
Library (computing)

Not to be confused with Integrated library system or
Library computers.
In computer science, a library is a collection of non-

libvorbisfile

libvorbis libalsalibogg

O
gg file

V
orb

is
stream

D
ecod

ed
stream

Ogg file

Decoded stream

Decoded
stream

V
orb

is
stream

Playing Ogg Vorbis

Libraries Program

Illustration of an application which uses libvorbisfile to play an
Ogg Vorbis file

volatile resources used by computer programs, often
to develop software. These may include configuration
data, documentation, help data, message templates, pre-
written code and subroutines, classes, values or type spec-
ifications. In IBM’s OS/360 and its successors they are
referred to as partitioned data sets.
In computer science, a library is a collection of imple-
mentations of behavior, written in terms of a language,
that has a well-defined interface by which the behavior is
invoked. This means that as long as a higher level pro-
gram uses a library to make system calls, it does not need
to be re-written to implement those system calls over and
over again. In addition, the behavior is provided for reuse
by multiple independent programs. A program invokes
the library-provided behavior via a mechanism of the lan-
guage. For example, in a simple imperative language such
as C, the behavior in a library is invoked by using C’s nor-
mal function-call. What distinguishes the call as being to
a library, versus being to another function in the same
program, is the way that the code is organized in the sys-
tem.
Library code is organized in such a way that it can be used
by multiple programs that have no connection to each
other, while code that is part of a program is organized
to only be used within that one program. This distinc-
tion can gain a hierarchical notion when a program grows
large, such as a multi-million-line program. In that case,
there may be internal libraries that are reused by indepen-
dent sub-portions of the large program. The distinguish-
ing feature is that a library is organized for the purposes of
being reused by independent programs or sub-programs,
and the user only needs to know the interface, and not the

internal details of the library.
The value of a library is the reuse of the behavior. When
a program invokes a library, it gains the behavior imple-
mented inside that library without having to implement
that behavior itself. Libraries encourage the sharing of
code in a modular fashion, and ease the distribution of
the code.
The behavior implemented by a library can be connected
to the invoking program at different program lifecycle
phases. If the code of the library is accessed during the
build of the invoking program, then the library is called a
static library. An alternative is to build the executable of
the invoking program and distribute that, independently
from the library implementation. The library behavior
is connected after the executable has been invoked to be
executed, either as part of the process of starting the ex-
ecution, or in the middle of execution. In this case the
library is called a dynamic library. A dynamic library
can be loaded and linked as part of preparing a program
for execution, by the linker. Alternatively, in the middle
of execution, an application may explicitly request that a
module be loaded.
Most compiled languages have a standard library al-
though programmers can also create their own custom li-
braries. Most modern software systems provide libraries
that implement the majority of system services. Such li-
braries have commoditized the services which a modern
application requires. As such, most code used by modern
applications is provided in these system libraries.

1 History

The earliest programming concepts analogous to libraries
were intended to separate data definitions from the pro-
gram implementation. JOVIAL brought the “COM-
POOL” (Communication Pool) concept to popular atten-
tion in 1959, although it adopted the idea from the large-
system SAGE software. Following the computer science
principles of separation of concerns and information hid-
ing, “Comm Pool’s purpose was to permit the sharing of
System Data among many programs by providing a cen-
tralized data description.”[1]

COBOL also included “primitive capabilities for a library
system” in 1959,[2] but Jean Sammet described them as
“inadequate library facilities” in retrospect.[3]

Another major contributor to the modern library con-
cept came in the form of the subprogram innovation

1

https://en.wikipedia.org/wiki/Integrated_library_system
https://en.wikipedia.org/wiki/Public_Computers
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/OS/360_and_successors
https://en.wikipedia.org/wiki/Data_set_(IBM_mainframe)#Partitioned_datasets
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Imperative_language
https://en.wikipedia.org/wiki/Hierarchical_notion
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Program_lifecycle_phase
https://en.wikipedia.org/wiki/Program_lifecycle_phase
https://en.wikipedia.org/wiki/Static_library
https://en.wikipedia.org/wiki/Dynamic_library
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Dynamic_loading
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Commoditize
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/JOVIAL
https://en.wikipedia.org/wiki/Semi_Automatic_Ground_Environment
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Jean_E._Sammet
https://en.wikipedia.org/wiki/Subprogram


2 5 SHARED LIBRARIES

of FORTRAN. FORTRAN subprograms can be com-
piled independently of each other, but the compiler lacks
a linker. So prior to the introduction of modules in
Fortran-90, type checking between FORTRAN[NB 1] sub-
programs was impossible.[4]

Finally, historians of the concept should remember the in-
fluential Simula 67. Simula was the first object-oriented
programming language, and its classes are nearly iden-
tical to the modern concept as used in Java, C++, and
C#. The class concept of Simula was also a progenitor of
the package in Ada and the module of Modula-2.[5] Even
when developed originally in 1965, Simula classes could
be included in library files and added at compile time.[6]

2 Linking

Main articles: Link time and Linker (computing)

Libraries are important in the program linking or bind-
ing process, which resolves references known as links or
symbols to library modules. The linking process is usu-
ally automatically done by a linker or binder program that
searches a set of libraries and other modules in a given or-
der. Usually it is not considered an error if a link target
can be found multiple times in a given set of libraries.
Linking may be done when an executable file is created,
or whenever the program is used at run time.
The references being resolved may be addresses for
jumps and other routine calls. They may be in the
main program, or in one module depending upon an-
other. They are resolved into fixed or relocatable ad-
dresses (from a common base) by allocating runtime
memory for the memory segments of each module ref-
erenced.
Some programming languages may use a feature called
smart linking wherein the linker is aware of or integrated
with the compiler, such that the linker knows how exter-
nal references are used, and code in a library that is never
actually used, even though internally referenced, can be
discarded from the compiled application. For example,
a program that only uses integers for arithmetic, or does
no arithmetic operations at all, can exclude floating-point
library routines. This smart-linking feature can lead to
smaller application file sizes and reduced memory usage.

3 Relocation

Main article: Relocation (computer science)

Some references in a program or library module are
stored in a relative or symbolic form which cannot be
resolved until all code and libraries are assigned final
static addresses. Relocation is the process of adjusting

these references, and is done either by the linker or the
loader. In general, relocation cannot be done to individ-
ual libraries themselves because the addresses in memory
may vary depending on the program using them and other
libraries they are combined with. Position-independent
code avoids references to absolute addresses and there-
fore does not require relocation.

4 Static libraries

Main article: Static library

When linking is performed during the creation of an exe-
cutable or another object file, it is known as static linking
or early binding. In this case, the linking is usually done
by a linker, but may also be done by the compiler. A static
library, also known as an archive, is one intended to be
statically linked. Originally, only static libraries existed.
Static linking must be performed when any modules are
recompiled.
All of the modules required by a program are sometimes
statically linked and copied into the executable file. This
process, and the resulting stand-alone file, is known as a
static build of the program. A static build may not need
any further relocation if virtual memory is used and no
address space layout randomization is desired.

5 Shared libraries

“Shared object” redirects here. For the synchronization
mechanism, see Monitor (synchronization).

A shared library or shared object is a file that is in-
tended to be shared by executable files and further shared
object files. Modules used by a program are loaded from
individual shared objects into memory at load time or run
time, rather than being copied by a linker when it creates
a single monolithic executable file for the program.
Shared libraries can be statically linked, meaning that ref-
erences to the library modules are resolved and the mod-
ules are allocated memory when the executable file is cre-
ated. But often linking of shared libraries is postponed
until they are loaded.
Most modern operating systems[NB 2] can have shared li-
brary files of the same format as the executable files. This
offers two main advantages: first, it requires making only
one loader for both of them, rather than two (having the
single loader is considered well worth its added complex-
ity). Secondly, it allows the executables also to be used
as shared libraries, if they have a symbol table. Typical
combined executable and shared library formats are ELF
and Mach-O (both in Unix) and PE (Windows).
In some older environments such as 16-bit Windows or

https://en.wikipedia.org/wiki/FORTRAN
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Type_checking
https://en.wikipedia.org/wiki/Simula_67
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Link_time
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Memory_segment
https://en.wikipedia.org/wiki/Relocation_(computer_science)
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Static_library
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Static_build
https://en.wikipedia.org/wiki/Relocation_(computer_science)
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Executable_files
https://en.wikipedia.org/wiki/Load_time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Symbol_table
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/16-bit_Windows


5.3 Optimizations 3

MPE for the HP 3000 only stack based data (local) was
allowed in shared library code, or other significant re-
strictions were placed on shared library code.

5.1 Memory sharing

Main article: Shared memory (interprocess communica-
tion)

Library code may be shared in memory by multiple
processes as well as on disk. If virtual memory is
used, processes execute the same physical page of RAM,
mapped into the different address spaces of each process.
This has advantages. For instance on the OpenStep sys-
tem, applications were often only a few hundred kilobytes
in size and loaded quickly; the majority of their code was
located in libraries that had already been loaded for other
purposes by the operating system.
Programs can accomplish RAM sharing by using position
independent code as in Unix, which leads to a complex
but flexible architecture, or by using common virtual ad-
dresses as in Windows and OS/2. These systems make
sure, by various tricks like pre-mapping the address space
and reserving slots for each shared library, that code has
a great probability of being shared. A third alternative
is single-level store, as used by the IBM System/38 and
its successors. This allows position-dependent code but
places no significant restrictions on where code can be
placed or how it can be shared.
In some cases different versions of shared libraries can
cause problems, especially when libraries of different
versions have the same file name, and different appli-
cations installed on a system each require a specific ver-
sion. Such a scenario is known as DLL hell, named after
the Windows and OS/2 DLL file. Most modern operat-
ing systems after 2001 have clean-up methods to elimi-
nate such situations or use application specific “private”
libraries.[7]

5.2 Dynamic linking

Main article: Dynamic linker

Dynamic linking or late binding is linking performed
while a program is being loaded (load time) or executed
(run time), rather than when the executable file is cre-
ated. A dynamically linked library (dynamic-link library
or DLL underWindows andOS/2; dynamic shared object
or DSO under Unix-like systems) is a library intended
for dynamic linking. Only a minimum amount of work
is done by the linker when the executable file is created;
it only records what library routines the program needs
and the index names or numbers of the routines in the li-
brary. The majority of the work of linking is done at the
time the application is loaded (load time) or during execu-

tion (run time). Usually, the necessary linking program,
called a “dynamic linker” or “linking loader”, is actually
part of the underlying operating system. (However, it is
possible, and not exceedingly difficult, to write a program
that uses dynamic linking and includes its own dynamic
linker, even for an operating system that itself provides
no support for dynamic linking.)
Programmers originally developed dynamic linking in the
Multics operating system, starting in 1964, and the MTS
(Michigan Terminal System), built in the late 1960s.[8]

5.3 Optimizations

Since shared libraries on most systems do not change of-
ten, systems can compute a likely load address for each
shared library on the system before it is needed, and store
that information in the libraries and executables. If every
shared library that is loaded has undergone this process,
then each will load at its predetermined address, which
speeds up the process of dynamic linking. This optimiza-
tion is known as prebinding in OS X and prelinking in
Linux. Disadvantages of this technique include the time
required to precompute these addresses every time the
shared libraries change, the inability to use address space
layout randomization, and the requirement of sufficient
virtual address space for use (a problem that will be alle-
viated by the adoption of 64-bit architectures, at least for
the time being).

5.4 Locating libraries at run time

Loaders for shared libraries vary widely in functionality.
Some depend on the executable storing explicit paths to
the libraries. Any change to the library naming or layout
of the file system will cause these systems to fail. More
commonly, only the name of the library (and not the path)
is stored in the executable, with the operating system sup-
plying a method to find the library on-disk based on some
algorithm.
If a shared library that an executable depends on is
deleted, moved, or renamed, or if an incompatible ver-
sion of the library is copied to a place that is earlier in the
search, the executable would fail to load. This is called
Dependency hell existing on many platforms. The (in-
famous) Windows variant is commonly known as DLL
hell. This problem cannot occur if each version of each
library is uniquely identified and each program references
libraries only by their full unique identifiers. The “DLL
hell” problems with earlier Windows versions arose from
using only the names of libraries, which were not guar-
anteed to be unique, to resolve dynamic links in pro-
grams. (To avoid “DLL hell”, later versions of Win-
dows rely largely on options for programs to install pri-
vate DLLs—essentially a partial retreat from the use of
shared libraries—along with mechanisms to prevent re-
placement of shared system DLLs with earlier versions

https://en.wikipedia.org/wiki/HP_Multi-Programming_Executive
https://en.wikipedia.org/wiki/HP_3000
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/OpenStep
https://en.wikipedia.org/wiki/Position_independent_code
https://en.wikipedia.org/wiki/Position_independent_code
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Single-level_store
https://en.wikipedia.org/wiki/IBM_System/38
https://en.wikipedia.org/wiki/DLL_hell
https://en.wikipedia.org/wiki/DLL_file
https://en.wikipedia.org/wiki/Dynamic_linker
https://en.wikipedia.org/wiki/Late_binding
https://en.wikipedia.org/wiki/Load_time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Windows_(OS)
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Michigan_Terminal_System
https://en.wikipedia.org/wiki/Prebinding
https://en.wikipedia.org/wiki/Prelinking
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/DLL_hell
https://en.wikipedia.org/wiki/DLL_hell


4 6 OBJECT AND CLASS LIBRARIES

of them.)

5.4.1 Microsoft Windows

Microsoft Windows checks the registry to determine the
proper place to load DLLs that implement COM ob-
jects, but for other DLLs it will check the directories
in a defined order. First, Windows checks the direc-
tory where it loaded the program (private DLL[7]); any
directories set by calling the SetDllDirectory() function;
the System32, System, and Windows directories; then
the current working directory; and finally the directories
specified by the PATH environment variable.[9] Applica-
tions written for the .NET Framework framework (since
2002), also check the Global Assembly Cache as the pri-
mary store of shared dll files to remove the issue of DLL
hell.

5.4.2 OpenStep

OpenStep used a more flexible system, collecting a list
of libraries from a number of known locations (similar to
the PATH concept) when the system first starts. Moving
libraries around causes no problems at all, although users
incur a time cost when first starting the system.

5.4.3 Unix-like systems

Most Unix-like systems have a “search path” specify-
ing file system directories in which to look for dynamic
libraries. Some systems specify the default path in a
configuration file; others hard-code it into the dynamic
loader. Some executable file formats can specify addi-
tional directories in which to search for libraries for a
particular program. This can usually be overridden with
an environment variable, although it is disabled for setuid
and setgid programs, so that a user can't force such a pro-
gram to run arbitrary code with root permissions. De-
velopers of libraries are encouraged to place their dy-
namic libraries in places in the default search path. On
the downside, this can make installation of new libraries
problematic, and these “known” locations quickly be-
come home to an increasing number of library files, mak-
ing management more complex.

5.5 Dynamic loading

Main article: Dynamic loading

Dynamic loading, a subset of dynamic linking, involves a
dynamically linked library loading and unloading at run
time on request. Such a request may be made implicitly
at compile time or explicitly at run time. Implicit requests
are made at compile time when a linker adds library refer-
ences that include file paths or simply file names. Explicit

requests are made when applications make direct calls to
an operating system’s API at run time.
Most operating systems that support dynamically linked
libraries also support dynamically loading such li-
braries via a run-time linker API. For instance,
Microsoft Windows uses the API functions LoadLibrary,
LoadLibraryEx, FreeLibrary and GetProcAddress with
Microsoft Dynamic Link Libraries; POSIX based sys-
tems, including most UNIX and UNIX-like systems, use
dlopen, dlclose and dlsym. Some development systems
automate this process.

6 Object and class libraries

Although originally pioneered in the 1960s, dynamic
linking did not reach operating systems used by con-
sumers until the late 1980s. It was generally available in
some form in most operating systems by the early 1990s.
During this same period, object-oriented programming
(OOP) was becoming a significant part of the program-
ming landscape. OOP with runtime binding requires ad-
ditional information that traditional libraries don't supply.
In addition to the names and entry points of the code lo-
cated within, they also require a list of the objects they
depend on. This is a side-effect of one of OOP’s main ad-
vantages, inheritance, which means that parts of the com-
plete definition of any method may be in different places.
This is more than simply listing that one library requires
the services of another: in a true OOP system, the li-
braries themselves may not be known at compile time,
and vary from system to system.
At the same time many developers worked on the idea
of multi-tier programs, in which a “display” running on a
desktop computer would use the services of a mainframe
or minicomputer for data storage or processing. For in-
stance, a program on a GUI-based computer would send
messages to a minicomputer to return small samples of a
huge dataset for display. Remote procedure calls already
handled these tasks, but there was no standard RPC sys-
tem.
Soon the majority of the minicomputer and mainframe
vendors instigated projects to combine the two, produc-
ing an OOP library format that could be used anywhere.
Such systems were known as object libraries, or dis-
tributed objects, if they supported remote access (not
all did). Microsoft’s COM is an example of such a sys-
tem for local use, DCOMamodified version that supports
remote access.
For some time object libraries held the status of the “next
big thing” in the programming world. There were a num-
ber of efforts to create systems that would run across
platforms, and companies competed to try to get de-
velopers locked into their own system. Examples in-
clude IBM's System Object Model (SOM/DSOM), Sun
Microsystems' Distributed Objects Everywhere (DOE),

https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_registry
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Global_Assembly_Cache
https://en.wikipedia.org/wiki/DLL_hell
https://en.wikipedia.org/wiki/DLL_hell
https://en.wikipedia.org/wiki/OpenStep
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Directory_(file_systems)
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Setuid
https://en.wikipedia.org/wiki/Dynamic_loading
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Dynamic_Link_Library
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Minicomputer
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/System_Object_Model
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Distributed_Objects_Everywhere


5

NeXT's Portable Distributed Objects (PDO), Digital's
ObjectBroker, Microsoft’s Component Object Model
(COM/DCOM), and any number of CORBA-based sys-
tems.
After the inevitable cooling of marketing hype, object li-
braries continue to be used in both object-oriented pro-
gramming and distributed information systems. Class
libraries are the rough OOP equivalent of older types
of code libraries. They contain classes, which describe
characteristics and define actions (methods) that involve
objects. Class libraries are used to create instances, or
objects with their characteristics set to specific values. In
some OOP languages, like Java, the distinction is clear,
with the classes often contained in library files (like Java’s
JAR file format) and the instantiated objects residing
only in memory (although potentially able to be made
persistent in separate files). In others, like Smalltalk, the
class libraries are merely the starting point for a system
image that includes the entire state of the environment,
classes and all instantiated objects.

7 Remote libraries

Another solution to the library issue comes from us-
ing completely separate executables (often in some
lightweight form) and calling them using a remote pro-
cedure call (RPC) over a network to another computer.
This approach maximizes operating system re-use: the
code needed to support the library is the same code be-
ing used to provide application support and security for
every other program. Additionally, such systems do not
require the library to exist on the same machine, but can
forward the requests over the network.
However, such an approach means that every library call
requires a considerable amount of overhead. RPC calls
are much more expensive than calling a shared library
that has already been loaded on the same machine. This
approach is commonly used in a distributed architecture
that makes heavy use of such remote calls, notably client-
server systems and application servers such as Enterprise
JavaBeans.

8 Code generation libraries

Code generation libraries are high-level APIs that can
generate or transform byte code for Java. They are
used by aspect-oriented programming, some data access
frameworks, and for testing to generate dynamic proxy
objects. They also are used to intercept field access.[10]

9 File naming

• Most modern Unix-like systems

The system stores libfoo.a and libfoo.so
files in directories such as /lib, /usr/lib or
/usr/local/lib. The filenames always start with
lib, and end with a suffix of .a (archive, static
library) or of .so (shared object, dynamically
linked library). Some systems might have
multiple names for the dynamically linked li-
brary, with most of the names being names for
symbolic links to the remaining name; those
names might include the major version of the
library, or the full version number; for exam-
ple, on some systems libfoo.so.2 would be the
filename for the second major interface revi-
sion of the dynamically linked library libfoo.
The .la files sometimes found in the library di-
rectories are libtool archives, not usable by the
system as such.

• OS X

The system inherits static library conventions
from BSD, with the library stored in a .a
file, and can use .so-style dynamically linked
libraries (with the .dylib suffix instead).
Most libraries in OS X, however, consist
of “frameworks”, placed inside special di-
rectories called "bundles" which wrap the
library’s required files and metadata. For
example, a framework called MyFrame-
work would be implemented in a bundle
called MyFramework.framework, with
MyFramework.framework/MyFramework
being either the dynamically linked library
file or being a symlink to the dynam-
ically linked library file in MyFrame-
work.framework/Versions/Current/MyFramework.

• Microsoft Windows

Dynamic-link libraries usually have the suf-
fix *.DLL,[11] although other file name exten-
sions may identify specific-purpose dynami-
cally linked libraries, e.g. *.OCX for OLE li-
braries. The interface revisions are either en-
coded in the file names, or abstracted away
using COM-object interfaces. Depending on
how they are compiled, *.LIB files can be ei-
ther static libraries or representations of dy-
namically linkable libraries needed only during
compilation, known as "import libraries". Un-
like in the UNIX world, which uses different
file extensions, when linking against .LIB file
in Windows one must first know if it is a reg-
ular static library or an import library. In the
latter case, a .DLL file must be present at run
time.

https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/Portable_Distributed_Objects
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/ObjectBroker
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/CORBA
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wiktionary.org/wiki/instance
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Jar_(file_format)
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/System_image
https://en.wikipedia.org/wiki/System_image
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Application_server
https://en.wikipedia.org/wiki/Enterprise_JavaBean
https://en.wikipedia.org/wiki/Enterprise_JavaBean
https://en.wikipedia.org/wiki/Application_Programming_Interface
https://en.wikipedia.org/wiki/Byte_code
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Ar_(file_format)
https://en.wikipedia.org/wiki/Symbolic_links
https://en.wikipedia.org/wiki/Libtool
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/Bundle_(OS_X)
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
https://en.wikipedia.org/wiki/Component_object_model
https://en.wikipedia.org/wiki/Dynamic-link_library#Import_libraries
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Microsoft_Windows


6 13 EXTERNAL LINKS

10 See also
• Code reuse

• Linker (computing)

• Loader (computing)

• Dynamic-link library

• Object file

• Plug-in

• Prebinding

• Static library

• Runtime library

• Visual Component Library (VCL)

• Component Library for Cross Platform (CLX)

• Lazarus Component Library (LCL)

• C standard library

• Java Class Library

• Framework Class Library

• Generic programming (used by the C++ standard li-
brary)

• soname

• Method stub

11 Notes
[1] It was possible earlier between, e.g., Ada subprograms.

[2] Some older systems, e.g., Burroughs MCP, Multics, also
have only a single format for executable files, regardless
of whether they are shared.

12 References
[1] Wexelblat, Richard (1981). History of Programming Lan-

guages. ACM Monograph Series. New York, NY: Aca-
demic Press (A subsidiary of Harcourt Brace). p. 369.
ISBN 0-12-745040-8.

[2] Wexelblat, op. cit., p. 274

[3] Wexelblat, op. cit., p. 258

[4] Wilson, Leslie B.; Clark, Robert G. (1988). Compar-
ative Programming Languages. Wokingham, England:
Addison-Wesley. p. 126. ISBN 0-201-18483-4.

[5] Wilson and Clark, op. cit., p. 52

[6] Wexelblat, op. cit., p. 716

[7] Anderson, Rick (2000-01-11). “The End of DLL Hell”.
microsoft.com. Archived from the original on 2001-06-
05. Retrieved 2012-01-15. Private DLLs are DLLs that
are installed with a specific application and used only by
that application.

[8] “A History of MTS”. Information Technology Digest 5
(5).

[9] “Dynamic-Link Library Search Order”. Microsoft Devel-
oper Network Library. Microsoft. 2012-03-06. Retrieved
2012-05-20.

[10] “Code Generation Library”. http://sourceforge.net/:
Source Forge. Retrieved 2010-03-03. Byte Code Gener-
ation Library is high level API to generate and transform
JAVA byte code. It is used by AOP, testing, data access
frameworks to generate dynamic proxy objects and inter-
cept field access.

[11] Bresnahan, Christine; Blum, Richard (2015). LPIC-
1 Linux Professional Institute Certification Study Guide:
Exam 101-400 and Exam 102-400. John Wiley & Sons.
p. 82. ISBN 9781119021186. Retrieved 2015-09-03.
Linux shared libraries are similar to the dynamic link li-
braries (DLLs) of Windows. Windows DLLs are usually
identified by .dll filename extensions.

13 External links
• Shared Libraries - 'Linkers and Loaders’ by John R.
Levine

• Dynamic Linking and Loading - 'Linkers and Load-
ers’ by John R. Levine

• Article Beginner’s Guide to Linkers by David Drys-
dale

• Article Faster C++ program startups by improving
runtime linking efficiency by Léon Bottou and John
Ryland

• How to Create Program Libraries by Baris Simsek

• LIB BFD - the Binary File Descriptor Library

• 1st Library-Centric Software Design Workshop
LCSD'05 at OOPSLA'05

• 2nd Library-Centric Software Design Workshop
LCSD'06 at OOPSLA'06

• How to create shared library(with much background
info)

• Anatomy of Linux dynamic libraries

https://en.wikipedia.org/wiki/Code_reuse
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Prebinding
https://en.wikipedia.org/wiki/Static_library
https://en.wikipedia.org/wiki/Runtime_library
https://en.wikipedia.org/wiki/Visual_Component_Library
https://en.wikipedia.org/wiki/Component_Library_for_Cross_Platform
https://en.wikipedia.org/wiki/Lazarus_(software)#LCL
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/Java_Class_Library
https://en.wikipedia.org/wiki/Framework_Class_Library
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/C++_standard_library
https://en.wikipedia.org/wiki/C++_standard_library
https://en.wikipedia.org/wiki/Soname
https://en.wikipedia.org/wiki/Method_stub
https://en.wikipedia.org/wiki/Burroughs_MCP
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Harcourt_Brace
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-12-745040-8
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-18483-4
http://web.archive.org/web/20010605023737/http://msdn.microsoft.com/library/techart/dlldanger1.htm
http://msdn.microsoft.com/library/techart/dlldanger1.htm
http://msdn.microsoft.com/en-us/library/ms682586.aspx
http://sourceforge.net/projects/cglib/
http://sourceforge.net/
https://books.google.com/books?id=jf3zBgAAQBAJ
https://books.google.com/books?id=jf3zBgAAQBAJ
https://books.google.com/books?id=jf3zBgAAQBAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781119021186
http://www.iecc.com/linker/linker09.html
http://www.iecc.com/linker/linker09.html
http://www.iecc.com/linker/linker10.html
http://www.iecc.com/linker/linker10.html
http://www.lurklurk.org/linkers/linkers.html
http://objprelink.sourceforge.net/objprelink.html
http://objprelink.sourceforge.net/objprelink.html
http://www.enderunix.org/simsek/articles/libraries.pdf
http://www.csa.iisc.ernet.in/resources/documentation/hypertext/bfd/bfd_toc.html
http://lcsd05.cs.tamu.edu/
http://lcsd05.cs.tamu.edu/
http://lcsd.cs.tamu.edu/2006/
http://lcsd.cs.tamu.edu/2006/
http://people.redhat.com/drepper/dsohowto.pdf
http://people.redhat.com/drepper/dsohowto.pdf
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/


7

14 Text and image sources, contributors, and licenses

14.1 Text
• Library (computing) Source: https://en.wikipedia.org/wiki/Library_(computing)?oldid=680650831 Contributors: Damian Yerrick, Zun-
dark, Stephen Gilbert, XJaM, Maury Markowitz, B4hand, KF, Frecklefoot, Edward, K.lee, Lir, Nixdorf, Pnm, Danhicks, TakuyaMu-
rata, Minesweeper, Mac, Nanshu, Julesd, IMSoP, Emperorbma, Dysprosia, Greenrd, Zoicon5, Wernher, Khym Chanur, Mignon~enwiki,
Jeffq, Robbot, Mountain, Nurg, Wjhonson, Rfc1394, Rholton, Jor, Salty-horse, Tobias Bergemann, ManuelGR, Endx7, SamB, Haeleth,
Art Carlson, Alterego, CyborgTosser, Mboverload, Prosfilaes, Rchandra, Madoka, Vadmium, Beland, Am088, Secfan, Maximaximax,
Icairns, Simoneau, Sam Hocevar, Urhixidur, Bluefoxicy, Abdull, Omassey, Mormegil, Poccil, Jkl, Jordancpeterson, Jamadagni, Gronky,
CanisRufus, Kop, Art LaPella, Bobo192, R. S. Shaw, Pentap101, Minghong, Philipdl71, Officiallyover, Melah Hashamaim, Resipsa,
Guy Harris, Sligocki, Gbeeker, Emvee~enwiki, Cburnett, Jakek101, MIT Trekkie, Alai, Mikenolte, Forderud, Kbolino, WayneMokane,
Unixxx, Feezo, Brianwc, Madmardigan53, Ae-a, TheNightFly, Ruud Koot, Sega381, Btyner, Tlroche, Raffaele Megabyte, Justizin, Ve-
gaswikian, Fred Bradstadt, Margosbot~enwiki, Felixdakat, Intgr, Tardis, Glenn L, Chobot, DVdm, YurikBot, Wavelength, Borgx, Tex-
asAndroid, RobotE, FrenchIsAwesome, Piet Delport, Skydot, Manop, SteveLoughran, Mipadi, ZacBowling, Jpbowen, JulesH, Voidxor,
Snarius, Bota47, JECompton, Lzyiii, Mugunth Kumar, CWenger, ArielGold, GrinBot~enwiki, SmackBot, IanVaughan, Sam Pointon,
Aij, El Cubano, Thumperward, Stevage, Jerome Charles Potts, Nbarth, Torzsmokus, Ian Burnet~enwiki, Frap, Jsmethers, Juancnuno,
Baris simsek, Azio, Emre D., Wonderstruck, Cybercobra, Harvestman, Daniel.Cardenas, Digana, Harryboyles, Gang65, Antonielly, Nong-
Bot~enwiki, Waggers, Nialsh, Norm mit, SimonD, Nemonemo~enwiki, CmdrObot, Fumblebruschi, AlbertSM, Wws, Tmn, Phatom87,
Alanbly, Indeterminate, Msreeharsha, Christian75, Danogo, ColdShine, PamD, Poorleno, Pstanton, Hervegirod, DmitTrix, RobotG, Meta-
ManFromTomorrow, Prolog, Medinoc, JAnDbot, DirtY iCE, Swpb, Gwern, Ian Bailey, Sigmundg, Ahzahraee, Hans Dunkelberg, Plas-
ticup, Merceris, Ale2006, VolkovBot, Oleh Kernytskyi, Rei-bot, Jozue, Anna Lincoln, Onion Bulb, Fogbank74, Insanity Incarnate, Michael
Safyan, Pjoef, Biasoli, S.Örvarr.S, SieBot, Prcr, BotMultichill, Jerryobject, YvesEau, OKBot, Svick, Jkonline, ClueBot, Drmies, Justin545,
GlasGhost, DanielPharos, 1ForTheMoney, Crb136, PeterFisk, Galzigler, Addbot, Proofreader77, AkhtaBot, Karl gregory jones, IOLJeff,
Tenth Plague, Zorrobot, Fiftyquid, Jarble, Legobot, Jobinj00770, Luckas-bot, Yobot, Ptbotgourou, Vanished user rt41as76lk, Golfthe-
man, AnomieBOT, Materialscientist, Nhantdn, ArthurBot, Xqbot, 4twenty42o, Gtfjbl, Br77rino, Almabot, Chatul, FrescoBot, Ashish-
tanwer, Sae1962, Umawera, Citation bot 1, Winterst, RedBot, Jandalhandler, Aoidh, Limited Atonement, Epsota24, EmausBot, Wiki-
tanvirBot, Ajraddatz, Noloader, NoisyJinx, Klbrain, Moswento, JadAizarani, Josve05a, ClueBot NG, Jack Greenmaven, Shaddim, Yttrill,
O.Koslowski, Helpful Pixie Bot, Faus, Tom Pippens, Alex.Cham, Codename Lisa, Andyhowlett, 123abc12, OhioGuy814, Seanhalle, My
name is not dave, RichSaunders, Lagoset, KasparBot, XJohnSanderson and Anonymous: 202

14.2 Images
• File:Ogg_vorbis_libs_and_application_dia.svg Source: https://upload.wikimedia.org/wikipedia/commons/d/df/Ogg_vorbis_libs_and_
application_dia.svg License: CCBY-SA 3.0 Contributors: self-made, based on file:Libs_dia.pngOriginal artist: Kővágó Zoltán (DirtY iCE)

14.3 Content license
• Creative Commons Attribution-Share Alike 3.0

https://en.wikipedia.org/wiki/Library_(computing)?oldid=680650831
https://upload.wikimedia.org/wikipedia/commons/d/df/Ogg_vorbis_libs_and_application_dia.svg
https://upload.wikimedia.org/wikipedia/commons/d/df/Ogg_vorbis_libs_and_application_dia.svg
//commons.wikimedia.org/wiki/File:Libs_dia.png
//en.wikipedia.org/wiki/User:DirtY_iCE
https://creativecommons.org/licenses/by-sa/3.0/

	History
	Linking
	Relocation
	Static libraries
	Shared libraries
	Memory sharing
	Dynamic linking
	Optimizations
	Locating libraries at run time
	Microsoft Windows
	OpenStep
	Unix-like systems

	Dynamic loading

	Object and class libraries
	Remote libraries
	Code generation libraries
	File naming
	See also
	Notes
	References
	External links
	Text and image sources, contributors, and licenses
	Text
	Images
	Content license


