
P U B L I S H I N G

community experience dist i l led

Python 3 Web Development
Beginner’s Guide

Michel Anders

Chapter No. 3

"Tasklist I: Persistence"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.3 "Tasklist I: Persistence"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Michel Anders, after his chemistry and physics studies where he spent more time

on computer simulations than on real world experiments, the author found his real

interests lay with IT and Internet technology, and worked as an IT manager for several

different companies, including an Internet provider, a hospital, and a software

development company.

After his initial exposure to Python as the built-in scripting language of Blender, the

popular 3D modeling and rendering suite, the language became his tool of choice for

many projects.

He lives happily in a small converted farm, with his partner, three cats, and twelve goats.

This tranquil environment proved to be ideally suited to writing his first book, Blender

2.49 Scripting (Packt Publishing, 978-1-849510-40-0).

He loves to help people with Blender and Python-related questions and may be contacted

as 'varkenvarken' at http://www.blenderartists.org/ and maintains a blog on

Python-specific subjects at http://michelanders.blogspot.com/.

For Clementine, always.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Python 3 Web Development
Beginner’s Guide
Building your own Python web applications provides you with the opportunity to have

great functionality, with no restrictions. However, creating web applications with Python

is not straightforward. Coupled with learning a new skill of developing web applications,

you would normally have to learn how to work with a framework as well.

Python 3 Web Development Beginner's Guide shows you how to independently build

your own web application that is easy to use, performs smoothly, and is themed to your

taste—all without having to learn another web framework.

Web development can take time and is often fiddly to get right. This book will show you

how to design and implement a complex program from start to finish. Each chapter looks

at a different type of web application, meaning that you will learn about a wide variety of

features and how to add them to your customized web application. You will also learn to

implement jQuery into your web application to give it extra functionality. By using the

right combination of a wide range of tools, you can have a fully functional, complex web

application up and running in no time.

A practical guide to building and customizing your own Python web application, without

the restriction of a pre-defined framework.

What This Book Covers
Chapter 1, Choosing Your Tools, looks at the many aspects of designing web

applications. The idea is to provide you with an overview that may help you recognize

components in subsequent chapters and give you some insight into the arguments

used to decide which tool or library to use. We also illustrate some issues that are

relevant when designing an application that does not deal with coding directly, such

as security or usability.

Chapter 2, Creating a Simple Spreadsheet, develops a simple spreadsheet application.

The spreadsheet functionality will be entirely implemented in JavaScript plus jQuery UI,

but on the server-side, we will encounter the application server, CherryPy, for the first

time and we will extend it with Python code to deliver the page that contains the

spreadsheet application dynamically.

Chapter 3, Tasklist I: Persistence, a full fledged web application needs functionality to

store information on the server and a way to identify different users. In this chapter, we

address both issues as we develop a simple application to maintain lists of tasks.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 4, Tasklist II: Databases and AJAX, refactors the tasklist application developed

in the previous chapter. We will use the SQLite database engine on the server to store

items and will use jQuery's AJAX functionality to dynamically update the contents of the

web application. On the presentation side, we will encounter jQuery UI's event system

and will learn how to react on mouse clicks.

Chapter 5, Entities and Relations, most real life applications sport more than one entity

and often many of these entities are related. Modeling these relations is one of the strong

points of a relational database. In this chapter, we will develop a simple framework to

manage these entities and use this framework to build an application to maintain lists of

books for multiple users.

Chapter 6, Building a Wiki, develops a wiki application and in doing so we focus on two

important concepts in building web applications. The first one is the design of the data

layer. The wiki application is quite complex, and in this chapter, we try to see where the

limitations in our simple framework lie. The second one is input validation. Any

application that accepts input from all over the Internet should check the data it receives,

and in this chapter, we look at both client-side and server-side input validation.

Chapter 7, Refactoring Code for Reuse, after doing a substantial bit of work, it is often a

good idea to take a step back and look critically at your own work to see if things could

have been done better. In this chapter, we look at ways to make the entity framework

more generally useful and employ it to implement the books application a second time.

Chapter 8, Managing Customer Relations, there is more to an entity framework and

CherryPy application code than merely browsing lists. The user must be able to add new

instances and edit existing ones. This chapter is the start of the development of a CRM

application that will be extended and refined in the final chapters.

Chapter 9, Creating Full-Fledged Webapps: Implementing Instances, focuses on the

design and implementation of the user interface components to add and maintain entities,

and relations between entities, in a way that is independent of the type of entity. This

functionality is immediately put to use in the CRM application that we develop.

Managing user privileges is another issue we encounter as we explore the concept of role-

based access control.

Chapter 10, Customizing the CRM Application, is the final chapter and it extends our

framework and thereby our CRM application by taking a look at browsing, filtering, and

sorting large numbers of entities. We also take a look at what is needed to allow

customization by the end user of the application's appearance and its functionality.

Appendix A, References to Resources, is a convenient overview of both Web and paper

resources.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

3
Tasklist I: Persistence

In the previous chapter, we learned how to deliver content to the user. This
content consisted of HTML markup to structure the informati on together with a
number of JavaScript libraries and code to create a user interface.

We noted that this was not a full-fl edged web applicati on yet; it lacked the
functi onality to store informati on on the server and there was no way to
identi fy diff erent users or any way to authenti cate them. In this chapter, we will
address both these issues when we design a simple tasklist applicati on.

This tasklist applicati on will be able to serve multi ple users and store the list of
tasks for each user on the server.

Specifi cally, we will look at:

  How to design a tasklist applicati on

  How to implement a logon screen

  What a session is and how this allows us to work with diff erent users at the same ti me

  How to interact with the server and add or delete tasks

  How to make entering dates att racti ve and simple with jQuery UI's datapicker widget

  How to style butt on elements and provide toolti ps and inline labels to input elements

Designing a tasklist application
 Designing an applicati on should start with a clear idea of what is expected. Not only to
determine what is technically required, but almost as important, to defi ne clear boundaries
so that we don't lose ti me on things that are just nice to have. Nice to have features are
something to be added if there is ti me left in the project.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[60]

So let's draw up a shortlist of the relevant features of our tasklist applicati on. Some of these
may seem obvious, but as we will see, these have a direct impact on some implementati on
choices that we have to make, such as:

  The applicati on will be used by multi ple users

  Task lists should be stored indefi nitely

  A task list may contain an unlimited number of tasks but the user interface is
designed for opti mal performance for up to 25 tasks or so

  Tasks may be added, deleted, and marked as done

Although this list isn't exhausti ve, it has some important implicati ons.

The fact that the tasklist applicati on will be used by more than one user means that we have
to identi fy and authorize people who want to use it. In other words, we will need some sort
of logon screen and a way to check people against some sort of password database. Because
we do not want to burden the user with identi fying himself/herself each and every ti me a
task list is refreshed or altered, we need some way of implementi ng the concept of a session .

 Web applicati ons use the stateless HTTP protocol . This means, from the server's point of
view, every request is a single, unrelated event, and no informati on is retained at the server.
This obviously presents us with a problem if we want to perform a set of related acti ons.
The soluti on is to ask the web browser to send a small piece of informati on along with every
request it makes to the applicati on aft er the applicati on has identi fi ed the user.

This might be accomplished in a number of ways. The server may add an extra parameter to
all links inside any web page it generates, commonly referred to as a session id , or use the
even more general concept of a cookie .

Once the server asks the web browser to store a cookie, this cookie is sent with every
following request to the same website. The advantage of cookies is that common web
applicati on frameworks (like CherryPy) are already equipped to deal with them and
implementi ng sessions with cookies is much simpler than designing the applicati on to alter
all hyperlinks it generates to include a proper session ID. The disadvantage might be that
people may block their browser from storing cookies because some websites use them to
track their clicking behavior.

We let the simplicity of implementati on prevail and opt for cookies. If users want to block
cookies this is not much of a problem as most browsers also have the opti on to selecti vely
allow cookies from designated websites.

 The following image illustrates the way CherryPy manages sessions with the help of cookies:

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[61]

It starts when the client (the web browser) sends a request to CherryPy . Upon receiving the
request, the fi rst check is to see if the web browser has sent along a cookie with a session
ID . If it didn't, a new session idea is generated. Also, if there was a cookie with a session ID, if
this ID is no longer valid (because it has expired, for example, or is a remnant from a very old
interacti on and doesn't exist in the current cache of session IDs) CherryPy also generates a
new session ID.

At this point, no persistent informati on is stored if this is a new session, but if it's an existi ng
session there might be persistent data available. If there is, CherryPy creates a Session
object and initi alizes it with the available persistent data. If not, it creates an empty Session
object. This object is available as a global variable cherrypy.session.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[62]

 The next step for CherryPy is to pass control to the functi on that will handle the request.
This handler has access to the Session object and may change it, for example, by storing
additi onal informati on for later reuse. (Note that the Session object acts like a dicti onary
so you can simply associate values with keys with cherrypy.session['key']=value.
The only restricti on to the keys and values is that they must be serializable if the persistent
storage is on disk).

Then before returning the results generated by the handler, CherryPy checks if the Session
object has changed. If (and only if) it has, are the contents of the Session object saved to a
more permanent storage.

Finally, the response is returned accompanied by a cookie with the session ID.

Time for action – creating a logon screen
 Our fi rst task is to create a small applicati on that does litt le more than present the user with a
logon screen. It will be the starti ng point of our tasklist applicati on and many others as well.

The code for this example as well as most other examples in this book is available from the
Packt website. If you have not downloaded it yet, this might be a good ti me to do so.

Enter the following pieces of code and save it in a fi le called logonapp.py in the same
directory as the other fi les distributed with this chapter (Chapter 3 in the sample code):

Chapter3/logonapp.py

import cherrypy

import logon

class Root(object):

 logon = logon.Logon(path="/logon",
 authenticated="/",
 not_authenticated="/goaway")

 @cherrypy.expose
 def index(self):
 username=logon.checkauth('/logon')
 return '''
 <html><body>
 <p>Hello user %s</p>
 </body></html>'''%username

 @cherrypy.expose
 def goaway(self):
 return '''
 <html>

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[63]

 <body><h1>Not authenticated, please go away.</h1>
 </body></html>'''

 @cherrypy.expose
 def somepage(self):
 username=logon.checkauth('/logon',returntopage=True)
 return '''<html>
 <body><h1>This is some page.</h1>
 </body>
 </html>'''

if __name__ == "__main__":

 import os.path
 current_dir = os.path.dirname(os.path.abspath(__file__))

 cherrypy.quickstart(Root(),config={
 '/': {'tools.sessions.on': True }
 }
)

If you now run logonapp.py, a very simple applicati on is available on port 8080. It presents
the user with a logon screen when the top level page http://localhost:8080/ is
accessed. An example is shown in the following illustrati on:

If a correct username/password combinati on is entered, a welcome message is shown.
If an unknown username or wrong password is entered, the user is redirected to
http://localhost:8080/goaway.

The somepage() method (highlighted) returns a page with (presumably) some useful
content. If the user is not yet authenti cated, the logon screen is shown and upon entering
the correct credenti als, the user is directed back to http://localhost:8080/somepage.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[64]

The complete tree of web pages within the logon sample applicati on and the possible paths
the user may pick through is shown next:

Logon + session ID vs. HTTP basic authenti cati on

 You may wonder why we choose not to reuse CherryPy's bundled auth_basic
tool that off ers basic authenti cati on (for more informati on on this tool, see
http://www.cherrypy.org/wiki/BuiltinTools#tools.auth_
basic). If all we wanted was to check whether a user is allowed access to a
single page, this would be a good choice. The basic authenti cati on is suffi cient to
authenti cate a user, but has no concept of a session. This means we lack a way
to store data that needs to be accessible when we process subsequent requests
by the same user. The sessions tool we use here does provide this additi onal
functi onality.

What just happened?
Part of the magic of logonapp.py is achieved by enabling the 'sessions' tool in CherryPy.
This is what is done by passing the tools.sessions.on key with True as a value to the
confi gurati on dicti onary for the quickstart() functi on .

However, most of the hard work in logonapp.py is actually performed by the module
logon:

Chapter3/logon.py

import cherrypy
import urllib.parse

def checkauth(logonurl="/", returntopage=False):
 returnpage=''

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[65]

 if returntopage:
 returnpage='?returnpage='
 + cherrypy.request.script_name
 + cherrypy.request.path_info

 auth = cherrypy.session.get('authenticated',None)
 if auth == None :
 raise cherrypy.HTTPRedirect(logonurl+returnpage)
 return auth

class Logon:
 base_page = '''
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<script type="text/javascript" src="/jquery.js" ></script>
<script type="text/javascript" src="/jquery-ui.js" ></script>
<style type="text/css" title="currentStyle">
 @import "/jquerytheme.css";
 @import "/static/css/logon.css";
</style>
</head>
<body id="logonscreen">
<div id="content">
%s
</div>
<script type="text/javascript">$("button").button({icons: {primary:
'ui-icon-power'}})</script>
</body>
</html>
'''

 logon_screen = base_page % '''
<form class="login" action="%s/logon" method="GET">
<fieldset>
<label for="username">Username</label>
<input id="username" type="text" name="username" />
<script type="text/javascript">$("#username").focus()</script>
<label for="password">Password</label>
<input id="password" type="password" name="password" />
<input type="hidden" name="returnpage" value="%s" />
<button type="submit" class="login-button" value="Log in">
Log in
</button>
</fieldset>

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[66]

</form>
'''

 not_authenticated =
 base_page % '''<h1>Login or password not correct</h1>'''

 def __init__(self, path="/logon",
 authenticated="/", not_authenticated="/"):
 self.path=path
 self.authenticated=authenticated
 self.not_authenticated=not_authenticated

 @staticmethod
 def checkpass(username,password):
 if username=='user' and password=='secret': return True
 return False

 @cherrypy.expose
 def index(self,returnpage=''):
 return Logon.logon_screen % (
 self.path,urllib.parse.quote(returnpage))

 @cherrypy.expose
 def logon(self,username,password,returnpage=''):
 returnpage = urllib.parse.unquote(returnpage)
 if Logon.checkpass(username,password):
 cherrypy.session['authenticated']=username
 if returnpage != '':
 raise cherrypy.InternalRedirect(returnpage)
 else:
 raise cherrypy.InternalRedirect(
 self.authenticated)
 raise cherrypy.InternalRedirect(self.not_authenticated)

 @cherrypy.expose
 def logoff(self,logoff):
 cherrypy.lib.sessions.expire()
 cherrypy.session['authenticated']=None
 raise cherrypy.InternalRedirect(self.not_authenticated)

The logon module implements a uti lity functi on checkauth() (highlighted). This functi on
is designed to be called from anywhere inside a CherryPy applicati on. If the user is already
authenti cated, it will return the username; otherwise it will redirect the user to a URL that
should present the user with a logon screen. If the returnpage parameter is true, this URL
is augmented with an extra parameter returnpage containing the URL of the page that
invoked checkauth(). The logon page (or rather the handler implementi ng it) should be
designed to redirect the user to the URL in this parameter if the authenti cati on is successful.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[67]

As we have seen, typical use for the checkauth() functi on would be to call it from every
page handler that serves content that requires authenti cati on.

checkauth() itself does just two things: First it determines the page to return to (if
 necessary) by concatenati ng the script_name and path_info att ribute s from the
cherrypy.request object that CherryPy makes available. The fi rst one contains the path
where a CherryPy tree is mounted, the last one contains the path within that tree. Together
they form the complete path to the handler that invoked this checkauth() functi on.

The second thing that checkauth() does is it determines whether cherrypy.session
(a dicti onary like Session object) contains an authenticated key. If it does, it returns the
associated value, if not, it redirects to the logon page.

The cherrypy.session variable is a cherrypy.lib.sessions.Session object
available to each request. It acts like a dicti onary and initi ally it is devoid of any keys. When
a value is assigned to the fi rst new key, a persistent object is created that is associated with
the session ID and upon fi nishing a request, the Session object is stored and its session
ID is passed as the value of a session_id cookie in the response headers. If a subsequent
request contains a request header with a session_id cookie, a Session object with
the corresponding session ID is retrieved from storage, making any saved key/value pairs
available again.

The default storage scheme is to keep data in memory. This is fast and simple but has the
disadvantage that restarti ng the CherryPy server will discard this data, eff ecti vely expiring all
sessions. This might be ok for short-lived sessions, but if you need a more persistent soluti on,
it is possible to store the session informati on as fi les (by setti ng the tools.sessions.
storage_type confi gurati on key to "file") or even to a database backend. For more
about sessions, see CherryPy's online documentati on on the subject at http://cherrypy.
org/wiki/CherryPySessions.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[68]

The various steps in the communicati on between the client and the server during a session
are shown in the following illustrati on:

The bulk of the logon module is provided by the Logon class . It implements several
methods (these methods are highlighted in the code listed on the previous pages as well) :

  __init__() will initi alize a Logon instance to hold the path to the point where this
Logon instance is mounted on the tree of handlers, together with the default URLs
to redirect to successful and unsuccessful authenti cati on.

  checkpass() is a stati c functi on that takes a username and a password and returns
True if these are a matching pair. It is designed to be overridden by a more suitable
defi niti on.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[69]

Logon also exposes three handler methods to the CherryPy engine:

  index() is a method that will serve the actual logon screen

  logon() is passed the username and password when the user clicks on the logon
butt on

  logoff() will expire a session, causing subsequent calls to checkauth() to
redirect the user to the logon screen

 The Logon class also contains a number of class variables to hold the HTML presented by the
index() method. Let's look at the methods in detail.

And what about security? The Logon class we design here has no faciliti es
to prevent people from eavesdropping if they have access to the wire that
transports the HTTP traffi c. This is because we transmit the passwords
unencrypted. We may implement some sort of encrypti on scheme ourselves, but
if your design requires some form of protecti on, it is probably bett er and easier
to communicate over a secure HTTPS channel. CherryPy may be confi gured to
use HTTPS instead of HTTP. More on it can be found at: http://cherrypy.
org/wiki/ServerObject.

Pop quiz – session IDs

1. If the client sends a new session ID again and again, wouldn't that fi ll up all storage
on the server eventually?

2. If the client has cookies disabled, what happens to the generati on of session IDs?

a. The server will stop generati ng new session IDs, returning the same ID
repeatedly

b. The server will stop returning new session IDs

c. The server will keep generati ng and returning new session IDs

Serving a logon screen
 The index() method serves the HTML to present the user with a logon screen. At its
core, this HTML is a <form> element with three <input> elements : a regular text input
where the user may enter his/her username, a password input (that will hide the characters
that are entered in this fi eld), and an <input> element that has a hidden att ribute. The
<form> element has an action att ribute that holds the URL of the script that will process
the variables in the form when the user clicks the logon butt on. This URL is constructed to
point to the logon() method of our Logon class by appending /logon to the path that the
Logon instance was mounted on in the CherryPy tree.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[70]

The <input> element we marked as hidden is initi alized to hold the URL that the user will
be redirected to when logon() authenti cates the user successfully.

The form that makes up the logon screen also contains a ti ny piece of JavaScript:

$("#username").focus()

 It uses jQuery to select the input element that will receive the username and gives it focus.
By placing the cursor in this fi eld, we save the user the eff ort of pointi ng and clicking on
the username fi eld fi rst before the username can be entered. Now he can start typing right
away. Note that this code snippet is not placed near the end of the document, but right aft er
the <input> element to ensure executi on as soon as the <input> element is defi ned. The
logon page is so small that this might be irrelevant, but on slow loading pages, key presses
might be misdirected if we waited to shift the focus unti l the whole page had loaded.

Be aware that the logon form we construct here has a <form> element with an
action="GET" att ribute. This works fi ne, but has a disadvantage: parameters
passed with a GET method are appended to the URL and may end up in the log
fi les of the server. This is convenient when debugging, but you might not want
that for a producti on environment, as this might leave passwords exposed.
The action att ribute can be changed to POST though without any change
to the Python code handling the request as CherryPy takes care of the details.
Parameters passed to a POST method are not logged, so a POST method might
be bett er suited to a password verifi cati on request.

Setting up a session
 The logon() method is passed the contents of all the <input> elements in the form as
parameters. The username and password parameter s are passed to the checkpass()
method and if the user's credenti als are right, we establish a session by associati ng the
username with the authenti cated key in our session storage with cherrypy.session['au
thenticated']=username.

This will have the eff ect that every response sent to the browser will contain a cookie with a
session ID and any subsequent request to CherryPy that contains this cookie again will cause
the handler for that request to have access to this same session storage.

Aft er successful authenti cati on, logon() redirects the user to the return page if one was
passed to it or to the default page passed to it upon initi alizati on of the Logon instance. If
 authenti cati on fails, the user is redirected to a non-authorized page.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[71]

Expiring a session
 The logoff() method is provided to off er a possibility to acti vely expire a session. By
default, a session expires aft er 60 minutes, but the user might want to sign off explicitly,
either to make sure that no one sneaks behind his keyboard and conti nues in his name or
to log on as a diff erent persona. Therefore, you will fi nd, in most applicati ons, a discrete
logoff butt on, oft en positi oned in the upper-right corner. This butt on (or just a link) must
point to the URL that is handled by the logoff() method and will cause the session to be
invalidated immediately by removing all session data.

Note that we have to take special precauti ons to prevent the browser from caching the
response from the logoff() method, otherwise it may simply redisplay the response from
the last ti me the logoff butt on was pressed without actually causing logoff() to be called.
Because logoff() always raises an InternalRedirect excepti on , the actual response
comes from a diff erent source. This source, for example, the goaway() method in the Root
class must be confi gured to return the correct response headers in order to prevent the web
browser from caching the result. This is accomplished by confi guring the goaway() method
in logonapp.py with CherryPy's expires tool like the following:

Chapter3/logonapp.py

@cherrypy.expose
 def goaway(self):
 return '''
<html><body>
<h1>Not authenticated, please go away.</h1>
</body></html>
'''
 goaway._cp_config = {

 'tools.expires.on':True,
 'tools.expires.secs':0,
 'tools.expires.force':True}

The highlighted line is where we confi gure the handler (the goaway() method) to set
expirati on headers in the response by assigning a confi gurati on dicti onary to the _cp_
config variable.

Assigning to a variable that is part of a functi on might seem odd, but functi ons
and methods in Python are just objects and any object may have variables. New
variables might be assigned to an object even aft er its defi niti on. Upon calling a
handler, CherryPy checks if that handler has a _cp_config variable and acts
accordingly. Note that the @cherrypy.expose decorator also merely sets the
expose variable on the handler to true.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[72]

Have a go hero – adding a logon screen to the spreadsheet application

 In the previous chapter, we had created an applicati on that serves a spreadsheet. If you
wanted to serve this spreadsheet only to authenti cated users, what would we have to
change to use the logon module presented in the previous secti on?

Hint: You need to do three things, one involves mounti ng an instance of the Logon class on
the CherryPy tree, the other is changing the handler that serves the spreadsheet to check for
authenti cati on, and fi nally you need to enable sessions.

An example implementati on is available as spreadsheet3.py.

Designing a task list
 Now that we have looked at ways to authenti cate the users, let's look at the implementati on
of the task list itself.

 A task list would be unusable if its contents evaporated once the browser was closed. We
therefore need some way to persistently store these task lists. We could use a database
and many of the example applicati ons in this book do use a database to store data. For
this applicati on, we will opt to use the fi lesystem as a storage medium, simply storing
tasks as fi les containing informati on about a task, with separate directories for each user.
If we dealt with huge amounts of users or very long task lists, the performance of such an
implementati on probably wouldn't suffi ce, but by using simple fi les for storage, we won't
have to design a database schema which saves us quite some ti me.

By limiti ng ourselves to fairly short task lists, our user interface may be kept relati vely simple
as there will be no need for paginati on or searching. This doesn't mean the user interface
shouldn't be easy to use! We will incorporate jQuery UI's datepicker widget to assist the user
with choosing dates and will add toolti ps to user interface components to provide a shallow
learning curve of our task list applicati on.

 The fi nal requirements more or less defi ne what we understand a task to be and what we are
supposed to do with it: A task has a descripti on and a due date and because it can be marked
as done, it should be able to store that fact as well. Furthermore, we limit this applicati on
to adding and deleti ng tasks. We explicitly do not provide any way to alter a task, except for
marking it as done.

Time for action – running tasklist.py
 Let's fi rst have a look at what the applicati on looks like:

1. Start up tasklist.py from the code directory of this chapter.

2. Point your browser to http://localhost:8080.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[73]

3. In the logon screen, enter user as the username and secret as the password.

4. You are now presented with a rather stark looking and empty task list:

You should be able to add a new task by entering a date and a descripti on in the input boxes
and pressing the add butt on. Entering a date is facilitated by jQuery UI's datepicker widget that
will pop up once you click the input fi eld for the date, as shown in the following screenshot:

Once you have added one or more tasks, you can now either delete those tasks by clicking
the butt on with the litt le trash can icon or mark it as done by clicking the butt on with the
check icon. Tasks marked as done have a slightly diff erent background color depending on
the chosen theme. If you mark a task as done, its completi on date will be today. You can
select a diff erent date by clicking on the completi on date of a task (displayed as None for
an unfi nished task). It will present you with yet another datepicker, aft er which the selected
date will be stored as the completi on date once the done butt on is clicked. The following
screenshot gives an impression of a task list with numerous items:

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[74]

There is some hidden magic that might not be immediately obvious. First of all, all the tasks
are sorted according to their Due date. This is done on the client-side with the help of some
JavaScript and a jQuery plugin, as we will see in the secti on on JavaScript. Also accomplished
with some JavaScript are the toolti ps. Both hovering toolti ps on every butt on and the inline
help text inside the <input> elements are added with the same script. We will examine this
in depth.

What just happened?
tasklist.py is rather straightf orward as it delegates most work to two modules: the
logon module that we encountered in the previous secti ons and a task module that deals
with displaying and manipulati ng task lists.

The highlighted line in the following code shows the core of the applicati on. It starts up
CherryPy with a suitable confi gurati on. Note that we enabled the sessions tool, so that
we can actually use the logon module. Also, we construct the path to jQuery UI's theme
stylesheet in such a way that it depends on the theme variable to make changing the
applicati on's theme simple (second highlight).

The instance of the Root class that we pass to quickstart() creates a simple tree:

/
/logon
/logon/logon
/logon/logoff
/task
/task/add
/task/mark

 The top level URL / returns the same content as /login by calling the index() method of
the Logon instance. We could have used an InternalRedirect excepti on, but this is just
as simple. The paths starti ng with /task are all handled by an instance of the Task class:

Chapter3/tasklist.py

import cherrypy

import os.path

import logon
import task

current_dir = os.path.dirname(os.path.abspath(__file__))

theme = "smoothness"

class Root(object):
 task = task.Task(logoffpath="/logon/logoff")

 logon = logon.Logon(path="/logon",

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[75]

 authenticated="/task",
 not_authenticated="/")

 @cherrypy.expose
 def index(self):
 return Root.logon.index()

if __name__ == "__main__":

 cherrypy.quickstart(Root(),config={
 '/':
 { 'log.access_file':os.path.join(current_dir,"access.log"),
 'log.screen': False,
 'tools.sessions.on': True
 },
 '/static':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,"static")
 },
 '/jquery.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,
 "static","jquery","jquery-1.4.2.js")
 },
 '/jquery-ui.js':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,
 "static","jquery","jquery-ui-1.8.1.custom.min.js")
 },
 '/jquerytheme.css':
 { 'tools.staticfile.on':True,
 'tools.staticfile.filename':os.path.join(current_dir,
 "static","jquery","css",theme,"jquery-ui-1.8.4.custom.css")
 },
 '/images':
 { 'tools.staticdir.on':True,
 'tools.staticdir.dir':os.path.join(current_dir,
 "static","jquery","css",theme,"images")
 }
 })

Python: the task module
 The task module is implemented in the fi le task.py. Let's look at the parts that make up
this fi le.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[76]

Time for action – implementing the task module
Have a look at the Python code in task.py:

Chapter3/task.py

import cherrypy
import json

import os
import os.path
import glob
from configparser import RawConfigParser as configparser
from uuid import uuid4 as uuid
from datetime import date

import logon

This fi rst part illustrates Python's "batt eries included" philosophy nicely: besides the
cherrypy module and our own logon module , we need quite a bit of specifi c functi onality.
For example, to generate unique identi fi ers, we use the uuid module and to manipulate
dates, we use the datetime module . All of this functi onality is already bundled with Python,
saving us an enormous amount of development ti me. The next part is the defi niti on of the
basic HTML structure that will hold our task list:

Chapter3/task.py

base_page = '''
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
<head>
<script type="text/javascript" src="/jquery.js" ></script>
<script type="text/javascript" src="/jquery-ui.js" ></script>
<style type="text/css" title="currentStyle">
 @import "/static/css/tasklist.css";
 @import "/jquerytheme.css";
</style>
<script type="text/javascript" src="/static/js/sort.js" ></script>
<script type="text/javascript" src="/static/js/tooltip.js" ></script>
<script type="text/javascript" src="/static/js/tasklist.js" ></script>
</head>
<body id="%s">
<div id="content">
%s
</div>
</body>

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[77]

</html>
'''

 Again the structure is simple, but besides the themed stylesheet needed by jQuery UI (and
reused by the elements we add to the page), we need an additi onal stylesheet specifi c to our
task list applicati on. It defi nes specifi c layout properti es for the elements that make up our
task list (fi rst highlight). The highlighted <script> elements show that besides the jQuery
and jQuery UI libraries, we need some additi onal libraries. Each of them deserves some
explanati on.

What just happened?
The fi rst JavaScript library is sort.js, a code snippet from James Padolsey (http://
james.padolsey.com/tag/plugins/) that provides us with a plugin that allows us to
sort HTML elements. We need this to present the list of tasks sorted by their due date.

The second is tooltip.js that combines a number of techniques from various sources to
implement toolti ps for our butt ons and inline labels for our <input> elements. There are
a number of toolti p plugins available for jQuery, but writi ng our own provides us with some
valuable insights so we will examine this fi le in depth in a later secti on.

The last one is tasklist.js . It employs all the JavaScript libraries and plugins to actually
style and sort the elements in the task list.

The next part of task.py determines the directory we're running the applicati on from. We
will need this bit of informati on because we store individual tasks as fi les located relati ve
to this directory. The gettaskdir() functi on takes care of determining the exact path for
a given username (highlighted). It also creates the taskdir directory and a sub directory
with a name equal to username, if these do not yet exist with the os.makedirs() functi on
(noti ce the fi nal 's' in the functi on name: this one will create all intermediate directories as
well if they do not yet exist):

Chapter3/task.py

current_dir = os.path.dirname(os.path.abspath(__file__))

def gettaskdir(username):
 taskdir = os.path.join(current_dir,'taskdir',username)
 # fails if name exists but is a file instead of a directory
 if not os.path.exists(taskdir):
 os.makedirs(taskdir)
 return taskdir

 The Task class is where the handlers are defi ned that CherryPy may use to show and
manipulate the task list. The __init__() method stores a path to a locati on that provides
the user with a possibility to end a session. This path is used by other methods to create a
suitable logoff butt on.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[78]

The index() method will present the user with an overview of all his/her tasks plus an
extra line where a new task can be defi ned. As we have seen, each task is adorned with
butt ons to delete a task or mark it as done. The fi rst thing we do is check whether the user is
authenti cated by calling the checkauth() functi on from our logon module (highlighted). If
this call returns, we have a valid username, and with that username, we fi gure out where to
store the tasks for this user.

Once we know this directory, we use the glob() functi on from the Python glob module to
retrieve a list of fi les with a .task extension. We store that list in the tasklist variable:

Chapter3/task.py

class Task(object):

 def __init__(self,logoffpath="/logoff"):
 self.logoffpath=logoffpath

 @cherrypy.expose
 def index(self):
 username = logon.checkauth()
 taskdir = gettaskdir(username)
 tasklist = glob.glob(os.path.join(taskdir,'*.task'))

Next, we create a tasks variable that will hold a list of strings that we will construct when
we iterate over the list of tasks. It is initi alized with some elements that together form the
header of our task list. It contains, for example, a small form with a logoff butt on and the
headers for the columns above the list of tasks. The next step is to iterate over all fi les that
represent a task (highlighted) and create a form with suitable content together with delete
and done butt ons.

Each .task fi le is structured in a way that is consistent with Microsoft Windows .ini fi les. Such
fi les can be manipulated with Python's configparser module. The .task fi le is structured as
a single [task] secti on with three possible keys. This is an example of the format:

[task]
description = something
duedate = 2010-08-26
completed = 2010-08-25

When we initi alize a configparser object, we pass it a dicti onary with default values
in case any of these keys is missing. The configparser will read a fi le when we pass
an open fi le descriptor to its readfp() method . The value associated with any key in a
given secti on may then be retrieved with the get() method that will take a secti on and
a key as parameters. If the key is missing, it supplies the default if that was provided upon
initi alizati on. The second highlighted line shows how this is used to retrieve the values for
the description key.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[79]

Next, we construct a form for each .task fi le. It contains read-only <input> elements to
display the Due date, Descripti on, and the completi on date plus butt ons to delete the task or
mark it as done. When these butt ons are clicked the contents of the form are passed to the /
task/mark URL (handled by the mark() method). The method needs to know which fi le to
update. Therefore, it is passed a hidden value: the basename of the fi le. That is, the fi lename
without any leading directories and stripped of its .task extension:

Chapter3/task.py

 tasks = [
'''
<div class="header">
Tasklist for user %s
 <form class="logoff" action="%s" method="GET">
 <button type="submit" name="logoffurl"
 class="logoff-button" value="/">Log off
 </button>
 </form>
</div>
'''%(username,self.logoffpath),
'''
<div class="taskheader">
 <div class="left">Due date</div>
 <div class="middle">Description</div>
 <div class="right">Completed</div>
</div>
''','<div id="items" class="ui-widget-content">']

 for filename in tasklist:
 d = configparser(
 defaults={'description':'',
 'duedate':'',
 'completed':None})
 id = os.path.splitext(os.path.basename(filename))[0]
 d.readfp(open(filename))
 description = d.get('task','description')
 duedate = d.get('task','duedate')
 completed = d.get('task','completed')
 tasks.append(
'''
<form class="%s" action="mark" method="GET">
 <input type="text" class="duedate left"
 name="duedate" value="%s" readonly="readonly" />
 <input type="text" class="description middle"
 name="description" value="%s" readonly="readonly" />

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[80]

 <input type="text" class="completed right editable-date tooltip"
 title="click to select a date, then click done"
 name="completed" value="%s" />
 <input type="hidden" name="id" value="%s" />
 <button type="submit" class="done-button"
 name="done" value="Done" >Done
 </button>
 <button type="submit" class="del-button"
 name="delete" value="Del" >Del
 </button>
</form>
'''%('notdone' if completed==None else 'done',
 duedate,description,completed,id))
 tasks.append(
'''
<form class="add" action="add" method="GET">
 <input type="text" class="duedate left editable-date tooltip"
 name="duedate" title="click to select a date" />
 <input type="text" class="description middle tooltip"
 title="click to enter a description" name="description"/>
 <button type="submit" class="add-button"
 name="add" value="Add" >Add
 </button>
</form>
</div>
''')
 return base_page%('itemlist',"".join(tasks))

Finally, we append one extra form with the same type of input fi elds for Due date and
Descripti on but this ti me, not marked as read-only. This form has a single butt on that will
submit the contents to the /task/add URL. These will be handled by the add() method.
The actual content returned by the index() method consists of all these generated lines
joined together and embedded in the HTML of the base_page variable.

Adding new tasks
 New tasks are created by the add() method . Besides the value of the add butt on (which
is not relevant), it will take a description and a duedate as parameters. To prevent
accidents, it fi rst checks if the user is authenti cated, and if so, it determines what the
taskdir for this user is.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[81]

We are adding a new task so we want to create a new fi le in this directory. To guarantee
that it has a unique name, we construct this fi lename from the path to this directory and a
globally unique ID object provided by Python's uuid() functi on from the uuid module. The
.hex() method of a uuid object returns the ID as a long string of hexadecimal numbers
that we may use as a valid fi lename. To make the fi le recognizable to us as a task fi le, we
append the .task extension (highlighted).

Because we want our fi le to be readable by a configparser object, we will create it with a
configparser object to which we add a task secti on with the add_section() method
and description and duedate keys with the set() method. Then we open a fi le for
writi ng and use the open fi le handle to this fi le within a context manager (the with clause),
thereby ensuring that if anything goes wrong when accessing this fi le, it will be closed and
we will proceed to redirect the user to that list of tasks again. Note that we use a relati ve
URL consisti ng of a single dot to get us the index page. Because the add() method handles
a URL like /task/add redirecti ng to '.' (the single dot), will mean the user is redirected to /
task/, which is handled by the index() method:

Chapter3/task.py

 @cherrypy.expose
 def add(self,add,description,duedate):
 username = logon.checkauth()
 taskdir = gettaskdir(username)
 filename = os.path.join(taskdir,uuid().hex+'.task')
 d=configparser()
 d.add_section('task')
 d.set('task','description',description)
 d.set('task','duedate',duedate)
 with open(filename,"w") as file:
 d.write(file)
 raise cherrypy.InternalRedirect(".")

Deleting a task
 Deleti ng or marking a task as done are both handled by the mark() method. Besides an ID
(the basename of an existi ng .task fi le), it takes duedate, description, and completed
parameters. It also takes opti onal done and delete parameters, which are set depending on
whether the done or delete butt ons are clicked respecti vely.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[82]

Again, the fi rst acti ons are to establish whether the user is authenti cated and what the
corresponding task directory is. With this informati on, we can construct the fi lename we will
act on. We take care to check the validity of the id argument. We expect it to be a string
of hexadecimal characters only and one way to verify this is to convert it using the int()
functi on with 16 as the base argument. This way, we prevent malicious users from passing
a fi le path to another user's directory. Even though it is unlikely that a 32 character random
string can be guessed, it never hurts to be careful.

The next step is to see if we are acti ng on a click on the done butt on (highlighted in the
following code). If we are, we read the fi le with a configparser object and update its
completed key.

The completed key is either the date that we were passed as the completed parameter
or the current date if that parameter was either empty or None. Once we have updated the
configparser object, we write it back again to the fi le with the write() method.

Another possibility is that we are acti ng on a click on the delete butt on; in that case, the
delete parameter is set. If so, we simply delete the fi le with the unlink() functi on from
Python's os module:

Chapter3/task.py

 @cherrypy.expose
 def mark(self,id,duedate,description,
 completed,done=None,delete=None):
 username = logon.checkauth()
 taskdir = gettaskdir(username)
 try:
 int(id,16)
 except ValueError:
 raise cherrypy.InternalRedirect(self.logoffpath)
 filename = os.path.join(taskdir,id+'.task')
 if done=="Done":
 d=configparser()
 with open(filename,"r") as file:
 d.readfp(file)
 if completed == "" or completed == "None":
 completed = date.today().isoformat()
 d.set('task','completed',completed)
 with open(filename,"w") as file:
 d.write(file)
 elif delete=="Del":
 os.unlink(filename)
 raise cherrypy.InternalRedirect(".")

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[83]

JavaScript: tasklist.js
The butt ons we present the end user need to be confi gured to respond to clicks in an
appropriate manner and it would be nice if these butt ons showed some intuiti ve icons as
well. This is what we will take care of in tasklist.js .

Time for action – styling the buttons
The work done by tasklist.js is mainly concerned with styling the <button> elements
and adding toolti ps and inline labels to <input> elements. The results so far are shown in
the following screenshot:

What just happened?
As can be seen in the fi rst line of tasklist.js (code starts on the next page), the work
to be done is scheduled aft er loading the complete document by passing it to jQuery's
$(document).ready() functi on.

The fi rst step is to add to any element with a header class the ui-widget and ui-
widget-header classes as well. This will cause these elements to be styled in a way that is
consistent with the chosen theme.

Then we confi gure the add butt on (or rather any element with the add-button class) as
a jQuery UI butt on widget. The opti on object passed to it will confi gure it to show no text,
but just a single icon depicti ng a thick plus sign. We also add an extra functi on to the click
handler of the butt on that checks any element marked with the inline-label class to
see if its contents are identi cal to the contents of its ti tle att ribute. If that is the case, we set
the contents to the empty string, as this indicates that the user hasn't fi lled in anything in
this element and we do not want to store the text of the inline label as the content of our
new task (more about this in the secti on on toolti ps). Note that we do nothing to prevent
propagati on of the click event, so if this butt on is of the submit type (and our add butt on is)
the submit acti on will sti ll be performed.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[84]

All elements with the del-button class (highlighted) are then styled with an icon of a trash
can. The butt ons also receive an extra click handler that will remove the disabled att ribute
from their siblings (the input fi elds in the same form) to make sure the submit acti on will
receive the contents even from fi elds that are marked as disabled.

Next, the other <button> elements are adorned with an appropriate icon and to any text or
password <input> element we add a textinput class to mark it for the toolti p library.

In the second highlighted line, we encounter jQuery UI's datepicker widget. The datepicker
widget greatly simplifi es entering dates for the user and is now more or less a staple item
in any web applicati on or website that asks the user to enter a date. jQuery UI's datepicker
is very straightf orward to use, yet comes with a host of confi gurati on opti ons (all of them
documented at http://jqueryui.com/demos/datepicker/).

We use the dateFormat opti on to confi gure the datepicker to store dates as YYYY-MM-DD.
Datepicker has a number of predefi ned formats and this one happens to be an internati onal
standard as well as a suitable format to sort dates in a simple way. We also confi gure the
datepicker to call a functi on when the user closes the datepicker. This functi on removes any
inline-label class, preventi ng the newly entered date to appear in the colors associated
with any inline label (as we see later, when we look at tasklist.css, we style the colors of
any element with an inline-label class in a disti nct way).

Earlier, we indicated that we wanted to present the list of tasks ordered by their due date.
We therefore apply the sort() plugin from sort.js to all <input> elements with a
duedate class. sort() takes two arguments. The fi rst one is a comparison functi on that is
passed two elements to compare. In our case, that will be <input> elements that contain
a date in the YYYY-MM-DD format, so we can simply compare the values of these elements
as text and return plus or minus one. The second argument is a functi on that takes no
arguments and should return the element to be sorted. The input element with the due
date is available as the this variable within this functi on and we use it to return the parent
of the input element. This parent will be the <form> element that encloses it and because
we represent each task as a form, we want those forms to be sorted, not just the <input>
elements inside these forms.

 The last set of acti ons in tasklist.js adds a disabled att ribute to any <input> element
within an element that has a done class and disables any done butt on. This will ensure that
tasks marked as done cannot be altered:

Chapter3/tasklist.js

$(document).ready(function(){
 $(".header").addClass("ui-widget ui-widget-header");

 $(".add-button").button(
 {icons:{primary: 'ui-icon-plusthick' },

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[85]

 text:false}).click(function(){
 $(".inline-label").each(function() {
 if($(this).val() === $(this).attr('title')) {
 $(this).val('');
 };
 })
 });

 $(".del-button").button(
 {icons:{primary: 'ui-icon-trash' },
 text:false}).click(function(){
 $(this).siblings("input").removeAttr("disabled");
 });

 $(".done-button").button({icons: {primary:'ui-icon-check'},
 text:false});
 $(".logoff-button").button({icons: {primary:'ui-icon-closethick'},
 text:false});
 $(".login-button").button({icons: {primary:'ui-icon-play'},
 text:false});
 $(":text").addClass("textinput");
 $(":password").addClass("textinput");

 $(".editable-date").datepicker({
 dateFormat: $.datepicker.ISO_8601,
 onClose: function(dateText,datePicker){
 if(dateText != ''){$(this).removeClass("inline-label");}}
 });

 $("#items form input.duedate").sort(
 function(a,b){return $(a).val() > $(b).val() ? 1 : -1;},
 function(){ return this.parentNode; }).addClass(
 "just-sorted");

 $(".done .done-button").button("option", "disabled", true);
 $(".done input").attr("disabled","disabled");

});

JavaScript: tooltip.js
tooltip.js is a bit of a misnomer as its most interesti ng part is not about toolti ps but
inline labels. Inline labels are a way to convey helpful informati on not by means of a hovering
toolti p, but by putti ng text inside text input elements. This text then disappears when the
user clicks the input fi eld and starts typing. There are many implementati ons to be found on
the web, but the most clear and concise one I found is from http://trevordavis.net/
blog/tutorial/jquery-inline-form-labels/.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[86]

Time for action – implementing inline labels
Take a look again at the screenshot of the list of tasks:

The highlighted parts show what we mean by inline labels. The input fi elds display some
helpful text to indicate their use and when we click such a fi eld, this text will disappear and
we can enter our own text. If we abort the input by clicking outside the input fi eld when we
have not yet entered any text, the inline label is shown again.

What just happened?
tooltip.js shows a number of important concepts: First how to apply a functi on to each
member of a selecti on (highlighted). In this case, we apply the functi on to all <input>
elements that have a title att ribute. Within the functi on passed to the each() method,
the selected <input> element is available in the this variable. If the content of an
<input> element is completely empty, we change its content to that of the title att ribute
and add the class inline-label to the <input> element. That way, we can style the text
of an inline label diff erently than the regular input text if we like, for example, a bit lighter to
make it stand out less.

The second concept shown is binding to the focus and blur events. When the user clicks an
<input> element or uses the Tab key to navigate to it, it gains focus. We can act upon this
event by passing a functi on to the focus() method . In this functi on, the <input> element
that gains focus is again available in the this variable and we check if the content of this
<input> element is equal to the content of its title att ribute. If this is true, the user
hasn't yet changed the content, so we empty this element by assigning an empty string to it
(highlighted).

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[87]

The same line shows another important concept in jQuery, that of chaining. Most jQuery
methods (like val() in this example) return the selecti on they act upon, allowing additi onal
methods to be applied to the same selecti on. Here we apply removeClass() to remove the
inline-label class to show the text the user is typing in the regular font and color for this
<input> element.

We also act on losing focus (commonly referred to as blurring), for example, when the user
clicks outside the <input> element or uses the Tab key to navigate to another element. We
therefore pass a functi on to the blur() method . This functi on checks whether the content of
the <input> element is empty. If so, then the user hasn't entered anything and we insert the
content of the title att ribute again and mark the element with an inline-label class.

Chapter3/toolti p.js

$(document).ready(function() {
 $('input[title]').each(function() {
 if($(this).val() === '') {
 $(this).val($(this).attr('title'));
 $(this).addClass('inline-label');
 }

 $(this).focus(function() {
 if($(this).val() === $(this).attr('title')) {
 $(this).val('').removeClass('inline-label');
 }
 });

 $(this).blur(function() {
 if($(this).val() === '') {
 $(this).val($(this).attr('title'));
 $(this).addClass('inline-label');
 }
 });
 });
});

CSS: tasklist.css
 Without some additi onal styling to tweak the layout, our tasklist applicati on would look a bit
disheveled, as seen before.

Our main challenges are aligning all columns and moving all butt ons consistently to the
right. All elements in our HTML markup that make up the columns are marked with a class to
indicate that they belong in the left , middle, or right column. All we have to do to align these
columns is to set their width based on their class (highlighted).

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[88]

The largest part of the rest of tasklist.css is concerned with either fl oati ng elements to
the right (like butt ons) or to the left (containers, like the <div> element with the id att ribute
content). Most containers are not only fl oated to the left , but also explicitly set to a width of
100 percent to make sure they fi ll the element they are contained in themselves. This is not
always necessary to positi on them correctly, but if we do not take care, the background color of
the enclosing element might show if an element doesn't fi ll its enclosing element:

Chapter3/tasklist.css

input[type="text"] {
 font-size:1.1em;
 margin:0;
 border:0;
 padding:0;}

.left, .right { width: 8em; }

.middle { width: 20em;}

form {
 float:left;
 border:0;
margin:0;
padding:0;
 clear:both;
 width:100%; }

form.logoff{
float:right;
 border:0;
margin:0;
padding:0;
 clear:both;
width:auto;
 font-size:0.5em;}

#items { float:left; clear:both; width:100%; }

.header { width:100%; }

.taskheader, .header, #content{ float:left; clear:both;}

.taskheader div { float:left; font-size:1.1em; font-weight:bold;}

.logoff-button, .done-button, .del-button, .add-button { float:right;}

.done-button, .add-button, .del-button { width: 6em; height: 1.1em; }

#content { min-width:900px;}

 Note that our stylesheet only deals with measurements and font sizes. Any coloring is
applied by the chosen jQuery UI theme. With the styles applied, the applicati on looks a fair
bit ti dier:

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 3

[89]

Pop quiz – styling screen elements

1. In tasklist.js, we explicitly confi gured all butt ons to show just an icon without
any text. But what if we wanted to show both an icon and some text, what would
we do?

2. If we didn't set the width of the form that makes up a task explicitly to 100 percent,
what would the biggest disadvantage be?

Have a go hero – changing the date format of a datepicker

To display the date as ISO 8701 (or YYYY-MM-DD) isn't everybody's idea of a readable date
format. For many people, the default mm/dd/yy is far more readable. How would you
change tasklist.js to display the tasks with this default date format? Hint: it isn't enough
to leave out the dateFormat opti on when calling the datepicker() plugin, you also need
to change the comparator functi on to sort the tasks in a suitable manner.

For the impati ent or curious readers: a sample implementati on is available as tasklist2.
js (start up tasklist2.py to see the eff ect).

Have a go hero – serving a task list from a different URL

One way to measure how reusable a piece of code is, is by using it in a situati on that you did
not yet have in mind when you designed it. Of course, that doesn't mean our task module
should be able to functi on as a control applicati on for an automobile constructi on plant,
but what if we would like it to be part of a larger suite of applicati ons served from the same
root? Would we have to change anything?

Say we want to serve the tasklist applicati on from the URL /apps/task instead of /task,
what would we have to change?

Hint: In CherryPy, you can create a tree of URLs by assigning object instances to class
variables of the object instance that is passed to the quickstart() method.

A possible implementati on can be found in tasklistapp.py.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Tasklist I: Persistence

[90]

Summary
We have learned a lot in this chapter about session management and storing persistent
informati on on the server. Specifi cally, we saw how to design a tasklist applicati on and
implement a logon screen. What a session is and how this allows us to work with diff erent
users at the same ti me and how to interact with the server, and add or delete tasks. We also
learned how to make entering dates att racti ve and simple with jQuery UI's datepicker widget
and how to style butt on elements and provide toolti ps and inline labels to input elements.

Now that you know a litt le bit more about storing data on the server, you might wonder if
storing informati on in plain fi les on the server fi lesystem is the most convenient soluti on. In
many cases, it isn't and a database might be more suitable—which is the topic of the next
chapter.

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book

Where to buy this book
You can buy Python 3 Web Development Beginner’s Guide from the Packt Publishing

website: http://www.packtpub.com/python-3-web-development-
beginners-guide/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

community experience dist i l led

www.PacktPub.com

For More Information:
www.packtpub.com/python-3-web-development-beginners-guide/book

http://www.packtpub.com/python-3-web-development-beginners-guide/book
http://www.packtpub.com/Shippingpolicy

