAddress + 0 * BYTESPERPIXEL + 0 * MAX_WIDTH *

BYTESPERPIXEL;

or just pPixelAddress = startingPixelAddress (makes sense right)

Let‘s say we wanted the pixel address of (1,0),

pPixelAddress = startingPixelAddress + 1 * BYTESPERPIXEL + 0 * MAX_WIDTH *

BYTESPERPIXEL;

pPixelAddress = startingPixelAddress + 3 (again makes sense since it should be 3 bytes down)

What about the pixel address of (0,1), that is the pixel right below (0,0) (see Figure 66)

For (0,1)

pPixelAddress = startingPixelAddress + 0 * BYTESPERPIXEL + 1 * MAX_WIDTH *

BYTESPERPIXEL;

pPixelAddress = startingPixelAddress + 0 + 1 * 640 * 3

pPixelAddress = startingPixelAddress + 1920

The above is logical but not correct. The above is assuming that if you know the address of pixel x,y on

the screen that the pixel below is at (address of pixel x,y) + MAX_WIDTH * BYTEPERPIXEL. But, in

general the offset y * MAX_WIDTH * BYTESPERPIXEL will not be accurate. I tried to illustrate a

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

73

possible reason why this would be true in Figure 69
19

. The memory address of the pixels comprising the

next scan line may not be adjacent to the end of the pixels comprising the last scan line. In our example

above the offset would need to be adjusted by 80 units. To make it easier for users to compute the offset

SDL holds within the SDL_Surface the struct variable pitch. The pitch holds the actual length of the

scanline (borders and all!) so the formula to compute the pPixelAddress is:

char *pPixelAddress = (char *)pDisplaySurface->pixels

+ x * pDisplaySurface->format->BytesPerPixel

+ y *pDisplaySurface->pitch ;

The function we will use to copy the value we got from SDL_MapRGB – displayColor is memcpy:

memcpy(pPixelAddress, &displayColor, pDisplaySurface->format-

>BytesPerPixel)

memcpy

This function copies the value of num bytes from the location pointed by source directly to the memory

block pointed by destination.

void * memcpy(void * destination, const void * source, size_t num);

The destination is a pointer to the array or memory where the content is to be copied. The source

is a pointer to the source of data and num is the number of bytes to copy.

the above copies BYTESPERPIXEL bytes from displayColor (the source) to pPixelAddress (the

destination).

―Graphics hardware is a shared resource. Operating systems generally require that we lock shared

resources before we use them and unlock them after we are done. SDL provides SDL_LockSurface()

and SDL_UnlockSurface() to lock and unlock hardware surfaces. It is possible to have a hardware

surface that should not be locked and SDL provides the SDL_MUSTLOCK() macro so that we can tell them

apart.‖
20

Function Name: SDL_LockSurface

Format:

 int SDL_LockSurface(SDL_Surface *pDisplaySurface);

Description:

This function is used to lock a surface so you can directly access it. Once a surface is locked the update

should be done quickly and the lock released.

19

 The actual memory layout may be different but the figure is meant to illustrate a point.
20

 From http://linuxdevcenter.com/pub/a/linux/2003/08/07/sdl_anim.html?page=2

http://sdldoc.csn.ul.ie/sdllocksurface.php
http://sdldoc.csn.ul.ie/sdllocksurface.php
http://sdldoc.csn.ul.ie/sdllocksurface.php

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

74

Function Name: SDL_UnlockSurface

Format:

 int SDL_UnlockSurface(SDL_Surface *pDisplaySurface);

Description:

This function releases a previously locked surface.

ADVICE: Try to unlock a surface as soon as you possibly can.

MACRO Name: SDL_MUSTLOCK

Format:

 int SDL_MUSTLOCK(SDL_Surface *pDisplaySurface)

Description:

If the macro returns 0 then you can draw without having to lock and unlock the surface.

You should not make operating system or library calls between lock and unlock of a surface.

Example Usage:

if (SDL_MUSTLOCK(pDisplaySurface)) {

 int retValue = SDL_LockSurface(pDisplaySurface);

 if (retValue == -1) {

 cerr << “Could not lock surface. “ << SDL_GetError() << endl;

 exit(1);

 }

}

// . . . update screen pixel code here

if (SDL_MUSTLOCK(pDisplaySurface)) {

 SDL_UnlockSurface(pDisplaySurface);

}

// . . . rest of program

Let‘s review what we have learned. We wanted to understand what it would take to set a pixel‘s color on

the screen. We needed four things:

 The pixel location on the screen

o The x location, which in our case will be a value from 0..SCREEN_WIDTH-1

o The y location, which in our case will be a value from 0..SCREEN_HEIGHT-1

 The color – we can use SDL_Color and convert into a color for the display

 The video display surface

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

75

We will create a function drawPixel with the following signature:

void drawPixel (SDL_Surface* pDisplaySurface, int x, int y, SDL_Color color);

We will create a program to test the function. The program will do the following;

Loop

 Generate random x, y location on the screen

 Generate a random color

 Invoke colorPixel

Until User closes the Window

LAB #4: Program 2_4 – Plot Pixels

 Create a new project named Program2_4 using the template Simple SDL Project template.

 Enter the following lines into the main.cpp

Table 11 - PROGRAM2_4

#include <cstdlib>

#include <iostream>

#include <time.h>

#include "SDL\sdl.h"

using namespace std;

 // screen dimensions

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

 // COLOR RANGE

const int MAX_COLOR_VALUE = 255;

 // Function prototypes

void drawPixel (SDL_Surface *surface, int x, int y, SDL_Color color);

//display surface

SDL_Surface* pDisplaySurface = NULL;

//event structure

SDL_Event event;

int main(int argc, char *argv[])

{

 //initialize SDL

 if (SDL_Init(SDL_INIT_VIDEO)==-1) {

 cerr << "Could not initialize SDL!" << endl;

 exit(1);

 } else {

 cout << "SDL initialized properly!" << endl;

 }

 //create windowed environment

 pDisplaySurface =

 SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,SDL_ANYFORMAT);

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

76

 // set caption

 SDL_WM_SetCaption("Plot Pixels", NULL);

 //error check

 if (pDisplaySurface == NULL) {

 //report error

 cerr << "Could not set up display surface!" << endl;

 //exit the program

 exit(1);

 }

 // seed the random number generator

 srand (time(NULL));

 //repeat forever

 for(;;) {

 //wait for an event

 if(SDL_PollEvent(&event)==0) {

 // generate random a screen position

 int x = rand() % SCREEN_WIDTH;

 int y = rand() % SCREEN_HEIGHT;

 // generate a random screen color

 SDL_Color color;

 color.r = rand() % MAX_COLOR_VALUE;

 color.g = rand() % MAX_COLOR_VALUE;

 color.b = rand() % MAX_COLOR_VALUE;

 drawPixel (pDisplaySurface, x, y, color);

 //update the screen

 SDL_UpdateRect(pDisplaySurface,0,0,0,0);

 } else {

 //event occurred, check for quit

 if(event.type==SDL_QUIT) break;

 }

 }

 SDL_FreeSurface(pDisplaySurface);

 SDL_Quit();

 //normal termination

 cout << "Terminating normally." << endl;

 return EXIT_SUCCESS;

}

void drawPixel (SDL_Surface *surface, int x, int y, SDL_Color color) {

 // map color to screen color

 Uint32 screenColor = SDL_MapRGB(surface->format, color.r,

 color.g, color.b);

 // Calculate location of pixel

 char *pPixelAddress = (char *)surface->pixels

 + x * surface->format->BytesPerPixel

 + y *surface->pitch ;

 // check and the lock the surface

 if (SDL_MUSTLOCK(surface)) {

 int retValue = SDL_LockSurface(surface);

 if (retValue == -1) {

 cerr << "Count not lock surface. " <<

 SDL_GetError() << endl;

 exit(1);

 }

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

77

 }

 // copy directly to memory

 memcpy(pPixelAddress, &screenColor, surface->format->BytesPerPixel);

 if (SDL_MUSTLOCK(surface)) {

 SDL_UnlockSurface(surface);

 }

}

 Compile and execute the program. You should see a nice star field appear as shown below.

Figure 70 - Plot Pixels screen

The program uses the SDL function SDL_UpdateRect.

Function Name: SDL_UpdateRect

Format:

 void SDL_UpdateRest(SDL_Surface *pDisplaySurface, Sint32 x, Sint32 y, Sint32 w, Sint32

h);

Description:

This function updates the area on the screen specified by the rectangular specified by the arguments x, y,

w and h. If these values are set to 0 then the entire display screen is updated. We use this function to

update the screen after we have made changes.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

78

Another function used by the program is SDL_WM_SetCaption.

Function Name: SDL_WM_SetCaption

Format:

 void SDL_SetCaption(const char *title, const char *icon);

Description:

This function is used to set the windows title (e.g. ―Plot Pixels‖) and icon name. I usually just use:

SDL_WM_SetCaption("Plot Pixels", NULL);

The NULL value just uses the default windows icon. If you wanted to set your own icon you can use:

Drawing a Line

In this section I will challenge you a bit by taking all the information we have discussed and implement a

function not available in SDL – drawLine. The signature of the new function will be:

void drawLine(SDL_Surface *surface, int x0, int y0, int x1, int y1, SDL_Color color);

The new function will have six input parameters:

 A pointer to an SDL_Surface representing the video display

 The x location x0 of one point of the line

 The y location y0 if one point of the line

 The x location x1 of the other point of the line

 The y location y1 of the other point of the line

 The SDL_Color of the line

The function will draw a line from (x0,y0) to (x1, y1) using SDL_Color on the video display.

We will be examining several algorithms for drawing a line. I will provide everything but the actual

function you will implement the function and test to see it matches my screen display.

A Little History on Drawing Lines
21

21

 This section uses the following web site: http://www.cs.unc.edu/~mcmillan/comp136/Lecture6/Lines.html.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

79

The invention of raster displays where the image is depicted using a grid of pixels (Figure 66) led to the

search of good algorithms for drawing lines and polygons. The work done by researchers investigating

the same issues for digital plotters was used to come up with fairly decent line plotting algorithms for

monitors and printers. Jack Bresenham, an IBM researcher came up with the most popular algorithm used

today. Because of the nature of a raster display we can expect to come up with an approximation to a

line. The quest to find an algorithm to display a line on a raster display should meet the following

criteria:

 Continuous appearance

 Uniform thickness and brightness

 Are the pixels nearest the ideal line turned

on

 How fast is the line generated

A Simple Algorithm – Slope-Intercept Algorithm

The first algorithm we will investigate comes from our notion of ―a line‖ that we learned in algebra. A

line was described b the function:

 y = mx + b

where m is the slope and b is the y-intercept. In our program we will have the two endpoints of a line (x0,

y0) and (x1, and y1). You may recall that given two points of a line that you can compute the slope as:

 x1 – x0

m = ----------------

 y1 – y0

The pseudo-code of the algorithm to plot a line is the following:

Given: Two points (x0, y0) and (x1, y1) and a color. We will first plot (x0,y0) and then compute the next

raster point to plot computing m and b for the line given the initial two points. The main part of the

algorithm adds 1 (or -1 depending if x1 is the left or right of x0) to x0 and determines the corresponding y

value using the formula y = mx+b. This continues until x0 gets to x1.

int dx = x1 – x0;

int dy = y1- y0;

drawPixel(surface, x0, y0, color); // plot the first point

if (dx != 0) {

 float m = (float) dy / (float) dx; // calculate the slope

 float b = y0 – m * x0; // compute the y-intercept

 dx = (x1 > x0) ? 1 : -1;

 while (x0 != x1) {

 x0 += dx; // next x value

 y0 = round(m*x0 + b); // corresponding y value

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

80

 drawPixel(surface, x0, y0, color);

 }

}

Let‘s test it out. I have supplied the program and will leave it to you to implement the function drawLine.

LAB #5: Program 2_5 – Slope-Intercept Algorithm

 Create a new project named Program2_5 using the template Simple SDL Project template.

 Enter the following lines into the main.cpp

Table 12 - PROGRAM2_5

#include <cstdlib>

#include <iostream>

#include <math.h>

#include "SDL\sdl.h"

using namespace std;

 // Function prototypes

void drawPixel(SDL_Surface *surface, int x, int y, SDL_Color color);

void drawLine(SDL_Surface *surface, int x0, int y0, int x1, int y1, SDL_Color

color);

 // screen dimensions

const int SCREEN_WIDTH=640;

const int SCREEN_HEIGHT=480;

 //display surface

SDL_Surface* pDisplaySurface = NULL;

 //event structure

SDL_Event event;

 // colors

SDL_Color COLOR_BLACK = { 0, 0, 0 };

SDL_Color COLOR_WHITE = { 255, 255, 255 };

int main(int argc, char *argv[])

{

 //initialize SDL

 if (SDL_Init(SDL_INIT_VIDEO)==-1) {

 cerr << "Could not initialize SDL!" << SDL_GetError() << endl;

 exit(1);

 } else {

 cout << "SDL initialized properly!" << endl;

 }

 //create windowed environment

 pDisplaySurface =

 SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,SDL_ANYFORMAT);

 //error check

 if (pDisplaySurface == NULL) {

 //report error

 cerr << "Could not set up display surface!" << SDL_GetError()

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

81

 << endl;

 exit(1);

 }

 // set caption

 SDL_WM_SetCaption("Draw Line", NULL);

 //repeat forever

 for(;;) {

 //wait for an event

 if(SDL_PollEvent(&event)==0) {

 // Make the background screen white

 SDL_Rect screenRect = {0,0, SCREEN_WIDTH, SCREEN_HEIGHT};

 Uint32 color = SDL_MapRGB(pDisplaySurface->format,

 COLOR_WHITE.r,

 COLOR_WHITE.g, COLOR_WHITE.b);

 SDL_FillRect(pDisplaySurface, &screenRect, color);

 // this will show up as a widely spaced line

 drawLine(pDisplaySurface, 0,0, 100, 100, COLOR_BLACK);

 // vertical line - this will not show up at all

 drawLine(pDisplaySurface, 100,0, 100, 300, COLOR_BLACK);

 // horizontal line -

 drawLine(pDisplaySurface, 100,100, 400, 100, COLOR_BLACK);

 // this looks fine since m = 1

 drawLine(pDisplaySurface, SCREEN_WIDTH-1, SCREEN_HEIGHT-1,

 SCREEN_WIDTH/2,SCREEN_HEIGHT/2, COLOR_BLACK);

 drawLine(pDisplaySurface, 0,0, 30, 400, COLOR_BLACK);

 //update the screen

 SDL_UpdateRect(pDisplaySurface,0,0,0,0);

 } else {

 //event occurred, check for quit

 if(event.type==SDL_QUIT) break;

 }

 }

 SDL_FreeSurface(pDisplaySurface);

 SDL_Quit();

 //normal termination

 cout << "Terminating normally." << endl;

 return EXIT_SUCCESS;

}

void drawPixel (SDL_Surface *surface, int x, int y, SDL_Color color) {

 // map color to screen color

 Uint32 screenColor = SDL_MapRGB(surface->format, color.r, color.g,

 color.b);

 // Calculate location of pixel

 char *pPixelAddress = (char *)surface->pixels

 + x * surface->format->BytesPerPixel

 + y *surface->pitch ;

 // check and the lock the surface

 if (SDL_MUSTLOCK(surface)) {

 int retValue = SDL_LockSurface(surface);

 if (retValue == -1) {

 cerr << "Could not lock surface. "

 << SDL_GetError() << endl;

 exit(1);

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

82

 }

 }

 // copy directly to memory

 memcpy(pPixelAddress, &screenColor, surface->format->BytesPerPixel);

 if (SDL_MUSTLOCK(surface)) {

 SDL_UnlockSurface(surface);

 }

}

void drawLine(SDL_Surface *surface, int x0, int y0, int x1, int y1,

 SDL_Color color) {

 // . . . ADD YOUR CODE HERE . . .

}

 Add your code for the simple line drawing algorithm

 Your screen should look like the one below:

Figure 71 - Draw line algorithm #1

The program prints 5 lines but only one 3 of the lines display accurately – that is satisfying the criteria we

have established for a good line drawing algorithm.. The vertical lines do not show since x0=x1 and dx =

0 which makes computing the slope impossible. The other line that appears more like a dotted line does

not meet of the criteria of appearing continuous. This occurs when the slope > 1.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

83

A Simple Algorithm #2 – Using Symmetry

We will use symmetry to solve the line drawing

problem when m > 1. The assigning of one

coordinate axis the name x and the other y is

arbitrary. If m > 1 in one orientation (e.g. 3/2)

than it is less than 1 if we switched orientations.

(note for our screen drawings we actually used

the second orientation!). We will modify the

algorithm to switch the use of x and y when the

slope > 1.

int dx = x1 – x0;

int dy = y1- y0;

drawPixel(surface, x0, y0, color); // plot the first point

if (abs(dx) > abs(dy) { // handles slope < 1

 float m = (float) dy / (float) dx; // calculate the slope

 float b = y0 – m * x0; // compute the y-intercept

 dx = (x1 > x0) ? 1 : -1;

 while (x0 != x1) {

 x0 += dx; // next x value

 y0 = round(m*x0 + b); // corresponding y value

 drawPixel(surface, x0, y0, color);

 }

} else { // handles slope >= 1

 float m = (float) dx / (float) dy;

 float b = x0 – m * y0;

 dy = (y1 > y0) ? 1 : -1;

 while (y0 != y1) {

 y0 +-=dy;

 x0 = = round(m*y0 + b);

 drawPixel(surface, x0, y0, color);

 }

}

LAB #6: Program 2_6 – Slope-Intercept Algorithm Improvement

 Create a new project named Program2_6 using the template Simple SDL Project template.

 Enter the same program that was used in Program 2_5

 Enhance your previous drawLine function to handle lines with slope >= 1.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

84

You can see that all five lines are now drawn. The line going from (0,0) to (30,400) now looks more

continuous but jagged! There are algorithms online (see Xiaolin Wu‘s Line Algorithm) that make the

line appear ―straighter‖ by doing what is called anti-aliasing.

We really are not done since the algorithm could be greatly improved or what programmers call

optimized by making some simple changes. Optimization will improve the speed in which the line is

drawn. If you want to continue working on the example I invite you to check out the web for ideas

and better algorithms.

Figure 72 - Draw line algorithm #2

See the exercises at the end of this Chapter for ideas on how to draw circles.

SDL_Rect

The next SDL structure to learn is SDL_Rect. This is an essential data structure since any graphics

element you want to draw on the screen has to fit within a rectangular space – yes that goes for game

paddle, image of monsters and even balls!

typedef struct SDL_Rect {

 Sint16 x, y;

 Uint16 w, h;

} SDL_Rect;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

85

The structure contains four members, the upper-left position of the rectangle specified by x and y and the

rectangle width (w) and height (h). Using the information in SDL_Rect you can compute the other edge

points of the rectangle as illustrated:

(x,y) (x+w-1,y)

(x+w-1,y+h-1)(x,y+h-1)

Figure 73 - SDL_Rect

The key figure below illustrates the actual grid positions that would be affected by creating an SDL_Rect

starting at (10,10) with w=5 and h=3 are

(10,10)(11,10)(12,10)(13,10)(14,10)

(10,11)(11,11)(12,11)(13,11)(14,11)

(10,12)(11,12)(12,12)(13,12)(14,12)

Note, how the pixels that are part of the rectangle go from (x,y). . . (x+w-1, y) NOT (x+w)

The way the math works the actual column x+w is not part of our rectangle nor is the row y+h. It is easy

to determine if a Point P (x2, y2) is inside or outside the rectangle.

(x,y) (x+w-1,y)

(x+w-1,y+h-1)(x,y+h-1)

Point (x2,y2) ?

Figure 74 - Determining if a point P(x2, y2) is inside or outside?

To determine if Point(x2, y2) is inside or outside the rectangle one need only use the following formula:

 if (x2 >= x && x2 < (x+w) && y2 >= y && y2 < (y+h)) {

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

86

 // inside the rectangle

} else {

 // outside the rectangle

}

Why do you care about something so simple? Well, we would like to be able to determine when one

rectangular object has collided with another so we have to first understand how to test a simple point. We

will return to this topic later.

If the previous lab exercises I actually used the SDL_Rect structure to make the entire screen white by

using the following lines:

// Make the background screen white

SDL_Rect screenRect = {0,0, SCREEN_WIDTH, SCREEN_HEIGHT};

Uint32 color = SDL_MapRGB(pDisplaySurface->format, COLOR_WHITE.r,

 COLOR_WHITE.g, COLOR_WHITE.b);

SDL_FillRect(pDisplaySurface, &screenRect, color);

The code creates an SDL_Rect variable – screenRect with the dimensions of the screen, then uses the

SDL_MapRGB to obtain the actual screen color for white (using the constant we created

COLOR_WHITE that already specified the r, g, and b values required to obtain the color white). Finally,

the code used a new function SDL_FillRect that takes our display surface pointer, the address of our

rectangular area (variable screenRect) and color to make in our case the entire screen white.

Function Name: SDL_FillRect

Format:

 int SDL_FillRect(SDL_Surface *pDisplaySurface, SDL_Rect * rectArea, Uint32 color);

Description:

This function performs a ―fast fill‖ of the given rectangle with the color specified. If rectArea = NULL

then the entire display area is used (note, the SDL_Surface structure hold the w and h of the surface). The

function returns 0 on success or -1 on error.

From the description above we could have made our screen white using only the following 2 lines of

code:

// Make the background screen white

Uint32 color = SDL_MapRGB(pDisplaySurface->format, COLOR_WHITE.r,

 COLOR_WHITE.g, COLOR_WHITE.b);

SDL_FillRect(pDisplaySurface, NULL, color);

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

87

Figure 75 - Generating Random Rectangles

LAB #7: Program 2_7 – Generating Random Rectangles

 Create a new project named Program2_7 using the template Simple SDL Project template.

 Enter the same program that was used in Program 2_4

 Remove the function drawPixel and its prototype

 Add code (after generating a random screen position) to generate a random width and height

 After the code that generates a random color into an SDL_Color use SDL_MapRGB to create the

actual screenColor.

 Add code to create and SDL_Rect variable named randomRect using the x,y, w and h values that

were randomly generated

 Add code to call SDL_FillRect

 You may want to use SDL_Delay to delay for 300 milliseconds so you can see each rectangle

being drawn as shown in the figure above.

 Compile and run the program. Your screen should look like the one above.

Clipping

Clipping is the process of dividing the surface into two areas – its visible and invisible parts. By default

when we create the display surface using SDL_SetVideoMode we can write to the entire screen – that is,

the entire screen is visible. The SDL_Surface has a component named clip_rect which defines the surface

clipping rectangle. We can change the portion of the screen that gets updated by changing this clipping

rectangle. For example, suppose we wanted to add a screen border to the previous program. We can use

the new function SDL_SetClipRect to define the new rectangular area that will be ―visible‖ or changeable

by our random rectangles programs.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

88

Function Name: SDL_SetClipRect

Format:

 void SDL_SetClipRect(SDL_Surface *pDisplaySurface, SDL_Rect * rectArea);

Description:

This function sets the clipping rectangle for a surface (it is not limited to our display surface). Only those

pixels that fall into the clipping area specified by rectArea will be displayed. If rectArea is set to NULL

the clipping area will be set to the full size of the surface.

Clipping

Rectangle

Figure 76 - Example of creating a clipping rectangle

Anything you draw to the display screen will be restricted to the clipping rectangle, that is, anything

outside of the clipping area will not be drawn.

LAB #8: Program 2_8 – Generating Random Rectangles with a Border

 Create a new project named Program2_8 using the template Simple SDL Project template.

 Enter the same program that was used in Lab #7.

 We will create a 20 pixel border on the top, bottom, left and right on the display by creating a

clipping rectangle similar to the one shown in Figure 76.

 Add code after creating the pDisplaySurface to set the clipping rectangle by creating an

SDL_Rect that starts at (20,20) and has a width of SCREEN_WIDTH-40 and height of

SCREEN_HEIGHT-40. Invoke SDL_SetClipRect.

 Compile and execute you should let the program run a while so that it fills out the screen. You

should get screen display similar the one below.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

89

Figure 77 - Setting a border using a clipping rectangle

SDL_VideoInfo

Information about the video display can be obtained by using the SDL function SDL_GetVideoInfo, the

function returns an SDL_VideoInfo structure.

Function Name: SDL_GetVideoInfo

Format:

 const SDL_VideoInfo* SDL_GetVideoInfo(void);

Description:

This function returns a READ-ONLY pointer to a structure containing information about the video

hardware. If you call it before invoking SDL_SetVideoMode the structure member vfmt will contain the

pixel format of the BEST video mode.

/** Useful for determining the video hardware capabilities */

typedef struct SDL_VideoInfo {

 Uint32 hw_available :1; /**< Flag: Can you create hardware surfaces? */

 Uint32 wm_available :1; /**< Flag: Can you talk to a window manager? */

 Uint32 UnusedBits1 :6;

 Uint32 UnusedBits2 :1;

 Uint32 blit_hw :1; /**< Flag: Accelerated blits HW --> HW */

 Uint32 blit_hw_CC :1; /**< Flag: Accelerated blits with Colorkey */

 Uint32 blit_hw_A :1; /**< Flag: Accelerated blits with Alpha */

 Uint32 blit_sw :1; /**< Flag: Accelerated blits SW --> HW */

 Uint32 blit_sw_CC :1; /**< Flag: Accelerated blits with Colorkey */

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

90

 Uint32 blit_sw_A :1; /**< Flag: Accelerated blits with Alpha */

 Uint32 blit_fill :1; /**< Flag: Accelerated color fill */

 Uint32 UnusedBits3 :16;

 Uint32 video_mem; /**< The total amount of video memory (in K) */

 SDL_PixelFormat *vfmt; /**< Value: The format of the video surface */

 int current_w; /**< Value: The current video mode width */

 int current_h; /**< Value: The current video mode height */

} SDL_VideoInfo;

LAB #9: Program 2_9 – Displaying video information before and after calling SDL_SetVideoMode.

 Create a new project named Program2_9 using the template Simple SDL Project template.

 Add the following two functions and the required prototypes:

 void writeVideoInfo(void) {

 const SDL_VideoInfo *vInfo = SDL_GetVideoInfo();

 if (vInfo->hw_available)

 cout << "hw available, can create hardware surfaces" << endl;

 else

 cout << "hw NOT available, cannot create hardware surfaces"

 << endl;

 if (vInfo->wm_available)

 cout << "wm available, can talk to window manager" << endl;

 else

 cout << "wm NOT available, cannot talk to window manager"

 << endl;

 if (vInfo->blit_hw)

 cout << "blit_bw, supports accelerated blits HW-->HW" << endl;

 else

 cout << "blit_bw, DOES NOT support accelerated blits HW-->HW"

 << endl;

 if (vInfo->blit_hw_CC)

 cout << "blit_bw_CC, supports accelerated blits with Colorkey"

 << endl;

 else

 cout << "blit_bw_CC, DOES NOT support accelerated blits with

Colorkey" << endl;

 if (vInfo->blit_hw_A)

 cout << "blit_bw_A, supports accelerated blits with Alpha" <<

 endl;

 else

 cout << "blit_bw_A, DOES NOT supports accelerated blits with

Alpha" << endl;

 if (vInfo->blit_sw)

 cout << "blit_sw, supports accelerated blits SW-->SW" << endl;

 else

 cout << "blit_sw, DOES NOT support accelerated blits with SW--

>SW" << endl;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

91

 if (vInfo->blit_sw_CC)

 cout << "blit_sw_CC, supports accelerated blits SW-->SW with

Colorkey" << endl;

 else

 cout << "blit_sw_CC, DOES NOT support accelerated blits with SW-

->SW with Colorkey" << endl;

 if (vInfo->blit_sw_A)

 cout << "blit_sw_A, supports accelerated blits SW-->SW with

Alpha" << endl;

 else

 cout << "blit_sw_A, DOES NOT support accelerated blits with SW--

>SW with Alpha" << endl;

 if (vInfo->blit_fill)

 cout << "blit_fill, supports accelerated color fill" << endl;

 else

 cout << "blit_fill, DOES NOT support accelerated color fill" <<

endl;

 cout << "Total number of video memory: " << vInfo->video_mem << endl;

 writePixelFormatInfo (vInfo->vfmt);

 cout << "Video mode width: " << vInfo->current_w << endl;;

 cout << "Video mode height: " << vInfo->current_h << endl;

 }

 void writePixelFormatInfo(SDL_PixelFormat* format) {

 cout << "BitsPerPixel: " << format->BitsPerPixel << endl;

 cout << "BytesPerPixel: " << format->BytesPerPixel << endl;

 }

 Add code in the main function to invoke writeVideoInfo

 Compile and run

 Check the file stdout in the same directory as the executable

Loading Images

SDL provides a function to load bmp images – SDL_LoadBMP.

Function Name: SDL_LoadBMP

Format:

 SDL_Surface *SDL_LoadBMP(const char *file);

Description:

The function opens a file image saved as a windows bmp file (*.bmp). Note: When loading a 24-bit

Windows BMP file, pixel data points are loaded as blue, green, red (not the expected red, green and blue).

The function returns a pointer to an SDL_Surface or NULL if an error occurred.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

92

There are several things to remember when using this function:

 You will need to copy the image to the screen in order to see it

 You must release all surfaces before exiting the program

The second point is easy to do since we already know how to use the SDL_FreeSurface function.

The first point requires that we use do what is referred to as blitting which stands for bit blit or bit-block

(image) transfer. The operation is used to move a bitmap image from a source to a destination. The SDL

function we will use is SDL_BlitSurface.

Function Name: SDL_BlitSurface

Format:

 int SDL_BlitSurface(SDL_Surface *srcSurface, SDL_Rect *srcRect, SDL_Surface

*destSurface,

SDL_Rect *destRect);

Description:

This function performs fast blit from the surface to the destination surface. The w and h is srcRect

determine the size of the copied rectangle, only the position is used in destRect. If the srcRect is NULL,

then the entire srcSurface is copied. If destRect is NULL, then the destination position is (0,0).

If the function is successful it returns 0, otherwise it returns -1.

LAB #10: Program 2_10 – Displaying a ball.

 Create a new project named Program2_10 using the template Simple

SDL Project template.

 Change the window caption to ―Showing a Ball‖

 Add code to load the image smallball1.bmp into an SDL_Surface

variable named pBallImage and test if loading was successful

 Create a Uint32 variable named backgroundColor that will be set to the

color white (255,255,255) using SDL_MapRGB

 Add code within the loop (if SDL_PollEvent(&event) == 0 is true) to

o first make the screen background white using SDL_FillRect

o display the ball using SDL_BlitSurface to the screen

 Add code at the bottom (before SDL_FreeSurface) that frees the pBallImage.

 Compile and run

You should see a screen similar to the one below:

Figure 78 -

smallball1.bmp

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

93

Figure 79 - Displaying the ball - Yuck!

Yuck! We really don‘t want to see the black portion of the ball image. This should be transparent that is

invisible when drawn on the screen. This will require that you specify what the transparency color is on

your image, that is, you must tell SDL what portions of your image should not be drawn to the screen.

When the image gets drawn or blit to the screen the transparency colors will be ignored so that the

background color shows through. The function to use to inform SDL what the transparency color for an

image stored in an SDL_Surface is SDL_SetColorKey.

Function Name: SDL_SetColorKey

Format:

 int SDL_SetColorKey(SDL_Surface *surface, Uint32 flag, Uint32 key);

Description:

This function sets the color key (transparent pixel) and allows you to enable or disable RLE bit

acceleration – that is the flag value can be set to SDL_SRCCOLORKEY and/or SDL_RLEACCEL or

both. The function returns 0 if successful or -1 if an error occurs.

 RLE acceleration ―is a process used to decrease the time required to draw a color keyed image to the

screen.‖

RLE stands for run-length encoding. RLE is a simple form of data compression (e.g. like what you do

when you zip a file). The way is works is that runs of data – a sequence where the same data value

appears (e.g. AAAAAABBBBBAAAAAAA) are stored as a single data value and count (e.g 6A5B7A

will represent the previous string).

Example Usage:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

94

int retValue = SDL_SetColorKey(pImageSurface,

SDL_SRCCOLORKEY | or SDL_RLEACCEL, transparencyColor);

LAB #11: Program 2_11 – Displaying a ball using SetColorKey

 Create a new project named Program2_11 using the template Simple SDL Project template.

 Copy the code from the previous lab (LAB #10)

 Add the following lines after reading in the image:

 // Set the transparent color

 Uint32 transparentColor = SDL_MapRGB(pDisplaySurface->format, 0, 0, 0);

 SDL_SetColorKey(pBallImage, SDL_SRCCOLORKEY, transparentColor);

 Compile and run

The program now looks like this:

Figure 80 - Setting transparent color

Moving a “Ball” around on the screen

In the next program we will move a ball (actually a bmp image). The image will be slightly smaller ball

from the image used in the previous two programs. We plan on evolving this program into a pong game.

We will not worry about the details of using a more object-oriented style just yet. We will discuss a more

ideal style and better way to organize our programs
22

 in the upcoming chapters.

22

 The better style comes from the web site sdltutorials.com

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

95

The program moves a ball around the screen. When the ball hits one of the walls (end of the screen) the

ball will bounce off and change direction.

Figure 81 - The ball moving south-east on the screen

Figure 82 - The ball coming off the wall

Figure 83 - The ball bounces off the wall

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

96

The program will require that we do the following:

 Place the ball at location (0,0) on the screen

 Set the speed in which the ball will travel on the screen

 Detect when the ball hits the wall

o Reverse the direction the ball is moving

You actually have all the tools to create this program. You will need to add two new constants to your

program FRAMES_PER_SECOND and FRAME_RATE. The program will be drawing and erasing the

ball on the screen. We don‘t want the screen to update so fast that we never really see the ball moving

(what fun is that!). We will initially set the value to:

 // refresh rate

const int FRAMES_PER_SECOND = 30;

const int FRAME_RATE = 1000 / FRAMES_PER_SECOND;

The value of 30 will be used to delay the actions of drawing and erasing by having the computer refresh

the screen 30 times per second. If we want to refresh the screen 30 times a second then in milliseconds it

will be required to update the screen every 1000 / 30 or 33.34 milliseconds.

From Wikipedia: Everything you wanted to know about frame rates but were afraid to ask!

s

A common term that is mentioned with respect to games is frame rate. This is the frequency in which the

image on the computer screen is being updated. The frame rate is usually expressed as frames per second

(fps).

Frame rates are considered important in video games.

The frame rate can make the difference between a game

that is playable and one that is not. The first 3D first-

person adventure game for a personal computer, 3D

Monster Maze, had a frame rate of approximately 6 fps,

and was still a success, being playable and addictive. In

modern action-oriented games where players must

visually track animated objects and react quickly, frame

rates of between 30 to 60 fps are considered minimally

acceptable by some, though this can vary significantly

from game to game. Most modern action games,

including popular first person shooters such as Halo 3,

run around 30 frames a second, while others, such as

Call of Duty 4, run at 60 frames a second. The frame

rate within most games, particularly PC games, will depend upon what is currently happening in the

game.

QUESTION: If we are moving the ball every 60 milliseconds on the screen, what is the perceived

frame rate?

A culture of competition has arisen among game enthusiasts with regards to frame rates, with players

striving to obtain the highest fps count possible. Indeed, many benchmarks released by the marketing

http://en.wikipedia.org/wiki/3D_Monster_Maze
http://en.wikipedia.org/wiki/3D_Monster_Maze

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

97

departments of hardware manufacturers and published in hardware reviews focus on the fps measurement.

Modern video cards, often featuring NVIDIA or ATI chipsets, can perform at over 160 fps on graphics

intensive games such as F.E.A.R. One single GeForce 8800 GTX has been reported to play F.E.A.R. at up

to 386 fps (at a low resolution). This does not apply to all games: some games apply a limit on the frame

rate. For example, in the Grand Theft Auto series, Grand Theft Auto III and Grand Theft Auto: Vice City

have a standard 30 fps (Grand Theft Auto: San Andreas runs at 25 fps) and this limit can only be removed

at the cost of graphical and gameplay stability. It is also doubtful whether striving for such high frame

rates are worthwhile. An average 17" monitor can reach 85 Hz, meaning that any performance reached by

the game over 85 fps is discarded. For that reason it is not uncommon to limit the frame rate to the refresh

rate of the monitor in a process called vertical synchronization. However, many players feel that not

synchronizing every frame produces sufficiently better game execution to justify some "tearing" of the

images.

It should also be noted that there is a rather large controversy over what is known as the "feel" of the

game frame rate. It is argued that games with extremely high frame rates "feel" better and smoother than

those that are just getting by. This is especially true in games such as a first-person shooter. There is often

a noticeable choppiness perceived in most computer rendered video, despite it being above the flicker

fusion frequency (as, after all, one's eyes are not synchronized to the monitor).

This choppiness is not a perceived flicker, but a perceived gap between the object in motion and its

afterimage left in the eye from the last frame. A computer samples one point in time, then nothing is

sampled until the next frame is rendered, so a visible gap can be seen between the moving object and its

afterimage in the eye. Many driving games have this problem, like NASCAR 2005: Chase for the Cup for

Xbox, and Gran Turismo 4. The polygon count in a frame may be too much to keep the game running

smoothly for a second. The processing power needs to go to the polygon count and usually takes away the

power from the framerate.

The reason computer rendered video

has a noticeable afterimage separation

problem and camera captured video

does not is that a camera shutter

interrupts the light two or three times

for every film frame, thus exposing the

film to 2 or 3 samples at different

points in time. The light can also enter

for the entire time the shutter is open,

thus exposing the film to a continuous

sample over this time. These multiple

samples are naturally interpolated

together on the same frame. This leads

to a small amount of motion blur

between one frame and the next which

allows them to smoothly transition.

An example of afterimage separation

can be seen when taking a quick 180 degree turn in a game in only 1 second. A still object in the game

would render 60 times evenly on that 180 degree arc (at 60 Hz frame rate), and visibly this would separate

the object and its afterimage by 3 degrees. A small object and its afterimage 3 degrees apart are quite

noticeably separated on screen.

The solution to this problem would be to interpolate the extra frames together in the back-buffer (field

multisampling), or simulate the motion blur seen by the human eye in the rendering engine. When vertical

sync is enabled, video cards only output a maximum frame rate equal to the refresh rate of the monitor.

All extra frames are dropped. When vertical sync is disabled, the video card is free to render frames as

fast as it can, but the display of those rendered frames is still limited to the refresh rate of the monitor. For

example, a card may render a game at 100 FPS on a monitor running 75 Hz refresh, but no more than 75

http://en.wikipedia.org/wiki/NVIDIA
http://en.wikipedia.org/wiki/ATI_Technologies
http://en.wikipedia.org/wiki/F.E.A.R._%28computer_game%29
http://en.wikipedia.org/wiki/F.E.A.R._%28computer_game%29
http://en.wikipedia.org/wiki/Grand_Theft_Auto_%28series%29
http://en.wikipedia.org/wiki/Grand_Theft_Auto_III
http://en.wikipedia.org/wiki/Grand_Theft_Auto:_Vice_City
http://en.wikipedia.org/wiki/Grand_Theft_Auto:_San_Andreas
http://en.wikipedia.org/wiki/Vertical_synchronization
http://en.wikipedia.org/wiki/Page_tearing
http://en.wikipedia.org/wiki/First-person_shooter
http://en.wikipedia.org/wiki/Afterimage
http://en.wikipedia.org/wiki/NASCAR_2005:_Chase_for_the_Cup
http://en.wikipedia.org/wiki/Gran_Turismo_4
http://en.wikipedia.org/wiki/Motion_blur
http://en.wikipedia.org/w/index.php?title=Multisampling&action=edit
http://en.wikipedia.org/wiki/Human_eye
http://upload.wikimedia.org/wikipedia/en/a/af/Example_of_Page_Te

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

98

FPS can actually be displayed on screen.

Certain elements of a game may be more GPU-intensive than others. While a game may achieve a fairly

consistent 60 fps, the frame rate may drop below that during intensive scenes. By achieving frame rates in

excess of what is displayable, it makes it less likely that frame rates will drop below what is displayable

during stressful scenes.

The ball needs to be adjusted or moved. The two variables the program uses to perform this is deltaX and

deltaY. The two variables indicate how fast the ball is moving in the x and y direction. The larger the

values the faster the ball is moving in the x or y direction.

12,4

15,2

3 units in x direction

-2 units in y

direction

Figure 84 - moving the ball on the screen

In the figure depicted above the ball is at position 12,4
23

 on the screen. The deltaX value is +3. That is the

x position will be adjusted by adding +3 units to the current x position of the ball. This translates to the

ball moving towards the left. The deltaY value is -2 which means it is moving up the screen that is the y

position of the ball will decrease. This is how we would see the ball moves up and to the right on the

screen. The problem is we have to check and adjust for when the ball hits the edge of the screen, that is,

the x position value is below 0 or greater than SCREEN_WIDTH or the y position value is below 0 or

greater than SCREEN_HEIGHT. In order to prevent this we will need to move the ball and make

adjustments if the ball has fallen off the screen. The adjustment we will make will be to position the ball

back to the screen and reverse the deltaX and deltaY value (whichever one needs adjusting) so the ball

starts moving back on the screen.

So for example let‘s suppose the ball is at (18, 0) and the deltaX is +3 and deltaY is -2. The program will

compute the next position of ball should be (21, -2). But, (21,-2) is off the screen due to the negative y

coordinate value. The code will readjust the position to (21, 0) and change the deltaY value to +2. So on

the next screen update for the ball the new position will be (24, 2), that is, the ball at first move up,

moves off the top and get readjusted back to the screen and the deltaY changed so the ball starts moving

down again. It will look to the user as if the ball bounces off the top.

We will use the SDL_Rect struct to hold the position of the ball.

The code to change and adjust the ball position follows:

23

 This (X,Y) value is the coordinate for the top-left position defining the rectangle the ball image occupies.

http://en.wikipedia.org/wiki/Graphics_processing_unit

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

99

 // move the ball

 newBallLocation = ballLocation; // copy current ball loc

 newBallLocation.x += deltaX; // move x

 newBallLocation.y += deltaY; // then y

 if (newBallLocation.x < 0) {

 // we are off to the left – adjust the ball (x)

 newBallLocation.x = 0;

 deltaX = -deltaX;

 }

 if (newBallLocation.x > SCREEN_WIDTH - pBallImage->w) {

 // are we off to the right – adjust the ball (x)

 newBallLocation.x = SCREEN_WIDTH - pBallImage->w;

 deltaX = -deltaX;

 }

 if (newBallLocation.y < 0) {

 // are we off the top – adjust the ball (y)

 newBallLocation.y = 0;

 deltaY = -deltaY;

 }

 if (newBallLocation.y > SCREEN_HEIGHT - pBallImage->h) {

 // are we off the bottom – adjust the ball(y)

 newBallLocation.y = SCREEN_HEIGHT-pBallImage->h;

 deltaY = -deltaY;

 }

 ballLocation = newBallLocation;

 }

We save the current location of the ball in an SDL_Rect, ballLocation, where the x and y members of this

struct hold the top left location of where the ball is drawn on the screen. The newBallLocation is also an

SDL_Rect and every time we have waited REFRESH_RATE time we do the following in the above code:

 Copy the ballLocation into newBallLocation

 Adjust the x and y with deltaX and deltaY, respectively

 Check if the ball has bounced off the wall and adjust

 Copy newBallLocation into ballLocation

Compare the above list with the code above the third dot point actually accounts for most of the code to

determine if the ball has moved off the left, right, top or bottom and adjust.

 if (newBallLocation.x < 0) {

 // we off to the left – adjust the ball (x)

 newBallLocation.x = 0;

 deltaX = -deltaX;

 }

The above checks if the newBallLocation.x position is off to the left (less than 0) if so then we have to get

that ball back on the screen by resetting the x location to 0 and reversing the deltaX.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

100

The check for going off the right is a bit more involved.

if (newBallLocation.x > SCREEN_WIDTH - pBallImage->w) {

 // are we off to the – adjust the ball (x)

 newBallLocation.x = SCREEN_WIDTH - pBallImage->w;

 deltaX = -deltaX;

 }

We always want to see the ball on the screen so we are not going to wait for it to partially go off to the

right. We check if the newBallLocation.x leaves enough room for the ball‘s current width to display

entirely on the screen, if not, we adjust the x location and reverse deltaX. The code for checking the top

and bottom are similar in spirit.

LAB #12: Program 2_12 – Bouncing a ball around the screen

 Create a new project named Program2_12 using the template Simple SDL Project template.

 Obtain the new ball image smallball1.bmp

 Copy the code from the previous lab (LAB #11)

 After the screen dimension consts at the top of the program add two new const int named

FRAMES_PER_SECOND and FRAME_RATE. Initialize as discussed in the last section.

 Change the caption for the program to ―Showing a Ball Move‖

 Change the SDL_LoadBMP argument to get the smallball1.bmp (black ball with a white

background)

 Change the transparent color to black (255, 255, 255)

 After the code that creates the creates and initializes the backgroundColor to white use the

SDL_FillRect function to set the entire display to the background color:

SDL_FillRect(pDisplaySurface, NULL, backgroundColor);

 Create an SDL_Rect variable named ballLocation that will be initialized to {0,0,0,0}

 Create the int variables deltaX and deltaY and initialize to 2

 You now need to record the current time. How?

SDL has a function named SDL_GetTicks() that proves useful for managing the frame rate.

Function Name: SDL_GetTicks()

Format:

 Uint32 SDL_GetTicks(void);

Description:

This function returns the number of milliseconds since the SDL library initialization. It will wrap around

if the program runs for more than 49 days.

We will use this function to get the current time and check in the for loop to determine if the current time

– the old time exceeds the FRAME_RATE (transalation: check if 33.34 milliseconds has elapsed).

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

101

Create a Uint32 variable named timer before the loop that is set to the value returned by SDL_GetTicks();

 Add code in the if section

o Create SDL_Rect for newBallLocation

o Add code to get the current time (Use SDL_GetTicks())

o Add a new if statement that takes the difference between the timer variable and the

current time and checks if it is greater than FRAME_RATE

o The body of this new ifStatement should

 Update the timer variable to the current time

 Perform the ball update code discussed in this section

 After the ifStatement make sure you have the following code to update the screen

o Make the background white

o Draw the ball

o Update the screen

 // first make the background white

 SDL_FillRect(pDisplaySurface, &oldBallLocation, backgroundColor);

 SDL_BlitSurface(pBallImage, NULL, pDisplaySurface, &ballLocation);

//update the screen

 SDL_UpdateRect(pDisplaySurface,0,0,0,0);

 Compile and run

Play around with the program by updating the deltaX and deltaY in combination with the

FRAMES_PER_SECOND.

Double Buffering and Page Flipping

In the next program for this chapter will use an

alternative method for updating the screen –

double buffering. Double buffering is a technique

for drawing graphics that show no flicker or

tearing on the screen. The way it works is not to

update the screen directly but to create an updated

version of the screen in another area (a buffer)

and when you have finished moving the aliens,

killing or removing the debris and moving the

player you then move or copy the updated screen

to the video screen in one step or as quickly as

possible when the video monitor is moving to re-

set to draw a new screen.

Double Buffering

In double buffering we reserve an area in memory (RAM) that we update and then copy or what most

programmers refer to as blit (bit blit or bit block) the entire memory area into video memory.

Figure 85 - Double buffering

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

102

Page Flipping

In page flipping the buffer is in video ram (VRAM) so

copying into video memory is not required all we have

to do is switch the video pointer to point to the updated

screen.

The current screen comes from the video display

showing the contents of the primary surface. While it is

displayed all changes are made to the back buffer. The

back buffer can be in RAM (double-buffering) or

VRAM (page-flipping). When the back buffer is

completely updated either you blit or copy into VRAM

or the video pointer is switched over to the back buffer.

When using double-buffering the memory buffer is

always being updated and moved or copied into VRAM,

when using page flipping the VRAM area being used

for updates switches back and forth.

Images from

http://java.sun.com/docs/books/tutorial/extra/fullscreen/doublebuf.html).

Figure 87 - Imaging illustrating "tearing"

The figure above shows where the top image is being updated but not complete and the user sees the

bottom half of the previous image. Yikes!

In order to avoid tearing as seen above or flickering the update to the screen has to wait for the best time

to update.

Figure 86 - Page Flipping

http://java.sun.com/docs/books/tutorial/extra/fullscreen/doublebuf.html

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

103

Figure 88 - Waiting for vertical re-trace

The way the video monitor gets displayed is by starting at the top-left and refreshing each scanline. As the

beam moves from the one end the beginning of the next line this is called – horizontal retrace. When the

beam reaches the end of the last line the beam has to move back to the top to start the screen refresh over

again. The movement of the beam from bottom-right back to the top-left is called the vertical retrace. The

double buffering is ideal when the screens are switched while the monitor is going through vertical

retrace.

The way we do this in SDL is to use the SDL_DOUBLEBUF as one of the flags when you use

SDL_SetVideoMode as in:

//create windowed environment

pDisplaySurface = SDL_SetVideoMode(SCREEN_WIDTH,SCREEN_HEIGHT,0,

SDL_ANYFORMAT | SDL_DOUBLEBUF);

Another option that you may what to use is SDL_HWSURFACE.

LAB #13: Program 2_13 – Bouncing a ball around the screen with double buffering

 Create a new project named Program2_13 using the template Simple SDL Project template.

 Copy the program from the previous lab.

 Change the SDL_SetVideoMode by adding the flag SDL_DOUBLEBUF

 Replace the SDL_UpdateRect command with SDL_Flip command

Function Name: SDL_Flip()

Format:

 int SDL_Flip(SDL_Surface *displaySurface);

Description:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

104

This function flips the screen using double-buffering if the hardware supports it. The function returns 0 on

success, otherwise it returns -1 on error.

 Compile and run the program.

Displaying Other Types of Images

SDL easily handles bmp images but you often encounter other file formats for images. The popular ones

are:

 PCX – is an older image file

format developed by ZSoft

Corporation for what was

once a leading paint program

named PC Paintbrush in the

1980‘s. PCX stands for

―Personal Computer

eXchange‖. It quickly

became a popular file format

for images when DOS was

king of the operating systems.

You don‘t see too many

images in this format (in fact I

obtained the screen copy of

the PC Paintbrush application in PNG format!). I discuss it since I had

an older game engine I wanted to convert over to windows that

primarily used this format for building side-scrolling games.

 GIF – this is probably the most popular image-saving format. It

is usually used to represent icons, cartoons and simple images for the

web. It was introduced by CompuServe in 1987 and quickly became

popular. ―The format supports up to 8 bits per pixel allowing a single

image to reference a palette of up to 256 distinct colors chosen from the

24-bit RGB color space. The color limitation makes the GIF format

suitable for reproducing color photographs…‖ The format uses a

lossless data compression format called Lempel-Ziv-Welch(LZW) to

reduce the size of the file. This compression format was patented in

1985 and lead to controversy by the patent owner – Unisys over

licensing. Transparent GIFs are used to blend images into the Web page background. The color

set as the ―transparent‖ color shows through on the web page. Another popular GIF format is the

Animated GIF. You see them quite often on web pages where an image is seen to move as in a

flowing banner but most are just annoying.

 PNG – stands for ―Portable Network Graphics‖ format. It is similar to GIF format in that it

contains a bitmap of indexed colors under a lossless compression but does not have the same

copyright limitations. It is very popular as a web graphics format. It does not have the same

Figure 90 - DOS Picture of PC Paintbrush

Figure 89 - When DOS

was KING!

http://upload.wikimedia.org/wikipedia/commons/0/0a/PaintBrush-IV-256Col.png

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

105

capability as GIF to animate graphics but can be used to fade an image from opaque to

transparent …more on

this later.

 JPEG – stands for

―Joint Photographics

Experts Group‖

created by a similarly

named group. It is

primarily used for

photographic images.

It is a ―lossy

compression‖ format –

which means you trade

storage size against

loss of a little

information on the

image. The images are

usually sharp and

detailed.

The SDL_Image library supports the following file formats: BMP, GIF, JPEG, LBM, PCX, PNG, PNM,

TGA, TIFF, XCF, XPM, and XV.

If you haven‘t followed the instructions in Chapter2 in the section headed as ―Installing and Testing

SDL_Image‖ please do so now. Any program using this library will require that you add

#include ―SDL\SDL_image.h‖

You will need the following functions to:

 Initialize the SDL_Image library

 Load an image

 And close and release the library

Function Name: IMG_Init()

Format:

 int IMG_Init(int flags);

Description:

This function loads support for the indicated file format in the flag argument. You can use the following

flag values:

 IMG_INIT_JPG

 IMG_INIT_PNG

Figure 91 - Example jpeg image

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

106

 IMG_INIT_TIF

The function returns a bitmask of all the currently initted image loaders.

Function Name: IMG_Load()

Format:

 SDL_Surface * IMG_Load(const char *file);

Description:

This function loads the file specified in the argument. The function returns a pointer to an SDL_Surface

representing the image obtained or NULL if it failed. When loading images into you SDL program it is

best to do it before entering the game loop where you process events and update the screen since loading

images can take some time. If the image format supports a transparent pixel this function will set the

colorkey for the surface. The way to obtain the transparent color is to examine in the colorkey member of

the SDL_PixelFormat member (format) of the SDL_Surface. For example, after loading an image you

can do the following to set the transparent color:

SDL_SetColorKey(imageSurface, SDL_RLEACCEL, iamgeSurface->format->colorkey);

Function Name: IMG_Quit()

Format:

 void IMG_Quit();

Description:

This function is used to close and clean up all dynamically loaded image libraries.

In order to test the typical set of functions we will be using in the SDL_Image library I went online to the

website http://www.spicypixel.net/2008/01/10/gfxlib-fuzed-a-free-developer-graphic-library/ to obtain

some free game graphics in the library GfxLib-Fuzed.

We are going to create a program to open and display the lev03_siberia image with the file name

area03_mock.jpg.

http://www.spicypixel.net/2008/01/10/gfxlib-fuzed-a-free-developer-graphic-library/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

107

Figure 92 - jpeg image we will display.

LAB #14: Program 2_14 – Displaying a jpeg image

 Create a new project named Program2_14 using the template Simple SDL Project template.

 Add the include to use SDL_Image.h

 Change the window caption to ―Display jpeg image‖

 After the code to set the caption add code to:

o Initialize the SDL_Image library for JPEG using the function IMG_Init

o Load the image file area03_mock.jpg into the SDL_Surface pointer variable

pLevelImage

o Test to make sure the image was read in correctly, otherwise write a message to cerr and

exit the program

o Close the library using the function IMG_Quit()

 We will now need to convert the image into a format that will allow us to display on the screen.

We will need a new SDL function SDL_ConvertSurface.

Function Name: SDL_DisplayFormat

Format:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

108

 SDL_Surface *SDL_DisplayFormat(SDL_Surface *surface);

Description:

This function takes a surface (e.g. one where we saved our jpeg image) and copies it to a new surface

matching the pixel format and colors of the video display surface. If the function fails it returns

NULL. The SDL_Surface returned can be used to display an image directly to the screen.

Add code to use the function SDL_DisplayFormat providing as an argument the pLevelImage

SDL_Surface we got from the IMG_Load and save the new ―display ready‖ SDL_Surface pointer

into a new variable named pLevelImageDisplay:

SDL_Surface *pLevelImageDisplay = SDL_DisplayFormat(pLevelImage);

 Add an if statement to make sure the SDL_DisplayFormat worked, exit the program with an error

message if it failed.

 Add code to free the pLevelImage SDL_Surface

 Add code near the end of the program (before freeing the pDisplaySurface) to free

pLevelImageDisplay.

 Use SDL_BlitSurface to display the SDL_Surface to pDisplaySurface. Use the simple version of

the function where the SDL_Rect arguments are NULL

 Compile and execute your program. You should see the figure above but displayed in your

window.

There is another useful function for converting surface data into different formats – SDL_ConvertSurface.

The SDL_DisplayFormat we used in the previous lab actually calls SDL_ConvertSurface.

Function Name: SDL_ConvertSurface

Format:

 SDL_Surface *SDL_ConvertSurface(SDL_Surface *surface, SDL_PixelFormat *fmt,

Uint32 flags);

Description:

This function creates a new surface of the specified format and then copies and maps the given

surface to it. If the function fails it returns NULL. The flags that can be specified are:

Table 13 - Flags for SDL_ConvertSurface

SDL_SWSURFACE SDL creates the memory in system memory.

SDL_HWSURFACE SDL creates the surface in video memory.

SDL_SRCCOLORKEY Turns on color keying for blits from this surface.

SDL_SRCALPHA Turns on alpha-blending

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

109

Alpha Blending

Alpha blending is a mechanism for combining a translucent foreground color with a background color,

thereby producing a new blended color. The degree in which the foreground color combines ranges from

0 to 1 or in the case of SDL the value ranges from 0..255. An alpha value of 0 will make the foreground

image color translucent (SDL_ALPHA_TRANSPARENT). The value 255 (SDL_ALPHA_OPAQUE)

will make the image opaque – solid.

I will demonstrate how alpha works by creating an example using html.

Figure 93 - text box where alpha=SDL_ALPHA_OPAQUE

Let‘s ignore the fact that many systems have different scales to indicate totally opaque and totally

transparent. I will translate everything to SDL scale where SDL_ALPHA_OPAQUE means that the

element or image is solid and SDL_ALPHA_TRANSPARENT means that the element or image is

invisible. The image above has a white box where the alpha value was set to SDL_ALPHA_OPAQUE.

The next figure demonstrates the same text box but with the ALPHA value set to

SDL_ALPHA_OPAQUE/2 (half the opaque value).

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

110

Figure 94 - text box where alpha=SDL_ALPHA_OPAQUE/2

As you can see the background image comes though that is the text box image becomes more transparent.

Question: What do you think will happen when we set the alpha value to

SDL_ALPHA_TRANSPARENT to 0?

We will need to use the following two new SDL functions to create the same affect in our SDL program:

 SDL_DisplayFormatAlpha – converts a surface taking into consideration the alpha channel

 SDL_SetAlpha – used to change the alpha value of a surface

Function Name: SDL_DisplayFormatAlpha

Format:

 SDL_Surface *SDL_DisplayFormatAlpha(SDL_Surface *surface);

Description:

This function takes a surface and returns a pointer to a new surface with the same pixel format and colors

of the video display surface plus an alpha channel for fast blitting onto the display surface. Internally, it

invokes the SDL function SDL_ConvertSurface. In order to be useful, you should set the colorkey

(transparency color) and alpha value before using the function. If the function fails it will return NULL

rather than a pointer to an SDL_Surface.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

111

Function Name: SDL_SetAlpha

Format:

 Int SDL_SetAlpha(SDL_Surface *surface, Uint32 flags, Uint8 alpha);

Description:

This function is used for setting the per-surface alpha value. It can be used to enable or disable alpha

blending. You provide a pointer to the surface, the flags used to specify to use alpha blending

(SDL_SRCALPHA) and/or RLE acceleration (SDL_RLEACCEL). The function returns 0 on success or

-1 if there is an error.

LAB #15: Program 2_15 – Illustrating alpha blending

 Create a new project named Program2_15 using the template Simple SDL Project template.

 Copy the code from the last lab (#14)

We will be adding another image (I will call monsterImage) to the background level and slowly fade the

monster image. The program will change the alpha value from SDL_ALPHA_OPAQUE to

SDL_ALPHA_TRANSPARENT and back (see the next two figures)

 Add the const int named FRAMES_PER_SECOND and FRAME_RATE after the

SCREEN_WIDTH and SCREEN_HEIGHT section. Set the constant value to 30 and

1000/FRAMES_PER_SECOND for now. This will be used to trigger a change in the alpha value

every 33.34 milliseconds.

 Modify the flag for SDL_SetVideoMode to SDL_ANYFORMAT | SDL_SRCALPHA |

SDL_SRCCOLORKEY.

 Change the caption (if you notice from the figures below that I forgot to do that!)

 Modify the IMG_Init and add IMG_INIT_PNG as an additional flag since our new monster

image is a PNG file.

 Add code after reading in and testing that the area03_mock_jpg was successfully read in to read

in and test the file ―snipe.stand_right.png‖. Use the name pMonsterImage as the name of the

SDL_Surface pointer.

 Add code to set the monster image transparency color

o First create a Uint32 variable and set the transparencyColor to (255,0,255) using

SDL_MapRGB

o Use SDL_SetColorKey to set the transparency color

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

112

Figure 95 - Monster completely opaque

Figure 96 - Monster "ghosting" out

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

113

 After the line that uses SDL_DisplayFormat to convert pLevelImage into an SDL_Surface that

can be used to display the image on the screen add a new variable Uint8 named alphaValue and

initialize to SDL_ALPHA_OPAQUE.

 Invoke the SDL function SDL_SetAlpha for the pMonsterImage and set to the alphaValue.

SDL_SetAlpha(pMonsterImage, SDL_SRCALPHA, alphaValue);

 Use the SDL function SDL_DisplayFormatAlpha to convert the pMonsterImage into a surface

that will be used to display the monster image on the video surface.

SDL_Surface *pMonsterImageDisplay = SDL_DisplayFormatAlpha(pMonsterImage);

 Expand the if statement that checks that pLevelImageDisplay is valid and add a check for

pMonsterImageDisplay.

 After the SDL_BlitSurface code for the pLevelImageDisplay add two lines of code

o The first one creates and new SDL_Rect named monsterPosition and initialize to

{64,128, 0,0}. This will be used to place the monster at location (64,128) on the screen.

o Add a new SDL_BlitSurface that blits the pMonsterImageDisplay to the surface

SDL_BlitSurface(pMonsterImageDisplay, NULL,

pDisplaySurface, &monsterPosition);

 Now before the for loop add a Unint32 timer variable and initialize to the value SDL_GetTicks()

returns

 In the for loop (after // DO OUR THING) get the currentTime (see Lab #12) again using

SDL_GetTicks()

 Add an ifStatement that checks if currentTime – timer has exceeded the FRAME_RATE

o If the ifStatement is true

 Update the timer

 Decrement the alphaValue by 1

 Use SDL_SetAlpha to set pMonsterImage to the new alpha value

 Use SDL_DisplayFormatAlpha again to convert the pMonsterImage to a surface

to be used for display using SDL_DisplayFormatAlpha

 After the ifStatement add code to blit the pLevelImageDisplay to the video display surface

 Add code to blit the pMonsterImageDisplay again using the monsterPosition SDL_Rect to

specify the (x,y) location on the screen

 Add code after the forLoop to free the pMonsterImage and pMonsterImageDisplay surfaces.

 Compile and Run

You should see the monster fade out …reappear and fade out again repeatedly.

This program took a while to figure out. I started out applying SDL_SetAlpha on the

pMonsterImageDisplay but the monster would not fade. I ended up have to keep the pMonsterImage

around and changing its alpha value and re-applying the SDL_DisplayFormatAlpha. There may be an

easier way to get this done. I am open to suggestions.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

114

Other Topics

We will come back to additional video topics later on in this book pertaining to SDL_Palette,

SDL_Overlays and Gamma.

Summary

We covered quite a number of topics in this chapter. You should now be able to understand how the test

programs in Chapter 1 worked (go ahead check them out). We learned how to initialize SDL and the

video display surface. We learned how to use the image library to load and display a graphics image and

how to set the transparency color and alpha value (if required). In addition, we learned how to set up the

game loop to check for events (e.g quit) or update the screen.

You should be familiar with the following SDL functions:

SDL_Init

SDL_GetError

SDL_Quit

SDL_InitSubSystem

SDL_QuitSubsystem

SDL_WasInit

SDL_SetVideoMode

SDL_FreeSurface

SDL_Delay

SDL_MapRGB

SDL_LockSurface

SDL_UnlockSurface

SDL_MUSTLOCK

SDL_FillRect

SDL_UpdateRect

SDL_SetClipRect

SDL_GetVideoInfo

SDL_LoadBMP

SDL_BlitSurface

SDL_SetColorKey

SDL_GetTicks

SDL_Flip

IMG_Init

IMG_Load

IMG_Quit

SDL_DisplayFormat

SDL_ConvertSurface

SDL_DisplayFormatAlpha

SDL_SetAlpha

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

115

And SDL structures:

SDL_Rect

SDL_Color

SDL_Surface

SDL_VideoInfo

SDL_PixelFormat

Review Questions

1. What function is used to initialize SDL?

2. What function is called when we want to close and return all SDL resources?

3. What flag(s) would you use to only initialize the VIDEO and JOYSTICK subsystems?

4. What function do you use if you want to open a subsystem (after already using SDL_Init) to use

the CDROM?

5. What function is useful to determine what subsystem has already been opened?

6. What function returns the last error message from an SDL function call?

7. What is the purpose of the SDL_Surface struct?

8. What function call is used to obtain the display surface?

a. SDL_SetVideoMode

b. SDL_SetAttribute

c. SDL_MapRGB

d. SDL_FillRect

9. SDL_Delay is used to:

a. Put a breakpoint in your program

b. Put the program to sleep for a short period of time

c. Obtain the current time in milliseconds since SDL has been initialized

d. Check the operating for any events

10. A screen display of 800x600 has an x value range from:

a. 0..800

b. 0..799

c. 1..800

d. 1..799

11. A screen display of 360x200 has a y value range from:

a. 0..200

b. 0..199

c. 1..200

d. 1..199

12. What function is used to convert an (r,g,b) value into a pixel color to be used to display on the

screen surface?

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

116

a. SDL_SetVideoMode

b. SDL_SetAttribute

c. SDL_MapRGB

d. SDL_FillRect

13. The SDL_LockSurface function is used to

a. Keep all other applications from using our graphic images

b. Keep all other applications from using the shared resource – display surface

c. Keep all other applications from running

d. Lock all resources to prevent simultaneous usage

14. The SDL_SetClip function

a. Specifies the portion of the screen that will not get updated

b. Specifies the images that collide

c. Specifies the portion of the screen that will get updated

d. Specifies the rectangular area that gets overwritten

15. After reading in an image file what function should be used to display to the video display?

a. SDL_BlitSurface

b. SDL_FillRect

c. SDL_SetColorKey

d. SDL_SetAlpha

16. The function to use to specify the transparency color is?

a. SDL_BlitSurface

b. SDL_FillRect

c. SDL_SetColorKey

d. SDL_SetAlpha

17. The game framerate is

a. The number of times the images move on the screen

b. The number of times the game loop executes per second

c. The number of times the user clicks a keyboard button per second

d. The number of times the screen display is updated per second

18. A good function to use to calculate the frame rate is

a. SDL_Delay

b. SDL_GetTicks

c. SDL_AddTimer

d. SDL_SetTimer

19. A good technique to use to avoid screen tearing and flickering is:

a. Blitting

b. Double buffering

c. Page Flipping

d. B and C

20. What is the best thing about using SDL?

Programming Exercises

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

117

1. Create a function called setBackgroundColor with the following signature:

void setBackgroundColor(SDL_Surface *pDisplaySurface, SDL_Color color)

This function will set the entire screen to the specified color. Try calling it several times with different

colors (use SDL_Delay) to give some time between screen updates). I recommend using the technique

used for setting the frame rate but set the frame rate to some a low value (e.g. 5) in order to see each

color.

Circle-Drawing Algorithms
24

Beginning with the equation of a circle:

We could solve for y in terms of x:

And use this equation to compute the pixels of the circle. When finished we‘d end up with code that

looked something like the following:

public void circleSimple(int xCenter, int yCenter, int radius, Color c)

{

 int pix = c.getRGB();

 int x, y, r2;

 r2 = radius * radius;

 for (x = -radius; x <= radius; x++) {

 y = (int) (Math.sqrt(r2 - x*x) + 0.5);

 raster.setPixel(pix, xCenter + x, yCenter + y);

 raster.setPixel(pix, xCenter + x, yCenter - y);

 }

 }

The above is written in Java, let‘s create a version in SDL (call the project DrawCircle1) by creating a

function with the signature:

24

 http://groups.csail.mit.edu/graphics/classes/6.837/F98/Lecture6/circle.html

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

118

void drawCircle(SDL_Surface *surface, int xCenter, int yCenter, in radius, SDL_Color color);

Note: Use the drawPixel function created earlier in this chapter.

Set

int x = SCREEN_WIDTH / 2;

 int y = SCREEN_HEIGHT / 2;

 int radius = 100;

and test that it creates a circle similar to the one shown below.

Figure 97 - Drawing a circle

The above program demonstrates the algorithm outlined in circleSimple().

As you can see the circle looks fine in areas where only one pixel is required for each column, but in areas

of the circle where the local slope is greater then one the circle appears discontinuous (where have we

seen this before?)

We could take the approach of computing the derivative (i.e. the local slope) of the function at each point

and then make a decision whether to step in the x direction or the y direction. But, we will explore a

different tact here.

A circle exhibits a great deal of symmetry. We've already exploited this somewhat by plotting two pixels

for each function evaluation; one for each possible sign of the square-root function. This symmetry was

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

119

about the x-axis. The reason that a square-root function brings out this symmetry results from our

predilection that the x-axis should be used as an independent variable in function evaluations while the y-

axis is dependent. Thus, since a function can yield only one value for member of the domain, we are

forced to make a choice between positive and negative square-roots. The net result is that our simple

circle-drawing algorithm exploits 2-way symmetry about the x-axis.

Obviously, a circle has a great deal more symmetry. Just as every point above an x-axis drawn through a

circle's center has a symmetric point an equal distance from, but on the other side of the x-axis, each point

also has a symmetric point on the opposite side of a y-axis drawn through the circle's center.

Figure 98 - The 4-way symmetry in a circle

We can quickly modify our previous algorithm to take advantage of this fact as shown below.

 public void circleSym4(int xCenter, int yCenter, int radius, Color c)

 {

 int pix = c.getRGB();

 int x, y, r2;

 r2 = radius * radius;

 raster.setPixel(pix, xCenter, yCenter + radius);

 raster.setPixel(pix, xCenter, yCenter - radius);

 for (x = 1; x <= radius; x++) {

 y = (int) (Math.sqrt(r2 - x*x) + 0.5);

 raster.setPixel(pix, xCenter + x, yCenter + y);

 raster.setPixel(pix, xCenter + x, yCenter - y);

 raster.setPixel(pix, xCenter - x, yCenter + y);

 raster.setPixel(pix, xCenter - x, yCenter - y);

 }

 }

Create a new project (DrawCircle2) using the algorithm above.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

120

Figure 99 - DrawCircle2

This algorithm has all the problems of our previous algorithm, but, it gives the same result with half as

many function evaluations. So much for "making it work first" before optimizing. But, we're on a roll so

let's push this symmetry thing as far as it will take us.

Notice also that a circle exhibits symmetry about the pair of lines with slopes of one and minus one, as

shown below.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

121

Figure 100 - 8-way symmetry

We can find any point's symmetric complement about these lines by permuting the indices. For example

the point (x,y) has a complementary point (y,x) about the linex=y. And the total set of complements for

the point (x,y) are

{(x,-y), (-x,y), (-x,-y), (y,x), (y,-x), (-y,x),(-y,-x)}

The following routine takes advantage of this 8-way symmetry.

 public void circleSym8(int xCenter, int yCenter, int radius, Color c)

 {

 int pix = c.getRGB();

 int x, y, r2;

 r2 = radius * radius;

 raster.setPixel(pix, xCenter, yCenter + radius);

 raster.setPixel(pix, xCenter, yCenter - radius);

 raster.setPixel(pix, xCenter + radius, yCenter);

 raster.setPixel(pix, xCenter - radius, yCenter);

 y = radius;

 x = 1;

 y = (int) (Math.sqrt(r2 - 1) + 0.5);

 while (x < y) {

 raster.setPixel(pix, xCenter + x, yCenter + y);

 raster.setPixel(pix, xCenter + x, yCenter - y);

 raster.setPixel(pix, xCenter - x, yCenter + y);

 raster.setPixel(pix, xCenter - x, yCenter - y);

 raster.setPixel(pix, xCenter + y, yCenter + x);

 raster.setPixel(pix, xCenter + y, yCenter - x);

 raster.setPixel(pix, xCenter - y, yCenter + x);

 raster.setPixel(pix, xCenter - y, yCenter - x);

 x += 1;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

122

 y = (int) (Math.sqrt(r2 - x*x) + 0.5);

 }

 if (x == y) {

 raster.setPixel(pix, xCenter + x, yCenter + y);

 raster.setPixel(pix, xCenter + x, yCenter - y);

 raster.setPixel(pix, xCenter - x, yCenter + y);

 raster.setPixel(pix, xCenter - x, yCenter - y);

 }

 }

So now we get 8 points for every function evaluation, and this routine should be approximately 4-times

faster than our initial circle-drawing algorithm. What‘s going on with the four pixels that are set outside

the loop (both at the top and bottom)? Didn‘t I say that every point determines 7 others?

Create a C++ SDL based project named DrawCircle3 using the algorithm above.

Figure 101 - Using 8-way symmetry to draw a circle

Wait a Minute!

What has happened here?

It seems suddenly that our circle's appear continuous, and we added no special code to test for the slope.

Symmetry has come to our rescue (actually, symmetry is also what saved us on lines... think about it).

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

123

For more information on how to make the computation faster please see the original paper

(http://groups.csail.mit.edu/graphics/classes/6.837/F98/Lecture6/circle.html) this section was copied

from.

Chapter 3 - Sprites, A Simple View

http://groups.csail.mit.edu/graphics/classes/6.837/F98/Lecture6/circle.html

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

124

Chapter 4 - Processing Events
The key part of our program has been the forLoop which acted as our game loop

 for(;;) {

 //wait for an event

 if(SDL_PollEvent(&event)==0) {

 // no event occurred so move things around

 // on the screen

 // . . .

 // now update the screen

 SDL_Flip(pDisplaySurface);

 } else {

 //event occurred, check for quit

 if(event.type==SDL_QUIT) break;

 }

 }

The forLoop contains an ifStatement that basically translates to:

 If no event occurred then

 Update the screen (move monsters, fire missiles at hero, etc)

 Else

 Check if the event was a user request to ‗QUIT‘ application, if so, break out of the loop

 End if

Alternative Game Loop

Another method used by many developers for the game loop above is to use the following:

 while (SDL_PollEvent(&event))

 {

 // check for messages

 switch (event.type)

 {

 // exit if the window is closed

 case SDL_QUIT:

 done = true;

 break;

 // check for keypresses

 case SDL_KEYDOWN:

 {

 // exit if ESCAPE is pressed

 if (event.key.keysym.sym == SDLK_ESCAPE)

 done = true;

 break;

 }

 } // end switch

 } // end of message processing

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

125

 // DRAWING STARTS HERE

 // clear screen

 SDL_FillRect(screen, 0, SDL_MapRGB(screen->format, 0, 0, 0));

 // draw bitmap

 SDL_BlitSurface(bmp, 0, screen, &dstrect);

 // DRAWING ENDS HERE

 // finally, update the screen :)

 SDL_Flip(screen);

 } // end main loop

The above translates into:

while there exists an event

 process the event

end while

update the screen

The are both basically the same!

The SDL function used to determine if there exists an event to process is the SDL_PollEvent.

Function Name: SDL_PollEvent

Format:

 int SDL_PollEvent(SDL_Event *event);

Description:

This function checks of there are any currently pending events (keypress, mouse click, etc). It returns 1

(regarded as TRUE) if there are any pending events, otherwise 0. The event data structure is populated

with the event details. The game loop we contruct always processes any pending events first before

updating the screen.

Note: When the screen needs to be updated we have used the SDL_UpdateRect and more recently

SDL_Flip to perform a page flip. Page flipping or double buffeing allows you to prepare the next game

frame and swap it out entirely so the game appears smooth and continuous to the player.

The operating system sends to your application any actions taken by the user directed to the screen or

window representing your game program. The possible actions a user can take can range from pressing

the ESCAPE key, firing a button on the joystick, closing the window (in order to start doing homework),

or move the mouse. Each action is packaged as an event and is available for the program to process.

What is an event? In SDL an event is packaged into a complex struct named SDL_Event. There are many

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

126

types of event packaged and sent to your program from the SDL system. These events fall into the

following categories:

 Keyboard Events

 Joystick Events

 System Events

 Mouse Events

When you initialize SDL using SDL_Init SDL establishes an event queue. When the user performs an

action that generates one of the above events it will get placed in the event queue as an SDL_Event struct.

The struct consists of two components Uint8 type indicating the type of event and one of the following

event types:

 Keyboard Events

o SDL_KeyboardEvent captures one of the following two events

 SDL_KEYDOWN

 SDL_KEYUP

 Joystick Events

o SDL_JoyAxisEvent

o SDL_JoyBallEvent

o SDL_JoyHatEvent

o SDL_ButtonEvent

 System Events

o SDL_ActiveEvent

o SDL_ResizeEvent

o SDL_ExposeEvent

o SDL_QuitEvent

o SDL_UserEvent

o SDL_SywWMEent

 Mouse Events

o SDL_MouseMotionEvent

o SDL_MouseButtonEvent

Keyboard Events

There are two types of keyboard events issued when the user interacts with the keyboard – key pressed

and key released. The event is captured in the SDL_Event struct as an SDL_KeyboardEvent. The

definition of this struct is the following:

typedef struct {

 Uint8 type;

 Uint8 state;

 SDL_keysym keysym;

} SDL_KeyboardEvent;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

127

The type value will be either be SDL_KEYDOWN or SDL_KEYUP. The state field pretty much

reflects the same information as type it will be either SDL_PRESSED or SDL_RELEASED. The

SDL_keysym contains all the details on which key(s) were pressed (or released). The SDL_keysym is

another struct with the following format:

typedef struct {

Uint8 scancode;

SDLKey sym;

SDLMod mod;

Uint16 unicode;

} SDL_keysym;

The scancode hold a hardware specific scancode and will never be used in any of our games. The sym

field holds an SDL virtual keysym. We will be primarily using this field since it will contain an SDLKey

value.

The SDLKey values are one of the following:

Table 14 - SDL Keysym definitions

SDL_Key ASCII value Common name

SDLK_BACKSPACE '\b' backspace

SDLK_TAB '\t' tab

SDLK_CLEAR clear

SDLK_RETURN '\r' return

SDLK_PAUSE pause

SDLK_ESCAPE '^[' escape

SDLK_SPACE ' ' space

SDLK_EXCLAIM '!' exclaim

SDLK_QUOTEDBL '"' quotedbl

SDLK_HASH '#' hash

SDLK_DOLLAR '$' dollar

SDLK_AMPERSAND '&' ampersand

SDLK_QUOTE ''' quote

SDLK_LEFTPAREN '(' left parenthesis

SDLK_RIGHTPAREN ')' right parenthesis

SDLK_ASTERISK '*' asterisk

SDLK_PLUS '+' plus sign

SDLK_COMMA ',' comma

SDLK_MINUS '-' minus sign

SDLK_PERIOD '.' period

SDLK_SLASH '/' forward slash

SDLK_0 '0' 0

SDLK_1 '1' 1

SDLK_2 '2' 2

SDLK_3 '3' 3

SDLK_4 '4' 4

SDLK_5 '5' 5

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

128

SDL_Key ASCII value Common name

SDLK_6 '6' 6

SDLK_7 '7' 7

SDLK_8 '8' 8

SDLK_9 '9' 9

SDLK_COLON ':' colon

SDLK_SEMICOLON ';' semicolon

SDLK_LESS '<' less-than sign

SDLK_EQUALS '=' equals sign

SDLK_GREATER '>' greater-than sign

SDLK_QUESTION '?' question mark

SDLK_AT '@' at

SDLK_LEFTBRACKET '[' left bracket

SDLK_BACKSLASH '\' backslash

SDLK_RIGHTBRACKET ']' right bracket

SDLK_CARET '^' caret

SDLK_UNDERSCORE '_' underscore

SDLK_BACKQUOTE '`' grave

SDLK_a ‗a‘ a

SDLK_b ‗b‘ b

: : :

SDLK_z ‗z‘ Z

SDLK_DELETE '^?' Delete

SDLK_KP0 keypad 0

SDLK_KP1 keypad 1

: : :

SDLK_KP9 keypad 9

SDLK_KP_PERIOD '.' keypad period

SDLK_KP_DIVIDE '/' keypad divide

SDLK_KP_MULTIPLY '*' keypad multiply

SDLK_KP_MINUS '-' keypad minus

SDLK_KP_PLUS '+' keypad plus

SDLK_KP_ENTER '\r' keypad enter

SDLK_KP_EQUALS '=' keypad equals

SDLK_UP up arrow

SDLK_DOWN down arrow

SDLK_RIGHT right arrow

SDLK_LEFT left arrow

SDLK_INSERT insert

SDLK_HOME home

SDLK_END end

SDLK_PAGEUP page up

SDLK_PAGEDOWN page down

SDLK_F1 F1

SDLK_F2 F2

: : :

SDLK_F15 F15

SDLK_NUMLOCK numlock

SDLK_CAPSLOCK capslock

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

129

SDL_Key ASCII value Common name

SDLK_SCROLLOCK scrollock

SDLK_RSHIFT right shift

SDLK_LSHIFT left shift

SDLK_RCTRL right ctrl

SDLK_LCTRL left ctrl

SDLK_RALT right alt

SDLK_LALT left alt

SDLK_RMETA right meta

SDLK_LMETA left meta

SDLK_LSUPER left windows key

SDLK_RSUPER right windows key

SDLK_MODE mode shift

SDLK_HELP Help

SDLK_PRINT print-screen

SDLK_SYSREQ SysRq

SDLK_BREAK break

SDLK_MENU menu

SDLK_POWER power

SDLK_EURO euro

The program would check for keyboard events in the else part in the game loop:

if(SDL_PollEvent(&event)==0) {

 // NO EVENT

} else {

 //event occurred, check for quit

 if(event.type==SDL_QUIT) break;

}

A better design than the above is to have a switch statement that tests the value of event.type. Inside the

switch statement you check for the event types you are interested in having your program handle.

bool endOfGame = false;

if (SDL_PollEvent(&event) == 0) {

 // Handle no event

else {

 // Process event

while (!endOfGame) {

switch(event.type) {

 case SDL_KEYDOWN:

 // Handle key down

 case SDL_KEYUP:

 // Handle key up

 case SDL_QUIT:

 // Handle user quitting program

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

130

 endOfGame = true;

 break;

 default:

 // event not handling

}

}

}

We now have replaced the forLoop with a whileLoop in order to have the SDL_QUIT set the flag

endOfGame when the user has decided to quit. The same variable can be used to terminate the game

when the game is over.

LAB #1: Program 3_1 – Handling Keyboard Events #1

 Create a new project named Program3_1 using the template Simple SDL Project template.

 Change the window caption to ―Handling Keyboard Events #1‖

 Create and initialize a bool variable to named endOfGame to false

 Change the forLoop to a whileLoop

 Add the switch statement as suggested above

 Compile and run

 Now

Table 15 - SDL Modifier Definitions

SDL Modifier Meaning

KMOD_NONE No modifiers applicable

KMOD_NUM Numlock is down

KMOD_CAPS Capslock is down

KMOD_LCTRL Left Control is down

KMOD_RCTRL Right Control is down

KMOD_RSHIFT Right Shift is down

KMOD_LSHIFT Left Shift is down

KMOD_RALT Right Alt is down

KMOD_LALT Left Alt is down

KMOD_CTRL A Control key is down

KMOD_SHIFT A Shift key is down

KMOD_ALT An Alt key is down

Joystick Events

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

131

System Events

Mouse Events

Chapter 5 – How to organize a game

Creating a Game Template

Sample Games

Chapter 6 – Creating Pong

Using SDL_TTF

SDL Audio

In the beginning (80‘s and 90‘s) the only way to make sounds was to use the PC speaker. Here is a little

program you can use to test your speaker (it may not work in on all platforms).

Table 16 - PC Beep

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

 cout << "\a\a\a\a" << endl;

 cout.flush();

 system("PAUSE");

 return EXIT_SUCCESS;

}

The program above beeps four times. Each ‗\a‘ corresponds to the ‗alert‘ character which usually makes

the PC beep.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

132

Having fun with the PC Speaker!

One of my favorite games in the late 80‘s was Maniac Mansion
25

. It

was a graphic adventure game. The most memorable think for me and

makes the point that sound matters was the background music used to

set the mood as you went thought this creepy house with your friends

trying to rescue your girlfriend from the evil mad scientist. It was

amazing how the PC speaker was able to play the theme. Today what

is even more amazing was how programmers were able to actually

make the computer speaker do more than just beep – actual music

without a sound card! Impossible?

The PC speaker is normally

meant to create a square

wave via only 2 levels of

output. But you can actually have it act a DAC (digital to

analog convertor) by timing a short pulse, that is, ―going from

one output level to the other and then back to the first, it is

possible to drive the speaker to various output levels in

between the two defined levels. This allows approximate

playback of PCM
26

 audio. This technique is called pulse-width

modulation (PWM). The audio produced is poor quality but

recognizable.

There is a open-source C++ software for playing songs on the PC speaker named Smacky

(http://smacky.sourceforge.net/).

Games have two types of sounds the first is sounds for events like gun shots, missles blowing or the

heavy breathing of monsters. The sounds are short in duration. The second is the audio you here in the

background often called background music. Audio music is used to set the atmosphere and tone for the

game.

The SDL library SDL_mixer is rather low level and primitive to the other functions we have worked with.

The problem stems from trying to make it cross-platform. The lowest common denominator is more

primitive with respect to audio (as opposed to video). The first couple of function we will introduce will

actually be avoided since it presents problems and issues we don‘t want to really manage when playing

sounds or audio…but it helps to know the basics.

Some Audio Basics

25

 http://en.wikipedia.org/wiki/Maniac_Mansion
26

 PCM stands for pulse-code modulation a method used to digitally represent sampled analog signals. It is the

standard form for digital audio in computers and various Blu-ray, CD and DVD formats.

http://smacky.sourceforge.net/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

133

Sound waves

coming in ...

Analog to Digital

Converter (ADC)

on Sound Card

Sound Card

Device Driver

Operating System

(Windows)

Sound Editing

Program

(Audacity)

Memory
Storage Device

(Hard Drive)

Figure 102 - How you record sounds/audio on your computer

Suppose you wanted to record sounds for your game using your computer. You would first get a sound

editing program such as Audacity to record
27

. When you are recording the sound the software is

instructing the sound card to capture the input using a special hardware device called an ADC. A simple

description for how the ADC works is that it periodically checks the electrical current (or voltage) coming

in from the microphone and records the current (or voltage) level and translates it into a discrete number.

This number is called a sample. How often (in one second) it samples or checks and creates a number is

called the sample rate. That is, the sample rate is the number of times per second the ADC produces a

data sample. For example if the ADC is sampling 11,025 samples per second we represent that as

11025Hz. Hz stands for ―Hertz‖. Typical sampling rates are 44,100Hz which gets shortened to 44.1 kHz.

The notation stands for ―KiloHertz) and it simply gets computed by dividing the Hz value by 1000. The

value 44.1 kHz is special since it represents the sampling rate for a CD audio track.

The typical values used for sampling are 11025Hz, 22050Hz or 44100Hz. The higher the sampling rate of

the sound the greater is the accuracy and quality of the sound. Another factor in the quality and depth of

the sound is the number of bits used to represent a sample. Typical values are 8 bits and 16 bits. An 8-bit

sample can only represent 256 values for the current (or voltage) level of the sound. A 16-bit sample can

distinguish between 65.536 values. This provides the ability to add more richness and depth to the sound

recordning.

27

 I am assuming you have a microphone or some other input device and a sound card.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

134

Digital to Analog

Converter (DAC)

on Sound Card

Sound Card

Device Driver

Operating System

(Windows)

Sound playback

program

(Audacity)

Memory

Storage Device

(Hard Drive)

Speakers

Headphones

Figure 103 - Audio Out

When playing the sound or audio from a file on the hard drive or memory the samples are sent out to

another hardware device that converts a digital value to analog (DAC) and sends it out to the speakers of

headphones, and from there we hear sounds and music.

Using SDL primitive functions

One library that you can use is the SDL_mixer library. The library contains two key structures:

 SDL_AudioSpec – stands for audio specification, it contains information about the sound, such as

format of the buffer, the number of channels, etc.

typedef struct {

 int freq; // contains the audio frequency (samples/sec)

 Uint16 format; // the data format

 Uint8 channels; // number of channels (1 mono, 2 stereo,

// 4 surround, 6 surround with center and lfe

 Uint8 silence; // buffer silence value (calculated), avoid

 // generating noise

 Uint16 samples; // buffer size in samples

 Uint32 size; // buffer size in bytes (calculated)

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

135

 // callback function for filling the audio buffer

 void (*callback) (void *userdata, Uint8 *stream, int len);

 // ptr the user data which is passed to callback

 void *userdata;

} SDL_AudioSpec;

The common values for samples per second are 11025, 22050, and 44100. The higher the sample rate the

higher the quality of sound. The format can be one of the following:

Table 17 - Audio Formats

Constant Meaning

AUDIO_U8 Each channel consists of a stream of Uint8s.

AUDIO_S8 Each channel consists of a stream of Sint8s.

AUDIO_U16LSB Each channel consists of a stream of little endian Uint16s

AUDIO_U16MSB Each channel consists of a stream of big endian Uint16s

AUDIO_U16 This is the same as AUDIO_U16LSB

AUDIO_U16SYS Can be AUDIO_U16LSB or AUDIO_U16MSB depends on

platform

AUDIO_S16LSB Each channel consists of a stream of little endian Sint16s

AUDIO_S16MSB Each channel consists of a stream of big endian Sint16s

AUDIO_16 Same as AUDIO_S16LSB

AUDIO_S16SYS Can be AUDIO_S16LSB or AUDIO_S16MSB depends on

platform

You create a callback function in order to play any audio.

 SDL_AudioCVT – stands for audio convert, holds information to covert sound from one format

to another

typedef struct {

 int needed; // set to 1 if conversion is possible

 Uint16 src_format; // audio format of the source

 Uint16 dest_format; // audio format of the destination

 double rate_incr; // rate conversion increment

 Uint8 *buf; // audio buffer

 int len; // length of the original audio buffer in bytes

 int len_cvt; // length of the converted audio buffer in bytes

 int len_mult; // buf must be len * len_mult butes in size

 double len_ratio; // final audio size is len * len_ratio

 // pointers to function needed for converions

 void (*filters[10]) (struct SDL_AudioCVT *cvt, Uint16 format);

 int filter_index; // index of current conversion function

} SDL_AudioCVT;

If you plan on using the SDL_mixer library to play sounds and audio the first function you use to

initialize the audio subsystem is SDL_OpenAudio.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

136

Function Name: SDL_OpenAudio

Format:

 int SDL_OpenAudio(SDL_AudioSpec *desiredAS, SDL_AudioSpec *obtainedAS);

Description:

You fill in the desired valued in the SDL_AudioSpec data structure desiredAS. The function returns

0 is successful and populated obtainedAS with the values obtained. If it fails the value returned is -1.

Further if obtainedAS is NULL then the audio data will be as specified in the desiredAS.

SDL Joystick

Chapter 7 – Creating MindSweeper

Chapter 8 – Creating Breakout

Chapter 9 – Creating Tetris

Chapter 10 – SDL Threads and Timers

Chapter 11 – Building a multiplayer online game

SDL_NET

SDL_MIXER

Chapter 12 – Building a Platform Game

Why I love Crisis Mountain!

Why I love Mario!!

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

137

Chapter 13 – Other libraries and tools to build games

Chapter 14 – What comes next?

Last Chapter

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

138

Bibliography
LaMothe, Andre. Black Art of 3D Game Programming: Writing Your Own High-Speed 3D Polygon

Video Games in C. Corte Madera, CA: The Waite Group, 1995.

Pazera, Ernest. Focus on SDL. Cincinnati, Ohio: Premier Press, 2003.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

139

Appendix A: Places to visit on the Web

1. http://www.brainycode.com – This is the author‘s website. As this book develops – versions are

placed online for review. I also updated any images or files your may want to use in order to

complete the labs and exercises.

2. http://www.libsdl.org – This is the main Simple Directmedia Layer (SDL) web site. You can

obtain the latest libraries, sample code and wiki information. I highly recommend it.

3. http://www.sdltutorials.com/ - A greate place for tutorials and information on what is going on .

The even have game contests you can try your hand at.

4. http://galaxygameworks.com/index.html - This is a relatively new website created by Sam

Lantinga the original developer of SDL. He has many accomplishments at a relatively young age

– lead engineer for Loki Entertainment, author of SDL, and had a lead software engineering role

on many Blizzard games (World of Warcraft, StarCraft II, etc). My hero!

5. http://sdl.beuc.net/sdl.wiki/FrontPage - This website is the place to go for SDL documentation

and examples. I used to it to obtain details on all SDL functions described in these notes.

6. http://www.gamedev.net/ - A great place for game development discussions and tutorials.

http://www.brainycode.com/
http://www.libsdl.org/
http://www.sdltutorials.com/
http://galaxygameworks.com/index.html
http://sdl.beuc.net/sdl.wiki/FrontPage
http://www.gamedev.net/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

140

Appendix B – Microsoft Visual C++ 2010 Express

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

141

Appendix C – Pong, Breakout and MindSweeper

Pong

The first arcade version of Pong (not the first time it was tried on a CRT screen) was built by Al Acorn

for Atari. The game started the quarters rolling for the company and started the entire game business as

we know it today.

Figure 104 -The game PONG as it appears on a T-shirt

The game was a two player game where the only instructions were ―Avoid missing ball for high score.‖

Breakout

The story behind the original video game Breakout is one that combines

hubris and the big double-cross. Nolan Bushnell, the founder of the game

company Atari, came up with a variation of the game Pong (the video

game that started the entire video game industry) where the player tried to

clear from the top a row of bricks with a ball. You can go online and play

a Flash version of the game at http://smasher.the-game.us/.

Figure 105 – Breakout

http://smasher.the-game.us/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

142

Nolan Bushnell wanted to keep the construction of a Breakout game cabinet circuitry
28

 as cheap as

possible so he challenged all his engineers to a bonus for whomever came up with the best (read cheapest)

design, that is reduce the number of chips required. Steve Jobs (of Apple fame) was an Atari employee
29

at this time. Jobs talked his best friend Steve Wozniak (the inventor of the Apple computer) to try his

hand. Jobs informed his friend Woz that the bonus money for reducing the original Breakout design was

$750 when in fact the bonus was actually $100

for each chip removed. Woz managed a great

feat of engineering and reduced the design by

50 chips! What is more incredible is that he

managed this in four days. Woz only got $375

(half the fictitious bonus) while Jobs pocketed

the rest.

The rest is of course history. The two Steve‘s

went on to start up the company named Apple

and Atari went on the make the worst
30

 game

ever – E.T.

MindSweeper

From: http://en.wikipedia.org/wiki/Minesweeper_(computer_game)

Minesweeper is a single-player computer game. The object of the game is to clear
an abstract minefield without detonating a mine. The game has been rewritten for
nearly every system platform in use today. The most well-known version is
Minesweeper for the Windows platform, which comes bundled with later versions of
the operating system.

28

 This was in time when video games were built using discrete logic circuits and not software (via a

microprocessor).
29

 It was rumored that Jobs was spy for Bushnell since the Engineering team left Bushnell in the dark about what

they were working on.
30

 It is rather difficult to make a game any dreadful…but many companies have come close.

Figure 106 - Steve Jobs and Steve Wozniak

http://en.wikipedia.org/wiki/Minesweeper_(computer_game)
http://en.wikipedia.org/wiki/Personal_computer_game
http://en.wikipedia.org/wiki/Land_mine
http://en.wikipedia.org/wiki/Land_mine
http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/Minesweeper_%28Windows%29

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

143

Figure 107 - Start of game

Figure 108 - Finished game

When the game is started, the player is presented by a grid of blank squares. The

size of the grid is dependent on the skill level chosen by the player, with higher skill

levels having larger grids. If the player clicks on a square without a mine, a digit is

revealed in that square, the digit indicating the number of adjacent squares

(typically, out of the possible 8) which contain mines. By using logic, players can in

many instances use this information to deduce that certain other squares are mine-

free (or mine-filled), and proceed to click on additional squares to clear them or mark

them with flag graphics to indicate the presence of a mine.

The player can place a flag graphic on any square believed to contain a mine by

right-clicking on the square. Right-clicking on a square that is flagged will change the

flag graphic into a question mark to indicate that the square may or may not contain

a mine. Right-clicking on a square marked with a question mark will set the square

back to its original state. Squares marked with a flag cannot be cleared by left-

clicking on them, though question marks can be cleared as easily as normal

squares. The third question mark state is often deemed unnecessary and can be

disabled so that right clicking on a flagged mine will set it back to its original state

http://en.wikipedia.org/wiki/Image:Minesweeper_genric.svg
http://en.wikipedia.org/wiki/Image:Minesweeper_diagram_end.svg

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

144

right away so mines flagged in error can be corrected with one right-click instead of

two.

In some versions of the game, middle-clicking (or clicking the left and right buttons at

the same time) on a number having as many adjacent flags as the value of the

number reveals all the unmarked squares neighboring the number; however, one

forfeits the game should the flags be placed in error. This method is a very useful

tool when trying to beat a high score. Some of those implementations also allow the

player to move the mouse with the right mouse-button held down after marking

mines; the player can then left-click on multiple numbered squares while dragging

with the right mouse-button, in order to clear large areas in a short time. As an

alternative to clicking both buttons at the same time players can also middle-click or

shift-click on fully-flagged numbers.

Some implementations of minesweeper have a built in cheat option where the game

will set up the board in favor of the player by never placing a mine on the first square

clicked; some also change the board so the solution does not require guessing.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

145

Appendix D – Unzipping files

There will be many files you will need to download to your PC. These files are compressed using various

file compression formats. When you download a *.tar or *.zip file you will see that it contains actually

many files in it. I highly recommend that you install a free utility that recognizes many different file

formats. I use one recommended by my son – ―7-zip File Manager‖. You can obtain it at http://www.7-

zip.org/.

You can download an exe version for Windows. It is open source and freely available under the GNI

LGPL license.

After you install it when you right click on a compressed file such as SDL-devel-1.2.14-mingw32.tar.tar

you will see an option to open the file with 7-Zip.

Figure 109 - Opening up a file archive with 7-zip

When you select to open up the compressed archive you will see:

http://www.7-zip.org/
http://www.7-zip.org/

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

146

Figure 110 - Result of opening up archive

In this particular case since we don‘t see the folders or directory for the compressed files double click on

the tar file.

Figure 111 - SDL folder

You can continue to examine the files in the compressed folder by double clicking on the file name again.

But, in our case we will extract directly to the C:\ drive. Click on ―Extract‖.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

147

Figure 112 - Extracting the files to the C drive

You can copy to any location on your hard disk but I prefer to place into C:\ in order to easily locate the

major libraries and tools I am using.

After you are done you should see a new directory under the C:\. Use Windows Explorer to see the

folders that have been added under C:\SDL-1.2.14.

The key folders that you will use in your SDL development are:

 bin – contains the SDL.dll that will be needed in order to execute your SDL based programs

 docs – contains html files containing information on SDL, links to online tutorials, etc

 include/SDL – a set of *.h files that you will need to have your compiler use

 lib – libraries that you will need to move under your mingw based IDE compiler

 test – a set of test programs

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

148

Figure 113 - SDL folders

This is the Simple DirectMedia Layer, a general API that provides low

level access to audio, keyboard, mouse, joystick, 3D hardware via OpenGL,

and 2D framebuffer across multiple platforms.

The current version supports Linux, Windows CE/95/98/ME/XP/Vista, BeOS,

MacOS Classic, Mac OS X, FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX,

and QNX. The code contains support for Dreamcast, Atari, AIX, OSF/Tru64,

RISC OS, SymbianOS, Nintendo DS, and OS/2, but these are not officially

supported.

SDL is written in C, but works with C++ natively, and has bindings to

several other languages, including Ada, C#, Eiffel, Erlang, Euphoria,

Guile, Haskell, Java, Lisp, Lua, ML, Objective C, Pascal, Perl, PHP,

Pike, Pliant, Python, Ruby, and Smalltalk.

This library is distributed under GNU LGPL version 2, which can be

found in the file "COPYING". This license allows you to use SDL

freely in commercial programs as long as you link with the dynamic

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

149

library.

The best way to learn how to use SDL is to check out the header files in

the "include" subdirectory and the programs in the "test" subdirectory.

The header files and test programs are well commented and always up to date.

More documentation is available in HTML format in "docs/index.html", and

a documentation wiki is available online at:

 http://www.libsdl.org/cgi/docwiki.cgi

The test programs in the "test" subdirectory are in the public domain.

Frequently asked questions are answered online:

 http://www.libsdl.org/faq.php

If you need help with the library, or just want to discuss SDL related

issues, you can join the developers mailing list:

 http://www.libsdl.org/mailing-list.php

Enjoy!

 Sam Lantinga (slouken@libsdl.org)
Table 18 - SDL README FILE

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

150

Appendix E – Structs

What are structs?

Structs was how C programmers grouped

different data types. Arrays (see Appendix TBD)

are limited to elements of the same data type. In

fact, the idea of a class evolved from the concept

of a C-struct. A C++ struct can contain all the

features in C++ classes

 access specifiers (public, private,

protected)

 member functions

 constructors

 destructors

But for the most part we will be using them here as structures that contain different data types.

Why use structs?

For example suppose you created a program to demonstrate moving a paddle (as in the game Pong)

around on the screen at first you may create the following variables:

int paddle_x; // indicates the top_left x position on the screen;

int paddle_y; // indicates the top_left y position on the screen;

int paddle_width; // indicates the width of the paddle

int padde_height; // indicates the height of the paddle

int paddle_color; // the color of the paddle

All the variables hold different pieces of information about the same object namely the game paddle.

You may wonder why we don‘t just use:

int x; // indicates the top_left x position on the screen;

int y; // indicates the top_left y position on the screen;

int width; // indicates the width of the paddle

int height; // indicates the height of the paddle

int color; // the color of the paddle

One good reason is because our next program will combine the ball and paddle and the ball too will need

x, y and color and fill_char so we will create similar variables:

int ball_x;

int ball_y;

int ball_color;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

151

The problem with all these variables is that all the ones starting with the word paddle_ and ball_ are all

related to the same objects in our game. We try to remind ourselves of the connection and relationship by

prefixing all the variables with the same name. Suppose we wanted to create and use a function to

initialize the paddle.

void initializePaddle(int& paddle_x, int& paddle_y, int& paddle_width,

 int& paddle_height, int& paddle_color) {

paddle_x = <middle of the screen>;

paddle_y = <bottom of the screen>;

paddle_width = PADDLE_WIDTH;

paddle_height = PADDLE_HEIGHT;

paddle_color = cWHITE;

}

You may wonder if there isn‘t some better way to package all these related variables. There is.

C++ provides a better way to package and organize variables that relate to the same object. C++

introduces a construct called struct.

A struct is another word for record. A struct allows us to group different data types together under one

name. The struct will be used in our programs as a new data type. I conceptualize a struct like a

special box I create with compartments. First we create a template (think cookie cutter) for the struct.

This struct definition is used to create many other copies. Each copy will have its own name.

A visual example to help conceptualize the idea of a struct is to imagine we create a template box as

shown below:

x Y

color

Figure 114 - visual representation of struct definition shapeStruct

The template box represents our struct definition. We may give this a name, for example, shapeStruct.

This struct is composed of three variables x, y and color. We can now create two new actual variables,

paddle and ball based on this shapeStruct we just defined.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

152

x Y

color

x Y

color

ball paddle

Figure 115 - Creating two structs using our template

The new variables ball and paddle each have the same three components or variables contained in them -

x, y and color. We can distinguish it by using the following syntax:

ball.x

ball.y

ball.color

Same thing for paddle:

paddle.x

paddle.y

paddle.color

Note how we first use the name of our struct element (ball, paddle) and then specify the actual element

within the struct by using ‗.‘ And the struct member name (x, y, or color).

We can put things into the struct :

ball.x = 20; // set the x position of the ball

ball.y = 5; // set the y position of the ball

ball.color = cBLUE;

We can extract or use the contents of the record:

setCursorPos(ball.x, ball.y); // set the cursor at the current location

// of the ball

The actual C++ syntax for defining a struct is:

struct <structname> {

 dataType1 memberName1;

 dataType2 memberName2;

 :

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

153

 dataType3 memberNameN;

};

The members of a struct can consist of basic data types

(e.g. int), other structs, or arrays. The struct definition does

not reserve any memory space. You will need to create

struct variables in order to reserve space.

For example we create a new structured data type named

paddleType. We will use this new data type to create a

variable to represent our paddle.

struct paddleType {

 int x; // indicates the top_left x position on the screen;

int y; // indicates the top_left y position on the screen;

int width; // indicates the width of the paddle

int height; // indicates the height of the paddle

int color; // the color of the paddle

};

Now to create a paddle variable requires that we declare it:

paddleType paddle;

The variable paddle is a struct. It contains all the components we see in the definition of paddleType.

So we now use paddle.x, paddle.y, paddle.width, paddle.height, and paddle.color.

The function we created earlier to initialize a paddle now can be created more concisely as:

void initializePaddle(paddleType& paddle) {

paddle.x = <middle of the screen>;

paddle.y = <bottom of the screen>;

paddle.width = PADDLE_WIDTH;

paddle.height = PADDLE_HEIGHT;

paddle.color = cWHITE;

}

Doesn‘t it look more organized? We collected all the attributes of a paddle into one component called a

struct. We don‘t have to send around all the various pieces just the one struct variable named – paddle.

The variable paddle consists or contains all the pieces for us. We pass the paddleType struct to the

function by reference, that is, we send the address of the struct paddle to the function so that its members

can be initialized.

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

154

You can create the variables the same time you create the struct definition by using this format:

struct <structname> {

 dataType1 memberName1;

 dataType2 memberName2;

 :

 dataType3 memberNameN;

} <structVariable1>, <structVariable2, . . . , <structVariableN>;

This is how we could have defined the struct for paddleType and created two player paddles.

struct paddleType {

 int x; // indicates the top_left x position on the screen;

int y; // indicates the top_left y position on the screen;

int width; // indicates the width of the paddle

int height; // indicates the height of the paddle

int color; // the color of the paddle

} paddlePlayer1, paddlePlayer2;

In summary

 We use a struct to help us group related variables

 We first create the struct definition

o this does not allocate any memory

o the struct definition MUST end with a semicolon

o this merely creates a template for us to use

o the components of the struct are called members of the struct

 Example: x, y, width, height, and color are members of the struct paddleType

 We then create struct variable

o to create or declare variables based on the struct we use the format:

 < structname > <variablename>

 Example: paddleType paddle;

 We then treat each struct member as a variable

o to access struct members (the x, y and color, etc) we use the following format:

 <variablename>.<membername>

 Example: paddle.color

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

155

 The struct members can have different data types, this is what makes struct a heterogeneous data

type, that is, you can have a mix of int, char, double, string, etc. whatever makes sense to what

you are building.

Things you can do with structs

 You can initialize a struct when you creat it

PaddleType myPaddle = { 0, 0, 10, 40, cBLUE };

 Assign one struct variable to another

// create two paddleType struct variables

paddleType player1, player2;

initializePaddle(player1); // Initialize player 1 paddle

player2 = player1; // Assign player2 the values in player1

The example above creates two struct paddleTypes for player1 and player2. The initializePaddle

will initialize the members of player1. The assignment statement will copy all the member values

in player1 to player1. If the initialization put the value cWHITE into player1.color then after the

assignment player2.color will have the same value. Neat!

 You can create a struct that has another struct within it.

Suppose we have a struct named COORD that holds the x and y coordinate of any object that we

display on the screen.

struct COORD {

 int x;

 int y;

};

We may want to re-use the struct COORD that is already defined in your own new struct that

represents the paddle:

struct paddleType2 {

COORD screenLocation; // the screen location of the paddle

int width; // indicates the width of the paddle

int height; // indicates the height of the paddle

int color; // the color of the paddle

};

This new definition for a paddle will require that access to the x and y values that represent the

top-left position of the paddle on the screen will need to change.

paddleType2 playerPaddle; // create a variable for the player

playerPaddle.screenLocation.X = 0; // set x location

playerPaddle.screenLocation.Y = 10; // set y location

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

156

Note the difference between how x and y values are accessed, you need to use the struct variable

name (playerPaddle), the variable name that is a struct itself (screenLocation) and then the actual

variable name (X) within that struct.

Things you can’t do with structs
 You can‘t compare one struct variable with another. So if you had the following declaration:

paddleType player1, player2;

:

:

// can’t do this

if (player1 == player2) {

}

You would need to compare the members of player1 and player2 member by member:

if (player1.x == player2.x &&

 player1.y == player2.y) {

}

 You can‘t read or write into a struct variable as one entity

paddleType player1;

cin >> player1; // not allowed

cout << player1; // not allowed

Again, you will need to input/out into the members of a struct.

cin >> player1.x >> player1.y;

cout << “Player 1 paddle.x = “ << player1.x << endl;

cout << “Player 1 paddle.y = “ << player1.y << endl;

Using typedef with structs

A typedef allows us to associate another name or an alias with a struct. The alias is usually shorter and

easier to use than the original name. The format is:

typedef [attributes] <datatype> <aliasName>;

One will typically simple uses of typedef such as:

typedef int km_per_hour;

typedef unsigned char Uint8;

its use in your program:

km_per_hour current_speed;

km_per_hour new_speed;

Figure 116 - Is there any difference?

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

157

In C you would have to use the actual keyword struct when declaring a struct variable, for example:

struct paddleType myPaddle;

to avoid that C programmers are in the habit of providing an alias for the entire struct so they can declare

variables without having the specify the term struct.

A typical use of this style is the declaration of SDL_Color struct in the sdl_video.h:

typedef struct SDL_Color {

 Uint8 r;

 Uint8 g;

 Uint8 b;

 Uint8 unused;

} SDL_Color;

The above creates the alias SDL_color for the struct SDL_color structure. So in C or C++ or you would

need to do to declare a variable of SDL_color is the follow declaration:

SDL_color myColor;

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

158

Appendix F – Pointers

When a programmer declares a variable:

int aNumber;

we don‘t think too much about the fact that when we use the name aNumber that we are actually

referencing the memory address where our (let‘s say) 32-bit int is being stored:

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

159

SDLKey

SDL_ActiveEvent

SDL_AddTimer

SDL_AudioCVT

SDL_AudioSpec

SDL_BlitSurface Chapter 2

SDL_BuildAudioCVT

SDL_CD

SDL_CDClose

SDL_CDEject

SDL_CDName

SDL_CDNumDrives

SDL_CDOpen

SDL_CDPause

SDL_CDPlay

SDL_CDPlayTracks

SDL_CDResume

SDL_CDStatus

SDL_CDStop

SDL_CDtrack

SDL_CloseAudio

SDL_Color Chapter 2

SDL_CondBroadcast

SDL_CondSignal

SDL_CondWait

SDL_CondWaitTimeout

SDL_ConvertAudio

SDL_ConvertSurface Chapter 2

SDL_CreateCond

SDL_CreateCursor

SDL_CreateMutex

SDL_CreateRGBSurface

SDL_CreateRGBSurfaceFrom

SDL_CreateSemaphore

SDL_CreateThread

SDL_CreateYUVOverlay

SDL_Delay Chapter 2

SDL_DestroyCond

SDL_DestroyMutex

SDL_DestroySemaphore

SDL_DisplayFormat Chapter 2

SDL_DisplayFormatAlpha Chapter 2

SDL_DisplayYUVOverlay

SDL_EnableKeyRepeat

SDL_EnableUNICODE

SDL_Event

SDL_EventState

SDL_FillRect Chapter 2

http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDLKey&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ActiveEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_AddTimer&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_AudioCVT&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_AudioSpec&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_BlitSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_BuildAudioCVT&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CD&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDClose&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDEject&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDName&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDNumDrives&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDOpen&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDPause&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDPlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDPlayTracks&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDResume&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDStatus&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDStop&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CDtrack&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CloseAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Color&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CondBroadcast&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CondSignal&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CondWait&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CondWaitTimeout&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ConvertAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ConvertSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateCond&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateCursor&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateMutex&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateRGBSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateRGBSurfaceFrom&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateSemaphore&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateThread&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_CreateYUVOverlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Delay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_DestroyCond&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_DestroyMutex&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_DestroySemaphore&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_DisplayFormat&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_DisplayFormatAlpha&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_DisplayYUVOverlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_EnableKeyRepeat&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_EnableUNICODE&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Event&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_EventState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_FillRect&funcgroup=SDL&action=Search

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

160

SDL_Flip Chapter 2

SDL_FreeCursor

SDL_FreeSurface Chapter 2

SDL_FreeWAV

SDL_FreeYUVOverlay

SDL_GL_GetAttribute

SDL_GL_GetProcAddress

SDL_GL_LoadLibrary

SDL_GL_SetAttribute

SDL_GL_SwapBuffers

SDL_GLattr

SDL_GetAppState

SDL_GetAudioStatus

SDL_GetClipRect

SDL_GetCursor

SDL_GetEventFilter

SDL_GetGamma

SDL_GetGammaRamp

SDL_GetKeyName

SDL_GetKeyState

SDL_GetModState

SDL_GetMouseState

SDL_GetRGB

SDL_GetRGBA

SDL_GetRelativeMouseState

SDL_GetThreadID

SDL_GetTicks Chapter 2

SDL_GetVideoInfo Chapter 2

SDL_GetVideoSurface

SDL_Init Chapter 2

SDL_InitSubSystem Chapter 2

SDL_JoyAxisEvent

SDL_JoyBallEvent

SDL_JoyButtonEvent

SDL_JoyHatEvent

SDL_JoystickClose

SDL_JoystickEventState

SDL_JoystickGetAxis

SDL_JoystickGetBall

SDL_JoystickGetButton

SDL_JoystickGetHat

SDL_JoystickIndex

SDL_JoystickName

SDL_JoystickNumAxes

SDL_JoystickNumBalls

SDL_JoystickNumButtons

SDL_JoystickNumHats

SDL_JoystickOpen

http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Flip&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_FreeCursor&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_FreeSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_FreeWAV&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_FreeYUVOverlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GL_GetAttribute&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GL_GetProcAddress&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GL_LoadLibrary&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GL_SetAttribute&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GL_SwapBuffers&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GLattr&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetAppState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetAudioStatus&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetClipRect&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetCursor&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetEventFilter&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetGamma&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetGammaRamp&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetKeyName&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetKeyState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetModState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetMouseState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetRGB&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetRGBA&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetRelativeMouseState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetThreadID&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetTicks&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetVideoInfo&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_GetVideoSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Init&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_InitSubSystem&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoyAxisEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoyBallEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoyButtonEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoyHatEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickClose&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickEventState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickGetAxis&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickGetBall&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickGetButton&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickGetHat&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickIndex&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickName&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickNumAxes&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickNumBalls&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickNumButtons&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickNumHats&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickOpen&funcgroup=SDL&action=Search

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

161

SDL_JoystickOpened

SDL_JoystickUpdate

SDL_KeyboardEvent

SDL_KillThread

SDL_ListModes

SDL_LoadBMP Chapter 2

SDL_LoadWAV

SDL_LockAudio

SDL_LockSurface Chapter 2

SDL_LockYUVOverlay

SDL_MapRGB Chapter 2

SDL_MapRGBA

SDL_MixAudio

SDL_MouseButtonEvent

SDL_MouseMotionEvent

SDL_NumJoysticks

SDL_OpenAudio

SDL_Overlay

SDL_Palette

SDL_PauseAudio

SDL_PeepEvents

SDL_PixelFormat

SDL_PollEvent

SDL_PumpEvents

SDL_PushEvent

SDL_Quit Chapter 2

SDL_QuitEvent

SDL_QuitSubSystem Chapter 2

SDL_RWFromFile

SDL_Rect Chapter 2

SDL_RemoveTimer

SDL_ResizeEvent

SDL_SaveBMP

SDL_SemPost

SDL_SemTryWait

SDL_SemValue

SDL_SemWait

SDL_SemWaitTimeout

SDL_SetAlpha Chapter 2

SDL_SetClipRect Chapter 2

SDL_SetColorKey Chapter 2

SDL_SetColors

SDL_SetCursor

SDL_SetEventFilter

SDL_SetGamma

SDL_SetGammaRamp

SDL_SetModState

SDL_SetPalette

http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickOpened&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_JoystickUpdate&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_KeyboardEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_KillThread&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ListModes&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_LoadBMP&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_LoadWAV&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_LockAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_LockSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_LockYUVOverlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_MapRGB&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_MapRGBA&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_MixAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_MouseButtonEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_MouseMotionEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_NumJoysticks&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_OpenAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Overlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Palette&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_PauseAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_PeepEvents&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_PixelFormat&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_PollEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_PumpEvents&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_PushEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Quit&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_QuitEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_QuitSubSystem&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_RWFromFile&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Rect&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_RemoveTimer&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ResizeEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SaveBMP&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SemPost&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SemTryWait&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SemValue&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SemWait&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SemWaitTimeout&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetAlpha&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetClipRect&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetColorKey&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetColors&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetCursor&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetEventFilter&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetGamma&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetGammaRamp&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetModState&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetPalette&funcgroup=SDL&action=Search

December 15, 2011 [LEARNING SDL – A BEGINNER’S GUIDE]

162

SDL_SetTimer

SDL_SetVideoMode Chapter 2

SDL_ShowCursor

SDL_Surface Chapter 2

SDL_SysWMEvent

SDL_ThreadID

SDL_UnlockAudio

SDL_UnlockSurface

SDL_UnlockYUVOverlay

SDL_UpdateRect Chapter 2

SDL_UpdateRects

SDL_UserEvent

SDL_VideoDriverName

SDL_VideoInfo Chapter 2

SDL_VideoModeOK

SDL_WM_GetCaption

SDL_WM_GrabInput

SDL_WM_IconifyWindow

SDL_WM_SetCaption Chapter 2

SDL_WM_SetIcon

SDL_WM_ToggleFullScreen

SDL_WaitEvent

SDL_WaitThread

SDL_WarpMouse

SDL_WasInit Chapter 2

SDL_keysym

SDL_mutexP

SDL_mutexV

http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetTimer&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SetVideoMode&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ShowCursor&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_Surface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_SysWMEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_ThreadID&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_UnlockAudio&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_UnlockSurface&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_UnlockYUVOverlay&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_UpdateRect&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_UpdateRects&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_UserEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_VideoDriverName&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_VideoInfo&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_VideoModeOK&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WM_GetCaption&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WM_GrabInput&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WM_IconifyWindow&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WM_SetCaption&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WM_SetIcon&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WM_ToggleFullScreen&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WaitEvent&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WaitThread&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WarpMouse&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_WasInit&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_keysym&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_mutexP&funcgroup=SDL&action=Search
http://amiga.sourceforge.net/amidevhelp/phpwebdev.php?keyword=SDL_mutexV&funcgroup=SDL&action=Search

