CherryPy Documentation
Release 11.0.1.dev70+g1b979¢3.d20170814

CherryPy Team

Aug 14, 2017






Contents

Foreword 1
1.1 Why CherryPy? . . . . e e e e e e 1
1.2 Success STOTIeS . . . . o v v it e e e e e e e e e 2
Installation 5
2.1 Requirements . . . . . . v v vt e e e e e e e e e e e e e e e e e e e e e e e 5
2.2 Supported python version . . . . ... L. e e e 6
23 Installing . . . . .o e e e e e 6
2.4 RUNIt . . . L e e 7
Tutorials 9
3.1 Tutorial 1: A basic web application . . . . . . . . .. ... 10
3.2 Tutorial 2: Different URLSs lead to different functions . . . . . . ... ... ... ... ... ..... 10
3.3  Tutorial 3: My URLs have parameters . . . . . . . . . . o v v i vttt e e e e e 11
3.4 Tutorial 4: Submitthisform . . . . ... ... . 12
3.5 Tutorial 5: Track my end-user’s activity . . . . . . . . . . .. ... o e 13
3.6 Tutorial 6: What about my javascripts, CSS and images? . . . . . . . . ... .. ... ... ..... 14
3.7 Tutorial 7: Giveus aREST . . . . . . . . e 15
3.8  Tutorial 8: Make it smoother with Ajax . . . . . . . . . . . . o e 17
3.9 Tutorial 9: Dataisallmy life . . . .. . .. . . . e 20
3.10 Tutorial 10: Make it a modern single-page application with React.js . . . . . . ... ... ... ... 22
3.11 Tutorial 11: Organize my code . . . . . . . . . .. . ... e 26
Basics 29
4.1 The one-minute application example . . . . . . . . . ... oL 30
4.2 Hosting one or more applications . . . . . . . . ... oL 31
4.3 Log@ing . . . . oo i e e e 32
4.4 Configuring . . . . . . . e e e e e e e e e e e e e e e e 34
45 CooKies . . . . .o e 36
4.6 UsIN@ SESSIONS . . . . v v o it e e e e e e e e e e e e 37
477  Static content Serving . . . . . . . . .o e e e e e e e e e e 38
4.8 DealingwithJSON . . . . . . . L L 39
4.9 Authentication . . . . . . . .. L L e e 40
410 Favicon . . . ..o e e e 41
Advanced 43
5.1 Setaliases topage handlers . . . . . . . . . .. e e e 44




10

11

12

13

5.2 RESTful-style dispatching . . . . . . . . . . . . e e e e e e e e e

5.3 Errorhandling . . . . . . . .. e e e e e e
5.4 Streaming the response body . . . . . . . L. oL e e e e e e e e
5.5 Response timeouts . . . . . . . . . . ... o e e
5.6 Dealwithsignals . . . . . . . . e
5.7 SeCuring yOUI SEIVET . . . . v v v v vt v ettt et e e e e e e e e e e e
5.8 Multiple HTTP servers support . . . . . . v v v v v v e e i e e e e e e e e e e e e e e e
5.9 WSGISUpport . . . . o o e e e e e e e e e e e
5.10 WebSocket support . . . . . . L i e e e e e e e e e e e e e e e
S5.11 Database Support . . . . . o o L e e e e e e e e e e e e e e e e e e
5.12 HTML Templating support . . . . . . . o o ittt e e e e e e e e e e e e e e
5.13 Testing your application . . . . . . . . . . e e e e e e e e e e e e e e e e
Configure

6.1  Architecture . . . . . . . . . . i e e e e
6.2 Declaration . . . . . . . . e e e
6.3 NAMESPACES . . . v v v v e e e e e e e e e e e e e e e e e e e e e e
Extend

7.1 Server-wide functions . . . . . ... e e e
7.2 Per-request funCtions . . . . . . . . . oL e e e e e e e e e e e e
7.3 Tailored dispatchers . . . . . . . ...
7.4 Request body proCessors . . . . . . . o .. it e e e e e e e e e e e e e
Deploy

8.1 Runasadaemon . . . . . . . . . . . e e e e
8.2 Runasadifferentuser . . . . . . . . .. e e
83 PIDAiles . . . . . . e e e
8.4  Systemd socket activation . . . . . . . . . .. e e e e e e e e e e e e e e e e e e
8.5 Control via Supervisord . . . . . . ... e e e e e e e e e e
8.6 SSLSuUppOrt . . . . . e e e e e e e e e e e
87  WSGIServers . . . . . o o i e e e e e e e e e e
8.8 Virtual Hosting . . . . . . . . . . e e
8.9  ReVErse-proXyiNg . . . . v v v v v i i e e e e e e e e e e e e e e e e e e e e e
Support

9.1 Thaveaquestion . . . . . . . . . i i i ittt e e e e
9.2 Thavefoundabug . . . . . . . . . . e e e e e
9.3 Thaveafeature reqUeSt . . . . . . . . i i e e e e e e e e e e e e e e e e
0.4 TWanttOCONVETSE . . . v v v v v vt e e e e e e e e e e e e e e e e e e e e e e e
Contribute

10.1 StackOverflow . . . . . . . e
10.2 Filing Bug Reports . . . . . . . . .. e
10.3 Fixing Bugs . . . . . . e e e e e e
10.4 Writing Pull Requests . . . . . . . . . 0 e
Testing

Glossary

History

131 vILO.O . .o e e e
13.2 V1022 .o e e
133 vIO02.1 .« o e e e

63
64
70
73
74

75
76
76
76
77
77
78
79
82
83

85
85
85
85
86

87
87
87
&7
88

89

91




134 vI02.0 . .. e
13.5 VIOLL © oo
13.6 vIO.LO . .o oo
137 vI10.0.0 . . . o e
13.8 v9.0.0 . . . o e
13.9 vBO.1 . . o e
1310 v8.9.0 . o o o
1311 v8.8.0 . o o o
1312 v8.7.0 . o o o
1313 v8.6.0 . . o o e
1314 v8.5.0 . . o o e
1315 vB.A.0 . o o o
13,16 V831 « o o
1307 v83.0 . . o o
1318 vB.2.0 . o o o e e
1319 vB.L3 L o o e e
1320 vB.1.2 . o o o e
1321 V8.1« o
1322 v8.1.0 . . . o
1323 vB.0.1 . o o o e e
1324 vB.0.0 . . . . e
1325 V710 . o o
1326 v7.0.0 . . .
I327 vO.2.1 . o o o
1328 v6.2.0 . . . o o e
1320 vO.1.1 . L o e
1330 v6.1.0 . . . o o e
1331 v6.0.2 . o o
1332 v6.0.1 . .
1333 v6.0.0 . . . .
1334 v5.6.0 . . . . o e
1335 v5.5.0 . . o o e
1336 v5.4.0 . . o
1337 v5.3.0 . .
1338 v5.2.0 . . o
1339 v5. 1.0 . o o e e
1340 v5.0.1 . L Lo e
1341 v5.0.0 . . o o
1342 vA.0.0 . .
1343 v3.8.2 . .
1344 v3.8.0 . . .
1345 V3. 7.0 . o o o e
1346 v3.6.0 . . . . e
1347 v3.5.0 . . o
1348 v3.4.0 . . .
1349 v33.0 . .

14 Modules
14.1 cherrypy package . . . . . . o o i e e e e e e e e e e

Python Module Index







CHAPTER 1

Foreword

Why CherryPy?

CherryPy is among the oldest web framework available for Python, yet many people aren’t aware of its existence. One
of the reason for this is that CherryPy is not a complete stack with built-in support for a multi-tier architecture. It
doesn’t provide frontend utilities nor will it tell you how to speak with your storage. Instead, CherryPy’s take is to let
the developer make those decisions. This is a contrasting position compared to other well-known frameworks.

CherryPy has a clean interface and does its best to stay out of your way whilst providing a reliable scaffolding for you
to build from.

Typical use-cases for CherryPy go from regular web application with user frontends (think blogging, CMS, portals,
ecommerce) to web-services only.

Here are some reasons you would want to choose CherryPy:
1. Simplicity

Developing with CherryPy is a simple task. “Hello, world” is only a few lines long, and does not require the
developer to learn the entire (albeit very manageable) framework all at once. The framework is very pythonic;
that is, it follows Python’s conventions very nicely (code is sparse and clean).

Contrast this with J2EE and Python’s most popular and visible web frameworks: Django, Zope, Pylons, and
Turbogears. In all of them, the learning curve is massive. In these frameworks, “Hello, world” requires the
programmer to set up a large scaffold which spans multiple files and to type a lot of boilerplate code. CherryPy
succeeds because it does not include the bloat of other frameworks, allowing the programmer to write their web
application quickly while still maintaining a high level of organization and scalability.

CherryPy is also very modular. The core is fast and clean, and extension features are easy to write and plug in
using code or the elegant config system. The primary components (server, engine, request, response, etc.) are
all extendable (even replaceable) and well-managed.

In short, CherryPy empowers the developer to work with the framework, not against or around it.

2. Power




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

CherryPy leverages all of the power of Python. Python is a dynamic language which allows for rapid develop-
ment of applications. Python also has an extensive built-in API which simplifies web app development. Even
more extensive, however, are the third-party libraries available for Python. These range from object-relational
mappers to form libraries, to an automatic Python optimizer, a Windows exe generator, imaging libraries, email
support, HTML templating engines, etc. CherryPy applications are just like regular Python applications. Cher-
ryPy does not stand in your way if you want to use these brilliant tools.

CherryPy also provides tools and plugins, which are powerful extension points needed to develop world-class
web applications.

3. Maturity

Maturity is extremely important when developing a real-world application. Unlike many other web frameworks,
CherryPy has had many final, stable releases. It is fully bugtested, optimized, and proven reliable for real-world
use. The API will not suddenly change and break backwards compatibility, so your applications are assured to
continue working even through subsequent updates in the current version series.

CherryPy is also a “3.0” project: the first edition of CherryPy set the tone, the second edition made it work,
and the third edition makes it beautiful. Each version built on lessons learned from the previous, bringing the
developer a superior tool for the job.

4. Community

CherryPy has an devoted community that develops deployed CherryPy applications and are willing and ready to
assist you on the CherryPy mailing list or IRC (#cherrypy on OFTC). The developers also frequent the list and
often answer questions and implement features requested by the end-users.

5. Deployability
Unlike many other Python web frameworks, there are cost-effective ways to deploy your CherryPy application.

Out of the box, CherryPy includes its own production-ready HTTP server to host your application. CherryPy
can also be deployed on any WSGI-compliant gateway (a technology for interfacing numerous types of web
servers): mod_wsgi, FastCGI, SCGI, IIS, uwsgi, tornado, etc. Reverse proxying is also a common and easy way
to set it up.

In addition, CherryPy is pure-python and is compatible with Python 2.3. This means that CherryPy will run on
all major platforms that Python will run on (Windows, MacOSX, Linux, BSD, etc).

webfaction.com, run by the inventor of CherryPy, is a commercial web host that offers CherryPy hosting pack-
ages (in addition to several others).

6. It’s free!

All of CherryPy is licensed under the open-source BSD license, which means CherryPy can be used commer-
cially for ZERO cost.

7. Where to go from here?

Check out the futorials to start enjoying the fun!

Success Stories

You are interested in CherryPy but you would like to hear more from people using it, or simply check out products or
application running it.

If you would like to have your CherryPy powered website or product listed here, contact us via our mailing list or IRC
(#cherrypy on OFTC).

2 Chapter 1. Foreword


https://www.webfaction.com
http://groups.google.com/group/cherrypy-users
http://www.oftc.net/oftc/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Websites running atop CherryPy
Hulu Deejay and Hulu Sod - Hulu uses CherryPy for some projects. “The service needs to be very high performance.
Python, together with CherryPy, gunicorn, and gevent more than provides for this.”

Netflix - Netflix uses CherryPy as a building block in their infrastructure: “Restful APIs to large applications with
requests, providing web interfaces with CherryPy and Bottle, and crunching data with scipy.”

Urbanility - French website for local neighbourhood assets in Rennes, France.

MROP Supply - Webshop for industrial equipment, developed using CherryPy 3.2.2 utilizing Python 3.2, with libs:
Jinja2-2.6, davispuh-MySQL-for-Python-3-3403794, pyenchant-1.6.5 (for search spelling). “I’m coming over from
.net development and found Python and CherryPy to be surprisingly minimalistic. No unnecessary overhead - build
everything you need without the extra fluff. I'm a fan!”

CherryMusic - A music streaming server written in python: Stream your own music collection to all your devices!
CherryMusic is open source.

YouGov Global - International market research firm, conducts millions of surveys on CherryPy yearly.

Aculab Cloud - Voice and fax applications on the cloud. A simple telephony API for Python, C#, C++, VB, etc... The
website and all front-end and back-end web services are built with CherryPy, fronted by nginx (just handling the ssh
and reverse-proxy), and running on AWS in two regions.

Learnit Training - Dutch website for an IT, Management and Communication training company. Built on CherryPy
3.2.0 and Python 2.7.3, with oursql and DBUtils libraries, amongst others.

Linstic - Sticky Notes in your browser (with linking).
Almad’s Homepage - Simple homepage with blog.

Fight.Watch - Twitch.tv web portal for fighting games. Built on CherryPy 3.3.0 and Python 2.7.3 with Jinja 2.7.2 and
SQLAIchemy 0.9.4.

Products based on CherryPy

SABnzbd - Open Source Binary Newsreader written in Python.
Headphones - Third-party add-on for SABnzbd.

SickBeard - “Sick Beard is a PVR for newsgroup users (with limited torrent support). It watches for new episodes of
your favorite shows and when they are posted it downloads them, sorts and renames them, and optionally generates
metadata for them.”

TurboGears - The rapid web development megaframework. Turbogears 1.x used Cherrypy. “CherryPy is the under-
lying application server for TurboGears. It is responsible for taking the requests from the usera€™s browser, parses
them and turns them into calls into the Python code of the web application. Its role is similar to application servers
used in other programming languages”.

Indigo - “An intelligent home control server that integrates home control hardware modules to provide control of your
home. Indigo’s built-in Web server and client/server architecture give you control and access to your home remotely
from other Macs, PCs, internet tablets, PDAs, and mobile phones.”

SlikiWiki - Wiki built on CherryPy and featuring WikiWords, automatic backlinking, site map generation, full text
search, locking for concurrent edits, RSS feed embedding, per page access control lists, and page formatting using
PyTextile markup.”

read4me - read4me is a Python feed-reading web service.
Firebird QA tools - Firebird QA tools are based on CherryPy.

salt-api - A REST API for Salt, the infrastructure orchestration tool.

1.2. Success Stories 3


http://tech.hulu.com/blog/2013/03/13/python-and-hulu
http://gunicorn.org
http://techblog.netflix.com/2013/03/python-at-netflix.html
http://urbanility.com
https://www.mropsupply.com
http://jinja.pocoo.org/docs
http://www.fomori.org/cherrymusic
http://www.yougov.com
http://cloud.aculab.com
http://www.learnit.nl
http://pythonhosted.org/oursql
http://www.webwareforpython.org/DBUtils
http://linstic.com
http://www.almad.net
http://fight.watch
http://sabnzbd.org
https://github.com/rembo10/headphones
http://sickbeard.com
http://www.turbogears.org
http://www.perceptiveautomation.com/indigo/index.html
http://www.sf.net/projects/slikiwiki
http://sourceforge.net/projects/read4me
http://www.firebirdsql.org/en/quality-assurance
https://github.com/saltstack/salt-api

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Products inspired by CherryPy

OOWeb - “O0OWeb is a lightweight, embedded HTTP server for Java applications that maps objects to URL direc-
tories, methods to pages and form/querystring arguments as method parameters. OOWeb was originally inspired by
CherryPy.”

4 Chapter 1. Foreword


http://ooweb.sourceforge.net/

CHAPTER 2

Installation

CherryPy is a pure Python library. This has various consequences:
e It can run anywhere Python runs

* It does not require a C compiler
* It can run on various implementations of the Python language: CPython, [ronPython, Jython and PyPy

Contents

e Installation

— Requirements

Supported python version

Installing

x Test your installation

Run it

* cherryd

- Command-Line Options

Requirements

CherryPy does not have any mandatory requirements. However certain features it comes with will require you install
certain packages. To simplify installing additional dependencies CherryPy enables you to specify extras in your

requirements (e.g. cherrypy[json, routes_dispatcher, ssl]):
* doc — for documentation related stuff

* json — for custom JSON processing library



http://python.org/
http://ironpython.net/
http://www.jython.org/
http://pypy.org/
https://github.com/simplejson/simplejson

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

* routes_dispatcher — routes for declarative URL mapping dispatcher

¢ ss] — for OpenSSL bindings, useful in Python environments not having the builtin ss1 module
* testing

* memcached_session — enables memcached backend session

* xcgi

Supported python version

CherryPy supports Python 2.7 through to 3.5.

Installing

CherryPy can be easily installed via common Python package managers such as setuptools or pip.

’$ easy_install cherrypy

’$ pip install cherrypy

You may also get the latest CherryPy version by grabbing the source code from Github:

$ git clone https://github.com/cherrypy/cherrypy
$ cd cherrypy
$ python setup.py install

Test your installation

CherryPy comes with a set of simple tutorials that can be executed once you have deployed the package.

$ python -m cherrypy.tutorial.tut0l_helloworld

Point your browser at http://127.0.0.1:8080 and enjoy the magic.

Once started the above command shows the following logs:

15/Feb/2014:21:51:22
15/Feb/2014:21:51:22
15/Feb/2014:21:51:22
15/Feb/2014:21:51:22
15/Feb/2014:21:51:22
15/Feb/2014:21:51:22
15/Feb/2014:21:51:22
15/Feb/2014:21:51:23

ENGINE Listening for SIGHUP.

ENGINE Listening for SIGTERM.

ENGINE Listening for SIGUSRL.

ENGINE Bus STARTING

ENGINE Started monitor thread 'Autoreloader'.
ENGINE Started monitor thread '_TimeoutMonitor'.
ENGINE Serving on http://127.0.0.1:8080

(
[
[
(
(
[
(
[ ENGINE Bus STARTED

We will explain what all those lines mean later on, but suffice to know that once you see the last two lines, your server
is listening and ready to receive requests.

6 Chapter 2. Installation


http://routes.readthedocs.org/en/latest/
https://github.com/pyca/pyopenssl
https://docs.python.org/3/library/ssl.html#module-ssl
https://github.com/linsomniac/python-memcached
http://127.0.0.1:8080

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Run it

During development, the easiest path is to run your application as follow:

’$ python myapp.py

As long as myapp.py defines a “__main__" section, it will run just fine.

cherryd

Another way to run the application is through the cherryd script which is installed along side CherryPy.

Note: This utility command will not concern you if you embed your application with another framework.

Command-Line Options

-c,

-d

-e,

_i,

-p,

—-—-config
Specify config file(s)

Run the server as a daemon

——environment
Apply the given config environment (defaults to None)

Start a FustCGI server instead of the default HTTP server

Start a SCGI server instead of the default HTTP server
——import

Specify modules to import

——pidfile

Store the process id in the given file (defaults to None)

—--Path
Add the given paths to sys.path

2.4. Run it



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

8 Chapter 2. Installation



CHAPTER 3

Tutorials

This tutorial will walk you through basic but complete CherryPy applications that will show you common concepts as
well as slightly more advanced ones.

Contents

* Tutorials
— Tutorial 1: A basic web application
— Tutorial 2: Different URLSs lead to different functions
— Tutorial 3: My URLs have parameters
— Tutorial 4: Submit this form
— Tutorial 5: Track my end-user’s activity
— Tutorial 6: What about my javascripts, CSS and images?
— Tutorial 7: Give us a REST
— Tutorial 8: Make it smoother with Ajax
— Tutorial 9: Data is all my life
— Tutorial 10: Make it a modern single-page application with React.js
— Tutorial 11: Organize my code
* Dispatchers

* Tools

% Plugins




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Tutorial 1: A basic web application

The following example demonstrates the most basic application you could write with CherryPy. It starts a server and
hosts an application that will be served at request reaching http://127.0.0.1:8080/

import cherrypy

class HelloWorld (object) :
@cherrypy.expose
def index(self):
return "Hello world!"

v '

if name == main :

cherrypy.quickstart (HelloWorld())

Store this code snippet into a file named tur0l.py and execute it as follows:

$ python tut0l.py

This will display something along the following:

[24/Feb/2014:21:01:46
[24/Feb/2014:21:01:46
[24/Feb/2014:21:01:46
[24/Feb/2014:21:01:46
CherryPy Checker:

The Application mounted at '' has an empty config.

ENGINE Listening for SIGHUP.
ENGINE Listening for SIGTERM.
ENGINE Listening for SIGUSRL.
ENGINE Bus STARTING

[24/Feb/2014:21:01:46] ENGINE Started monitor thread 'Autoreloader'.
[24/Feb/2014:21:01:46] ENGINE Started monitor thread '_TimeoutMonitor'.
[24/Feb/2014:21:01:46] ENGINE Serving on http://127.0.0.1:8080
[24/Feb/2014:21:01:46] ENGINE Bus STARTED

This tells you several things. The first three lines indicate the server will handle signal for you. The next line tells
you the current state of the server, as that point it is in STARTING stage. Then, you are notified your application has
no specific configuration set to it. Next, the server starts a couple of internal utilities that we will explain later. Finally,
the server indicates it is now ready to accept incoming communications as it listens on the address 127.0.0.1:8080. In
other words, at that stage your application is ready to be used.

Before moving on, let’s discuss the message regarding the lack of configuration. By default, CherryPy has a feature
which will review the syntax correctness of settings you could provide to configure the application. When none are
provided, a warning message is thus displayed in the logs. That log is harmless and will not prevent CherryPy from
working. You can refer to the documentation above to understand how to set the configuration.

Tutorial 2: Different URLs lead to different functions

Your applications will obviously handle more than a single URL. Let’s imagine you have an application that generates
a random string each time it is called:

import random
import string

import cherrypy

10 Chapter 3. Tutorials



http://127.0.0.1:8080/
https://docs.python.org/3/library/signal.html#module-signal

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class StringGenerator (object):
@cherrypy .expose
def index(self):
return "Hello world!"

@cherrypy.expose
def generate(self):
return ''.join(random.sample (string.hexdigits, 8))

if name == '__main__ ':

cherrypy.quickstart (StringGenerator ())

Save this into a file named fuz02.py and run it as follows:

$ python tut02.py

Go now to http://localhost:8080/generate and your browser will display a random string.

Let’s take a minute to decompose what’s happening here. This is the URL that you have typed into your browser:
http://localhost:8080/generate

This URL contains various parts:
* http:// which roughly indicates it’s a URL using the HTTP protocol (see RFC 2616).
* localhost:8080 is the server’s address. It’s made of a hostname and a port.

* /generate which is the path segment of the URL. This is what CherryPy uses to locate an exposed function or
method to respond.

Here CherryPy uses the index() method to handle / and the generate() method to handle /generate

Tutorial 3: My URLs have parameters

In the previous tutorial, we have seen how to create an application that could generate a random string. Let’s now
assume you wish to indicate the length of that string dynamically.

import random
import string

import cherrypy

class StringGenerator (object):
@cherrypy.expose
def index(self):
return "Hello world!"

@cherrypy .expose
def generate(self, length=8):
return ''.join(random.sample (string.hexdigits, int (length)))

if name_ == '_ _main__ ':
cherrypy.quickstart (StringGenerator())

3.3. Tutorial 3: My URLs have parameters 11



http://localhost:8080/generate
http://localhost:8080/generate
https://tools.ietf.org/html/rfc2616.html

23

24

25

26

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Save this into a file named fuf03.py and run it as follows:

$ python tut03.py

Go now to http://localhost:8080/generate?length=16 and your browser will display a generated string of length 16.
Notice how we benefit from Python’s default arguments’ values to support URLSs such as http://localhost:8080/generate

still.

In a URL such as this one, the section after ? is called a query-string. Traditionally, the query-string is used to
contextualize the URL by passing a set of (key, value) pairs. The format for those pairs is key=value. Each pair being

separated by a & character.

Notice how we have to convert the given length value to an integer. Indeed, values are sent out from the client to our

server as strings.

Much like CherryPy maps URL path segments to exposed functions, query-string keys are mapped to those exposed

function parameters.

Tutorial 4: Submit this form

CherryPy is a web framework upon which you build web applications. The most traditional shape taken by applications

is through an HTML user-interface speaking to your CherryPy server.

Let’s see how to handle HTML forms via the following example.

import random
import string

import cherrypy
class StringGenerator (object):

@Qcherrypy.expose
def index(self):

return """<html>
<head></head>
<body>

<form method="get" action="generate">
<input type="text" value="8" name="length" />
<button type="submit">Give it now!</button>
</form>
</body>
</html>"""

@Qcherrypy.expose
def generate(self, length=8):

return ''.Jjoin(random.sample (string.hexdigits, int (length)))

if name == '__main__ ':

cherrypy.quickstart (StringGenerator ())

Save this into a file named fut04.py and run it as follows:

12

Chapter 3

. Tutorials



http://localhost:8080/generate?length=16
http://localhost:8080/generate

20

21

22

23

24

25

26

27

28

29

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

$ python tut04.py

Go now to http://localhost:8080/ and your browser and this will display a simple input field to indicate the length of
the string you want to generate.

Notice that in this example, the form uses the GET method and when you pressed the Give it now! button, the form
is sent using the same URL as in the previous tutorial. HTML forms also support the POST method, in that case
the query-string is not appended to the URL but it sent as the body of the client’s request to the server. However,
this would not change your application’s exposed method because CherryPy handles both the same way and uses the
exposed’s handler parameters to deal with the query-string (key, value) pairs.

Tutorial 5: Track my end-user’s activity

It’s not uncommon that an application needs to follow the user’s activity for a while. The usual mechanism is to use a
session identifier that is carried during the conversation between the user and your application.

import random
import string

import cherrypy
class StringGenerator (object):

@cherrypy.expose
def index(self):

return """<html>
<head></head>
<body>

<form method="get" action="generate">
<input type="text" value="8" name="length" />
<button type="submit">Give it now!</button>
</form>
</body>
</html>"""

@cherrypy.expose

def generate(self, length=8):
some_string = ''.Jjoin(random.sample (string.hexdigits, int (length)))
cherrypy.session['mystring'] = some_string
return some_string

@cherrypy.expose
def display(self):
return cherrypy.session['mystring']

if _ name_ == '_ main_
= {
VAR

'tools.sessions.on': True

conf

}

cherrypy.quickstart (StringGenerator (), '/', conf)

Save this into a file named fuz05.py and run it as follows:

3.5. Tutorial 5: Track my end-user’s activity 13



http://localhost:8080/
http://en.wikipedia.org/wiki/Session_(computer_science)#HTTP_session_token

20

21

22

23

24

25

26

27

28

29

31

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

$ python tut05.py

In this example, we generate the string as in the previous tutorial but also store it in the current session. If you go to
http://localhost:8080/, generate a random string, then go to http://localhost:8080/display, you will see the string you
just generated.

The lines 30-34 show you how to enable the session support in your CherryPy application. By default, CherryPy will
save sessions in the process’s memory. It supports more persistent backends as well.

Tutorial 6: What about my javascripts, CSS and images?

Web applications are usually also made of static content such as javascript, CSS files or images. CherryPy provides
support to serve static content to end-users.

Let’s assume, you want to associate a stylesheet with your application to display a blue background color (why not?).

First, save the following stylesheet into a file named style.css and stored into a local directory public/css.

body {
background-color: blue;

Now let’s update the HTML code so that we link to the stylesheet using the http://localhost:8080/static/css/style.css
URL.

import os, os.path
import random
import string

import cherrypy

class StringGenerator (object):
@cherrypy.expose
def index(self):
return """<html>
<head>
<link href="/static/css/style.css" rel="stylesheet">
</head>
<body>
<form method="get" action="generate">
<input type="text" value="8" name="length" />
<button type="submit">Give it now!</button>
</form>
</body>
</html>"""

@cherrypy.expose

def generate(self, length=8):
some_string = ''.Jjoin(random.sample (string.hexdigits, int (length)))
cherrypy.session['mystring'] = some_string
return some_string

@cherrypy.expose
def display(self):
return cherrypy.session['mystring']

14 Chapter 3. Tutorials



http://localhost:8080/
http://localhost:8080/display
http://localhost:8080/static/css/style.css

[ Y S O

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

if name == '__main__ ':

-
VAR

'tools.sessions.on': True,

conf

'tools.staticdir.root': os.path.abspath(os.getcwd())
}V
'/static': {
'tools.staticdir.on': True,
'tools.staticdir.dir': './public'
}
}

cherrypy.quickstart (StringGenerator (), '/', conf)

Save this into a file named fuz06.py and run it as follows:

$ python tut06.py

Going to http://localhost:8080/, you should be greeted by a flashy blue color.

CherryPy provides support to serve a single file or a complete directory structure. Most of the time, this is what you’ll
end up doing so this is what the code above demonstrates. First, we indicate the root directory of all of our static
content. This must be an absolute path for security reason. CherryPy will complain if you provide only relative paths
when looking for a match to your URLs.

Then we indicate that all URLs which path segment starts with /static will be served as static content. We map that
URL to the public directory, a direct child of the root directory. The entire sub-tree of the public directory will be
served as static content. CherryPy will map URLs to path within that directory. This is why /static/css/style.css is
found in public/css/style.css.

Tutorial 7: Give us a REST

It’s not unusual nowadays that web applications expose some sort of datamodel or computation functions. Without
going into its details, one strategy is to follow the REST principles edicted by Roy T. Fielding.

Roughly speaking, it assumes that you can identify a resource and that you can address that resource through that
identifier.

“What for?” you may ask. Well, mostly, these principles are there to ensure that you decouple, as best as you can,
the entities your application expose from the way they are manipulated or consumed. To embrace this point of view,
developers will usually design a web API that expose pairs of (URL, HITP method, data, constraints).

Note: You will often hear REST and web API together. The former is one strategy to provide the latter. This tutorial
will not go deeper in that whole web API concept as it’s a much more engaging subject, but you ought to read more
about it online.

Lets go through a small example of a very basic web API mildly following REST principles.

import random
import string

import cherrypy

3.7. Tutorial 7: Give us a REST 15



http://localhost:8080/
http://www.ibm.com/developerworks/library/ws-restful/index.html

20

21

22

23

24

25

26

27

28

29

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

@cherrypy.expose
class StringGeneratorWebService (object) :

@cherrypy.tools.accept (media="'text/plain')
def GET (self):
return cherrypy.session['mystring']

def POST (self, length=8):
some_string = ''.Jjoin(random.sample (string.hexdigits, int (length)))
cherrypy.session['mystring'] = some_string
return some_string

def PUT (self, another_string):
cherrypy.session['mystring'] = another_string

def DELETE (self):
cherrypy.session.pop ('mystring', None)

if name == '_ _main_ '
conf = {
V/l.{
'request .dispatch': cherrypy.dispatch.MethodDispatcher (),
'tools.sessions.on': True,
'tools.response_headers.on': True,
'tools.response_headers.headers': [('Content-Type', 'text/plain')],

}

cherrypy.quickstart (StringGeneratorWebService (), '/', conf)

Save this into a file named fuz07.py and run it as follows:

$ python tut07.py

Before we see it in action, let’s explain a few things. Until now, CherryPy was creating a tree of exposed methods that
were used to match URLSs. In the case of our web API, we want to stress the role played by the actual requests’ HTTP
methods. So we created methods that are named after them and they are all exposed at once by decorating the class
itself with cherrypy.expose.

However, we must then switch from the default mechanism of matching URLs to method for one that is aware of the
whole HTTP method shenanigan. This is what goes on line 27 where we create a MethodDispatcher instance.

Then we force the responses content-type to be text/plain and we finally ensure that GET requests will only be re-
sponded to clients that accept that content-type by having a Accept: text/plain header set in their request. However, we
do this only for that HTTP method as it wouldn’t have much meaning on the other methods.

For the purpose of this tutorial, we will be using a Python client rather than your browser as we wouldn’t be able to
actually try our web API otherwise.

Please install requests through the following command:

$ pip install requests

Then fire up a Python terminal and try the following commands:

>>> import requests

>>> s = requests.Session()

>>> r = s.get ('http://127.0.0.1:8080/")
>>> r.status_code

16 Chapter 3. Tutorials



http://www.python-requests.org/en/latest/

R B T

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

500

>>> r = s.post ('http://127.0.0.1:8080/")
>>> r.status_code, r.text

(200, u'04A92138")

>>> r = s.get ('http://127.0.0.1:8080/")
>>> r.status_code, r.text

(200, u'04A92138")

>>> r = s.get ('http://127.0.0.1:8080/"', headers={'Accept': 'application/json'})
>>> r.status_code

406

>>> r = s.put ('http://127.0.0.1:8080/"', params={'another_string': 'hello'})

>>> r = s.get ('http://127.0.0.1:8080/")

>>> r.status_code, r.text

(200, u'hello")

>>> r = s.delete('http://127.0.0.1:8080/")
>>> r = s.get ('http://127.0.0.1:8080/")
>>> r.status_code

500

The first and last 500 responses stem from the fact that, in the first case, we haven’t yet generated a string through
POST and, on the latter case, that it doesn’t exist after we’ve deleted it.

Lines 12-14 show you how the application reacted when our client requested the generated string as a JSON format.
Since we configured the web API to only support plain text, it returns the appropriate HTTP error code.

Note: We use the Session interface of requests so that it takes care of carrying the session id stored in the request
cookie in each subsequent request. That is handy.

Important: It’s all about RESTful URLSs these days, isn’t it?

It is likely your URL will be made of dynamic parts that you will not be able to match to page handlers. For example,
/library/12/book/15 cannot be directly handled by the default CherryPy dispatcher since the segments 12 and
15 will not be matched to any Python callable.

This can be easily workaround with two handy CherryPy features explained in the advanced section.

Tutorial 8: Make it smoother with Ajax

In the recent years, web applications have moved away from the simple pattern of “HTML forms + refresh the whole
page”. This traditional scheme still works very well but users have become used to web applications that don’t refresh
the entire page. Broadly speaking, web applications carry code performed client-side that can speak with the backend
without having to refresh the whole page.

This tutorial will involve a little more code this time around. First, let’s see our CSS stylesheet located in pub-
lic/css/style.css.

body {
background-color: blue;

}

#the-string ({
display: none;

}

3.8. Tutorial 8: Make it smoother with Ajax 17



http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.python-requests.org/en/latest/user/advanced/#session-objects

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

52

53

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

We’re adding a simple rule about the element that will display the generated string. By default, let’s not show it up.

Save the following HTML code into a file named index. html.

<!DOCTYPE html>
<html>
<head>
<link href="/static/css/style.css" rel="stylesheet">
<script src="http://code.jguery.com/jquery-2.0.3.min.js"></script>
<script type="text/javascript">
$ (document) .ready (function () {

S ("#generate-string") .click (function(e) {
$.post ("/generator", {"length": $("input [name='length']").val()})
.done (function (string) {
S ("#the-string") .show () ;
S ("#the-string input") .val(string);
1) i
e.preventDefault ();
1) i

S ("#replace-string") .click (function(e) {

S.ajax ({
type: "PUT",
url: "/generator",

data: {"another_string": $("#the-string input").val()}
})
.done (function () {
alert ("Replaced!");
1) i
e.preventDefault ();
)i

S ("#delete-string") .click (function(e) {

S.ajax ({
type: "DELETE",
url: "/generator"

1)

.done (function () {
S("#the-string") .hide () ;

1)

e.preventDefault () ;

1)

})i
</script>
</head>
<body>
<input type="text" value="8" name="length"/>
<button id="generate-string">Give it now!</button>
<div id="the-string">
<input type="text" />
<button id="replace-string">Replace</button>
<button id="delete-string">Delete it</button>
</div>
</body>
</html>

We’ll be using the jQuery framework out of simplicity but feel free to replace it with your favourite tool. The page
is composed of simple HTML elements to get user input and display the generated string. It also contains client-side

18 Chapter 3. Tutorials


http://jquery.com/

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

code to talk to the backend API that actually performs the hard work.

Finally, here’s the application’s code that serves the HTML page above and responds to requests to generate strings.

Both are hosted by the same application server.

import os, os.path
import random
import string

import cherrypy

class StringGenerator (object):
@cherrypy.expose
def index(self):
return open('index.html")

@cherrypy.expose
class StringGeneratorWebService (object) :

@cherrypy.tools.accept (media="text/plain')
def GET (self):
return cherrypy.session['mystring']

def POST (self, length=8):
some_string = ''.Jjoin(random.sample (string.hexdigits, int (length)))
cherrypy.session['mystring'] = some_string
return some_string

def PUT (self, another_string):
cherrypy.session['mystring'] = another_string

def DELETE (self):
cherrypy.session.pop('mystring', None)

if name == '__main__':
conf = {
VA
'tools.sessions.on': True,
'tools.staticdir.root': os.path.abspath(os.getcwd())

by

'/generator': {
'request .dispatch': cherrypy.dispatch.MethodDispatcher (),
'tools.response_headers.on': True,
'tools.response_headers.headers': [('Content-Type', 'text/plain')],

b
'/static': {

'tools.staticdir.on': True,
'tools.staticdir.dir': './public'
}
}
webapp = StringGenerator ()
webapp.generator = StringGeneratorWebService ()

cherrypy.quickstart (webapp, '/', conf)

Save this into a file named fuf08.py and run it as follows:

3.8. Tutorial 8: Make it smoother with Ajax

19




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

$ python tut08.py

Go to http://127.0.0.1:8080/ and play with the input and buttons to generate, replace or delete the strings. Notice how
the page isn’t refreshed, simply part of its content.

Notice as well how your frontend converses with the backend using a straightfoward, yet clean, web service API. That
same API could easily be used by non-HTML clients.

Tutorial 9: Data is all my life

Until now, all the generated strings were saved in the session, which by default is stored in the process memory.
Though, you can persist sessions on disk or in a distributed memory store, this is not the right way of keeping your
data on the long run. Sessions are there to identify your user and carry as little amount of data as necessary for the
operation carried by the user.

To store, persist and query data you need a proper database server. There exist many to choose from with various
paradigm support:

* relational: PostgreSQL, SQLite, MariaDB, Firebird
¢ column-oriented: HBase, Cassandra
* key-store: redis, memcached
* document oriented: Couchdb, MongoDB
* graph-oriented: neo4j
Let’s focus on the relational ones since they are the most common and probably what you will want to learn first.

For the sake of reducing the number of dependencies for these tutorials, we will go for the sglite database which is
directly supported by Python.

Our application will replace the storage of the generated string from the session to a SQLite database. The application
will have the same HTML code as futorial 08. So let’s simply focus on the application code itself:

import os, os.path
import random
import sqlite3
import string
import time

import cherrypy

DB_STRING = "my.db"

class StringGenerator (object):
@cherrypy.expose
def index(self):
return open('index.html")

@cherrypy.expose
class StringGeneratorWebService (object) :

@Qcherrypy.tools.accept (media="text/plain')
def GET (self):
with sglite3.connect (DB_STRING) as c:

20 Chapter 3. Tutorials



http://127.0.0.1:8080/

24

25

26

27

28

29

30

32

33

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

CherryPy Documentation, Release 11.0.1.dev70+g1b979c3.d20170814

cherrypy.session['ts'] = time.time ()

r = c.execute("SELECT value FROM user_string WHERE session_id=?",
[cherrypy.session.id])

return r.fetchone ()

def POST(self, length=8):

some_string = ''.join(random.sample (string.hexdigits, int (length)))
with sglite3.connect (DB_STRING) as c:
cherrypy.session['ts'] = time.time ()

c.execute ("INSERT INTO user_string VALUES (?, ?)",
[cherrypy.session.id, some_string])
return some_string

def PUT (self, another_string):
with sglite3.connect (DB_STRING) as c:
cherrypy.session['ts'] = time.time ()
c.execute ("UPDATE user_string SET value=? WHERE session_id=?",
[another_string, cherrypy.session.id])

def DELETE (self):
cherrypy.session.pop('ts', None)
with sglite3.connect (DB_STRING) as c:
c.execute ("DELETE FROM user_string WHERE session_id=?",
[cherrypy.session.id])

def setup_database():
mmwn
Create the ‘user_string' table in the database
on server startup
mmwn
with sglite3.connect (DB_STRING) as con:
con.execute ("CREATE TABLE user_string (session_id, value)")

def cleanup_database () :
mmwn
Destroy the ‘user_string  table from the database
on server shutdown.
mmwn
with sglite3.connect (DB_STRING) as con:
con.execute ("DROP TABLE user_string")

if name_ == '_ _main__':
conf = {
AR
'tools.sessions.on': True,
'tools.staticdir.root': os.path.abspath(os.getcwd())
}V

'/generator': {
'request.dispatch': cherrypy.dispatch.MethodDispatcher(),
'tools.response_headers.on': True,
'tools.response_headers.headers': [('Content-Type', 'text/plain')],

}I

'/static': {
'tools.staticdir.on': True,
'tools.staticdir.dir': './public'

3.9. Tutorial 9: Data is all my life 21




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.engine.subscribe ('start', setup_database)
cherrypy.engine.subscribe ('stop', cleanup_database)

webapp = StringGenerator ()
webapp.generator = StringGeneratorWebService ()
cherrypy.quickstart (webapp, '/', conf)

Save this into a file named fuz09.py and run it as follows:

$ python tut09.py

Let’s first see how we create two functions that create and destroy the table within our database. These functions are
registered to the CherryPy’s server on lines 85-86, so that they are called when the server starts and stops.

Next, notice how we replaced all the session code with calls to the database. We use the session id to identify the
user’s string within our database. Since the session will go away after a while, it’s probably not the right approach.
A better idea would be to associate the user’s login or more resilient unique identifier. For the sake of our demo, this
should do.

Important: In this example, we must still set the session to a dummy value so that the session is not discarded on
each request by CherryPy. Since we now use the database to store the generated string, we simply store a dummy
timestamp inside the session.

Note: Unfortunately, sqlite in Python forbids us to share a connection between threads. Since CherryPy is a multi-
threaded server, this would be an issue. This is the reason why we open and close a connection to the database on each
call. This is clearly not really production friendly, and it is probably advisable to either use a more capable database
engine or a higher level library, such as SQLAIchemy, to better support your application’s needs.

Tutorial 10: Make it a modern single-page application with React.js

In the recent years, client-side single-page applications (SPA) have gradually eaten server-side generated content web
applications’s lunch.

This tutorial demonstrates how to integrate with React.js, a Javascript library for SPA released by Facebook in 2013.
Please refer to React.js documentation to learn more about it.

To demonstrate it, let’s use the code from rutorial 09. However, we will be replacing the HTML and Javascript code.

First, let’s see how our HTML code has changed:

<!DOCTYPE html>
<html>
<head>
<link href="/static/css/style.css" rel="stylesheet">
<script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.13.3/react.js"></
—script>
<script src="http://code.jquery.com/jquery-2.1.1.min.Jjs"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.
—min.js"></script>
</head>

22 Chapter 3. Tutorials



https://cherrypy.readthedocs.org/en/latest/pkg/cherrypy.lib.html?highlight=fixation#session-fixation-protection
http://sqlalchemy.readthedocs.org
https://facebook.github.io/react/

20
21
2
23
24
25
26
27
28

29

39
40
41
42
43
44
45
46
47
48

49

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

<body>
<div id="generator"></div>
<script type="text/babel" src="static/js/gen.js"></script>
</body>
</html>

Basically, we have removed the entire Javascript code that was using jQuery. Instead, we load the React.js library as

well as a new, local, Javascript module, named gen . js and located in the public/js directory:

var StringGeneratorBox = React.createClass ({

handleGenerate: function() {
var length = this.state.length;
this.setState (function () {
S.ajax ({

url: this.props.url,
dataType: 'text',
type: 'POST',
data: {
"length": length
by
success: function (data) {
this.setState ({
length: length,
string: data,
mode: "edit"
1)
}.bind (this),
error: function (xhr, status, err) {
console.error (this.props.url,
status, err.toString()
)i
}.bind (this)
1)
)i
}I
handleEdit: function() {
var new_string = this.state.string;
this.setState (function () {
$.ajax ({
url: this.props.url,
type: 'PUT',

data: {

"another_string": new_string
by
success: function() {

this.setState ({
length: new_string.length,
string: new_string,
mode: "edit"
b i
}.bind(this),
error: function (xhr, status, err) {
console.error (this.props.url,
status, err.toString()
)i
}.bind (this)
})i
1)

3.10. Tutorial 10: Make it a modern single-page application with React.js

23




58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

}y

handleDelete: function() {
this.setState (function() {
$.ajax ({

url: this.props.url,
type: 'DELETE',
success: function() {
this.setState ({
length: "8",
string: "",
mode: "create"
1) i
}.bind (this),
error: function (xhr, status, err) {
console.error (this.props.url,
status, err.toString()
)
}.bind (this)
1) i
1)
}l
handleLengthChange: function (length) {
this.setState ({
length: length,
string: "",
mode: "create"
b
}I
handleStringChange: function (new_string) {
this.setState ({
length: new_string.length,
string: new_string,
mode: "edit"
1)
}I
getInitialState: function() {

return {
length: "8",
string: "",
mode: "create"

}i
}I
render: function() {
return (
<div className="stringGenBox">
<StringGeneratorForm onCreateString={this.handleGenerate}
onReplaceString={this.handleEdit}
onDeleteString={this.handleDelete}
onLengthChange={this.handleLengthChange}
onStringChange={this.handleStringChange}
mode={this.state.mode}
length={this.state.length}
string={this.state.string}/>
</div>

24 Chapter 3. Tutorials




108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

156

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

var StringGeneratorForm = React.createClass ({
handleCreate: function(e) {
e.preventDefault () ;
this.props.onCreateString();
}I
handleReplace: function(e) {
e.preventDefault ();
this.props.onReplaceString();
}I
handleDelete: function(e) {
e.preventDefault () ;
this.props.onDeleteString();
}I
handleLengthChange: function(e) {
e.preventDefault ();
var length = React.findDOMNode (this.refs.length) .value.trim();
this.props.onLengthChange (length) ;
}l
handleStringChange: function(e) {
e.preventDefault ();
var string = React.findDOMNode (this.refs.string) .value.trim();
this.props.onStringChange (string) ;
}I
render: function() {
if (this.props.mode == "create") {
return (
<div>
<input type="text" ref="length" defaultValue="8" value={this.props.length}
— onChange={this.handleLengthChange} />
<button onClick={this.handleCreate}>Give it now!</button>
</div>
)i
} else if (this.props.mode == "edit") {
return (
<div>
<input type="text" ref="string" value={this.props.string} onChange={this.
—handleStringChange} />
<button onClick={this.handleReplace}>Replace</button>
<button onClick={this.handleDelete}>Delete it</button>
</div>
)

return null;
}
}) i

React.render (
<StringGeneratorBox url="/generator" />,
document .getElementById('generator')

)i

Wow! What a lot of code for something so simple, isn’t it? The entry point is the last few lines where we indicate that
we want to render the HTML code of the St ringGeneratorBox React.js class inside the generator div.

When the page is rendered, so is that component. Notice how it is also made of another component that renders the
form itself.

This might be a little over the top for such a simple example but hopefully will get you started with React.js in the

3.10. Tutorial 10: Make it a modern single-page application with React.js 25




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

process.

There is not much to say and, hopefully, the meaning of that code is rather clear. The component has an internal state
in which we store the current string as generated/modified by the user.

When the user changes the content of the input boxes, the state is updated on the client side. Then, when a button
is clicked, that state is sent out to the backend server using the API endpoint and the appropriate action takes places.
Then, the state is updated and so is the view.

Tutorial 11: Organize my code

CherryPy comes with a powerful architecture that helps you organizing your code in a way that should make it easier
to maintain and more flexible.

Several mechanisms are at your disposal, this tutorial will focus on the three main ones:
e dispatchers
* tools
* plugins
In order to understand them, let’s imagine you are at a superstore:
* You have several tills and people queuing for each of them (those are your requests)
* You have various sections with food and other stuff (these are your data)

* Finally you have the superstore people and their daily tasks to make sure sections are always in order (this is
your backend)

In spite of being really simplistic, this is not far from how your application behaves. CherryPy helps you structure
your application in a way that mirrors these high-level ideas.

Dispatchers

Coming back to the superstore example, it is likely that you will want to perform operations based on the till:
* Have a till for baskets with less than ten items
* Have a till for disabled people
* Have a till for pregnant women
* Have a till where you can only using the store card

To support these use-cases, CherryPy provides a mechanism called a dispatcher. A dispatcher is executed early during
the request processing in order to determine which piece of code of your application will handle the incoming request.
Or, to continue on the store analogy, a dispatcher will decide which till to lead a customer to.

Tools
Let’s assume your store has decided to operate a discount spree but, only for a specific category of customers. CherryPy
will deal with such use case via a mechanism called a rool.

A tool is a piece of code that runs on a per-request basis in order to perform additional work. Usually a tool is a simple
Python function that is executed at a given point during the process of the request by CherryPy.

26 Chapter 3. Tutorials


https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html
https://facebook.github.io/react/docs/forms.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Plugins
As we have seen, the store has a crew of people dedicated to manage the stock and deal with any customers’ expecta-

tion.

In the CherryPy world, this translates into having functions that run outside of any request life-cycle. These functions
should take care of background tasks, long lived connections (such as those to a database for instance), etc.

Plugins are called that way because they work along with the CherryPy engine and extend it with your operations.

3.11. Tutorial 11: Organize my code 27



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

28 Chapter 3. Tutorials



CHAPTER 4

Basics

The following sections will drive you through the basics of a CherryPy application, introducing some essential con-
cepts.

Contents

* Basics

— The one-minute application example

Hosting one or more applications
x Single application

* Multiple applications

Logging
x Disable logging

* Play along with your other loggers

Configuring
* Global server configuration
* Per-application configuration

+ Additional application settings

Cookies

Using sessions
* Filesystem backend

* Memcached backend

# Other backends

29



R T N v

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Static content serving
x Serving a single file
x Serving a whole directory
* Specifying an index file

x Allow files downloading

Dealing with JSON
* Decoding request
* Encoding response

Authentication

* Basic

x Digest

Favicon

The one-minute application example

The most basic application you can write with CherryPy involves almost all its core concepts.

import cherrypy

class Root (object) :
@cherrypy.expose
def index(self):
return "Hello World!"

if name == main :

cherrypy.quickstart (Root (), '/")

First and foremost, for most tasks, you will never need more than a single import statement as demonstrated in line 1.

Before discussing the meat, let’s jump to line 9 which shows, how to host your application with the CherryPy applica-
tion server and serve it with its builtin HTTP server at the //’ path. All in one single line. Not bad.

Let’s now step back to the actual application. Even though CherryPy does not mandate it, most of the time your
applications will be written as Python classes. Methods of those classes will be called by CherryPy to respond to
client requests. However, CherryPy needs to be aware that a method can be used that way, we say the method needs
to be exposed. This is precisely what the cherrypy.expose () decorator does in line 4.

Save the snippet in a file named myapp.py and run your first CherryPy application:

$ python myapp.py

Then point your browser at http://127.0.0.1:8080. Tada!

Note: CherryPy is a small framework that focuses on one single task: take a HTTP request and locate the most
appropriate Python function or method that match the request’s URL. Unlike other well-known frameworks, CherryPy
does not provide a built-in support for database access, HTML templating or any other middleware nifty features.

In a nutshell, once CherryPy has found and called an exposed method, it is up to you, as a developer, to provide the
tools to implement your application’s logic.

30 Chapter 4. Basics



http://127.0.0.1:8080

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

CherryPy takes the opinion that you, the developer, know best.

Warning: The previous example demonstrated the simplicty of the CherryPy interface but, your application will
likely contain a few other bits and pieces: static service, more complex structure, database access, etc. This will
be developed in the tutorial section.

CherryPy is a minimal framework but not a bare one, it comes with a few basic tools to cover common usages that you
would expect.

Hosting one or more applications

A web application needs an HTTP server to be accessed to. CherryPy provides its own, production ready, HTTP
server. There are two ways to host an application with it. The simple one and the almost-as-simple one.

Single application

The most straightforward way is to use cherrypy.quickstart () function. It takes at least one argument, the
instance of the application to host. Two other settings are optionals. First, the base path at which the application will
be accessible from. Second, a config dictionary or file to configure your application.

cherrypy.quickstart (Blog())
cherrypy.quickstart (Blog(), '/blog'")
cherrypy.quickstart (Blog (), '/blog', {'/': {'tools.gzip.on': True}})

The first one means that your application will be available at http://hostname:port/ whereas the other two will make
your blog application available at http://hostname:port/blog. In addition, the last one provides specific settings for the
application.

Note: Notice in the third case how the settings are still relative to the application, not where it is made available at,
hence the { /’: ... ] rather than a { /blog’: ... }

Multiple applications

The cherrypy.quickstart () approach is fine for a single application, but lacks the capacity to host several
applications with the server. To achieve this, one must use the cherrypy.tree.mount function as follows:

cherrypy.tree.mount (Blog (), '/blog', blog_conf)
cherrypy.tree.mount (Forum(), '/forum', forum_conf)

cherrypy.engine.start ()
cherrypy.engine.block ()

Essentially, cherrypy . tree.mount takes the same parameters as cherrypy.quickstart (): anapplication,
a hosting path segment and a configuration. The last two lines are simply starting application server.

Important: cherrypy.quickstart () and cherrypy.tree.mount are not exclusive. For instance, the
previous lines can be written as:

4.2. Hosting one or more applications 31



http://hostname:port/
http://hostname:port/blog

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.tree.mount (Blog(), '/blog', blog_conf)
cherrypy.quickstart (Forum(), '/forum', forum_conf)

Note: You can also host foreign WSGI application.

Logging

Logging is an important task in any application. CherryPy will log all incoming requests as well as protocol errors.
To do so, CherryPy manages two loggers:

* an access one that logs every incoming requests

* an application/error log that traces errors or other application-level messages

Your application may leverage that second logger by calling cherrypy.log ().

cherrypy.log("hello there")

You can also log an exception:

try:
except:
cherrypy.log("kaboom!", traceback=True)

Both logs are writing to files identified by the following keys in your configuration:
* log.access_file for incoming requests using the common log format
* log.error_file for the other log

See also:

Refer to the cherrypy._cplogging module for more details about CherryPy’s logging architecture.

Disable logging

You may be interested in disabling either logs.

To disable file logging, simply set a en empty string to the 1log.access_fileor log.error_file keysin your
global configuration.

To disable, console logging, set 1Log. screen to False.

cherrypy.config.update ({'log.screen': False,
'log.access_file': '',
'log.error_file': ''})

Play along with your other loggers

Your application may obviously already use the 1ogging module to trace application level messages. Below is a
simple example on setting it up.

32 Chapter 4. Basics



http://en.wikipedia.org/wiki/Common_Log_Format
https://docs.python.org/3/library/logging.html#module-logging

CherryPy Documentation, Release 11.0.1.dev70+g1b979c3.d20170814

import logging
import logging.config

import cherrypy

logger = logging.getLogger ()
db_logger = logging.getLogger ('db'")

LOG_CONF = {

'version': 1,
'formatters': {
'void': {
'format': "'

}I

'standard': {
'format': '$%(asctime)s [%(levelname)s] % (name)s: % (message)s'

}I

}I
'handlers': {

'default': {
'level':'"INFO',
'class':'logging.StreamHandler',
'formatter': 'standard',
'stream': 'ext://sys.stdout'

}I

'cherrypy_console': {
'level':'INFO',
'class':'logging.StreamHandler',
'formatter': 'void',
'stream': 'ext://sys.stdout'

}!

'cherrypy_access': {
'level':'"INFO',
'class': 'logging.handlers.RotatingFileHandler',
'formatter': 'void',
'filename': 'access.log',
'maxBytes': 10485760,
'backupCount': 20,

'encoding': 'utfg8'
}!
'cherrypy_error': {
'level':'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'formatter': 'void',
'filename': 'errors.log',

'maxBytes': 10485760,
'backupCount': 20,
'encoding': 'utf8'
}!
}I
'loggers': {
ll:{
'handlers': ['default'],
'level': '"INFO'
s
'db': {
'handlers': ['default'],

4.3. Logging 33




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

'level': '"INFO' ,
'propagate’': False
}I

'cherrypy.access': {
'handlers': ['cherrypy_access'],
'level': '"INFO',

'propagate’': False
}V
'cherrypy.error': {
'handlers': ['cherrypy_console', 'cherrypy_error'],
'level': 'INFO',
'propagate’': False
}I

class Root (object) :
@cherrypy.expose
def index(self):

logger.info ("boom")
db_logger.info ("bam")
cherrypy.log("bang")

return "hello world"

if _ name_ == '_ main__
cherrypy.config.update ({'log.screen': False,
'log.access_file': "'
'log.error_file': '"'})
cherrypy.engine.unsubscribe ('graceful', cherrypy.log.reopen_files)
logging.config.dictConfig (LOG_CONF)

cherrypy.quickstart (Root ())

In this snippet, we create a configuration dictionary that we pass on to the 1 0ogging module to configure our loggers:
* the default root logger is associated to a single stream handler
* alogger for the db backend with also a single stream handler
In addition, we re-configure the CherryPy loggers:
* the top-level cherrypy.access logger to log requests into a file
* the cherrypy.error logger to log everything else into a file and to the console

We also prevent CherryPy from trying to open its log files when the autoreloader kicks in. This is not strictly required
since we do not even let CherryPy open them in the first place. But, this avoids wasting time on something useless.

Configuring

CherryPy comes with a fine-grained configuration mechanism and settings can be set at various levels.
See also:

Once you have the reviewed the basics, please refer to the in-depth discussion around configuration.

34 Chapter 4. Basics



https://docs.python.org/2/library/logging.config.html#logging.config.dictConfig

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Global server configuration

To configure the HTTP and application servers, use the cherrypy.config.update () method.

cherrypy.config.update ({'server.socket_port': 9090})

The cherrypy.config objectis a dictionary and the update method merges the passed dictionary into it.

You can also pass a file instead (assuming a server.conf file):

[global]
server.socket_port: 9090

cherrypy.config.update ("server.conf")

Warning: cherrypy.config.update () is not meant to be used to configure the application. It is a common
mistake. It is used to configure the server and engine.

Per-application configuration

To configure your application, pass in a dictionary or a file when you associate your application to the server.

cherrypy.quickstart (myapp, '/', {'/': {'tools.gzip.on': True}})

or via a file (called app.conf for instance):

[/1

tools.gzip.on: True

cherrypy.quickstart (myapp, '/', "app.conf")

Although, you can define most of your configuration in a global fashion, it is sometimes convenient to define them
where they are applied in the code.

class Root (object) :
@cherrypy.expose
@cherrypy.tools.gzip ()
def index(self):
return "hello world!"

A variant notation to the above:

class Root (object) :
@cherrypy.expose
def index(self):
return "hello world!"
index._cp_config = {'tools.gzip.on': True}

Both methods have the same effect so pick the one that suits your style best.

Additional application settings

You can add settings that are not specific to a request URL and retrieve them from your page handler as follows:

4.4. Configuring 35



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

[/1

tools.gzip.on: True

[googleapil
key = "..."
appid = "..."

class Root (object) :
@Qcherrypy.expose
def index(self):
google_appid = cherrypy.request.app.config['googleapi']["appid']
return "hello world!"

cherrypy.quickstart (Root (), '/', "app.conf™)

Cookies

CherryPy uses the Cookie module from python and in particular the Cookie.SimpleCookie object type to
handle cookies.

¢ To send a cookie to a browser, set cherrypy.response.cookie[key] = value.
 To retrieve a cookie sent by a browser, use cherrypy.request.cookie[key].

* To delete a cookie (on the client side), you must send the cookie with its expiration time set to 0:

cherrypy.response.cookie[key] = wvalue
cherrypy.response.cookie[key] ['expires'] = 0

It’s important to understand that the request cookies are not automatically copied to the response cookies. Clients will
send the same cookies on every request, and therefore cherrypy.request.cookie should be populated each
time. But the server doesn’t need to send the same cookies with every response; therefore, cherrypy.response.
cookie will usually be empty. When you wish to “delete” (expire) a cookie, therefore, you must set cherrypy.
response.cookiel[key] = value first, and then set its expires attribute to 0.

Extended example:

import cherrypy

class MyCookieApp (object) :
@Qcherrypy.expose
def set (self):

cookie = cherrypy.response.cookie
cookie['cookieName'] = 'cookieValue'
cookie['cookieName'] ['path'] = '/
cookie['cookieName'] ['max—age'] = 3600
cookie['cookieName'] ['version'] = 1

return "<html><body>Hello, I Jjust sent you a cookie</body></html>"

@cherrypy.expose
def read(self):

cookie = cherrypy.request.cookie
res = """<html><body>Hi, you sent me cookies.<br />
Here is a list of cookie names/values:<br />""" % len (cookie)

for name in cookie.keys():
res += "name: , value: <br>" % (name, cookie[name].value)

36 Chapter 4. Basics




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

return res + "</body></html>"

if name == '_ _main

cherrypy.quickstart (MyCookieApp (), '/cookie')

Using sessions

Sessions are one of the most common mechanism used by developers to identify users and synchronize their activity.
By default, CherryPy does not activate sessions because it is not a mandatory feature to have, to enable it simply add
the following settings in your configuration:

[/1

tools.sessions.on: True

cherrypy.quickstart (myapp, '/', "app.conf")

Sessions are, by default, stored in RAM so, if you restart your server all of your current sessions will be lost. You can
store them in memcached or on the filesystem instead.

Using sessions in your applications is done as follows:

import cherrypy

@cherrypy.expose
def index(self):
if 'count' not in cherrypy.session:
cherrypy.session['count'] = 0
cherrypy.session['count'] += 1

In this snippet, everytime the the index page handler is called, the current user’s session has its ‘count’ key incremented
by 1.

CherryPy knows which session to use by inspecting the cookie sent alongside the request. This cookie contains the
session identifier used by CherryPy to load the user’s session from the storage.

See also:

Refer to the cherrypy.1ib. sessions module for more details about the session interface and implementation.
Notably you will learn about sessions expiration.

Filesystem backend

Using a filesystem is a simple to not lose your sessions between reboots. Each session is saved in its own file within
the given directory.

[/1

tools.sessions.on: True

tools.sessions.storage_class = cherrypy.lib.sessions.FileSession
tools.sessions.storage_path = "/some/directory"

4.6. Using sessions 37




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Memcached backend
Memcached is a popular key-store on top of your RAM, it is distributed and a good choice if you want to share sessions
outside of the process running CherryPy.

Requires that the Python memcached package is installed, which may be indicated by installing
cherrypy[memcached_session].

[/1
tools.sessions.on: True
tools.sessions.storage_class = cherrypy.lib.sessions.MemcachedSession

Other backends

Any other library may implement a session backend. Simply subclass cherrypy.lib.sessions.Session and
indicate that subclass as tools.sessions.storage_class.

Static content serving

CherryPy can serve your static content such as images, javascript and CSS resources, etc.

Note: CherryPy uses the mimetypes module to determine the best content-type to serve a particular resource. If
the choice is not valid, you can simply set more media-types as follows:

import mimetypes
mimetypes.types_map['.csv'] = 'text/csv'

Serving a single file

You can serve a single file as follows:

[/style.css]
tools.staticfile.on = True
tools.staticfile.filename = "/home/site/style.css"

CherryPy will automatically respond to URLSs such as http://hostname/style.css.

Serving a whole directory

Serving a whole directory is similar to a single file:

[/static]
tools.staticdir.on = True
tools.staticdir.dir = "/home/site/static"

Assuming you have a file at static/js/myjs, CherryPy will automatically respond to URLs such as
http://hostname/static/js/my.js.

38 Chapter 4. Basics



http://memcached.org/
https://pypi.org/project/memcached
https://docs.python.org/3/library/mimetypes.html#module-mimetypes

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Note: CherryPy always requires the absolute path to the files or directories it will serve. If you have several static
sections to configure but located in the same root directory, you can use the following shortcut:

[/1

tools.staticdir.root = "/home/site"
[/static]

tools.staticdir.on = True
tools.staticdir.dir = "static"

Specifying an index file

By default, CherryPy will respond to the root of a static directory with an 404 error indicating the path /> was not
found. To specify an index file, you can use the following:

[/static]

tools.staticdir.on = True
tools.staticdir.dir = "/home/site/static"
tools.staticdir.index = "index.html"

Assuming you have a file at static/index.html, CherryPy will automatically respond to URLs such as
http://hostname/static/ by returning its contents.

Allow files downloading

Using "application/x-download" response content-type, you can tell a browser that a resource should be
downloaded onto the user’s machine rather than displayed.

You could for instance write a page handler as follows:

from cherrypy.lib.static import serve_file

@cherrypy.expose
def download(self, filepath):
return serve_file(filepath, "application/x-download", "attachment")

Assuming the filepath is a valid path on your machine, the response would be considered as a downloadable content
by the browser.

Warning: The above page handler is a security risk on its own since any file of the server could be accessed (if
the user running the server had permissions on them).

Dealing with JSON

CherryPy has built-in support for JSON encoding and decoding of the request and/or response.

4.8. Dealing with JSON 39




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Decoding request

To automatically decode the content of a request using JSON:

class Root (object) :
@cherrypy.expose
@cherrypy.tools. json_in()
def index(self):
data = cherrypy.request. json

The json attribute attached to the request contains the decoded content.

Encoding response

To automatically encode the content of a response using JSON:

class Root (object) :
@cherrypy.expose
@Qcherrypy.tools. json_out ()
def index(self):
return {'key': 'value'}

CherryPy will encode any content returned by your page handler using JSON. Not all type of objects may natively be
encoded.

Authentication

CherryPy provides support for two very simple authentication mechanisms, both described in RFC 2617: Basic and
Digest. They are most commonly known to trigger a browser’s popup asking users their name and password.

Basic

Basic authentication is the simplest form of authentication however it is not a secure one as the user’s credentials are
embedded into the request. We advise against using it unless you are running on SSL or within a closed network.

from cherrypy.lib import auth_basic
USERS = {'jon': 'secret'}

def validate_password(realm, username, password) :
if username in USERS and USERS[username] == password:
return True
return False

conf = {
'/protected/area': {
'tools.auth_basic.on': True,
'tools.auth_basic.realm': 'localhost',
'tools.auth_basic.checkpassword': validate_password

cherrypy.quickstart (myapp, '/', conf)

40 Chapter 4. Basics



https://tools.ietf.org/html/rfc2617.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Simply put, you have to provide a function that will be called by CherryPy passing the username and password decoded
from the request.

The function can read its data from any source it has to: a file, a database, memory, etc.

Digest

Digest authentication differs by the fact the credentials are not carried on by the request so it’s a little more secure than
basic.

CherryPy’s digest support has a similar interface to the basic one explained above.

from cherrypy.lib import auth_digest

USERS = {'Jjon': 'secret'}
conf = {
'/protected/area': {
'tools.auth_digest.on': True,
'tools.auth_digest.realm': 'localhost',
'tools.auth_digest.get_hal': auth_digest.get_hal_dict_plain (USERS),
'tools.auth_digest.key': 'a565c27146791cfb’

cherrypy.quickstart (myapp, '/', conf)

Favicon

CherryPy serves its own sweet red cherrypy as the default favicon using the static file tool. You can serve your own
favicon as follows:

import cherrypy

class HelloWorld (object) :
@cherrypy.expose
def index(self):
return "Hello World!"

if _ name_ == '__ _main__ ':
cherrypy.quickstart (HelloWorld (), '/',
{
'/favicon.ico':
{
'tools.staticfile.on': True,
'tools.staticfile.filename': '/path/to/myfavicon.ico’

Please refer to the static serving section for more details.

You can also use a file to configure it:

4.10. Favicon 41



http://en.wikipedia.org/wiki/Favicon

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

[/favicon.ico]
tools.staticfile.on: True
tools.staticfile.filename: "/path/to/myfavicon.ico"

import cherrypy

class HelloWorld (object) :
@cherrypy.expose
def index(self):
return "Hello World!"

if name_ == '__main__ ':
cherrypy.quickstart (HelloWorld(), '/', app.conf)

42

Chapter 4. Basics




CHAPTER B

Advanced

CherryPy has support for more advanced features that these sections will describe.

Contents

e Advanced

Set aliases to page handlers

RESTful-style dispatching
x The special _cp_dispatch method

* The popargs decorator

Error handling

Streaming the response body
* The “normal” CherryPy response process

* How “streaming output” works with CherryPy

Response timeouts

s Timeout Monitor

Deal with signals

* Windows Console Events

Securing your server

Multiple HTTP servers support

WSGI support

* Make your CherryPy application a WSGI application

« Host a foreign WSGI application in CherryPy

43



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

% No need for the WSGI interface?

WebSocket support

Database support

— HTML Templating support

Testing your application

Set aliases to page handlers

A fairly unknown, yet useful, feature provided by the cherrypy.expose () decorator is to support aliases.

Let’s use the template provided by tutorial 03:

import random
import string

import cherrypy

class StringGenerator (object):
@cherrypy.expose ([ 'generer', 'generar'])
def generate(self, length=8):
return ''.Jjoin(random.sample (string.hexdigits, int (length)))

if name == '__main__ ':
cherrypy.quickstart (StringGenerator ())

In this example, we create localized aliases for the page handler. This means the page handler will be accessible via:
* /generate
* /generer (French)
* /generar (Spanish)

Obviously, your aliases may be whatever suits your needs.

Note: The alias may be a single string or a list of them.

RESTful-style dispatching

The term RESTful URL is sometimes used to talk about friendly URLs that nicely map to the entities an application
exposes.

Important: We will not enter the debate around what is restful or not but we will showcase two mechanisms to
implement the usual idea in your CherryPy application.

Let’s assume you wish to create an application that exposes music bands and their records. Your application will
probably have the following URLs:

* http://hostname/<artist>/

44 Chapter 5. Advanced


http://hostname

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

* http://hostname/<artist>/albums/<album_title>/

It’s quite clear you would not create a page handler named after every possible band in the world. This means you will
need a page handler that acts as a proxy for all of them.

The default dispatcher cannot deal with that scenario on its own because it expects page handlers to be explicitly
declared in your source code. Luckily, CherryPy provides ways to support those use cases.

See also:

This section extends from this stackoverflow response.

The special _cp_dispatch method

_cp_dispatch is a special method you declare in any of your controller to massage the remaining segments before
CherryPy gets to process them. This offers you the capacity to remove, add or otherwise handle any segment you wish
and, even, entirely change the remaining parts.

import cherrypy

class Band (object) :
def _ init_ (self):
self.albums = Album/()

def _cp_dispatch(self,
if len(vpath) == 1:
cherrypy.request.params|['name'] = vpath.pop ()
return self

vpath) :

if len(vpath) == 3:
cherrypy.request.params|['artist'] = vpath.pop(0) # /band name/
vpath.pop (0) # /albums/
cherrypy.request.params|['title'] = vpath.pop(0) # /album title/
return self.albums

return vpath

@cherrypy.expose
def index(self, name):
return 'About ..." % name

class Album(object) :
@cherrypy.expose
def index(self, artist, title):

°

return 'About by ... % (title, artist)

v '

if name == main :

cherrypy.quickstart (Band() )

Notice how the controller defines _cp_dispatch, it takes a single argument, the URL path info broken into its segments.

The method can inspect and manipulate the list of segments, removing any or adding new segments at any position.
The new list of segments is then sent to the dispatcher which will use it to locate the appropriate resource.

In the above example, you should be able to go to the following URLs:
* http://localhost:8080/nirvana/

* http://localhost:8080/nirvana/albums/nevermind/

5.2. RESTful-style dispatching 45



http://hostname
http://stackoverflow.com/a/15789415/1363905
http://localhost:8080/nirvana/
http://localhost:8080/nirvana/albums/nevermind/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

The /nirvana/ segment is associated to the band and the /nevermind/ segment relates to the album.

To achieve this, our _cp_dispatch method works on the idea that the default dispatcher matches URLs against page
handler signatures and their position in the tree of handlers.

In this case, we take the dynamic segments in the URL (band and record names), we inject them into the request
parameters and we remove them from the segment lists as if they had never been there in the first place.

In other words, _cp_dispatch makes it as if we were working on the following URLs:
* http://localhost:8080/?artist=nirvana

* http://localhost:8080/albums/?artist=nirvana&title=nevermind

The popargs decorator

cherrypy.popargs () is more straightforward as it gives a name to any segment that CherryPy wouldn’t be able
to interpret otherwise. This makes the matching of segments with page handler signatures easier and helps CherryPy
understand the structure of your URL.

import cherrypy

@Qcherrypy.popargs ( 'band_name')
class Band (object) :
def _ init_ (self):
self.albums = Album/{()

@Qcherrypy.expose
def index(self, band_name) :
return 'About ...'" % band_name

@Qcherrypy.popargs ('album_title')
class Album(object) :
@Qcherrypy.expose
def index(self, band_name, album_title):

o

return 'About by ..." % (album_title, band_name)

if name == '__main__':
cherrypy.quickstart (Band())

This works similarly to _cp_dispatch but, as said above, is more explicit and localized. It says:
* take the first segment and store it into a parameter named band_name
* take again the first segment (since we removed the previous first) and store it into a parameter named album_title

Note that the decorator accepts more than a single binding. For instance:

@Qcherrypy.popargs ('album title')
class Album(object) :
def _ init_ (self):
self.tracks = Track()

@cherrypy.popargs ('track_num', 'track_title')
class Track (object) :
@Qcherrypy.expose
def index(self, band_name, album_title, track_num, track_title):

This would handle the following URL.:

46 Chapter 5. Advanced



http://localhost:8080/?artist=nirvana
http://localhost:8080/albums/?artist=nirvana&title=nevermind

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

* http://localhost:8080/nirvana/albums/nevermind/tracks/06/polly

Notice finally how the whole stack of segments is passed to each page handler so that you have the full context.

Error handling

CherryPy’s HTTPError class supports raising immediate responses in the case of errors.

class Root:
@cherrypy.expose
def thing(self, path):
if not authorized():
raise cherrypy.HTTPError (401, 'Unauthorized')
try:
file = open(path)
except FileNotFoundError:
raise cherrypy.HTTPError (404)

HTTPError.handle is a context manager which supports translating exceptions raised in the app into an appropri-
ate HTTP response, as in the second example.

class Root:
@cherrypy.expose
def thing(self, path):
with cherrypy.HTTPError.handle (FileNotFoundError, 404):
file = open(path)

Streaming the response body

CherryPy handles HTTP requests, packing and unpacking the low-level details, then passing control to your applica-
tion’s page handler, which produce the body of the response. CherryPy allows you to return body content in a variety
of types: a string, a list of strings, a file. CherryPy also allows you to yield content, rather than refurn content. When
you use “yield”, you also have the option of streaming the output.

In general, it is safer and easier to not stream output. Therefore, streaming output is off by default. Streaming
output and also using sessions requires a good understanding of how session locks work.

The “normal” CherryPy response process
When you provide content from your page handler, CherryPy manages the conversation between the HTTP server and

your code like this:

Notice that the HTTP server gathers all output first and then writes everything to the client at once: status, headers,
and body. This works well for static or simple pages, since the entire response can be changed at any time, either in
your application code, or by the CherryPy framework.

How “streaming output” works with CherryPy

When you set the config entry “response.stream” to True (and use “yield”), CherryPy manages the conversation be-
tween the HTTP server and your code like this:

5.3. Error handling 47



http://localhost:8080/nirvana/albums/nevermind/tracks/06/polly

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

When you stream, your application doesn’t immediately pass raw body content back to CherryPy or to the HTTP
server. Instead, it passes back a generator. At that point, CherryPy finalizes the status and headers, before the generator
has been consumed, or has produced any output. This is necessary to allow the HTTP server to send the headers and
pieces of the body as they become available.

Once CherryPy has set the status and headers, it sends them to the HTTP server, which then writes them out to the
client. From that point on, the CherryPy framework mostly steps out of the way, and the HTTP server essentially
requests content directly from your application code (your page handler method).

Therefore, when streaming, if an error occurs within your page handler, CherryPy will not catch it-the HTTP server
will catch it. Because the headers (and potentially some of the body) have already been written to the client, the server
cannot know a safe means of handling the error, and will therefore simply close the connection (the current, builtin
servers actually write out a short error message in the body, but this may be changed, and is not guaranteed behavior
for all HTTP servers you might use with CherryPy).

In addition, you cannot manually modify the status or headers within your page handler if that handler method is
a streaming generator, because the method will not be iterated over until after the headers have been written to the
client. This includes raising exceptions like HTTPError, NotFound, InternalRedirect and HTTPRedirect. To
use a streaming generator while modifying headers, you would have to return a generator that is separate from (or
embedded in) your page handler. For example:

class Root:
@Qcherrypy.expose
def thing(self):
cherrypy.response.headers|'Content-Type'] = 'text/plain'
if not authorized():
raise cherrypy.NotFound ()
def content () :
yield "Hello, "
yield "world"
return content ()
thing._cp_config = {'response.stream': True}

Streaming generators are sexy, but they play havoc with HTTP. CherryPy allows you to stream output for specific
situations: pages which take many minutes to produce, or pages which need a portion of their content immediately
output to the client. Because of the issues outlined above, it is usually better to flatten (buffer) content rather than
stream content. Do otherwise only when the benefits of streaming outweigh the risks.

Response timeouts

CherryPy responses include 3 attributes related to time:
* response.time: the time.time () at which the response began
* response.timeout: the number of seconds to allow responses to run
* response.timed_out: a boolean indicating whether the response has timed out (default False).

The request processing logic inspects the value of response.timed_out at various stages; if it is ever True, then
TimeoutError israised. You are free to do the same within your own code.

Rather than calculate the difference by hand, you can call response.check_timeout to set timed_out for
you.

48 Chapter 5. Advanced



https://docs.python.org/3/library/time.html#time.time
https://docs.python.org/3/library/exceptions.html#TimeoutError

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Note: The default response timeout is 300 seconds.

Timeout Monitor

In addition, CherryPy includes a cherrypy.engine.timeout_monitor which monitors all active requests in
a separate thread; periodically, it calls check_timeout on them all. It is subscribed by default. To turn it off:

[global]
engine.timeout_monitor.on: False

or:

cherrypy.engine.timeout_monitor.unsubscribe ()

You can also change the interval (in seconds) at which the timeout monitor runs:

[global]
engine.timeout_monitor.frequency: 60 x 60

The default is once per minute. The above example changes that to once per hour.

Deal with signals

This engine plugin is instantiated automatically as cherrypy.engine.signal_handler. However, it is only subscribed
automatically by cherrypy.quickstart (). So if you want signal handling and you’re calling:

tree.mount ()
engine.start ()
engine.block ()

on your own, be sure to add before you start the engine:

engine.signals.subscribe ()

Windows Console Events

Microsoft Windows uses console events to communicate some signals, like Ctrl-C. Deploying CherryPy on Win-
dows platforms requires Python for Windows Extensions, which are installed automatically, being provided an
extra dependency with environment marker. With that installed, CherryPy will handle Ctrl-C and other console
events (CTRL_C_EVENT, CTRL_LOGOFF_EVENT, CTRL_BREAK_EVENT, CTRL_SHUTDOWN_EVENT, and
CTRL_CLOSE_EVENT) automatically, shutting down the bus in preparation for process exit.

Securing your server

Note: This section is not meant as a complete guide to securing a web application or ecosystem. Please review the
various guides provided at OWASP.

5.6. Deal with signals 49



http://sourceforge.net/projects/pywin32/
https://www.owasp.org/index.php/Main_Page

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

There are several settings that can be enabled to make CherryPy pages more secure. These include:
Transmitting data:
1. Use Secure Cookies
Rendering pages:
1. Set HttpOnly cookies
2. Set XFrame options
3. Enable XSS Protection
4. Set the Content Security Policy

An easy way to accomplish this is to set headers with a tool and wrap your entire CherryPy application with it:

import cherrypy

# set the priority according to your needs 1f you are hooking something
# else on the 'before finalize' hook point.

@cherrypy.tools.register ('before_finalize', priority=60)

def secureheaders():

headers = cherrypy.response.headers
headers|['X-Frame-Options'] = 'DENY'
headers['X-XSS-Protection'] = '1l; mode=block’
headers['Content-Security-Policy'] = "default-src='self'"

Note: Read more about those headers.

Then, in the configuration file (or any other place that you want to enable the tool):

[/1

tools.secureheaders.on = True

If you use sessions you can also enable these settings:

[/1

tools.sessions.on = True

# increase security on sessions
tools.sessions.secure = True
tools.sessions.httponly = True

If you use SSL you can also enable Strict Transport Security:

# add this to secureheaders () :
# only add Strict-Transport headers if we're actually using SSL; see the ietf spec
# "An HSTS Host MUST NOT include the STS header field in HTTP responses
# conveyed over non-secure transport"
# http://tools.ietf.org/html/draft—ietf-websec—-strict-transport—-sec—14#section—-7.2
if (cherrypy.server.ssl_certificate != None and cherrypy.server.ssl_private_key !=
—None) :
headers['Strict-Transport-Security'] = 'max-age=31536000' # one year

Next, you should probably use SSL.

50 Chapter 5. Advanced


https://www.owasp.org/index.php/List_of_useful_HTTP_headers

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Multiple HTTP servers support

CherryPy starts its own HTTP server whenever you start the engine. In some cases, you may wish to host your
application on more than a single port. This is easily achieved:

from cherrypy._cpserver import Server
server = Server ()

server.socket_port = 8090
server.subscribe ()

You can create as many server server instances as you need, once subscribed, they will follow the CherryPy engine’s
life-cycle.

WSGI support

CherryPy supports the WSGI interface defined in PEP 333 as well as its updates in PEP 3333. It means the following:
* You can host a foreign WSGI application with the CherryPy server
* A CherryPy application can be hosted by another WSGI server

Make your CherryPy application a WSGI application

A WSGI application can be obtained from your application as follows:

import cherrypy
wsgiapp = cherrypy.Application (StringGenerator(), '/', config=myconf)

Simply use the wsgiapp instance in any WSGI-aware server.

Host a foreign WSGI application in CherryPy

Assuming you have a WSGI-aware application, you can host it in your CherryPy server using the cherrypy.tree.
graft facility.

def raw_wsgi_app (environ, start_response):
status = '200 OK'
response_headers = [ ('Content-type', 'text/plain')]
start_response (status, response_headers)
return ['Hello world!"']

cherrypy.tree.graft (raw_wsgi_app, '/')

Important: You cannot use tools with a foreign WSGI application. However, you can still benefit from the CherryPy
bus.

5.8. Multiple HTTP servers support 51



https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

No need for the WSGI interface?

The default CherryPy HTTP server supports the WSGI interfaces defined in PEP 333 and PEP 3333. However, if your
application is a pure CherryPy application, you can switch to a HTTP server that by-passes the WSGI layer altogether.
It will provide a slight performance increase.

import cherrypy

class Root (object) :
@Qcherrypy.expose
def index(self):
return "Hello World!"

if name == "'__main__':
from cherrypy._cpnative_server import CPHTTPServer

cherrypy.server.httpserver = CPHTTPServer (cherrypy.server)

cherrypy.quickstart (Root (), '/"')

Important: Using the native server, you will not be able to graft a WSGI application as shown in the previous section.
Doing so will result in a server error at runtime.

WebSocket support

WebSocket is a recent application protocol that came to life from the HTMLS5 working-group in response to the needs
for bi-directional communication. Various hacks had been proposed such as Comet, polling, etc.

WebSocket is a socket that starts its life from a HTTP upgrade request. Once the upgrade is performed, the underlying
socket is kept opened but not used in a HTTP context any longer. Instead, both connected endpoints may use the
socket to push data to the other end.

CherryPy itself does not support WebSocket, but the feature is provided by an external library called ws4py.

Database support

CherryPy does not bundle any database access but its architecture makes it easy to integrate common database inter-
faces such as the DB-API specified in PEP 249. Alternatively, you can also use an ORM such as SQLAlchemy or
SQLObject.

You will find here a recipe on how integrating SQLAlchemy using a mix of plugins and fools.

HTML Templating support

CherryPy does not provide any HTML template but its architecture makes it easy to integrate one. Popular ones are
Mako or Jinja2.

You will find here a recipe on how to integrate them using a mix plugins and tools.

52 Chapter 5. Advanced



https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333
http://tools.ietf.org/html/rfc6455
https://github.com/Lawouach/WebSocket-for-Python
https://www.python.org/dev/peps/pep-0249
http://sqlalchemy.readthedocs.org
https://pypi.python.org/pypi/SQLObject/
https://bitbucket.org/Lawouach/cherrypy-recipes/src/tip/web/database/sql_alchemy/
http://www.makotemplates.org
http://jinja.pocoo.org/docs/
https://bitbucket.org/Lawouach/cherrypy-recipes/src/tip/web/templating/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Testing your application

Web applications, like any other kind of code, must be tested. CherryPy provides a helper class to ease writing
functional tests.

Here is a simple example for a basic echo application:

import cherrypy
from cherrypy.test import helper

class SimpleCPTest (helper.CPWebCase) :
def setup_server():
class Root (object) :
@cherrypy.expose
def echo(self, message):
return message

cherrypy.tree.mount (Root ())
setup_server = staticmethod (setup_server)

def test_message_should_be_returned_as_is(self):
self.getPage ("/echo?message=Hello%$20world")
self.assertStatus ('200 OK")
self.assertHeader ('Content-Type', 'text/html;charset=utf-8")
self.assertBody ('Hello world")

def test_non_utf8_message_will_ fail (self):
CherryPy defaults to decode the query-string
using UTF-8, trying to send a query-string with
a different encoding will raise a 404 since
it considers it's a different URL.
mmn
self.getPage ("/echo?message=A+bient ¢F4t",
headers=[
('"Accept-Charset', 'ISO-8859-1,utf-8"),
('Content-Type', 'text/html;charset=IS0-8859-1")

)
self.assertStatus('404 Not Found')

As you can see the, test inherits from that helper class. You should setup your application and mount it as per-usual.
Then, define your various tests and call the helper get Page () method to perform a request. Simply use the various
specialized assert* methods to validate your workflow and data.

You can then run the test using py.test as follows:

$ py.test -s test_echo_app.py

The s is necessary because the CherryPy class also wraps stdin and stdout.

Note: Although they are written using the typical pattern the unittest module supports, they are not bare unit
tests. Indeed, a whole CherryPy stack is started for you and runs your application. If you want to really unit test your
CherryPy application, meaning without having to start a server, you may want to have a look at this recipe.

5.13. Testing your application 53



http://pytest.org/latest/
https://docs.python.org/3/library/unittest.html#module-unittest
https://bitbucket.org/Lawouach/cherrypy-recipes/src/tip/testing/unit/serverless/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

54 Chapter 5. Advanced



CHAPTER O

Configure

Configuration in CherryPy is implemented via dictionaries. Keys are strings which name the mapped value; values
may be of any type.

In CherryPy 3, you use configuration (files or dicts) to set attributes directly on the engine, server, request, response,
and log objects. So the best way to know the full range of what’s available in the config file is to simply import those
objects and see what help (obj) tells you.

Note: If you are new to CherryPy, please refer first to the simpler basic config section first.

Contents

» Configure
— Architecture
% Global config
* Application config
% Request config
— Declaration
* Configuration files
* _cp_config: attaching config to handlers
— Namespaces
* Builtin namespaces

x Custom config namespaces

x Environments

55



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Architecture

The first thing you need to know about CherryPy 3’s configuration is that it separates global config from application
config. If you’re deploying multiple applications at the same site (and more and more people are, as Python web
apps are tending to decentralize), you need to be careful to separate the configurations, as well. There’s only ever one
“global config”, but there is a separate “app config” for each app you deploy.

CherryPy Requests are part of an Application, which runs in a global context, and configuration data may apply to any
of those three scopes. Let’s look at each of those scopes in turn.

Global config

Global config entries apply everywhere, and are stored in cherrypy . config. This flat dict only holds global config
data; that is, “site-wide” config entries which affect all mounted applications.

Global config is stored in the cherrypy.config dict, and you therefore update it by calling cherrypy.
config.update (conf). The conf argument can be either a filename, an open file, or a dict of config entries.
Here’s an example of passing a dict argument:

cherrypy.config.update ({'server.socket_host': '64.72.221.48",
'server.socket_port': 80,

})

The server.socket_host option in this example determines on which network interface CherryPy will listen.
The server.socket_port option declares the TCP port on which to listen.

Application config

Application entries apply to a single mounted application, and are stored on each Application object itself as app .
config. This is a two-level dict where each top-level key is a path, or “relative URL” (for example, " /" or " /my/
page"), and each value is a dict of config entries. The URL’s are relative to the script name (mount point) of the
Application. Usually, all this data is provided in the call to tree.mount (root (), script_name='/path/
to', config=conf), although you may also use app.merge (conf). The conf argument can be either a
filename, an open file, or a dict of config entries.

Configuration file example:

[/1
tools.trailing_slash.on = False
request.dispatch: cherrypy.dispatch.MethodDispatcher ()

or, in python code:

config = {'/":
{
'request.dispatch': cherrypy.dispatch.MethodDispatcher (),
'tools.trailing_slash.on': False,
}
}

cherrypy.tree.mount (Root (), config=configqg)

CherryPy only uses sections that start with " /" (except [global], see below). That means you can place your own
configuration entries in a CherryPy config file by giving them a section name which does not start with " /". For
example, you might include database entries like this:

56 Chapter 6. Configure




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

[global]
server.socket_host: "0.0.0.0"

[Databases]
driver: "postgres"
host: "localhost"
port: 5432

[/path]
response.timeout: 6000

Then, in your application code you can read these values during request time via cherrypy.request.app.
configl['Databases']. For code that is outside the request process, you’ll have to pass a reference to your
Application around.

Request config

Each Request object possesses a single request . config dict. Early in the request process, this dict is populated
by merging Global config, Application config, and any config acquired while looking up the page handler (see next).
This dict contains only those config entries which apply to the given request.

Note: when you do an InternalRedirect, this config attribute is recalculated for the new path.

Declaration

Configuration data may be supplied as a Python dictionary, as a filename, or as an open file object.

Configuration files

When you supply a filename or file, CherryPy uses Python’s builtin ConfigParser; you declare Application config by
writing each path as a section header, and each entry as a "key: value" (or "key = value") pair:

[/path/to/my/page]
response.stream: True
tools.trailing_slash.extra = False

Combined Configuration Files

If you are only deploying a single application, you can make a single config file that contains both global and
app entries. Just stick the global entries into a config section named [global], and pass the same file to both
config.update and tree.mount <cherrypy._cptree.Tree.mount (). If you're calling cherrypy.
quickstart (app root, script name, config), it will pass the config to both places for you. But as
soon as you decide to add another application to the same site, you need to separate the two config files/dicts.

Separate Configuration Files

If you’re deploying more than one application in the same process, you need (1) file for global config, plus (1) file for
each Application. The global config is applied by calling cherrypy.config.update, and application config is

6.2. Declaration 57




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

usually passed in a call to cherrypy.tree.mount.

In general, you should set global config first, and then mount each application with its own config. Among other
benefits, this allows you to set up global logging so that, if something goes wrong while trying to mount an application,
you’ll see the tracebacks. In other words, use this order:

# global config

cherrypy.config.update ({'environment': 'production',
'log.error_file': 'site.log',
# oL,
})

# Mount each app and pass it its own config
cherrypy.tree.mount (rootl, "", appconfl)
cherrypy.tree.mount (root2, "/forum", appconf2)
cherrypy.tree.mount (root3, "/blog", appconf3)

if hasattr(cherrypy.engine, 'block'"):
# 3.1 syntax
cherrypy.engine.start ()
cherrypy.engine.block ()

else:
# 3.0 syntax
cherrypy.server.quickstart ()
cherrypy.engine.start ()

Values in config files use Python syntax

Config entries are always a key/value pair, like server.socket_port = 8080. The key is always a name, and
the value is always a Python object. That is, if the value you are setting is an int (or other number), it needs to
look like a Python int; for example, 8080. If the value is a string, it needs to be quoted, just like a Python string.
Arbitrary objects can also be created, just like in Python code (assuming they can be found/imported). Here’s an
extended example, showing you some of the different types:

[global]
log.error_file: "/home/fumanchu/myapp.log"
environment = 'production'

server.max_request_body_size: 1200

[/myapp]
tools.trailing_slash.on = False
request.dispatch: cherrypy.dispatch.MethodDispatcher ()

_cp_config: attaching config to handlers

Config files have a severe limitation: values are always keyed by URL. For example:

[/path/to/page]
methods_with_bodies = ("POST", "PUT", "PROPPATCH")

It’s obvious that the extra method is the norm for that path; in fact, the code could be considered broken without it. In
CherryPy, you can attach that bit of config directly on the page handler:

@cherrypy.expose
def page(self):

58 Chapter 6. Configure




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

return "Hello, world!"
page._cp_config = {"request.methods_with_bodies": ("POST", "PUT", "PROPPATCH")}

_cp_configisareserved attribute which the dispatcher looks for at each node in the object tree. The _cp_config
attribute must be a CherryPy config dictionary. If the dispatcher finds a _cp_config attribute, it merges that dictio-
nary into the rest of the config. The entire merged config dictionary is placed in cherrypy.request.config.

This can be done at any point in the tree of objects; for example, we could have attached that config to a class which
contains the page method:

class SetOPages:
_cp_config = {"request.methods_with_bodies": ("POST", "PUT", "PROPPATCH")}
@cherrypy.expose

def page(self):
return "Hullo, Werld!"

Note: This behavior is only guaranteed for the default dispatcher. Other dispatchers may have different restrictions
on where you can attach _cp_config attributes.

This technique allows you to:
 Put config near where it’s used for improved readability and maintainability.

* Attach config to objects instead of URL’s. This allows multiple URL’s to point to the same object, yet you only
need to define the config once.

* Provide defaults which are still overridable in a config file.

Namespaces

Because config entries usually just set attributes on objects, they’re almost all of the form: object .attribute. A
few are of the form: object.subobject.attribute. They look like normal Python attribute chains, because
they work like them. We call the first name in the chain the “config namespace”. When you provide a config entry,
it is bound as early as possible to the actual object referenced by the namespace; for example, the entry response.
stream actually sets the st ream attribute of cherrypy.response! In this way, you can easily determine the
default value by firing up a python interpreter and typing:

>>> import cherrypy
>>> cherrypy.response.stream
False

Each config namespace has its own handler; for example, the “request” namespace has a handler which takes your
config entry and sets that value on the appropriate “request” attribute. There are a few namespaces, however, which
don’t work like normal attributes behind the scenes; however, they still use dotted keys and are considered to “have a
namespace”.

Builtin namespaces

Entries from each namespace may be allowed in the global, application root (" /") or per-path config, or a combination:

6.3. Namespaces 59




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Scope Global | Application Root | App Path

engine X

hooks X X X

log X X

request X X X

response | X X X

server X

tools X X X
engine

Entries in this namespace controls the ‘application engine’. These can only be declared in the global config. Any
attribute of cherrypy.engine may be set in config; however, there are a few extra entries available in config:

e Plugin attributes. Many of the Engine Plugins are themselves attributes of cherrypy.engine. You
can set any attribute of an attached plugin by simply naming it. For example, there is an instance of the
Autoreloader class at engine.autoreload; you can set its “frequency” attribute via the config en-
try engine.autoreload. frequency = 60. Inaddition, you can turn such plugins on and off by setting
engine.autoreload.on = TrueorFalse.

* engine.SIGHUP/SIGTERM: These entries can be used to set the list of listeners for the given channel.
Mostly, this is used to turn off the signal handling one gets automatically via cherrypy.quickstart ().

hooks

Declares additional request-processing functions. Use this to append your own Hook functions to the request. For
example, to add my_hook_ func to the before_handler hookpoint:

[/1
hooks.before_handler = myapp.my_hook_func

log

Configures logging. These can only be declared in the global config (for global logging) or [/] config (for each

CLINNT)

application). See LogManager for the list of configurable attributes. Typically, the “access_file”, “error_file”, and
“screen” attributes are the most commonly configured.

request

Sets attributes on each Request. See the Request class for a complete list.

response

Sets attributes on each Response. See the Response class for a complete list.

server

Controls the default HTTP server via cherrypy.server (see that class for a complete list of configurable at-
tributes). These can only be declared in the global config.

60 Chapter 6. Configure




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

tools

Enables and configures additional request-processing packages. See the /tutorial/tools overview for more information.

wsgi

Adds WSGI middleware to an Application’s “pipeline”. These can only be declared in the app’s root config (“/”).

* wsgi.pipeline: Appends to the WSGi pipeline. The value must be a list of (name, app factory) pairs.
Each app factory must be a WSGI callable class (or callable that returns a WSGI callable); it must take an
initial ‘nextapp’ argument, plus any optional keyword arguments. The optional arguments may be configured
viawsgi.<name>.<arg>.

* wsgi.response_class: Overrides the default Response class.

checker

Controls the “checker”, which looks for common errors in app state (including config) when the engine starts. You
can turn off individual checks by setting them to False in config. See cherrypy._cpchecker.Checker for a
complete list. Global config only.

Custom config nhamespaces

You can define your own namespaces if you like, and they can do far more than simply set attributes. The test/
test_config module, for example, shows an example of a custom namespace that coerces incoming params and
outgoing body content. The cherrypy._cpwsgi module includes an additional, builtin namespace for invoking
WSGI middleware.

In essence, a config namespace handler is just a function, that gets passed any config entries in its namespace. You
add it to a namespaces registry (a dict), where keys are namespace names and values are handler functions. When a
config entry for your namespace is encountered, the corresponding handler function will be called, passing the config
key and value; that is, namespaces [namespace] (k, v). For example, if you write:

def db_namespace (k, Vv):
if k == 'connstring':
orm.connect (v)

cherrypy.config.namespaces['db'] = db_namespace

then cherrypy.config.update ({"db.connstring”: "Oracle:host=1.10.100.200;
s1d=TEST"}) will call db_namespace ('connstring', 'Oracle:host=1.10.100.200;
sid=TEST").

The point at which your namespace handler is called depends on where you add it:

Scope Namespace dict Handler is called in
Global cherrypy.config. cherrypy.config.update
namespaces
Applica- app.namespaces Application.merge (which is called by cherrypy.tree.mount)
tion
Request app.request_class. Request.configure (called for each request, after the handler is
namespaces looked up)

The name can be any string, and the handler must be either a callable or a (Python 2.5 style) context manager.

If you need additional code to run when all your namespace keys are collected, you can supply a callable context
manager in place of a normal function for the handler. Context managers are defined in PEP 343.

6.3. Namespaces 61



https://www.python.org/dev/peps/pep-0343

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Environments

The only key that does not exist in a namespace is the “environment” entry. It only applies to the global config,
and only when you use cherrypy.config.update. This special entry imports other config entries from the
following template stored in cherrypy._cpconfig.environments [environment].

Config.environments = environments = {

'staging': {
'engine.autoreload.on': False,
'checker.on': False,
'tools.log_headers.on': False,
'request.show_tracebacks': False,
'request.show_mismatched_params': False,

}I

'production': {
'engine.autoreload.on': False,
'checker.on': False,
'tools.log_headers.on': False,
'request.show_tracebacks': False,
'request.show_mismatched_params': False,
'log.screen': False,

by

'embedded': {
# For use with CherryPy embedded in another deployment stack.
'engine.autoreload.on': False,
'checker.on': False,
'tools.log_headers.on': False,
'request.show_tracebacks': False,
'request.show_mismatched_params': False,
'log.screen': False,
'engine.SIGHUP': None,
'engine.SIGTERM': None,

}I

'test_suite': {
'engine.autoreload.on': False,
'checker.on': False,
'tools.log_headers.on': False,

'request.show_tracebacks': True,
'request.show_mismatched_params': True,
'log.screen': False,

}y

If you find the set of existing environments (production, staging, etc) too limiting or just plain wrong, feel free to
extend them or add new environments:

cherrypy._cpconfig.environments|['staging'] ['log.screen'] = False

cherrypy._cpconfig.environments|['Greek'] = {
'tools.encode.encoding': 'ISO-8859-7"',
'tools.decode.encoding': 'ISO-8859-7",
}

62 Chapter 6. Configure




CHAPTER /

Extend

CherryPy is truly an open framework, you can extend and plug new functions at will either server-side or on a per-
requests basis. Either way, CherryPy is made to help you build your application and support your architecture via
simple patterns.

Contents

» Extend
— Server-wide functions
* Publish/Subscribe pattern
- Typical pattern
- Implementation details
- Engine as a pubsub bus
- Built-in channels
- Bus API
* Plugins
- Create a plugin
- Enable a plugin
- Disable a plugin
— Per-request functions
* Hook point
* Tools

- Stateful tools

- Tools ordering

63



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

- Toolboxes
* Request parameters manipulation
— Tailored dispatchers

* Tool or dispatcher?

— Request body processors

Server-wide functions

CherryPy can be considered both as a HTTP library as much as a web application framework. In that latter case,
its architecture provides mechanisms to support operations across the whole server instance. This offers a powerful
canvas to perform persistent operations as server-wide functions live outside the request processing itself. They are
available to the whole process as long as the bus lives.

Typical use cases:

* Keeping a pool of connection to an external server so that your need not to re-open them on each request
(database connections for instance).

» Background processing (say you need work to be done without blocking the whole request itself).
Publish/Subscribe pattern
CherryPy’s  backbone consists of a bus system implementing a simple publish/subscribe

messaging  pattern. Simply put, in CherryPy everything is controlled via that bus.
One can easily picture the bus as a sushi restaurant’s belt as in the picture below.

64 Chapter 7. Extend


http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

CherryPy Documentation, Release 11.0.1.dev70+g1b979c3.d20170814

You can subscribe and publish to channels on a bus. A channel is bit like a unique identifier within the bus. When a
message is published to a channel, the bus will dispatch the message to all subscribers for that channel.

One interesting aspect of a pubsub pattern is that it promotes decoupling between a caller and the callee. A published
message will eventually generate a response but the publisher does not know where that response came from.

Thanks to that decoupling, a CherryPy application can easily access functionalities without having to hold a reference
to the entity providing that functionality. Instead, the application simply publishes onto the bus and will receive the
appropriate response, which is all that matter.

Typical pattern

Let’s take the following dummy application:

import cherrypy

class ECommerce (object) :
def _ init_ (self, db):
self.mydb db

@cherrypy.expose

def save_kart (self, cart_data):
cart = Cart (cart_data)
self.mydb.save (cart)

7.1. Server-wide functions 65



http://en.wikipedia.org/wiki/YO!_Sushi

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

if _ name_ == '_ _main__ ':
cherrypy.quickstart (ECommerce (), '/")

The application has a reference to the database but this creates a fairly strong coupling between the database provider
and the application.

Another approach to work around the coupling is by using a pubsub workflow:

import cherrypy

class ECommerce (object) :
@cherrypy.expose
def save_kart (self, cart_data):
cart = Cart (cart_data)
cherrypy.engine.publish ('db-save', cart)
if name_ == '_ main_ ':
cherrypy.quickstart (ECommerce (), '/")

In this example, we publish a cart instance to db-save channel. One or many subscribers can then react to that message
and the application doesn’t have to know about them.

Note: This approach is not mandatory and it’s up to you to decide how to design your entities interaction.

Implementation details
CherryPy’s bus implementation is simplistic as it registers functions to channels. Whenever a message is published to
a channel, each registered function is applied with that message passed as a parameter.

The whole behaviour happens synchronously and, in that sense, if a subscriber takes too long to process a message,
the remaining subscribers will be delayed.

CherryPy’s bus is not an advanced pubsub messaging broker system such as provided by zeromq or RabbitMQ. Use it
with the understanding that it may have a cost.

Engine as a pubsub bus

As said earlier, CherryPy is built around a pubsub bus. All entities that the framework manages at runtime are working
on top of a single bus instance, which is named the engine.

The bus implementation therefore provides a set of common channels which describe the application’s lifecycle:

o)
|
\Y%
STOPPING --> STOPPED --> EXITING -> X
A A |
\ \__ |
\ \ |
\ \Y v

STARTED <-- STARTING

The states’ transitions trigger channels to be published to so that subscribers can react to them.

66 Chapter 7. Extend



http://zeromq.org/
https://www.rabbitmq.com/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

One good example is the HTTP server which will tranisition from a “STOPPED” stated to a “STARTED” state
whenever a message is published to the start channel.

Built-in channels

In order to support its life-cycle, CherryPy defines a set of common channels that will be published to at various states:
* ‘“start”: When the bus is in the “STARTING” state
e “main”: Periodically from the CherryPy’s mainloop
e “stop”: When the bus is in the “STOPPING” state
 “graceful”: When the bus requests a reload of subscribers
o “exit”: When the bus is in the “EXITING” state

This channel will be published to by the engine automatically. Register therefore any subscribers that would need to
react to the transition changes of the engine.

In addition, a few other channels are also published to during the request processing.
¢ “before_request”: right before the request is processed by CherryPy
* “after_request”: right after it has been processed
Also, from the cherrypy.process.plugins. ThreadManager plugin:
* “acquire_thread”
* “start_thread”
¢ “stop_thread”

¢ “release_thread”

Bus API

In order to work with the bus, the implementation provides the following simple API:
* cherrypy.engine.publish (channel, x*args):
* The channel parameter is a string identifying the channel to which the message should be sent to
* *args is the message and may contain any valid Python values or objects.
* cherrypy.engine.subscribe (channel, callable):
* The channel parameter is a string identifying the channel the callable will be registered to.
* callable is a Python function or method which signature must match what will be published.
* cherrypy.engine.unsubscribe (channel, callable):
* The channel parameter is a string identifying the channel the callable was registered to.

* callable is the Python function or method which was registered.

7.1. Server-wide functions 67



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Plugins

Plugins, simply put, are entities that play with the bus, either by publishing or subscribing to channels, usually both at
the same time.

Important: Plugins are extremely useful whenever you have functionalities:
 Available across the whole application server
* Associated to the application’s life-cycle

* You want to avoid being strongly coupled to the application

Create a plugin

A typical plugin looks like this:

import cherrypy
from cherrypy.process import wspbus, plugins

class DatabasePlugin (plugins.SimplePlugin):
def _ init_ (self, bus, db_klass):
plugins.SimplePlugin.__init__ (self, bus)
self.db = db_klass()

def start (self):
self.bus.log('Starting up DB access')
self.bus.subscribe ("db-save", self.save_it)

def stop(self):
self.bus.log('Stopping down DB access')
self.bus.unsubscribe ("db-save", self.save_it)

def save_it (self, entity):
self.db.save (entity)

The cherrypy.process.plugins.SimplePluginis ahelper class provided by CherryPy that will automat-
ically subscribe your start and stop methods to the related channels.

When the start and stop channels are published on, those methods are called accordingly.
Notice then how our plugin subscribes to the db-save channel so that the bus can dispatch messages to the plugin.

Enable a plugin

To enable the plugin, it has to be registered to the the bus as follows:

DatabasePlugin (cherrypy.engine, SQLiteDB) .subscribe ()

The SQLiteDB here is a fake class that is used as our database provider.

Disable a plugin

You can also unregister a plugin as follows:

68 Chapter 7. Extend




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

someplugin.unsubscribe ()

This is often used when you want to prevent the default HTTP server from being started by CherryPy, for instance if

you run on top of a different HTTP server (WSGI capable):

cherrypy.server.unsubscribe ()

Let’s see an example using this default application:

import cherrypy

class Root (object) :
@cherrypy.expose
def index(self):
return "hello world"

v

if name == main__ ':

cherrypy.quickstart (Root ())

For instance, this is what you would see when running this application:

[27/Apr/2014:13:04:07
[27/Apr/2014:13:04:07
[27/Apr/2014:13:04:07
[27/Apr/2014:13:04:07
[27/Apr/2014:13:04:07
[27/Apr/2014:13:04:07
[27/Apr/2014:13:04:08
[27/Apr/2014:13:04:08

ENGINE Listening for SIGHUP.

ENGINE Listening for SIGTERM.

ENGINE Listening for SIGUSRL.

ENGINE Bus STARTING

ENGINE Started monitor thread 'Autoreloader'.
ENGINE Started monitor thread '_TimeoutMonitor'.
ENGINE Serving on http://127.0.0.1:8080
ENGINE Bus STARTED

Now let’s unsubscribe the HTTP server:

import cherrypy

class Root (object) :
@cherrypy.expose
def index(self):
return "hello world"

if  name_ == '_ _main__ ':
cherrypy.server.unsubscribe ()
cherrypy.quickstart (Root ())

This is what we get:

[27/Apr/2014:13:08:06] ENGINE Listening for SIGHUP.

[27/Apr/2014:13:08:06] ENGINE Listening for SIGTERM.

[27/Apr/2014:13:08:06] ENGINE Listening for SIGUSRI.

[27/Apr/2014:13:08:06] ENGINE Bus STARTING

[27/Apr/2014:13:08:06] ENGINE Started monitor thread 'Autoreloader'.

[27/Apr/2014:13:08:06] ENGINE Started monitor thread '_TimeoutMonitor'.
]

[27/Apr/2014:13:08:06] ENGINE Bus STARTED

As you can see, the server is not started. The missing:

[27/Apr/2014:13:04:08] ENGINE Serving on http://127.0.0.1:8080

7.1. Server-wide functions



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Per-request functions

One of the most common task in a web application development is to tailor the request’s processing to the runtime
context.

Within CherryPy, this is performed via what are called tools. If you are familiar with Django or WSGI middlewares,
CherryPy tools are similar in spirit. They add functions that are applied during the request/response processing.

Hook point

A hook point is a point during the request/response processing.
Here is a quick rundown of the “hook points” that you can hang your tools on:

* “on_start_resource” - The earliest hook; the Request-Line and request headers have been processed and a
dispatcher has set request.handler and request.config.

* “before_request_body” - Tools that are hooked up here run right before the request body would be processed.

e “before_handler” - Right before the request.handler (the exposed callable that was found by the dispatcher) is
called.

¢ “before_finalize” - This hook is called right after the page handler has been processed and before CherryPy
formats the final response object. It helps you for example to check for what could have been returned by your
page handler and change some headers if needed.

* “on_end_resource” - Processing is complete - the response is ready to be returned. This doesn’t always mean
that the request.handler (the exposed page handler) has executed! It may be a generator. If your tool absolutely
needs to run after the page handler has produced the response body, you need to either use on_end_request in-
stead, or wrap the response.body in a generator which applies your tool as the response body is being generated.

* “before_error_response” - Called right before an error response (status code, body) is set.

 “after_error_response” - Called right after the error response (status code, body) is set and just before the error
response is finalized.

* ‘“on_end_request” - The request/response conversation is over, all data has been written to the client, nothing
more to see here, move along.

Tools

A tool is a simple callable object (function, method, object implementing a __call__ method) that is attached to a ook
point.

Below is a simple tool that is attached to the before_finalize hook point, hence after the page handler was called:

@Qcherrypy.tools.register ('before_finalize')
def logit():
print (cherrypy.request.remote.ip)

Tools can also be created and assigned manually. The decorator registration is equivalent to:

cherrypy.tools.logit = cherrypy.Tool ('before finalize', logit)

Using that tool is as simple as follows:

70 Chapter 7. Extend




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class Root (object) :
@cherrypy.expose
@Qcherrypy.tools.logit ()
def index(self):
return "hello world"

Obviously the tool may be declared the other usual ways.

Note: The name of the tool, technically the attribute set to cherrypy.tools, does not have to match the name of the
callable. However, it is that name that will be used in the configuration to refer to that tool.

Stateful tools

The tools mechanism is really flexible and enables rich per-request functionalities.

Straight tools as shown in the previous section are usually good enough. However, if your workflow requires some
sort of state during the request processing, you will probably want a class-based approach:

import time
import cherrypy

class TimingTool (cherrypy.Tool) :
def  init__ (self):
cherrypy.Tool.__init__ (self, 'before_handler',
self.start_timer,
priority=95)

def _setup(self):
cherrypy.Tool._setup(self)
cherrypy.request.hooks.attach('before finalize',
self.end_timer,
priority=5)

def start_timer (self):
cherrypy.request._time = time.time ()

def end_timer(self):

duration = time.time () - cherrypy.request._time
cherrypy.log("Page handler took " % duration)
cherrypy.tools.timeit = TimingTool ()

This tool computes the time taken by the page handler for a given request. It stores the time at which the handler is
about to get called and logs the time difference right after the handler returned its result.

The import bits is that the cherrypy . Tool constructor allows you to register to a hook point but, to attach the same
tool to a different hook point, you must use the cherrypy.request .hooks.attach method. The cherrypy.
Tool._setup method is automatically called by CherryPy when the tool is applied to the request.

Next, let’s see how to use our tool:

class Root (object) :
@Qcherrypy.expose
@cherrypy.tools.timeit ()

7.2. Per-request functions 71




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

def index(self):
return "hello world"

Tools ordering

Since you can register many tools at the same hookpoint, you may wonder in which order they will be applied.

CherryPy offers a deterministic, yet so simple, mechanism to do so. Simply set the priority attribute to a value from
1 to 100, lower values providing greater priority.

If you set the same priority for several tools, they will be called in the order you declare them in your configuration.

Toolboxes

All of the builtin CherryPy tools are collected into a Toolbox called cherrypy.tools. It responds to config entries
in the "tools" namespace. You can add your own Tools to this Toolbox as described above.

You can also make your own Toolboxes if you need more modularity. For example, you might create multiple Tools
for working with JSON, or you might publish a set of Tools covering authentication and authorization from which
everyone could benefit (hint, hint). Creating a new Toolbox is as simple as:

import cherrypy

# Create a new Toolbox.
newauthtools = cherrypy._cptools.Toolbox ("newauth")

# Add a Tool to our new Toolbox.
@newauthtools.register ('before_request_body"')
def check_access (default=False):
if not getattr (cherrypy.request, "userid", default):
raise cherrypy.HTTPError (401)

Then, in your application, use it just like you would use cherrypy.tools, with the additional step of registering
your toolbox with your app. Note that doing so automatically registers the "newauth" config namespace; you can
see the config entries in action below:

import cherrypy

class Root (object) :
@cherrypy.expose
def default (self):
return "Hello"

conf = {
'/demo': {
'newauth.check_access.on': True,
'newauth.check_access.default': True,
}
}
app = cherrypy.tree.mount (Root (), config=conf)

72 Chapter 7. Extend




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Request parameters manipulation

HTTP uses strings to carry data between two endpoints. However your application may make better use of richer
object types. As it wouldn’t be really readable, nor a good idea regarding maintenance, to let each page handler
deserialize data, it’s a common pattern to delegate this functions to tools.

For instance, let’s assume you have a user id in the query-string and some user data stored into a database. You could
retrieve the data, create an object and pass it on to the page handler instead of the user id.

import cherrypy

class UserManager (cherrypy.Tool) :
def @ init__ (self):
cherrypy.Tool.__init__ (self, 'before_handler',
self.load, priority=10)

def load(self):
req = cherrypy.request

# let's assume we have a db session
# attached to the request somehow
db = reqg.db

# retrieve the user id and remove it

# from the request parameters

user_id = reqg.params.pop('user_id")
reg.params|['user'] = db.get (int (user_id))

cherrypy.tools.user = UserManager ()

class Root (object) :
@cherrypy.expose
@cherrypy.tools.user ()
def index(self, user):

o

return "hello " % user.name

In other words, CherryPy give you the power to:
* inject data, that wasn’t part of the initial request, into the page handler
¢ remove data as well

* convert data into a different, more useful, object to remove that burden from the page handler itself

Tailored dispatchers

Dispatching is the art of locating the appropriate page handler for a given request. Usually, dispatching is based on the
request’s URL, the query-string and, sometimes, the request’s method (GET, POST, etc.).

Based on this, CherryPy comes with various dispatchers already.

In some cases however, you will need a little more. Here is an example of dispatcher that will always ensure the
incoming URL leads to a lower-case page handler.

import random
import string

7.3. Tailored dispatchers 73




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

import cherrypy
from cherrypy._cpdispatch import Dispatcher

class StringGenerator (object):
@cherrypy.expose
def generate(self, length=8):
return ''.Jjoin(random.sample (string.hexdigits, int (length)))

class ForcelLowerDispatcher (Dispatcher) :
def _ call (self, path_info):
return Dispatcher._ _call__ (self, path_info.lower())

if name == '__main__ ':
conf = {

VAR
'request.dispatch': ForceLowerDispatcher (),
}

}

cherrypy.quickstart (StringGenerator (), '/', conf)

Once you run this snippet, go to:
* http://localhost:8080/generate ?length=8
* http://localhost:8080/GENerAte?length=8

In both cases, you will be led to the generate page handler. Without our home-made dispatcher, the second one would
fail and return a 404 error (RFC 2616#sec10.4.5).

Tool or dispatcher?

In the previous example, why not simply use a tool? Well, the sooner a tool can be called is always after the page
handler has been found. In our example, it would be already too late as the default dispatcher would have not even
found a match for /GENerAte.

A dispatcher exists mostly to determine the best page handler to serve the requested resource.

On the other hand, tools are there to adapt the request’s processing to the runtime context of the application and the
request’s content.

Usually, you will have to write a dispatcher only if you have a very specific use case to locate the most adequate page
handler. Otherwise, the default ones will likely suffice.

Request body processors

Since its 3.2 release, CherryPy provides a really elegant and powerful mechanism to deal with a request’s body based
on its mimetype. Refer to the cherrypy._cpregbody module to understand how to implement your own proces-
sors.

74 Chapter 7. Extend



http://localhost:8080/generate?length=8
http://localhost:8080/GENerAte?length=8
https://tools.ietf.org/html/rfc2616.html#sec10.4.5

CHAPTER 8

Deploy

CherryPy stands on its own, but as an application server, it is often located in shared or complex environments. For
this reason, it is not uncommon to run CherryPy behind a reverse proxy or use other servers to host the application.

Note: CherryPy’s server has proven reliable and fast enough for years now. If the volume of traffic you receive is
average, it will do well enough on its own. Nonetheless, it is common to delegate the serving of static content to more
capable servers such as nginx or CDN.

Contents

* Deploy

Run as a daemon

Run as a different user

PID files

Systemd socket activation

Control via Supervisord

SSL support
— WSGI servers

*

Embedding into another WSGI framework
* Tornado
* Twisted

* UWSgI

Virtual Hosting

Reverse-proxying

75


http://nginx.org

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

* Apache

* Nginx

Run as a daemon

CherryPy allows you to easily decouple the current process from the parent environment, using the traditional double-
fork:

from cherrypy.process.plugins import Daemonizer
d = Daemonizer (cherrypy.engine)
d.subscribe ()

Note: This engine plugin is only available on Unix and similar systems which provide fork().

If a startup error occurs in the forked children, the return code from the parent process will still be 0. Errors in the
initial daemonizing process still return proper exit codes, but errors after the fork won’t. Therefore, if you use this
plugin to daemonize, don’t use the return code as an accurate indicator of whether the process fully started. In fact,
that return code only indicates if the process successfully finished the first fork.

The plugin takes optional arguments to redirect standard streams: stdin, stdout, and stderr. By default, these
are all redirected to /dev/null, but you're free to send them to log files or elsewhere.

Warning: You should be careful to not start any threads before this plugin runs. The plugin will warn if you do
so, because ”...the effects of calling functions that require certain resources between the call to fork() and the call
to an exec function are undefined”. (ref). It is for this reason that the Server plugin runs at priority 75 (it starts
worker threads), which is later than the default priority of 65 for the Daemonizer.

Run as a different user

Use this engine plugin to start your CherryPy site as root (for example, to listen on a privileged port like 80) and then
reduce privileges to something more restricted.

LT3

This priority of this plugin’s “start” listener is slightly higher than the priority for serverstart in order to facilitate the
most common use: starting on a low port (which requires root) and then dropping to another user.

’DropPrivileges(cherrypy.engine, uid=1000, gid=1000) .subscribe ()

PID files

The PIDFile engine plugin is pretty straightforward: it writes the process id to a file on start, and deletes the file on
exit. You must provide a ‘pidfile’ argument, preferably an absolute path:

’PIDFile(cherrypy.engine, '/var/run/myapp.pid') .subscribe ()

76 Chapter 8. Deploy


http://www.opengroup.org/onlinepubs/000095399/functions/fork.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Systemd socket activation

Socket Activation is a systemd feature that allows to setup a system so that the systemd will sit on a port and start
services ‘on demand’ (a little bit like inetd and xinetd used to do).

CherryPy has built-in socket activation support, if run from a systemd service file it will detect the LISTEN_PID
environment variable to know that it should consider fd 3 to be the passed socket.

To read more about socket activation: http://Opointer.de/blog/projects/socket-activation.html

Control via Supervisord

Supervisord is a powerful process control and management tool that can perform a lot of tasks around process moni-
toring.

Below is a simple supervisor configuration for your CherryPy application.

[unix_http_server]
file=/tmp/supervisor.sock

[supervisord]

logfile=/tmp/supervisord.log ; (main log file;default $CWD/supervisord.log)
logfile_maxbytes=50MB ; (max main logfile bytes b4 rotation;default 50MB)
logfile_backups=10 ; (num of main logfile rotation backups;default 10)
loglevel=info ; log level;default info; others: debug,warn,trace)

pidfile=/tmp/supervisord.pid ;
nodaemon=false ;
minfds=1024 ;
minprocs=200 ;

supervisord pidfile;default supervisord.pid)
start in foreground if true;default false)
min. avail startup file descriptors;default 1024)

(
(
(
(
(
(
(
(min. avail process descriptors;default 200)
[rpcinterface: supervisor]

supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:myapp]
command=python server.py
environment=PYTHONPATH=.
directory=.

This could control your server via the server . py module as the application entry point.

import cherrypy

class Root (object) :
@cherrypy.expose
def index(self):
return "Hello World!"

cherrypy.config.update ({'server.socket_port': 8090,

'engine.autoreload.on': False,
'log.access_file': './access.log',
'log.error_file': './error.log'})

cherrypy.quickstart (Root ())

8.4. Systemd socket activation 77



http://0pointer.de/blog/projects/socket-activation.html
http://supervisord.org

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

To take the configuration (assuming it was saved in a file called supervisor.conf) into account:

$ supervisord -c supervisord.conf
$ supervisorctl update

Now, you can point your browser at http://localhost:8090/ and it will display Hello World!.

To stop supervisor, type:

’$ supervisorctl shutdown

This will obviously shutdown your application.

SSL support

Note: You may want to test your server for SSL using the services from Qualys, Inc.

CherryPy can encrypt connections using SSL to create an https connection. This keeps your web traffic secure. Here’s
how.

1. Generate a private key. We’ll use openssl and follow the OpenSSL Keys HOWTO.:

$ openssl genrsa -out privkey.pem 2048

You can create either a key that requires a password to use, or one without a password. Protecting your private key with
a password is much more secure, but requires that you enter the password every time you use the key. For example,
you may have to enter the password when you start or restart your CherryPy server. This may or may not be feasible,
depending on your setup.

If you want to require a password, add one of the ~aes128, ~aes192 or —~aes256 switches to the command above.
You should not use any of the DES, 3DES, or SEED algorithms to protect your password, as they are insecure.

SSL Labs recommends using 2048-bit RSA keys for security (see references section at the end).

2. Generate a certificate. We’ll use openssl and follow the OpenSSL Certificates HOWTO. Let’s start off with a
self-signed certificate for testing:

$ openssl reqg -new -x509 -days 365 —-key privkey.pem -out cert.pem

openssl will then ask you a series of questions. You can enter whatever values are applicable, or leave most fields
blank. The one field you must fill in is the ‘Common Name’: enter the hostname you will use to access your site. If
you are just creating a certificate to test on your own machine and you access the server by typing ‘localhost’ into your
browser, enter the Common Name ‘localhost’.

3. Decide whether you want to use python’s built-in SSL library, or the pyOpenSSL library. CherryPy supports
either.

(a) Built-in. To use python’s built-in SSL, add the following line to your CherryPy config:

cherrypy.server.ssl_module = 'builtin'

(a) pyOpenSSL. Because python did not have a built-in SSL library when CherryPy was first created,
the default setting is to use pyOpenSSL. To use it you’ll need to install it (we could recommend
you install cython first):

78 Chapter 8. Deploy


http://localhost:8090/
https://www.ssllabs.com/ssltest/index.html
https://www.openssl.org/docs/HOWTO/keys.txt
https://www.openssl.org/docs/HOWTO/certificates.txt
http://cython.org/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

$ pip install cython, pyOpenSSL

2. Add the following lines in your CherryPy config to point to your certificate files:

cherrypy.server.ssl_certificate = "cert.pem"
cherrypy.server.ssl_private_key = "privkey.pem"

5. If you have a certificate chain at hand, you can also specify it:

cherrypy.server.ssl_certificate_chain = "certchain.perm"

6. Start your CherryPy server normally. Note that if you are debugging locally and/or using a self-signed certificate,
your browser may show you security warnings.

WSGI servers

Embedding into another WSGI framework

Though CherryPy comes with a very reliable and fast enough HTTP server, you may wish to integrate your CherryPy
application within a different framework. To do so, we will benefit from the WSGI interface defined in PEP 333 and
PEP 3333.

Note that you should follow some basic rules when embedding CherryPy in a third-party WSGI server:

e If you rely on the “main” channel to be published on, as it would happen within the CherryPy’s mainloop, you
should find a way to publish to it within the other framework’s mainloop.

* Start the CherryPy’s engine. This will publish to the “start” channel of the bus.

’cherrypy.engine.start()

* Stop the CherryPy’s engine when you terminate. This will publish to the “stop” channel of the bus.

’cherrypy.engine.stop()

e Do not call cherrypy.engine.block ().

¢ Disable the built-in HTTP server since it will not be used.

’cherrypy.server.unsubscribe()

* Disable autoreload. Usually other frameworks won’t react well to it, or sometimes, provide the same feature.

cherrypy.config.update ({'engine.autoreload.on': False})

¢ Disable CherryPy signals handling. This may not be needed, it depends on how the other framework handles
them.

’cherrypy.engine.signals.subscribe()

* Use the "embedded" environment configuration scheme.

’cherrypy.config.update({'environment': 'embedded'})

Essentially this will disable the following:

8.7. WSGI servers 79


https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Stdout logging

Autoreloader

Configuration checker

Headers logging on error

Tracebacks in error

Mismatched params error during dispatching

Signals (SIGHUP, SIGTERM)

Tornado

You can use tornado HTTP server as follow:

import cherrypy

class Root (object) :
@cherrypy.expose
def index(self):
return "Hello World!"

if _ name_ == '_ _main__ ':
import tornado
import tornado.httpserver
import tornado.wsgi

# our WSGI application
wsgiapp = cherrypy.tree.mount (Root ())

# Disable the autoreload which won't play well
cherrypy.config.update ({'engine.autoreload.on': False})

# let's not start the CherryPy HTTP server
cherrypy.server.unsubscribe ()

# use CherryPy's signal handling
cherrypy.engine.signals.subscribe ()

# Prevent CherryPy logs to be propagated
# to the Tornado logger
cherrypy.log.error_log.propagate = False

# Run the engine but don't block on it
cherrypy.engine.start ()

# Run thr tornado stack

container = tornado.wsgi.WSGIContainer (wsgiapp)
http_server = tornado.httpserver.HTTPServer (container)
http_server.listen (8080)

# Publish to the CherryPy engine as 1if

# we were using its mainloop

tornado.ioloop.PeriodicCallback (lambda: cherrypy.engine.publish('main'), 100).

—start ()
tornado.ioloop.IOLoop.instance () .start ()

80

Chapter 8. Deploy



http://www.tornadoweb.org/

CherryPy Documentation, Release 11.0.1.dev70+g1b979c3.d20170814

Twisted

You can use Twisted HTTP server as follow:

import cherrypy

from twisted.web.wsgi import WSGIResource
from twisted.internet import reactor
from twisted.internet import task

# Our CherryPy application
class Root (object) :
@cherrypy.expose
def index(self):
return "hello world"

# Create our WSGI app from the CherryPy application
wsgiapp = cherrypy.tree.mount (Root ())

# Configure the CherryPy's app server
# Disable the autoreload which won't play well
cherrypy.config.update ({'engine.autoreload.on': False})

# We will be using Twisted HTTP server so let's
# disable the CherryPy's HTTP server entirely
cherrypy.server.unsubscribe ()

# If you'd rather use CherryPy's signal handler

# Uncomment the next line. I don't know how well this
# will play with Twisted however
#cherrypy.engine.signals.subscribe ()

# Publish periodically onto the 'main' channel as the bus mainloop would do
task.LoopingCall (lambda: cherrypy.engine.publish('main')) .start(0.1)

# Tie our app to Twisted

reactor.addSystemEventTrigger ('after', 'startup', cherrypy.engine.start)
reactor.addSystemEventTrigger ('before', 'shutdown', cherrypy.engine.exit)
resource = WSGIResource (reactor, reactor.getThreadPool (), wsgilapp)

Notice how we attach the bus methods to the Twisted’s own lifecycle.

Save that code into a module named cptw.py and run it as follows:

$ twistd -n web —-port 8080 --wsgi cptw.wsgiapp

uwsgi

You can use uwsgi HTTP server as follow:

import cherrypy

# Our CherryPy application
class Root (object) :
@cherrypy.expose
def index(self):
return "hello world"

8.7. WSGI servers 81



https://twistedmatrix.com/
http://projects.unbit.it/uwsgi/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.config.update ({'engine.autoreload.on': False})
cherrypy.server.unsubscribe ()
cherrypy.engine.start ()

wsgiapp = cherrypy.tree.mount (Root ())

Save this into a Python module called mymod.py and run it as follows:

$ uwsgi —--socket 127.0.0.1:8080 —--protocol=http --wsgi-file mymod.py --callable
—wsglapp

Virtual Hosting

CherryPy has support for virtual-hosting. It does so through a dispatchers that locate the appropriate resource based
on the requested domain.

Below is a simple example for it:

import cherrypy

class Root (object) :
def _ init__ (self):
self.appl = Appl()
self.app2 = App2()

class Appl (object):
@cherrypy.expose
def index(self):
return "Hello world from appl"

class App2 (object) :
@cherrypy.expose
def index(self):
return "Hello world from app2"

if _ name_ == '_ _main__ ':
hostmap = {
'company.com:8080"': '/appl',
'home.net:8080': '/app2',
}
config = {

'request.dispatch': cherrypy.dispatch.VirtualHost (x+xhostmap)

cherrypy.quickstart (Root (), '/', {'/': config})

In this example, we declare two domains and their ports:
e company.com:8080
* home.net:8080

Thanks to the cherrypy.dispatch.VirtualHost dispatcher, we tell CherryPy which application to dispatch
to when a request arrives. The dispatcher looks up the requested domain and call the according application.

82 Chapter 8. Deploy




20

21

22

23

24

25

26

27

28

29

30

31

32

33

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Note: To test this example, simply add the following rules to your hosts file:

127.0.0.1 company.com
127.0.0.1 home.net
Reverse-proxying
Apache

Nginx

nginx is a fast and modern HTTP server with a small footprint. It is a popular choice as a reverse proxy to application
servers such as CherryPy.

This section will not

cover the whole range of features nginx provides. Instead, it will simply provide you with a basic

configuration that can be a good starting point.

upstream apps {
server 127.0
server 127.0

.0.1:8080;
.0.1:8081;

gzip_http_version 1.0;

gzip_proxied
gzip_min_length
gzip_disable
gzip_types

server {
listen 80;
server_name

access_log
error_log /

A

location "~
root /app

location / {
proxy_pas

any;
500;

"MSIE [1-6]\.";

text/plain text/xml text/css
text/javascript
application/javascript;

www.example.com;

/app/logs/www.example.com.log combined;
app/logs/www.example.com.log;

/static/ {
/static/;

s http://apps;

proxy_redirect ;

proxy_set
proxy_set

_header Host S$host;
_header X-Real-IP Sremote_addr;

proxy_set_header X-Forwarded-For S$proxy_add_x_forwarded_for;

Sg

proxy_set_header X-Forwarded-Host S$server_name;

Edit this configuration to match your own paths. Then, save this configuration into a file under /etc/nginx/conf.
d/ (assuming Ubuntu). The filename is irrelevant. Then run the following commands:

8.9. Reverse-proxying 83




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

$ sudo service nginx stop
$ sudo service nginx start

Hopefully, this will be enough to forward requests hitting the nginx frontend to your CherryPy application. The

upstream block defines the addresses of your CherryPy instances.

It shows that you can load-balance between two application servers. Refer to the nginx documentation to understand

how this achieved.

upstream apps {
server 127.0.0.1:8080;
server 127.0.0.1:8081;

Later on, this block is used to define the reverse proxy section.

Now, let’s see our application:

import cherrypy

class Root (object) :
@cherrypy.expose
def index(self):
return "hello world"
if  name_ == '_ main__
cherrypy.config.update ({
'server.socket_port': 8080,
'tools.proxy.on': True,
'tools.proxy.base': 'http://www.example.com'

})
cherrypy.quickstart (Root () )

If you run two instances of this code, one on each port defined in the nginx section, you will be able to reach both of

them via the load-balancing done by nginx.

Notice how we define the proxy tool. It is not mandatory and used only so that the CherryPy request knows about the
true client’s address. Otherwise, it would know only about the nginx’s own address. This is most visible in the logs.

The base attribute should match the server_name section of the nginx configuration.

84

Chapter 8. Deploy




CHAPTER 9

Support

You’ve read the documentation and you’ve brushed up on the basics of Python and web development, but you still
could use some help. Users have several options.

| have a question

If you have a question and cannot find an answer for it in issues or the the documentation, please create an issue.

Questions and their answers have great value for the community, and a tip is to really put the effort in and write a good
explanation, you will get better and quicker answers. Examples are strongly encouraged.

| have found a bug

If no one have already, create an issue. Be sure to provide ample information, remember that any help won’t be better
than your explanation.

Unless something is very obviously wrong, you are likely to be asked to provide a working example, displaying the
erroneous behaviour.

Note: While this might feel troublesome, a tip is to always make a separate example that have the same dependencies
as your project. It is great for troubleshooting those annoying problems where you don’t know if the problem is at
your end or the components. Also, you can then easily fork and provide as an example. You will get answers and
resolutions way quicker. Also, many other open source projects require it.

| have a feature request

Good stuff! Please create an issue! Note: Features are more likely to be added the more users they seem to benefit.

85


http://docs.cherrypy.org/en/latest/
https://github.com/cherrypy/cherrypy/issues/new
https://github.com/cherrypy/cherrypy/issues/new
https://github.com/cherrypy/cherrypy/issues/new

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

| want to converse

The gitter page is good for when you want to discuss in real time or get pointed in the right direction.

86 Chapter 9. Support


https://gitter.im/cherrypy/cherrypy

cHAaPTER 10

Contribute

CherryPy is a community-maintained, open-source project hosted at Github. The project active encourages aspiring
and experienced users to dive in and add their best contribution to the project.

How can you contribute? Well, first search the docs and the project page to see if someone has already reported your
issue.

StackOverflow

On StackOverflow, there are questions tagged with ‘cherrypy’. Answer unanswered questions, add an improved an-
swer, clarify an answer with a comment, or ask more meaningful questions there. Earn reputation and share experience.

CherryPy also maintains a StackOverflow Wiki where anyone can publish tricks and techniques and refine others.

Filing Bug Reports

If you find a bug, an issue where the product doesn’t behave as you expect, you may file a bug report at the project page.
Be sure to include what your expectation was, what happened instead, details about your system that might be relevant,
and steps that someone else could take to replicate your finding. The more detailed and exact your description, the
better one of the volunteers on the project may be able to help resolve your issue.

Fixing Bugs

CherryPy has a number of open, reported issues. Some of them are complicated and difficult, but others are more
straightforward and shovel-ready. Feel free to find one that you think you can solve or introduce yourself and ask for
guidance in our gitter channel.

As you work through the issue and commit changes to your clone of the repository, be sure to add issue references to
your changes (like “Fixes #999” or “Ref #999”) so your changes link to the issue and vice-versa.

87


https://docs.cherrypy.org
https://github.com/cherrypy/cherrypy
https://stackoverflow.com
http://stackoverflow.com/documentation/cherrypy/topics
https://github.com/cherrypy/cherrypy
https://github.com/cherrypy/cherrypy/issues
https://gitter.im/cherrypy/cherrypy

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Writing Pull Requests

To contribute, first read How to write the perfect pull request and file your contribution with the CherryPy Project
page.

88 Chapter 10. Contribute


http://blog.jaraco.com/how-to-write-perfect-pull-request/
https://github.com/cherrypy/cherrypy
https://github.com/cherrypy/cherrypy

cHAPTER 11

Testing

* To run the regression tests, first install tox:

’pip install 'tox>=2.5"

then run it

’tox

* To run individual tests type:

’tox -— -k test_foo

89



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

90 Chapter 11. Testing



cHAPTER 12

Glossary

application A CherryPy application is simply a class instance containing at least one page handler.
controller Loose name commonly given to a class owning at least one exposed method

exposed A Python function or method which has an attribute called exposed set to True. This attribute can be set
directly or via the cherrypy.expose () decorator.

@cherrypy.expose
def method(...):

is equivalent to:

def method(...):

method.exposed = True

page handler Name commonly given to an exposed method

91




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

92 Chapter 12. Glossary



cHAPTER 13

History

v11.0.0

08 Jul 2017
» #1607: Dropped support for Python 2.6.

v10.2.2

17 May 2017

e #1595: Fixed over-eager normalization of paths in cherrypy.url.

vi0.2.1

13 Mar 2017

* Remove unintended dependency on graphviz in Python 2.6.

v10.2.0

12 Mar 2017

#1580: CPWSGIServer.version now reported as CherryPy/x.y.z Cheroot/x.y.z. Bump to cheroot
5.2.0.

* The codebase is now PEP8 complaint, flake8 linter is enabled in TravisCI by default.

e Max line restriction is now set to 120 for flake8 linter.

PEP257 linter runs as separate allowed failure job in Travis CI.

93


https://github.com/cherrypy/CherryPy/issues/1607
https://github.com/cherrypy/CherryPy/issues/1595
https://github.com/cherrypy/CherryPy/issues/1580
https://cheroot.readthedocs.io/en/latest/history.html#v5.2.0
https://cheroot.readthedocs.io/en/latest/history.html#v5.2.0
https://github.com/cherrypy/cherrypy/commit/b6e752b

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

» A few bugs related to undeclared variables have been fixed.

* pre—commit testing goes faster due to enabled caching.

v10.1.1

18 Feb 2017

e #1342: Fix AssertionError on shutdown.

v10.1.0

07 Feb 2017
* Bump to cheroot 5.1.0.

* #794: Prefer setting max-age for session cookie expiration, moving MSIE hack into a function documenting its
purpose.

v10.0.0

20 Jan 2017

e #1332: CherryPy now uses portend for checking and waiting on ports for startup and teardown checks. The
following names are no longer present:

— cherrypy._cpserver.client_host

— cherrypy._cpserver.check_port

— cherrypy._cpserver.wait_for_free_port

— cherrypy._cpserver.wait_for_occupied_port
— cherrypy.process.servers.check_port

— cherrypy.process.servers.wait_for_free_port

cherrypy.process.servers.wait_for_occupied_port

Use this functionality from the portend package directly.

v9.0.0

19 Jan 2017

e #1481: Move functionality from cherrypy.wsgiserver to the ‘‘cheroot 5.0 <https://cheroot.readthedocs.io/en/
latest/history.html#v5.0>‘_ <https://pypi.org/project/Cheroot/5.0.1/>‘_ project.

94 Chapter 13. History


https://github.com/cherrypy/CherryPy/issues/1342
https://cheroot.readthedocs.io/en/latest/history.html#v5.1.0
https://github.com/cherrypy/CherryPy/issues/794
https://github.com/cherrypy/CherryPy/issues/1332
https://pypi.org/project/portend
https://github.com/cherrypy/CherryPy/issues/1481
https://cheroot.readthedocs.io/en/latest/history.html#v5.0
https://cheroot.readthedocs.io/en/latest/history.html#v5.0
https://pypi.org/project/Cheroot/5.0.1/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

v8.9.1

16 Jan 2017
* #1537: Restore dependency on pywin32 for Python 3.6.

v8.9.0

13 Jan 2017
* #1547: Replaced cherryd distutils script with a setuptools console entry point.

When running CherryPy in daemon mode, the forked process no longer changes directory to /. If that behavior
is something on which your application relied and should rely, please file a ticket with the project.

v8.8.0

09 Jan 2017

e #1528: Allow a timeout of O to server.

v8.7.0

31 Dec 2016
» #645: Setting a bind port of 0 will bind to an ephemeral port.

v8.6.0

27 Dec 2016

e #1538 and #1090: Removed cruft from the setup script and instead rely on include_package_data to ensure the
relevant files are included in the package. Note, this change does cause LICENSE.md no longer to be included
in the installed package.

v8.5.0

26 Dec 2016

* The pyOpenSSL support is now included on Python 3 builds, removing the last disparity between Python 2 and
Python 3 in the CherryPy package. This change is one small step in consideration of #1399. This change also
fixes RPM builds, as reported in #1149.

13.9. v8.9.1 95


https://github.com/cherrypy/CherryPy/issues/1537
https://github.com/cherrypy/CherryPy/issues/1547
https://github.com/cherrypy/CherryPy/issues/1528
https://github.com/cherrypy/CherryPy/issues/645
https://github.com/cherrypy/CherryPy/issues/1538
https://github.com/cherrypy/CherryPy/issues/1090
http://setuptools.readthedocs.io/en/latest/setuptools.html?highlight=include_package_data#new-and-changed-setup-keywords
https://github.com/cherrypy/CherryPy/issues/1399
https://github.com/cherrypy/CherryPy/issues/1149

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

v8.4.0

26 Dec 2016

e #1532: Also release wheels for Python 2, enabling offline installation.

v8.3.1
25 Dec 2016

 #1537: Disable dependency on pypiwin32 on Python 3.6 until a viable build of pypiwin32 can be made on that
Python version.

v8.3.0
24 Dec 2016

* Consolidated some documentation and include the more concise readme in the package long description, as
found on PyPIL.

v8.2.0

23 Dec 2016

e #1463: CherryPy tests are now run under pytest and invoked using tox.

v8.1.3

16 Dec 2016
* #1530: Fix the issue with TypeError being swallowed by decorated handlers.

v8.1.2

28 Sep 2016
. #1508

v8.1.1

27 Sep 2016

e #1497: Handle errors thrown by ss1_module: 'builtin' when client opens connection to HTTPS port
using HTTP.

 #1350: Fix regression introduced in v6.1.0 where environment construction for WSGIGateway_u0 was passing
one parameter and not two.

96 Chapter 13. History


https://github.com/cherrypy/CherryPy/issues/1532
https://github.com/cherrypy/CherryPy/issues/1537
https://github.com/cherrypy/CherryPy/issues/1463
https://github.com/cherrypy/CherryPy/issues/1530
https://github.com/cherrypy/CherryPy/issues/1508
https://github.com/cherrypy/CherryPy/issues/1497
https://github.com/cherrypy/CherryPy/issues/1350

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

¢ Other miscellaneous fixes.

v8.1.0

04 Sep 2016
e #1473: HTTPError now also works as a context manager.

» #1487: The sessions tool now accepts a storage_class parameter, which supersedes the new deprecated
storage_type parameter. The storage_class should be the actual Session subclass to be used.

* Releases now use setuptools_scm to track the release versions. Therefore, releases can be cut by simply
tagging a commit in the repo. Versions numbers are now stored in exactly one place.

v8.0.1

03 Sep 2016
o #1489 via #1493: Additionally reject anything else that’s not bytes.

* #1492: systemd socket activation.

v8.0.0

02 Sep 2016
» #1483: Remove Deprecated constructs:
— cherrypy.lib.http module.

— unrepr,modules, and attributes in cherrypy.lib.

#1476: Drop support for python-memcached<1.58
#1401: Handle NoSSLErrors.

#1489: Inwsgiserver.WSGIGateway . respond, the application must now yield bytes and not text, as the
spec requires. If text is received, it will now raise a ValueError instead of silently encoding using ISO-8859-1.

* Removed unicode filename from the package, working around pip #3894 and setuptools #704.

v7.1.0

25 Jul 2016

# 1458: Implement systemd’s socket activation mechanism for CherryPy servers, based on work sponsored by
Endless Computers.

Socket Activation allows one to setup a system so that systemd will sit on a port and start services ‘on demand’
(a little bit like inetd and xinetd used to do).

13.22. v8.1.0 97


https://github.com/cherrypy/CherryPy/issues/1473
https://github.com/cherrypy/CherryPy/issues/1487
https://github.com/cherrypy/CherryPy/issues/1489
https://github.com/cherrypy/CherryPy/issues/1493
https://github.com/cherrypy/CherryPy/issues/1492
https://github.com/cherrypy/CherryPy/issues/1483
https://github.com/cherrypy/CherryPy/issues/1476
https://github.com/cherrypy/CherryPy/issues/1401
https://github.com/cherrypy/CherryPy/issues/1489
https://github.com/cherrypy/CherryPy/issues/3894
https://github.com/cherrypy/CherryPy/issues/704

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

v7.0.0

24 Jul 2016

Removed the long-deprecated backward compatibility for legacy config keys in the engine. Use the config for the
namespaced-plugins instead:

¢ autoreload_on -> autoreload.on

* autoreload_frequency -> autoreload.frequency
¢ autoreload_match -> autoreload.match

e reload_files -> autoreload.files

* deadlock_poll_frequency -> timeout_monitor.frequency

v6.2.1

24 Jul 2016
# 1460: Fix KeyError in Bus.publish when signal handlers set in config.

v6.2.0

18 Jul 2016

e #1441: Added tool to automatically convert request params based on type annotations (primarily in Python 3).
For example:

@cherrypy.tools.params() def resource(self, limit: int):

assert isinstance(limit, int)

v6.1.1

16 Jul 2016

e Issue #1411: Fix issue where autoreload fails when the host interpreter for CherryPy was launched using
python -m.

v6.1.0

14 Jul 2016

¢ Combined wsgiserver2 and wsgiserver3 modules into a single module, cherrypy.wsgiserver.

v6.0.2

23 Jun 2016

* Issue #1445: Correct additional typos.

98 Chapter 13. History


https://github.com/cherrypy/CherryPy/issues/1441
https://github.com/cherrypy/CherryPy/issues/1411
https://github.com/cherrypy/CherryPy/issues/1445

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

v6.0.1

06 Jun 2016

e Issue #1444: Correct typos in @cherrypy .expose decorators.

v6.0.0

05 Jun 2016

* Setuptools is now required to build CherryPy. Pure distutils installs are no longer supported. This change allows
CherryPy to depend on other packages and re-use code from them. It’s still possible to install pre-built CherryPy
packages (wheels) using pip without Setuptools.

* six is now a requirement and subsequent requirements will be declared in the project metadata.

e #1440: Back out changes from #1432 attempting to fix redirects with Unicode URLs, as it also had the unin-
tended consequence of causing the ‘Location’ to be bytes on Python 3.

e cherrypy.expose now works on classes.

e cherrypy.config decorator is now used throughout the code internally.

v5.6.0

05 Jun 2016
* @cherrypy.expose now will also set the exposed attribute on a class.

* Rewrote all tutorials and internal usage to prefer the decorator usage of expose rather than setting the attribute
explicitly.

» Removed test-specific code from tutorials.

v5.5.0

05 Jun 2016

» #1397: Fix for filenames with semicolons and quote characters in filenames found in headers.

#1311: Added decorator for registering tools.

#1194: Use simpler encoding rules for SCRIPT_NAME and PATH_INFO environment variables in CherryPy
Tree allowing non-latin characters to pass even when wsgi.versionisnotu.O.

#1352: Ensure that multipart fields are decoded even when cached in a file.

v5.4.0

10 May 2016

e cherrypy.test.webtest.WebCase now honors a ‘WEBTEST_INTERACTIVE’ environment variable
to disable interactive tests (still enabled by default). Set to ‘0’ or ‘false’ or ‘False’ to disable interactive tests.

13.32. v6.0.1 99


https://github.com/cherrypy/CherryPy/issues/1444
https://pypi.io/project/six
https://github.com/cherrypy/CherryPy/issues/1440
https://github.com/cherrypy/CherryPy/issues/1432
https://github.com/cherrypy/CherryPy/issues/1397
https://github.com/cherrypy/CherryPy/issues/1311
https://github.com/cherrypy/CherryPy/issues/1194
https://github.com/cherrypy/CherryPy/issues/1352

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

» #1408: Fix AttributeError when listiterator was accessed using the next attribute.
e #748: Removed cherrypy.lib.sessions.PostgresglSession.

e #1432: Fix errors with redirects to Unicode URLSs.

v5.3.0

30 Apr 2016
» #1202: Add support for specifying a certificate authority when serving SSL using the built-in SSL support.
* Use ssl.create_default_context when available.
» #1392: Catch platform-specific socket errors on OS X.
 #1386: Fix parsing of URIs containing : // in the path part.

v5.2.0

30 Apr 2016
» #1410: Moved hosting to Github ( cherrypy/cherrypy.

v5.1.0

* Bugfix issue #1315 for test_HTTP11_pipelining testin Python 3.5
* Bugfix issue #1382 regarding the keyword arguments support for Python 3 on the config file.

* Bugfix issue #1406 for test_2_KeyboardInterrupt test in Python 3.5. by monkey patching the
HTTPRequest given a bug on CPython that is affecting the testsuite (https://bugs.python.org/issue23377).

* Add additional parameter raise_subcls to the tests helpers openURL and CPWebCase . getPage to have
finer control on which exceptions can be raised.

* Add support for direct keywords on the calls (e.g. foo=bar) on the config file under Python 3.

* Add additional validation to determine if the process is running as a daemon on cherrypy.process.
plugins.SignalHandler to allow the execution of the testsuite under CI tools.

v5.0.1

* Bugfix for NameError following #94.

v5.0.0

* Removed deprecated support for ss1_certificate and ssl_private_key attributes and implicit con-
struction of SSL adapter on Python 2 WSGI servers.

» Default SSL Adapter on Python 2 is the builtin SSL adapter, matching Python 3 behavior.

 Pull request #94: In proxy tool, defer to Host header for resolving the base if no base is supplied.

100 Chapter 13. History


https://github.com/cherrypy/CherryPy/issues/1408
https://github.com/cherrypy/CherryPy/issues/748
https://github.com/cherrypy/CherryPy/issues/1432
https://github.com/cherrypy/CherryPy/issues/1202
https://github.com/cherrypy/CherryPy/issues/1392
https://github.com/cherrypy/CherryPy/issues/1386
https://github.com/cherrypy/CherryPy/issues/1410
https://github.com/cherrypy/cherrypy
https://github.com/cherrypy/CherryPy/issues/1315
https://github.com/cherrypy/CherryPy/issues/1382
https://github.com/cherrypy/CherryPy/issues/1406
https://bugs.python.org/issue23377
https://github.com/cherrypy/CherryPy/issues/94
https://github.com/cherrypy/CherryPy/issues/94

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

v4.0.0

* Drop support for Python 2.5 and earlier.
* No longer build Windows installers by default.

v3.8.2

 Pull Request #116: Correct InternalServerError when null bytes in static file path. Now responds with 404
instead.

v3.8.0

* Pull Request #96: Pass exc_info to logger as keyword rather than formatting the error and injecting into the
message.

v3.7.0

* CherryPy daemon may now be invoked with python -m cherrypy in addition to the cherryd script.

¢ Issue #1298: Fix SSL handling on CPython 2.7 with builtin SSL module and pyOpenSSL 0.14. This change
will break PyPy for now.

¢ Several documentation fixes.

v3.6.0

» Fixed HTTP range headers for negative length larger than content size.

* Disabled universal wheel generation as wsgiserver has Python duality.

* Pull Request #42: Correct TypeError in check_auth when encrypt is used.

 Pull Request #59: Correct signature of HandlerWrapperTool.

 Pull Request #60: Fix error in SessionAuth where login_screen was incorrectly used.
e Issue #1077: Support keyword-only arguments in dispatchers (Python 3).

e Issue #1019: Allow logging host name in the access log.

* Pull Request #50: Fixed race condition in session cleanup.

v3.5.0

* Issue #1301: When the incoming queue is full, now reject additional connections. This functionality was added
to CherryPy 3.0, but unintentionally lost in 3.1.

13.42. v4.0.0 101


https://github.com/cherrypy/CherryPy/issues/116
https://github.com/cherrypy/CherryPy/issues/96
https://github.com/cherrypy/CherryPy/issues/1298
https://github.com/cherrypy/CherryPy/issues/42
https://github.com/cherrypy/CherryPy/issues/59
https://github.com/cherrypy/CherryPy/issues/60
https://github.com/cherrypy/CherryPy/issues/1077
https://github.com/cherrypy/CherryPy/issues/1019
https://github.com/cherrypy/CherryPy/issues/50
https://github.com/cherrypy/CherryPy/issues/1301

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

v3.4.0

* Miscellaneous quality improvements.

v3.3.0

CherryPy adopts semver.

102 Chapter 13. History



cHAPTER 14

Modules

cherrypy package

Subpackages

cherrypy.lib package

Submodules
cherrypy.lib.auth module

cherrypy.lib.auth.basic_auth (realm, users, encrypt=None, debug=False)
If auth fails, raise 401 with a basic authentication header.

realm A string containing the authentication realm.
users A dict of the form: {username: password} or a callable returning a dict.

encrypt callable used to encrypt the password returned from the user-agent. if None it defaults to a mdS
encryption.

cherrypy.lib.auth.check_auth (users, encrypt=None, realm=None)
If an authorization header contains credentials, return True or False.

cherrypy.lib.auth.digest_auth (realm, users, debug=False)
If auth fails, raise 401 with a digest authentication header.

realm A string containing the authentication realm.

users A dict of the form: {username: password} or a callable returning a dict.

103



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.auth_basic module

This module provides a CherryPy 3.x tool which implements the server-side of HTTP Basic Access Authentication,
as described in RFC 2617.

Example usage, using the built-in checkpassword_dict function which uses a dict as the credentials store:

userpassdict = {'bird' : 'bebop', 'ornette' : 'wayout'}
checkpassword = cherrypy.lib.auth_basic.checkpassword_dict (userpassdict)
basic_auth = {'tools.auth_basic.on': True,

'tools.auth_basic.realm': 'earth',

'tools.auth_basic.checkpassword': checkpassword,
}
app_config = { '/' : basic_auth }

cherrypy.lib.auth_basic.basic_auth (realm, checkpassword, debug=False)
A CherryPy tool which hooks at before_handler to perform HTTP Basic Access Authentication, as specified in
RFC 2617.

If the request has an ‘authorization’ header with a ‘Basic’ scheme, this tool attempts to authenticate the cre-
dentials supplied in that header. If the request has no ‘authorization’ header, or if it does but the scheme is not
‘Basic’, or if authentication fails, the tool sends a 401 response with a “‘WW W-Authenticate’ Basic header.

realm A string containing the authentication realm.

checkpassword A callable which checks the authentication credentials. Its signature is checkpassword(realm,
username, password). where username and password are the values obtained from the request’s ‘autho-
rization’ header. If authentication succeeds, checkpassword returns True, else it returns False.

cherrypy.lib.auth_basic.checkpassword_dict (user_password_dict)
Returns a checkpassword function which checks credentials against a dictionary of the form: {username :
password}.

If you want a simple dictionary-based authentication scheme, use checkpassword_dict(my_credentials_dict) as
the value for the checkpassword argument to basic_auth().

cherrypy.lib.auth_digest module

An implementation of the server-side of HTTP Digest Access Authentication, which is described in RFC 2617.

Example usage, using the built-in get_hal_dict_plain function which uses a dict of plaintext passwords as the creden-
tials store:

userpassdict = {'alice' : '"4xbistwelve'}
get_hal = cherrypy.lib.auth_digest.get_hal_dict_plain (userpassdict)
digest_auth = {'tools.auth_digest.on': True,

'tools.auth_digest.realm': 'wonderland',
'tools.auth_digest.get_hal': get_hal,
'tools.auth_digest.key': 'a565c27146791cfb"',
}
app_config = { '/' : digest_auth }

cherrypy.lib.auth_digest.H(s)
The hash function H

class cherrypy.lib.auth_digest.HttpDigestAuthorization (auth_header, http_method, de-

bug=False)
Bases: object

104 Chapter 14. Modules



https://tools.ietf.org/html/rfc2617.html
https://tools.ietf.org/html/rfc2617.html
https://tools.ietf.org/html/rfc2617.html
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Class to parse a Digest Authorization header and perform re-calculation of the digest.

HA2 (entity_body="")
Returns the H(A2) string. See RFC 2617 section 3.2.2.3.

errmsg (s)

is_nonce_stale (max_age_seconds=600)
Returns True if a validated nonce is stale. The nonce contains a timestamp in plaintext and also a secure
hash of the timestamp. You should first validate the nonce to ensure the plaintext timestamp is not spoofed.

request_digest (hal, entity_body="")
Calculates the Request-Digest. See RFC 2617 section 3.2.2.1.

hal The HA1 string obtained from the credentials store.

entity_body If ‘qop’ is set to ‘auth-int’, then A2 includes a hash of the “entity body”. The entity body
is the part of the message which follows the HTTP headers. See RFC 2617 section 4.3. This refers
to the entity the user agent sent in the request which has the Authorization header. Typically GET
requests don’t have an entity, and POST requests do.

validate_nonce (s, key)
Validate the nonce. Returns True if nonce was generated by synthesize_nonce() and the timestamp is not
spoofed, else returns False.

s A string related to the resource, such as the hostname of the server.

key A secret string known only to the server.

Both s and key must be the same values which were used to synthesize the nonce we are trying to validate.
cherrypy.lib.auth_digest .TRACE (msg)

cherrypy.lib.auth_digest.digest_auth (realm, get_hal, key, debug=False)
A CherryPy tool which hooks at before_handler to perform HTTP Digest Access Authentication, as specified in
RFC 2617.

If the request has an ‘authorization’ header with a ‘Digest’ scheme, this tool authenticates the credentials sup-
plied in that header. If the request has no ‘authorization’ header, or if it does but the scheme is not “Digest”, or
if authentication fails, the tool sends a 401 response with a “‘WWW-Authenticate’ Digest header.

realm A string containing the authentication realm.

get_hal A callable which looks up a username in a credentials store and returns the HA1 string, which is defined
in the RFC to be MD5(username : realm : password). The function’s signature is: get_hal (realm,
username) where username is obtained from the request’s ‘authorization’ header. If username is not
found in the credentials store, get_hal() returns None.

key A secret string known only to the server, used in the synthesis of nonces.

cherrypy.lib.auth_digest.get_hal_dict (user_hal_dict)
Returns a get_hal function which obtains a HA1 password hash from a dictionary of the form: {username :
HA1}.

If you want a dictionary-based authentication scheme, but with pre-computed HA1 hashes instead of plain-text
passwords, use get_hal_dict(my_userhal_dict) as the value for the get_hal argument to digest_auth().

cherrypy.lib.auth_digest.get_hal_dict_plain (user_password_dict)
Returns a get_hal function which obtains a plaintext password from a dictionary of the form: {username :
password}.

If you want a simple dictionary-based authentication scheme, with plaintext passwords, use
get_hal_dict_plain(my_userpass_dict) as the value for the get_hal argument to digest_auth().

14.1. cherrypy package 105


https://tools.ietf.org/html/rfc2617.html
https://tools.ietf.org/html/rfc2617.html
https://tools.ietf.org/html/rfc2617.html
https://tools.ietf.org/html/rfc2617.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.auth_digest.get_hal_file_htdigest (filename)
Returns a get_hal function which obtains a HA1 password hash from a flat file with lines of the same format
as that produced by the Apache htdigest utility. For example, for realm ‘wonderland’, username ‘alice’, and
password ‘4x5istwelve’, the htdigest line would be:

alice:wonderland:3238cdfe91a8b2ed8e39646921a02d4c

If you want to wuse an Apache htdigest file as the credentials store, then use
get_hal_file_htdigest(my_htdigest_file) as the value for the get_hal argument to digest_auth(). It is
recommended that the filename argument be an absolute path, to avoid problems.

cherrypy.lib.auth_digest.md5_hex (s)

cherrypy.lib.auth_digest.synthesize_nonce (s, key, timestamp=None)
Synthesize a nonce value which resists spoofing and can be checked for staleness. Returns a string suitable as
the value for ‘nonce’ in the www-authenticate header.

s A string related to the resource, such as the hostname of the server.
key A secret string known only to the server.
timestamp An integer seconds-since-the-epoch timestamp

cherrypy.lib.auth_digest.www_authenticate (realm, key, algorithm="MDS5’, nonce=None,

qop="auth’, stale=False)
Constructs a WWW-Authenticate header for Digest authentication.

cherrypy.lib.caching module

CherryPy implements a simple caching system as a pluggable Tool. This tool tries to be an (in-process) HTTP/1.1-
compliant cache. It’s not quite there yet, but it’s probably good enough for most sites.

In general, GET responses are cached (along with selecting headers) and, if another request arrives for the same
resource, the caching Tool will return 304 Not Modified if possible, or serve the cached response otherwise. It also
sets request.cached to True if serving a cached representation, and sets request.cacheable to False (so it doesn’t get
cached again).

If POST, PUT, or DELETE requests are made for a cached resource, they invalidate (delete) any cached response.

Usage

Configuration file example:

[/1
tools.caching.on = True
tools.caching.delay = 3600

You may use a class other than the default MemoryCache by supplying the config entry cache_class; supply
the full dotted name of the replacement class as the config value. It must implement the basic methods get, put,
delete,and clear.

You may set any attribute, including overriding methods, on the cache instance by providing them in config. The above
sets the delay attribute, for example.

class cherrypy.lib.caching.AntiStampedeCache
Bases: dict

A storage system for cached items which reduces stampede collisions.

106 Chapter 14. Modules



https://docs.python.org/3/library/stdtypes.html#dict

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

wait (key, timeout=5, debug="False)
Return the cached value for the given key, or None.

If timeout is not None, and the value is already being calculated by another thread, wait until the given
timeout has elapsed. If the value is available before the timeout expires, it is returned. If not, None is
returned, and a sentinel placed in the cache to signal other threads to wait.

If timeout is None, no waiting is performed nor sentinels used.

class cherrypy.lib.caching.Cache
Bases: object

Base class for Cache implementations.

clear ()
Reset the cache to its initial, empty state.

delete ()
Remove ALL cached variants of the current resource.

get ()
Return the current variant if in the cache, else None.

put (obj, size)
Store the current variant in the cache.

class cherrypy.lib.caching.MemoryCache
Bases: cherrypy.lib.caching.Cache

An in-memory cache for varying response content.

Each key in self.store is a URI, and each value is an AntiStampedeCache. The response for any given URI may
vary based on the values of “selecting request headers”; that is, those named in the Vary response header. We
assume the list of header names to be constant for each URI throughout the lifetime of the application, and store
that listin self.store[uri] .selecting_headers.

The items contained in self.store [uri] have keys which are tuples of request header values (in the same
order as the names in its selecting_headers), and values which are the actual responses.

antistampede_timeout =5
Seconds to wait for other threads to release a cache lock.

clear ()
Reset the cache to its initial, empty state.

debug = False

delay =600
Seconds until the cached content expires; defaults to 600 (10 minutes).

delete ()
Remove ALL cached variants of the current resource.

expire_cache ()
Continuously examine cached objects, expiring stale ones.

This function is designed to be run in its own daemon thread, referenced at self.
expiration_thread.

expire freq=0.1
Seconds to sleep between cache expiration sweeps.

get ()
Return the current variant if in the cache, else None.

14.1. cherrypy package 107


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

maxobj_size = 100000
The maximum size of each cached object in bytes; defaults to 100 KB.

maxobjects = 1000
The maximum number of cached objects; defaults to 1000.

maxsize = 10000000
The maximum size of the entire cache in bytes; defaults to 10 MB.

put (variant, size)
Store the current variant in the cache.

cherrypy.lib.caching.expires (secs=0, force=False, debug=False)
Tool for influencing cache mechanisms using the ‘Expires’ header.

secs Must be either an int or a datetime.timedelta, and indicates the number of seconds between response.time
and when the response should expire. The ‘Expires’ header will be set to response.time + secs. If secs is
zero, the ‘Expires’ header is set one year in the past, and the following “cache prevention” headers are also
set:

* Pragma: no-cache
¢ Cache-Control’: no-cache, must-revalidate
force If False, the following headers are checked:
* Etag
* Last-Modified
* Age
» Expires
If any are already present, none of the above response headers are set.

cherrypy.lib.caching.get (invalid_methods=(‘POST’, ‘PUT’, ‘DELETE’), debug=False, **kwargs)
Try to obtain cached output. If fresh enough, raise HTTPError(304).

If POST, PUT, or DELETE:
* invalidates (deletes) any cached response for this resource
* sets request.cached = False
* sets request.cacheable = False
else if a cached copy exists:
* sets request.cached = True
* sets request.cacheable = False
* sets response.headers to the cached values

* checks the cached Last-Modified response header against the current If-(Un)Modified-Since request
headers; raises 304 if necessary.

* sets response.status and response.body to the cached values
* returns True

otherwise:
* sets request.cached = False

* sets request.cacheable = True

108 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

¢ returns False

cherrypy.lib.caching.tee_output ()
Tee response output to cache storage. Internal.

cherrypy.lib.covercp module

Code-coverage tools for CherryPy.

To use this module, or the coverage tools in the test suite, you need to download ‘coverage.py’, either Gareth Rees’
original implementation or Ned Batchelder’s enhanced version:

To turn on coverage tracing, use the following code:

cherrypy.engine.subscribe ('start', covercp.start)

DO NOT subscribe anything on the ‘start_thread’ channel, as previously recommended. Calling start once in the main
thread should be sufficient to start coverage on all threads. Calling start again in each thread effectively clears any
coverage data gathered up to that point.

Run your code, then use the covercp.serve () function to browse the results in a web browser. If you run this
module from the command line, it will call serve () for you.

class cherrypy.lib.covercp.CoverStats (coverage, root=None)
Bases: object

annotated_file (filename, statements, excluded, missing)

index ()

menu (base="/", pct="50", showpct="", exclude="python\d\\\\d|test|tut\dltutorial’)
report (name)

cherrypy.lib.covercp.get_tree (base, exclude, coverage=<coverage.control.Coverage object>)
Return covered module names as a nested dict.

cherrypy.lib.covercp.serve (path="/home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/si
packages/cherrypy/lib/coverage.cache’, port=8080, root=None)

cherrypy.lib.covercp.start ()

cherrypy.lib.cpstats module

CPStats, a package for collecting and reporting on program statistics.

Overview

Statistics about program operation are an invaluable monitoring and debugging tool. Unfortunately, the gathering and
reporting of these critical values is usually ad-hoc. This package aims to add a centralized place for gathering statistical
performance data, a structure for recording that data which provides for extrapolation of that data into more useful
information, and a method of serving that data to both human investigators and monitoring software. Let’s examine
each of those in more detail.

14.1. cherrypy package 109


http://www.garethrees.org/2001/12/04/python-coverage/
http://www.nedbatchelder.com/code/modules/coverage.html
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Data Gathering

Just as Python’s logging module provides a common importable for gathering and sending messages, performance
statistics would benefit from a similar common mechanism, and one that does not require each package which wishes
to collect stats to import a third-party module. Therefore, we choose to re-use the logging module by adding a szatistics
object to it.

That logging.statistics object is a nested dict. It is not a custom class, because that would:
1. require libraries and applications to import a third-party module in order to participate
2. inhibit innovation in extrapolation approaches and in reporting tools, and
3. be slow.

There are, however, some specifications regarding the structure of the dict.:

{
+———-"SQLAlchemy": {
"Inserts": 4389745,
"Inserts per Second":
lambda s: s["Inserts"] / (time() - s["Start"]),
+———"Table Statistics": {
"widgets": {-——————-———- +
"Rows": 1.3M, | Record
"Inserts": 400, |

"froobles": {
"Rows": 7845,
"Inserts": O,

5 O kBt QO FHKFO Q

O QT n 03 0=

\

\

\

\

\

\

\

\

\

\

\

\

\

\ "Slow Queries":

\ [{"Query": "SELECT = FROM widgets;",
\ "Processing Time": 47.840923343,
\ by

\

+

The logging.statistics dict has four levels. The topmost level is nothing more than a set of names to introduce modular-
ity, usually along the lines of package names. If the SQLAlchemy project wanted to participate, for example, it might
populate the item logging.statistics[ ' SQLAlchemy’ ], whose value would be a second-layer dict we call a “namespace”.
Namespaces help multiple packages to avoid collisions over key names, and make reports easier to read, to boot.
The maintainers of SQLAlchemy should feel free to use more than one namespace if needed (such as ‘SQLAlchemy
ORM”). Note that there are no case or other syntax constraints on the namespace names; they should be chosen to be
maximally readable by humans (neither too short nor too long).

Each namespace, then, is a dict of named statistical values, such as ‘Requests/sec’ or ‘Uptime’. You should choose
names which will look good on a report: spaces and capitalization are just fine.

In addition to scalars, values in a namespace MAY be a (third-layer) dict, or a list, called a “collection”. For example,
the CherryPy StatsTool keeps track of what each request is doing (or has most recently done) in a ‘Requests’
collection, where each key is a thread ID; each value in the subdict MUST be a fourth dict (whew!) of statistical data
about each thread. We call each subdict in the collection a “record”. Similarly, the StatsTool also keeps a list of
slow queries, where each record contains data about each slow query, in order.

Values in a namespace or record may also be functions, which brings us to:

110 Chapter 14. Modules




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Extrapolation

The collection of statistical data needs to be fast, as close to unnoticeable as possible to the host program. That requires
us to minimize I/O, for example, but in Python it also means we need to minimize function calls. So when you are
designing your namespace and record values, try to insert the most basic scalar values you already have on hand.

When it comes time to report on the gathered data, however, we usually have much more freedom in what we can
calculate. Therefore, whenever reporting tools (like the provided StatsPage CherryPy class) fetch the contents
of logging.statistics for reporting, they first call extrapolate_statistics (passing the whole statistics dict as the only
argument). This makes a deep copy of the statistics dict so that the reporting tool can both iterate over it and even
change it without harming the original. But it also expands any functions in the dict by calling them. For example,
you might have a ‘Current Time’ entry in the namespace with the value “lambda scope: time.time()”. The “scope”
parameter is the current namespace dict (or record, if we’re currently expanding one of those instead), allowing you
access to existing static entries. If you’re truly evil, you can even modify more than one entry at a time.

However, don’t try to calculate an entry and then use its value in further extrapolations; the order in which the functions
are called is not guaranteed. This can lead to a certain amount of duplicated work (or a redesign of your schema), but
that’s better than complicating the spec.

After the whole thing has been extrapolated, it’s time for:

Reporting

The StatsPage class grabs the logging.statistics dict, extrapolates it all, and then transforms it to HTML for easy
viewing. Each namespace gets its own header and attribute table, plus an extra table for each collection. This is NOT
part of the statistics specification; other tools can format how they like.

You can control which columns are output and how they are formatted by updating StatsPage.formatting, which is
a dict that mirrors the keys and nesting of logging.statistics. The difference is that, instead of data values, it has
formatting values. Use None for a given key to indicate to the StatsPage that a given column should not be output. Use
a string with formatting (such as ‘%.3f”) to interpolate the value(s), or use a callable (such as lambda v: v.isoformat())
for more advanced formatting. Any entry which is not mentioned in the formatting dict is output unchanged.

Monitoring

Although the HTML output takes pains to assign unique id’s to each <td> with statistical data, you’re probably better
off fetching /cpstats/data, which outputs the whole (extrapolated) logging.statistics dict in JSON format. That is
probably easier to parse, and doesn’t have any formatting controls, so you get the “original” data in a consistently-
serialized format. Note: there’s no treatment yet for datetime objects. Try time.time() instead for now if you can.
Nagios will probably thank you.

Turning Collection Off

It is recommended each namespace have an “Enabled” item which, if False, stops collection (but not reporting) of
statistical data. Applications SHOULD provide controls to pause and resume collection by setting these entries to
False or True, if present.

Usage

To collect statistics on CherryPy applications:

14.1. cherrypy package 111



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

from cherrypy.lib import cpstats
appconfig['/']['tools.cpstats.on'] = True

To collect statistics on your own code:

import logging
# Initialize the repository
if not hasattr(logging, 'statistics'): logging.statistics = {}
# Initialize my namespace
mystats = logging.statistics.setdefault ('My Stuff', {})
# Initialize my namespace's scalars and collections
mystats.update ({
'Enabled': True,
'Start Time': time.time (),
'Important Events': O,
'Events/Second': lambda s: (
(s['Important Events'] / (time.time() - s['Start Time']))),
})

for event in events:
# Collect stats

if mystats.get ('Enabled', False):
mystats|['Important Events'] += 1

To report statistics:

root.cpstats = cpstats.StatsPage() ‘

To format statistics reports:

’See 'Reporting', above. ‘

class cherrypy.lib.cpstats.ByteCountWrapper (rfile)
Bases: object

Wraps a file-like object, counting the number of bytes read.
close()

next ()

read (size=-1)

readline (size=-1)

readlines (sizehint=0)

class cherrypy.lib.cpstats.StatsPage
Bases: object

data ()
formatting = {‘CherryPy Applications’: {‘Start Time’: <function <lambda>>, ‘Bytes Written/Second’: ‘% .3f’, ‘Bytes

get_dict_collection (v, formatting)
Return ([headers], [rows]) for the given collection.

get_list_collection (v, formatting)
Return ([headers], [subrows]) for the given collection.

112 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

get_namespaces ()
Yield (title, scalars, collections) for each namespace.

index ()
pause (namespace)
resume (namespace)

class cherrypy.lib.cpstats.StatsTool
Bases: cherrypy._cptools.Tool

Record various information about the current request.

record start ()
Record the beginning of a request.

record_stop (uriset=None, slow_queries=1.0, slow_queries_count=100, debug=False, **kwargs)
Record the end of a request.

cherrypy.lib.cpstats.average_uriset_time (s)

cherrypy.lib.cpstats.extrapolate_statistics (scope)
Return an extrapolated copy of the given scope.

cherrypy.lib.cpstats.iso_format (v)
cherrypy.lib.cpstats.locale_date (v)
cherrypy.lib.cpstats.pause_resume (ns)

cherrypy.lib.cpstats.proc_time (s)

cherrypy.lib.cptools module

Functions for builtin CherryPy tools.

class cherrypy.lib.cptools.MonitoredHeaderMap
Bases: cherrypy.lib.httputil.HeaderMap

get (key, default=None)

class cherrypy.lib.cptools.SessionAuth
Bases: object

Assert that the user is logged in.

anonymous ()
Provide a temporary user name for anonymous users.

check_username_and_password (username, password)
debug = False

do_check ()
Assert username. Raise redirect, or return True if request handled.

do_login (username, password, from_page="..", **kwargs)
Login. May raise redirect, or return True if request handled.

do_logout (from_page="..", **kwargs)
Logout. May raise redirect, or return True if request handled.

login_screen (from_page=".., username="", error_msg=""“, **kwargs)

14.1. cherrypy package 113


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

on_check (username)
on_login (username)
on_logout (username)

run ()

session_key = ‘username’

cherrypy.lib.cptools.accept (media=None, debug=False)
Return the client’s preferred media-type (from the given Content-Types).

If ‘media’ is None (the default), no test will be performed.

If ‘media’ is provided, it should be the Content-Type value (as a string) or values (as a list or tuple of strings)
which the current resource can emit. The client’s acceptable media ranges (as declared in the Accept request
header) will be matched in order to these Content-Type values; the first such string is returned. That is, the
return value will always be one of the strings provided in the ‘media’ arg (or None if ‘media’ is None).

If no match is found, then HTTPError 406 (Not Acceptable) is raised. Note that most web browsers send / as
a (low-quality) acceptable media range, which should match any Content-Type. In addition, ”...if no Accept
header field is present, then it is assumed that the client accepts all media types.”

Matching types are checked in order of client preference first, and then in the order of the given ‘media’ values.
Note that this function does not honor accept-params (other than “q”).

cherrypy.lib.cptools.allow (methods=None, debug=False)
Raise 405 if request.method not in methods (default ['GET’, ‘HEAD’]).

The given methods are case-insensitive, and may be in any order. If only one method is allowed, you may supply
a single string; if more than one, supply a list of strings.

Regardless of whether the current method is allowed or not, this also emits an ‘Allow’ response header, contain-
ing the given methods.

cherrypy.lib.cptools.autovary (ignore=None, debug=False)
Auto-populate the Vary response header based on request.header access.

cherrypy.lib.cptools.convert_params (exception=<class ‘ValueError’>, error=400)
Convert request params based on function annotations, with error handling.

exception Exception class to catch.
status The HTTP error code to return to the client on failure.

cherrypy.lib.cptools.flatten (debug=False)
Wrap response.body in a generator that recursively iterates over body.

This allows cherrypy.response.body to consist of ‘nested generators’; that is, a set of generators that yield
generators.

cherrypy.lib.cptools.ignore_headers (headers=(‘Range’, ), debug=False)
Delete request headers whose field names are included in ‘headers’.

This is a useful tool for working behind certain HTTP servers; for example, Apache duplicates the work that CP
does for ‘Range’ headers, and will doubly-truncate the response.

cherrypy.lib.cptools.log _hooks (debug=False)
Write request.hooks to the cherrypy error log.

cherrypy.lib.cptools.log_request_headers (debug=False)
Write request headers to the cherrypy error log.

114 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.cptools.log_traceback (severity=40, debug=False)
Write the last error’s traceback to the cherrypy error log.

cherrypy.lib.cptools.proxy (base=None, local="X-Forwarded-Host’, remote="X-Forwarded-For’,

scheme="X-Forwarded-Proto’, debug="False)
Change the base URL (scheme://host[:port][/path]).

For running a CP server behind Apache, lighttpd, or other HTTP server.

For Apache and lighttpd, you should leave the ‘local’ argument at the default value of ‘X-Forwarded-Host’. For
Squid, you probably want to set tools.proxy.local = ‘Origin’.

If you want the new request.base to include path info (not just the host), you must explicitly set base to the full
base path, and ALSO set ‘local’ to *’, so that the X-Forwarded-Host request header (which never includes path
info) does not override it. Regardless, the value for ‘base’ MUST NOT end in a slash.

cherrypy.request.remote.ip (the IP address of the client) will be rewritten if the header specified by the ‘remote’
arg is valid. By default, ‘remote’ is set to ‘X-Forwarded-For’. If you do not want to rewrite remote.ip, set the
‘remote’ arg to an empty string.

cherrypy.lib.cptools.redirect (url="", internal=True, debug=False)
Raise InternalRedirect or HTTPRedirect to the given url.

cherrypy.lib.cptools.referer (pattern, accept=True, accept_missing=False, error=403, mes-

sage="Forbidden Referer header.’, debug=False)
Raise HTTPError if Referer header does/does not match the given pattern.

pattern A regular expression pattern to test against the Referer.

accept If True, the Referer must match the pattern; if False, the Referer must NOT match the pattern.
accept_missing If True, permit requests with no Referer header.

error The HTTP error code to return to the client on failure.

message A string to include in the response body on failure.

cherrypy.lib.cptools.response_headers (headers=None, debug=False)
Set headers on the response.

cherrypy.lib.cptools.session_auth (**kwargs)
Session authentication hook.

Any attribute of the SessionAuth class may be overridden via a keyword arg to this function:
_debug_message: function

anonymous: function check_username_and_password: function debug: bool do_check: function do_login:
function do_logout: function login_screen: function on_check: function on_login: function on_logout: function
run: function session_key: str

cherrypy.lib.cptools.trailing_slash (missing=True, extra=False, status=None, debug=False)
Redirect if path_info has (missinglextra) trailing slash.

cherrypy.lib.cptools.validate_etags (autotags=False, debug=False)
Validate the current ETag against If-Match, If-None-Match headers.

If autotags is True, an ETag response-header value will be provided from an MDS5 hash of the response body
(unless some other code has already provided an ETag header). If False (the default), the ETag will not be
automatic.

WARNING: the autotags feature is not designed for URL’s which allow methods other than GET. For example,
if a POST to the same URL returns no content, the automatic ETag will be incorrect, breaking a fundamental
use for entity tags in a possibly destructive fashion. Likewise, if you raise 304 Not Modified, the response body
will be empty, the ETag hash will be incorrect, and your application will break. See RFC 2616 Section 14.24.

14.1. cherrypy package 115


https://tools.ietf.org/html/rfc2616.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.cptools.validate_since ()

Validate the current Last-Modified against If-Modified-Since headers.

If no code has set the Last-Modified response header, then no validation will be performed.

cherrypy.lib.encoding module

class cherrypy.lib.encoding.ResponseEncoder ( **kwargs)

Bases: object

add charset = True

debug = False
default_encoding = ‘utf-8’

encode_stream (encoding)
Encode a streaming response body.

Use a generator wrapper, and just pray it works as the stream is being written out.

encode_string (encoding)
Encode a buffered response body.

encoding = None

errors = ‘strict’

failmsg = ‘Response body could not be encoded with %r.’
find acceptable_charset ()

text_only = True

class cherrypy.lib.encoding.UTF8StreamEncoder (iterator)

Bases: object
close ()

next ()

cherrypy.lib.encoding.compress (body, compress_level)

Compress ‘body’ at the given compress_level.

cherrypy.lib.encoding.decode (encoding=None, default_encoding="utf-8’)

Replace or extend the list of charsets used to decode a request entity.

Either argument may be a single string or a list of strings.

encoding If not None, restricts the set of charsets attempted while decoding a request entity to the given set

(even if a different charset is given in the Content-Type request header).

default_encoding Only in effect if the ‘encoding’ argument is not given. If given, the set of charsets attempted

while decoding a request entity is extended with the given value(s).

cherrypy.lib.encoding.decompress (body)

cherrypy.lib.encoding.gzip (compress_level=5 — mime_types=[ text/html’, ‘text/plain’],

bug=False)
Try to gzip the response body if Content-Type in mime_types.

de-

cherrypy.response.headers[’Content-Type’] must be set to one of the values in the mime_types arg before calling

this function.

The provided list of mime-types must be of one of the following form:

116

Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

* type/subtype
* type/*
* type/*+subtype
No compression is performed if any of the following hold:
* The client sends no Accept-Encoding request header
* No ‘gzip’ or ‘x-gzip’ is present in the Accept-Encoding header
* No ‘gzip’ or ‘x-gzip’ with a qvalue > 0 is present

* The ‘identity’ value is given with a qvalue > 0.

cherrypy.lib.gctools module

class cherrypy.lib.gctools.GCRoot
Bases: object

A CherryPy page handler for testing reference leaks.

classes = [(<class ‘cherrypy._cprequest.Request’>, 2, 2, ‘Should be 1 in this request thread and 1 in the main thread.’),
index ()

stats ()

class cherrypy.lib.gctools.ReferrerTree (ignore=None, maxdepth=2, maxparents=10)
Bases: object

An object which gathers all referrers of an object to a given depth.

ascend (0bj, depth=1)
Return a nested list containing referrers of the given object.

format (tree)
Return a list of string reprs from a nested list of referrers.

peek (s)
Return s, restricted to a sane length.

peek_length =40

class cherrypy.lib.gctools.RequestCounter (bus)
Bases: cherrypy.process.plugins.SimplePlugin

after_request ()

before_request ()

start ()
cherrypy.lib.gctools.get_context (obj)

cherrypy.lib.gctools.get_instances (cls)

cherrypy.lib.httpauth module

This module defines functions to implement HTTP Digest Authentication (RFC 2617). This has full compliance with
‘Digest’ and ‘Basic’ authentication methods. In ‘Digest’ it supports both MD5 and MDS5-sess algorithms.

14.1. cherrypy package 117


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://tools.ietf.org/html/rfc2617.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Usage: First use ‘doAuth’ to request the client authentication for a certain resource. You should send an
httplib. UNAUTHORIZED response to the client so he knows he has to authenticate itself.

Then use ‘parseAuthorization’ to retrieve the ‘auth_map’ used in ‘checkResponse’.

To use ‘checkResponse’ you must have already verified the password associated with the ‘username’ key in
‘auth_map’ dict. Then you use the ‘checkResponse’ function to verify if the password matches the one sent by
the client.
SUPPORTED_ALGORITHM - list of supported ‘Digest’ algorithms SUPPORTED_QOP - list of supported ‘Digest’
‘qop’ .
cherrypy.lib.httpauth.digestAuth (realm, algorithm="MDS5’, nonce=None, gop="auth’)
Challenges the client for a Digest authentication.

cherrypy.lib.httpauth.basicAuth (realm)
Challengenes the client for a Basic authentication.

cherrypy.lib.httpauth.doAuth (realm)
‘doAuth’ function returns the challenge string b giving priority over Digest and fallback to Basic authentication
when the browser doesn’t support the first one.

This should be set in the HTTP header under the key “WWW-Authenticate’.

cherrypy.lib.httpauth.checkResponse (auth_map, password, method='GET’, encrypt=None,
*rkwargs)
‘checkResponse’ compares the auth_map with the password and optionally other arguments that each imple-
mentation might need.

If the response is of type ‘Basic’ then the function has the following signature:

’checkBasicResponse(auth_map, password) —> bool

If the response is of type ‘Digest’ then the function has the following signature:

’checkDigestResponse(auth_map, password, method='GET', Al=None) -> bool

The ‘A1’ argument is only used in MD5_SESS algorithm based responses. Check md5SessionKey() for more
info.

cherrypy.lib.httpauth.parseAuthorization (credentials)
parseAuthorization will convert the value of the ‘Authorization’ key in the HTTP header to a map itself. If the
parsing fails ‘None’ is returned.

cherrypy.lib.httpauth.md5SessionKey (params, password)
If the “algorithm” directive’s value is “MDS5-sess”, then Al [the session key] is calculated only once - on the
first request by the client following receipt of a WWW-Authenticate challenge from the server.

This creates a ‘session key’ for the authentication of subsequent requests and responses which is different for
each “authentication session”, thus limiting the amount of material hashed with any one key.

Because the server need only use the hash of the user credentials in order to create the A1 value, this construction
could be used in conjunction with a third party authentication service so that the web server would not need the
actual password value. The specification of such a protocol is beyond the scope of this specification.

cherrypy.lib.httpauth.calculateNonce (realm, algorithm="MD5’)
This is an auxaliary function that calculates ‘nonce’ value. It is used to handle sessions.

cherrypy.lib.httputil module

HTTP library functions.

118 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

This module contains functions for building an HTTP application framework: any one, not just one whose name
starts with “Ch”. ;) If you reference any modules from some popular framework inside this module, FuManChu will
personally hang you up by your thumbs and submit you to a public caning.

class cherrypy.lib.httputil.AcceptElement (value, params=None)
Bases: cherrypy.lib.httputil.HeaderElement

An element (with parameters) from an Accept* header’s element list.

AcceptElement objects are comparable; the more-preferred object will be “less than” the less-preferred object.
They are also therefore sortable; if you sort a list of AcceptElement objects, they will be listed in priority order;
the most preferred value will be first. Yes, it should have been the other way around, but it’s too late to fix now.

classmethod £from_str (elementstr)

gqvalue
The qvalue, or priority, of this value.

class cherrypy.lib.httputil.CaseInsensitiveDict
Bases: dict

A case-insensitive dict subclass.

Each key is changed on entry to str(key).title().
classmethod fromkeys (seq, value=None)
get (key, default=None)

pop (key, default)

setdefault (key, x=None)

update (E)

class cherrypy.lib.httputil .HeaderElement (value, params=None)
Bases: object

An element (with parameters) from an HTTP header’s element list.

classmethod £from_str (elementstr)
Construct an instance from a string of the form ‘token;key=val’.

static parse (elementstr)
Transform ‘token;key=val’ to (‘token’, {‘key’: ‘val’}).

class cherrypy.lib.httputil .HeaderMap
Bases: cherrypy.lib.httputil.CaselnsensitiveDict

A dict subclass for HTTP request and response headers.
Each key is changed on entry to str(key).title(). This allows headers to be case-insensitive and avoid duplicates.
Values are header values (decoded according to RFC 2047 if necessary).

elements (key)
Return a sorted list of HeaderElements for the given header.

classmethod encode (v)
Return the given header name or value, encoded for HTTP output.

classmethod encode_header items (header_items)
Prepare the sequence of name, value tuples into a form suitable for transmitting on the wire for HTTP.

encodings = ["ISO-8859-1’]

14.1. cherrypy package 119


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://tools.ietf.org/html/rfc2047.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

output ()
Transform self into a list of (name, value) tuples.

protocol =(1,1)
use_rfc 2047 = True

values (key)
Return a sorted list of HeaderElement.value for the given header.

class cherrypy.lib.httputil.Host (ip, port, name=None)
Bases: object

An internet address.

name Should be the client’s host name. If not available (because no DNS lookup is performed), the IP address
should be used instead.

ip =40.0.0.0°
name = ‘unknown.tld’
port =80

cherrypy.lib.httputil.decode_TEXT (value)
Decode RFC 2047 TEXT (e.g. “=?utf-8?q?f=C3=BCr?=" -> “fxfcr”).

cherrypy.lib.httputil.get_ranges (headervalue, content_length)
Return a list of (start, stop) indices from a Range header, or None.

Each (start, stop) tuple will be composed of two ints, which are suitable for use in a slicing operation. That is,
the header “Range: bytes=3-6", if applied against a Python string, is requesting resource[3:7]. This function
will return the list [(3, 7)].

If this function returns an empty list, you should return HTTP 416.

cherrypy.lib.httputil.header_elements (fieldname, fieldvalue)
Return a sorted HeaderElement list from a comma-separated header string.

cherrypy.lib.httputil.parse_query_ string (query_string, keep_blank_values=True,
encoding="utf-8’)
Build a params dictionary from a query_string.

Duplicate key/value pairs in the provided query_string will be returned as {‘key’: [vall, val2, ...]}. Single
key/values will be returned as strings: { ‘key’: ‘value’}.

cherrypy.lib.httputil.protocol_from_ http (profocol_str)
Return a protocol tuple from the given ‘HTTP/x.y’ string.

cherrypy.lib.httputil.urljoin (*atoms)
Return the given path *atoms, joined into a single URL.

This will correctly join a SCRIPT_NAME and PATH_INFO into the original URL, even if either atom is blank.

cherrypy.lib.httputil.urljoin_bytes (*atoms)
Return the given path *atoms, joined into a single URL.

This will correctly join a SCRIPT_NAME and PATH_INFO into the original URL, even if either atom is blank.

cherrypy.lib.httputil.wvalid_status (status)
Return legal HTTP status Code, Reason-phrase and Message.

The status arg must be an int, or a str that begins with an int.

If status is an int, or a str and no reason-phrase is supplied, a default reason-phrase will be provided.

120 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object
https://tools.ietf.org/html/rfc2047.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.jsontools module

cherrypy.lib. jsontools. json_handler (*args, **kwargs)

cherrypy.lib. jsontools. json_in (content_type=[ application/json’, ‘text/javascript’], force=True,

debug=False, processor=<function json_processor>)
Add a processor to parse JSON request entities: The default processor places the parsed data into request.json.

Incoming request entities which match the given content_type(s) will be deserialized from JSON to the Python
equivalent, and the result stored at cherrypy.request.json. The ‘content_type’ argument may be a Content-Type
string or a list of allowable Content-Type strings.

If the ‘force’ argument is True (the default), then entities of other content types will not be allowed; “415
Unsupported Media Type” is raised instead.

Supply your own processor to use a custom decoder, or to handle the parsed data differently. The processor can
be configured via tools.json_in.processor or via the decorator method.

Note that the deserializer requires the client send a Content-Length request header, or it will raise “411 Length
Required”. If for any other reason the request entity cannot be deserialized from JSON, it will raise “400 Bad
Request: Invalid JSON document”.

cherrypy.lib. jsontools. json_out (content_type="application/json’, debug=False, han-

dler=<function json_handler>)
Wrap request.handler to serialize its output to JSON. Sets Content-Type.

If the given content_type is None, the Content-Type response header is not set.

Provide your own handler to use a custom encoder. For example cherrypy.config[’tools.json_out.handler’] =
<function>, or @json_out(handler=function).

cherrypy.lib.jsontools.json_processor (entity)
Read application/json data into request.json.

cherrypy.lib.lockfile module

Platform-independent file locking. Inspired by and modeled after zc.lockfile.

exception cherrypy.lib.lockfile.LockError (path)
Bases: Exception

Could not obtain a lock
msg = ‘Unable to lock %r’

cherrypy.lib.lockfile.LockFile
alias of UnixLockFile

class cherrypy.lib.lockfile.SystemLockFile (path)
Bases: object

An abstract base class for platform-specific locking.
release ()

remove ()
Attempt to remove the file

class cherrypy.lib.lockfile.UnixLockFile (path)
Bases: cherrypy.1lib.lockfile.SystemLockFile

14.1. cherrypy package 121


https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

exception cherrypy.lib.lockfile.UnlockError (path)
Bases: cherrypy.lib.lockfile.LockError

Could not release a lock
msg = ‘Unable to unlock %r’

class cherrypy.lib.lockfile.WindowsLockFile (path)
Bases: cherrypy.lib.lockfile.SystemLockFile

cherrypy.lib.locking module

class cherrypy.lib.locking.LockChecker (session_id, timeout)
Bases: object

Keep track of the time and detect if a timeout has expired
expired ()

exception cherrypy.lib.locking.LockTimeout
Bases: Exception

An exception when a lock could not be acquired before a timeout period

class cherrypy.lib.locking.NeverExpires
Bases: object

expired ()

class cherrypy.lib.locking. Timer (expiration)
Bases: object

A simple timer that will indicate when an expiration time has passed.

classmethod after (elapsed)
Return a timer that will expire after elapsed passes.

expired ()
cherrypy.lib.profiler module

Profiler tools for CherryPy.

CherryPy users

You can profile any of your pages as follows:

from cherrypy.lib import profiler

class Root:
p = profiler.Profiler ("/path/to/profile/dir")

@cherrypy.expose
def index(self):
self.p.run(self._index)

def _index(self):
return "Hello, world!"

122 Chapter 14. Modules



https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.tree.mount (Root ())

You can also turn on profiling for all requests using the make_app function as WSGI middleware.

CherryPy developers

This module can be used whenever you make changes to CherryPy, to get a quick sanity-check on overall CP perfor-
mance. Use the ——profile flag when running the test suite. Then, use the serve () function to browse the results
in a web browser. If you run this module from the command line, it will call serve () for you.

class cherrypy.lib.profiler.ProfileAggregator (path=None)
Bases: cherrypy.lib.profiler.Profiler

run (func, *args, **params)

class cherrypy.lib.profiler.Profiler (path=None)
Bases: object

index ()
menu ()
report (filename)

run (func, *args, **params)
Dump profile data into self.path.

statfiles ()
Return type list of available profiles.
stats (filename, sortby="cumulative’)
Rtype stats(index) output of print_stats() for the given profile.

class cherrypy.lib.profiler.make_app (nextapp, path=None, aggregate=False)
Bases: object

cherrypy.lib.profiler.new_func_strip_path (func_name)
Make profiler output more readable by adding __ini¢ __ modules’ parents

cherrypy.lib.profiler.serve (path=None, port=8080)

cherrypy.lib.reprconf module

Generic configuration system using unrepr.

Configuration data may be supplied as a Python dictionary, as a filename, or as an open file object. When you supply
a filename or file, Python’s builtin ConfigParser is used (with some extensions).

Namespaces

39 99

Configuration keys are separated into namespaces by the first ”.” in the key.

The only key that cannot exist in a namespace is the “environment” entry. This special entry ‘imports’ other config
entries from a template stored in the Config.environments dict.

14.1. cherrypy package 123



https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

You can define your own namespaces to be called when new config is merged by adding a named handler to Con-
fig.namespaces. The name can be any string, and the handler must be either a callable or a context manager.

class cherrypy.lib.reprconf.Config (file=None, **kwargs)
Bases: dict

A dict-like set of configuration data, with defaults and namespaces.

May take a file, filename, or dict.

defaults ={}

environments = {}

namespaces = cherrypy.lib.reprconf.NamespaceSet({‘engine’: <function _engine_namespace_handler>, ‘log’: <function

reset ()
Reset self to default values.

update (config)
Update self from a dict, file or filename.

class cherrypy.lib.reprconf.NamespaceSet
Bases: dict

A dict of config namespace names and handlers.

Each config entry should begin with a namespace name; the corresponding namespace handler will be called
once for each config entry in that namespace, and will be passed two arguments: the config key (with the
namespace removed) and the config value.

Namespace handlers may be any Python callable; they may also be Python 2.5-style ‘context managers’, in
which case their __enter__ method should return a callable to be used as the handler. See cherrypy.tools (the
Toolbox class) for an example.

copy ()
class cherrypy.lib.reprconf.Parser (defaults=None, dict_type=<class ‘collections.OrderedDict’>,
allow_no_value=False, *, delimiters=(‘=’, *:’), com-
ment_prefixes=(‘#’, ), inline_comment_prefixes=None,
strict=True, empty_lines_in_values=True, de-

fault_section="DEFAULT’, interpolation=<object object>,

converters=<object object>)
Bases: configparser.ConfigParser

Sub-class of ConfigParser that keeps the case of options and that raises an exception if the file cannot be read.

as_dict (raw=False, vars=None)
Convert an INI file to a dictionary

dict_from_ file (file)
optionxform (optionstr)
read (filenames)

cherrypy.lib.reprconf.as_dict (config)
Return a dict from ‘config’ whether it is a dict, file, or filename.

cherrypy.lib.reprconf.attributes (full_attribute_name)
Load a module and retrieve an attribute of that module.

cherrypy.lib.reprconf.modules (modulePath)
Load a module and retrieve a reference to that module.

124 Chapter 14. Modules


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.reprconf.unrepr (s)
Return a Python object compiled from a string.

cherrypy.lib.sessions module

Session implementation for CherryPy.

You need to edit your config file to use sessions. Here’s an example:

[/1

tools.sessions.on = True

tools.sessions.storage_class = cherrypy.lib.sessions.FileSession
tools.sessions.storage_path = "/home/site/sessions"
tools.sessions.timeout = 60

This sets the session to be stored in files in the directory /home/site/sessions, and the session timeout to 60 minutes. If
you omit storage_class, the sessions will be saved in RAM. tools.sessions.on is the only required line
for working sessions, the rest are optional.

By default, the session ID is passed in a cookie, so the client’s browser must have cookies enabled for your site.

To set data for the current session, use cherrypy.session['fieldname'] = 'fieldvalue'; to get data
use cherrypy.session.get ('fieldname').

Locking sessions

By default, the ' locking' mode of sessionsis 'implicit ', which means the session is locked early and unlocked
late. Be mindful of this default mode for any requests that take a long time to process (streaming responses, expensive
calculations, database lookups, API calls, etc), as other concurrent requests that also utilize sessions will hang until
the session is unlocked.

If you want to control when the session data is locked and unlocked, set tools.sessions.locking
= 'explicit'. Then call cherrypy.session.acquire_lock () and cherrypy.session.
release_lock (). Regardless of which mode you use, the session is guaranteed to be unlocked when the request
is complete.

Expiring Sessions

You can force a session to expire with cherrypy.1ib.sessions.expire (). Simply call that function at the
point you want the session to expire, and it will cause the session cookie to expire client-side.

Session Fixation Protection

If CherryPy receives, via a request cookie, a session id that it does not recognize, it will reject that id and create a new
one to return in the response cookie. This helps prevent session fixation attacks. However, CherryPy “recognizes” a
session id by looking up the saved session data for that id. Therefore, if you never save any session data, you will get
a new session id for every request.

A side effect of CherryPy overwriting unrecognised session ids is that if you have multiple, separate CherryPy appli-
cations running on a single domain (e.g. on different ports), each app will overwrite the other’s session id because by
default they use the same cookie name ("session_id") but do not recognise each others sessions. It is therefore a
good idea to use a different name for each, for example:

14.1. cherrypy package 125



http://en.wikipedia.org/wiki/Session_fixation#Regenerate_SID_on_each_request

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

[/1

tools.sessions.name = "my_app_session_id"

Sharing Sessions

If you run multiple instances of CherryPy (for example via mod_python behind Apache prefork), you most likely
cannot use the RAM session backend, since each instance of CherryPy will have its own memory space. Use a
different backend instead, and verify that all instances are pointing at the same file or db location. Alternately, you
might try a load balancer which makes sessions “sticky”. Google is your friend, there.

Expiration Dates

The response cookie will possess an expiration date to inform the client at which point to stop sending the cookie back
in requests. If the server time and client time differ, expect sessions to be unreliable. Make sure the system time of
your server is accurate.

CherryPy defaults to a 60-minute session timeout, which also applies to the cookie which is sent to the client. Unfor-
tunately, some versions of Safari (“4 public beta” on Windows XP at least) appear to have a bug in their parsing of the
GMT expiration date—they appear to interpret the date as one hour in the past. Sixty minutes minus one hour is pretty
close to zero, so you may experience this bug as a new session id for every request, unless the requests are less than
one second apart. To fix, try increasing the session.timeout.

On the other extreme, some users report Firefox sending cookies after their expiration date, although this was on a
system with an inaccurate system time. Maybe FF doesn’t trust system time.

class cherrypy.lib.sessions.FileSession (id=None, **kwargs)
Bases: cherrypy.lib.sessions.Session

Implementation of the File backend for sessions

storage_path The folder where session data will be saved. Each session will be saved as pickle.dump(data,
expiration_time) in its own file; the filename will be self. SESSION_PREFIX + self.id.

lock_timeout A timedelta or numeric seconds indicating how long to block acquiring a lock. If None (default),
acquiring a lock will block indefinitely.

LOCK_SUFFIX = "‘lock’
SESSION_ PREFIX = ‘session-¢

acquire_lock (path=None)
Acquire an exclusive lock on the currently-loaded session data.

clean_up ()
Clean up expired sessions.

pickle_protocol =4

release_lock (path=None)
Release the lock on the currently-loaded session data.

classmethod setup (**kwargs)
Set up the storage system for file-based sessions.

This should only be called once per process; this will be done automatically when using sessions.init (as
the built-in Tool does).

126 Chapter 14. Modules




CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class cherrypy.lib.sessions.MemcachedSession (id=None, **kwargs)
Bases: cherrypy.lib.sessions.Session

acquire_lock ()
Acquire an exclusive lock on the currently-loaded session data.

locks ={}
mc_lock = <unlocked _thread.RLock object owner=0 count=0>

release_lock ()
Release the lock on the currently-loaded session data.

servers =[127.0.0.1:11211°]

classmethod setup (**kwargs)
Set up the storage system for memcached-based sessions.

This should only be called once per process; this will be done automatically when using sessions.init (as
the built-in Tool does).

class cherrypy.lib.sessions.RamSession (id=None, **kwargs)
Bases: cherrypy.lib.sessions.Session

acquire_lock ()
Acquire an exclusive lock on the currently-loaded session data.

cache ={}

clean_up ()
Clean up expired sessions.

locks ={}

release_ lock ()
Release the lock on the currently-loaded session data.

class cherrypy.lib.sessions.Session (id=None, **kwargs)
Bases: object

A CherryPy dict-like Session object (one per request).

clean_freq=5
The poll rate for expired session cleanup in minutes.

clean_thread = None
Class-level Monitor which calls self.clean_up.

clean_up ()
Clean up expired sessions.

clear () — None. Remove all items from D.

debug = False
If True, log debug information.

delete ()
Delete stored session data.

generate_id()
Return a new session id.

get (k[, d]) — D[k] if k in D, else d. d defaults to None.
id
The current session ID.

14.1. cherrypy package 127


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

id observers = None
A list of callbacks to which to pass new id’s.

items () — list of D’s (key, value) pairs, as 2-tuples.
keys () — list of D’s keys.

load()
Copy stored session data into this session instance.

loaded = False
If True, data has been retrieved from storage. This should happen automatically on the first attempt to
access session data.

locked = False

If True, this session instance has exclusive read/write access to session data.
missing = False

True if the session requested by the client did not exist.

now ()
Generate the session specific concept of ‘now’.

Other session providers can override this to use alternative, possibly timezone aware, versions of ‘now’.

originalid = None
The session id passed by the client. May be missing or unsafe.

pop (key, default=False)

Remove the specified key and return the corresponding value. If key is not found, default is returned if
given, otherwise KeyError is raised.

regenerate ()
Replace the current session (with a new id).

regenerated = False
True if the application called session.regenerate(). This is not set by internal calls to regenerate the session
id.

save ()
Save session data.

setdefault (k[,d]) — D.get(k,d), also set D[k]=d if k not in D.

timeout =60
Number of minutes after which to delete session data.

update (E) — None. Update D from E: for k in E: D[k] = E[k].
values () — list of D’s values.

cherrypy.lib.sessions.close ()
Close the session object for this request.

cherrypy.lib.sessions.expire ()
Expire the current session cookie.

cherrypy.lib.sessions.init (storage_type=None, path=None, path_header=None,
name="session_id’, timeout=60, domain=None, secure=False,
clean_freq=5, persistent=True, httponly=False, debug=False,

**kwargs)
Initialize session object (using cookies).

storage_class The Session subclass to use. Defaults to RamSession.

128 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

storage_type (deprecated) One of ‘ram’, ‘file’, memcached’. This will be used to look up the corresponding
class in cherrypy.lib.sessions globals. For example, ‘file’ will use the FileSession class.

path The ‘path’ value to stick in the response cookie metadata.

path_header If ‘path’ is None (the default), then the response cookie ‘path’ will be pulled from re-
quest.headers[path_header].

name The name of the cookie.

timeout The expiration timeout (in minutes) for the stored session data. If ‘persistent’ is True (the default), this
is also the timeout for the cookie.

domain The cookie domain.

secure If False (the default) the cookie ‘secure’ value will not be set. If True, the cookie ‘secure’ value will be
set (to 1).

clean_freq (minutes) The poll rate for expired session cleanup.

persistent If True (the default), the ‘timeout’ argument will be used to expire the cookie. If False, the cookie
will not have an expiry, and the cookie will be a “session cookie” which expires when the browser is
closed.

httponly If False (the default) the cookie ‘httponly’ value will not be set. If True, the cookie ‘httponly’ value
will be set (to 1).

Any additional kwargs will be bound to the new Session instance, and may be specific to the storage type. See
the subclass of Session you’re using for more information.

cherrypy.lib.sessions.save ()
Save any changed session data.

cherrypy.lib.sessions.set_response_cookie (path=None, path_header=None,
name="session_id’, timeout=60, domain=None,
secure=False, httponly=False)
Set a response cookie for the client.

path the ‘path’ value to stick in the response cookie metadata.

path_header if ‘path’ is None (the default), then the response cookie ‘path’ will be pulled from re-
quest.headers[path_header].

name the name of the cookie.

timeout the expiration timeout for the cookie. If 0 or other boolean False, no ‘expires’ param will be set, and
the cookie will be a “session cookie” which expires when the browser is closed.

domain the cookie domain.

secure if False (the default) the cookie ‘secure’ value will not be set. If True, the cookie ‘secure’ value will be
set (to 1).

httponly If False (the default) the cookie ‘httponly’ value will not be set. If True, the cookie ‘httponly’ value
will be set (to 1).

cherrypy.lib.static module

Module with helpers for serving static files.

cherrypy.lib.static.serve_download (path, name=None)
Serve ‘path’ as an application/x-download attachment.

14.1. cherrypy package 129



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.static.serve_£file (path, content_type=None, disposition=None, name=None, de-

bug=False)
Set status, headers, and body in order to serve the given path.

The Content-Type header will be set to the content_type arg, if provided. If not provided, the Content-Type will
be guessed by the file extension of the ‘path’ argument.

If disposition is not None, the Content-Disposition header will be set to “<disposition>; filename=<name>". If
name is None, it will be set to the basename of path. If disposition is None, no Content-Disposition header will
be written.

cherrypy.lib.static.serve_fileobj (fileobj, content_type=None, disposition=None,

cherrypy.lib.static.statiedir (section, dir, root=’

name=None, debug=False)
Set status, headers, and body in order to serve the given file object.

The Content-Type header will be set to the content_type arg, if provided.

If disposition is not None, the Content-Disposition header will be set to “<disposition>; filename=<name>". If
name is None, ‘filename’ will not be set. If disposition is None, no Content-Disposition header will be written.

CAUTION: If the request contains a ‘Range’ header, one or more seek()s will be performed on the file object.
This may cause undesired behavior if the file object is not seekable. It could also produce undesired results if
the caller set the read position of the file object prior to calling serve_fileobj(), expecting that the data would be
served starting from that position.

I ¢

, match="", content_types=None, index="",

debug=False)
Serve a static resource from the given (root +) dir.

match If given, request.path_info will be searched for the given regular expression before attempting to serve
static content.

content_types If given, it should be a Python dictionary of {file-extension: content-type} pairs, where ‘file-
extension’ is a string (e.g. “gif”’) and ‘content-type’ is the value to write out in the Content-Type response
header (e.g. “image/gif”).

index If provided, it should be the (relative) name of a file to serve for directory requests. For example, if
the dir argument is ‘/home/me’, the Request-URI is ‘myapp’, and the index arg is ‘index.html’, the file
‘/home/me/myapp/index.html’ will be sought.

cherrypy.lib.static.staticfile (filename, root=None, match="", content_types=None, de-

bug=False)
Serve a static resource from the given (root +) filename.

match If given, request.path_info will be searched for the given regular expression before attempting to serve
static content.

content_types If given, it should be a Python dictionary of {file-extension: content-type} pairs, where ‘file-
extension’ is a string (e.g. “gif”’) and ‘content-type’ is the value to write out in the Content-Type response
header (e.g. “image/gif”).

cherrypy.lib.xmirpcutil module

XML-RPC tool helpers.

cherrypy.lib.xmlrpcutil.on_error (*args, **kwargs)

Construct HTTP response body for an error response.

cherrypy.lib.xmlrpcutil.patched_path (path)

Return ‘path’, doctored for RPC.

130

Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.lib.xmlrpcutil.process_body ()
Return (params, method) from request body.

cherrypy.lib.xmlrpcutil.respond (body, encoding="utf-8’, allow_none=0)
Construct HTTP response body.

Module contents

CherryPy Library

class cherrypy.lib.file_generator (input, chunkSize=65536)
Bases: object

Yield the given input (a file object) in chunks (default 64k). (Core)
next ()

cherrypy.lib.file_generator_limited (fileobj, count, chunk_size=65536)
Yield the given file object in chunks, stopping after count bytes has been emitted. Default chunk size is 64kB.
(Core)

cherrypy.lib.is_closable_iterator (0bj)

cherrypy.lib.is_iterator (obj)
Returns a boolean indicating if the object provided implements the iterator protocol (i.e. like a generator). This
will return false for objects which iterable, but not iterators themselves.

cherrypy.lib.set_vary_ header (response, header_name)
Add a Vary header to a response

cherrypy.process package

Submodules
cherrypy.process.plugins module

Site services for use with a Web Site Process Bus.

class cherrypy.process.plugins.Autoreloader (bus, frequency=1, match=".*")
Bases: cherrypy.process.plugins.Monitor

Monitor which re-executes the process when files change.

This plugin restarts the process (via os.execv ()) if any of the files it monitors change (or is deleted). By
default, the autoreloader monitors all imported modules; you can add to the set by adding to autoreload.
files:

’cherrypy.engine.autoreload.files.add(myFile)

If there are imported files you do not wish to monitor, you can adjust the mat ch attribute, a regular expression.
For example, to stop monitoring cherrypy itself:

1A

’cherrypy.engine.autoreload.match =r (?!cherrypy) .+'

Like all Monitor plugins, the autoreload plugin takes a frequency argument. The default is 1 second; that
is, the autoreloader will examine files once each second.

14.1. cherrypy package 131


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/os.html#os.execv

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

files =None
The set of files to poll for modifications.
frequency =1
The interval in seconds at which to poll for modified files.

match = ‘%’
A regular expression by which to match filenames.

run ()
Reload the process if registered files have been modified.

start ()
Start our own background task thread for self.run.

sysfiles ()
Return a Set of sys.modules filenames to monitor.

class cherrypy.process.plugins.BackgroundTask (interval, function, args=[], kwargs={},

bus=None)
Bases: threading.Thread

A subclass of threading. Thread whose run() method repeats.

Use this class for most repeating tasks. It uses time.sleep() to wait for each interval, which isn’t very responsive;
that is, even if you call self.cancel(), you’ll have to wait until the sleep() call finishes before the thread stops. To
compensate, it defaults to being daemonic, which means it won’t delay stopping the whole process.

cancel ()

run ()

class cherrypy.process.plugins.Daemonizer (bus, stdin="/dev/null’, stdout="/dev/null’,

stderr="/dev/null’)
Bases: cherrypy.process.plugins.SimplePlugin

Daemonize the running script.

Use this with a Web Site Process Bus via:

Daemonizer (bus) .subscribe ()

When this component finishes, the process is completely decoupled from the parent environment. Please note
that when this component is used, the return code from the parent process will still be O if a startup error occurs
in the forked children. Errors in the initial daemonizing process still return proper exit codes. Therefore, if you
use this plugin to daemonize, don’t use the return code as an accurate indicator of whether the process fully
started. In fact, that return code only indicates if the process successfully finished the first fork.

start ()

class cherrypy.process.plugins.DropPrivileges (bus, umask=None, uid=None, gid=None)

Bases: cherrypy.process.plugins.SimplePlugin
Drop privileges. uid/gid arguments not available on Windows.
Special thanks to Gavin Baker
gid

The gid under which to run. Availability — Unix.
start ()
uid

The uid under which to run. Availability — Unix.

132

Chapter 14. Modules


https://docs.python.org/3/library/threading.html#threading.Thread
http://antonym.org/2005/12/dropping-privileges-in-python.html

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

umask
The default permission mode for newly created files and directories.

Usually expressed in octal format, for example, 064 4. Availability: Unix, Windows.

class cherrypy.process.plugins.Monitor (bus, callback, frequency=60, name=None)
Bases: cherrypy.process.plugins.SimplePlugin

WSPBus listener to periodically run a callback in its own thread.

callback = None
The function to call at intervals.

frequency = 60
The time in seconds between callback runs.

graceful ()
Stop the callback’s background task thread and restart it.

start ()
Start our callback in its own background thread.

stop ()
Stop our callback’s background task thread.

thread = None
A BackgroundTask thread.

class cherrypy.process.plugins.PIDFile (bus, pidfile)
Bases: cherrypy.process.plugins.SimplePlugin

Maintain a PID file via a WSPBus.
exit ()
start ()

class cherrypy.process.plugins.PerpetualTimer (*args, **kwargs)
Bases: threading.Timer

A responsive subclass of threading. Timer whose run() method repeats.

Use this timer only when you really need a very interruptible timer; this checks its ‘finished’ condition up to 20
times a second, which can results in pretty high CPU usage

run ()

class cherrypy.process.plugins.SignalHandler (bus)
Bases: object

Register bus channels (and listeners) for system signals.

You can modify what signals your application listens for, and what it does when it receives signals, by modifying
SignalHandler.handlers,adict of {signal name: callback} pairs. The default set is:

handlers = {'SIGTERM': self.bus.exit,
'"SIGHUP': self.handle_SIGHUP,
'SIGUSR1': self.bus.graceful,
}

The SignalHandler.handle_SIGHUP' () method calls bus.restart () if the process is daemo-
nized, but bus.exit () if the process is attached to a TTY. This is because Unix window managers tend
to send SIGHUP to terminal windows when the user closes them.

14.1. cherrypy package 133


https://docs.python.org/3/library/threading.html#threading.Timer
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Feel free to add signals which are not available on every platform. The SignalHandler will ignore errors
raised from attempting to register handlers for unknown signals.

handle_ SIGHUP ()
Restart if daemonized, else exit.

handlers ={}
A map from signal names (e.g. ‘SIGTERM’) to handlers (e.g. bus.exit).

set_handler (signal, listener=None)
Subscribe a handler for the given signal (number or name).

If the optional ‘listener’ argument is provided, it will be subscribed as a listener for the given signal’s
channel.

If the given signal name or number is not available on the current platform, ValueError is raised.

signals = {<Signals.SIGRTMAX: 64>: ‘SIGRTMAX’, <Signals.SIGHUP: 1>: ‘SIGHUP’, <Signals.SIGINT: 2>: ‘SIGI]
A map from signal numbers to names.

subscribe ()
Subscribe self.handlers to signals.

unsubscribe ()
Unsubscribe self.handlers from signals.

class cherrypy.process.plugins.SimplePlugin (bus)
Bases: object

Plugin base class which auto-subscribes methods for known channels.

bus = None
A Bus, usually cherrypy.engine.

subscribe ()
Register this object as a (multi-channel) listener on the bus.

unsubscribe ()
Unregister this object as a listener on the bus.

class cherrypy.process.plugins.ThreadManager (bus)
Bases: cherrypy.process.plugins.SimplePlugin

Manager for HTTP request threads.

If you have control over thread creation and destruction, publish to the ‘acquire_thread’ and ‘release_thread’
channels (for each thread). This will register/unregister the current thread and publish to ‘start_thread’ and
‘stop_thread’ listeners in the bus as needed.

If threads are created and destroyed by code you do not control (e.g., Apache), then, at the beginning of every
HTTP request, publish to ‘acquire_thread’ only. You should not publish to ‘release_thread’ in this case, since
you do not know whether the thread will be re-used or not. The bus will call ‘stop_thread’ listeners for you
when it stops.

acquire_thread ()
Run ‘start_thread’ listeners for the current thread.

If the current thread has already been seen, any ‘start_thread’ listeners will not be run again.

graceful ()
Release all threads and run all ‘stop_thread’ listeners.

release_thread ()
Release the current thread and run ‘stop_thread’ listeners.

134 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

stop ()
Release all threads and run all ‘stop_thread’ listeners.

threads = None
A map of {thread ident — index number} pairs.

cherrypy.process.servers module

Starting in CherryPy 3.1, cherrypy.server is implemented as an Engine Plugin. It’s an instance of cherrypy.
_cpserver.Server, which is a subclass of cherrypy.process.servers.ServerAdapter. The
ServerAdapter class is designed to control other servers, as well.

Multiple servers/ports

If you need to start more than one HTTP server (to serve on multiple ports, or protocols, etc.), you can manually
register each one and then start them all with engine.start:

sl = ServerAdapter (

cherrypy.engine,

MyWSGIServer (host="'0.0.0.0", port=80)
)
s2 = ServerAdapter (

cherrypy.engine,

another .HTTPServer (host="'127.0.0.1", SSL=True)
)
sl.subscribe ()
s2.subscribe ()
cherrypy.engine.start ()

FastCGI/SCGI

There are also FlupFCGIServer and FlupSCGIServer classes in cherrypy.process. servers. To start an fcgi
server, for example, wrap an instance of it in a ServerAdapter:

addr = ('0.0.0.0", 4000)
f = servers.FlupFCGIServer (application=cherrypy.tree, bindAddress=addr)
s = servers.ServerAdapter (cherrypy.engine, httpserver=f, bind_addr=addr)

s.subscribe ()

The cherryd startup script will do the above for you via its -f flag. Note that you need to download and install flup
yourself, whether you use cherryd or not.

FastCGl

A very simple setup lets your cherry run with FastCGI. You just need the flup library, plus a running Apache server
(with mod_fastcgi) or lighttpd server.

CherryPy code

hello.py:

14.1. cherrypy package 135



http://trac.saddi.com/flup

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

#!/usr/bin/python
import cherrypy

class HelloWorld:
"'"'Sample request handler class.'''
@cherrypy.expose
def index(self):
return "Hello world!"

cherrypy.tree.mount (HelloWorld())
# CherryPy autoreload must be disabled for the flup server to work
cherrypy.config.update ({'engine.autoreload.on':False})

Then run /deployguide/cherryd with the ‘-f* arg:

cherryd -c¢ <myconfig> -d —-f —-i hello.py

Apache

At the top level in httpd.conf:

FastCgilpcDir /tmp
FastCgiServer /path/to/cherry.fcgi -idle-timeout 120 -processes 4

And inside the relevant VirtualHost section:

# FastCGI config
AddHandler fastcgi-script .fcgi
ScriptAliasMatch (.*$) /path/to/cherry.fcgi$l

Lighttpd

For Lighttpd you can follow these instructions. Within 1ighttpd. conf make sure mod_fastcgi is active within
server.modules. Then, within your $HTTP ["host "] directive, configure your fastcgi script like the following:

$HTTP ["url"] —~ mn {
fastcgi.server = (
"/n => (
"script.fcgi" => (
"bin-path" => "/path/to/your/script.fcgi",

"socket" => "/tmp/script.sock",
"check-local" => "disable",
"disable-time" =1,
"min-procs" => 1,
"max-procs" => 1, # adjust as needed
)I
)I
)
} # end of SHTTP["url"] =~ "7/"

Please see Lighttpd FastCGI Docs for an explanation of the possible configuration options.

class cherrypy.process.servers.FlupCGIServer (*args, **kwargs)
Bases: object

136 Chapter 14. Modules



http://www.lighttpd.net/
http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModFastCGI
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Adapter for a flup.server.cgi. WSGIServer.

start ()
Start the CGI server.

stop ()
Stop the HTTP server.

class cherrypy.process.servers.FlupFCGIServer (*args, **kwargs)
Bases: object

Adapter for a flup.server.fcgi. WSGIServer.

start ()
Start the FCGI server.

stop ()
Stop the HTTP server.

class cherrypy.process.servers.FlupSCGIServer (*args, **kwargs)
Bases: object

Adapter for a flup.server.scgi. WSGIServer.

start ()
Start the SCGI server.

stop ()
Stop the HTTP server.

class cherrypy.process.servers.ServerAdapter (bus, httpserver=None, bind_addr=None)
Bases: object

Adapter for an HTTP server.

If you need to start more than one HTTP server (to serve on multiple ports, or protocols, etc.), you can manually
register each one and then start them all with bus.start:

sl = ServerAdapter (bus, MyWSGIServer (host='0.0.0.0", port=80))

s2 = ServerAdapter (bus, another.HTTPServer (host='127.0.0.1"', SSL=True))
sl.subscribe ()

s2.subscribe ()

bus.start ()

bound_addr
The bind address, or if it’s an ephemeral port and the socket has been bound, return the actual port bound.

description
A description about where this server is bound.

restart ()
Restart the HTTP server.

start ()
Start the HTTP server.

stop ()
Stop the HTTP server.

subscribe ()
unsubscribe ()

wait ()
Wait until the HTTP server is ready to receive requests.

14.1. cherrypy package 137


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class cherrypy.process.servers.Timeouts
Bases: object

free=1

occupied =S5

cherrypy.process.win32 module

Windows service. Requires pywin32.

class cherrypy.process.win32.ConsoleCtrlHandler (bus)
Bases: cherrypy.process.plugins.SimplePlugin

A WSPBus plugin for handling Win32 console events (like Ctrl-C).

handle (event)
Handle console control events (like Ctrl-C).

start ()
stop ()

class cherrypy.process.win32.Win32Bus
Bases: cherrypy.process.wspbus.Bus

A Web Site Process Bus implementation for Win32.
Instead of time.sleep, this bus blocks using native win32event objects.
state

wait (state, interval=0.1, channel=None)
Wait for the given state(s), KeyboardInterrupt or SystemExit.

Since this class uses native win32event objects, the interval argument is ignored.

cherrypy.process.win32.signal_child (service, command)

cherrypy.process.wspbus module

An implementation of the Web Site Process Bus.

This module is completely standalone, depending only on the stdlib.

Web Site Process Bus

A Bus object is used to contain and manage site-wide behavior: daemonization, HTTP server start/stop, process reload,
signal handling, drop privileges, PID file management, logging for all of these, and many more.

In addition, a Bus object provides a place for each web framework to register code that runs in response to site-
wide events (like process start and stop), or which controls or otherwise interacts with the site-wide components
mentioned above. For example, a framework which uses file-based templates would add known template filenames to
an autoreload component.

Ideally, a Bus object will be flexible enough to be useful in a variety of invocation scenarios:

138 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

1. The deployer starts a site from the command line via a framework-neutral deployment script; applications from
multiple frameworks are mixed in a single site. Command-line arguments and configuration files are used to
define site-wide components such as the HTTP server, WSGI component graph, autoreload behavior, signal
handling, etc.

2. The deployer starts a site via some other process, such as Apache; applications from multiple frameworks are
mixed in a single site. Autoreload and signal handling (from Python at least) are disabled.

3. The deployer starts a site via a framework-specific mechanism; for example, when running tests, exploring
tutorials, or deploying single applications from a single framework. The framework controls which site-wide
components are enabled as it sees fit.

The Bus object in this package uses topic-based publish-subscribe messaging to accomplish all this. A few topic
channels are built in (‘start’, ‘stop’, ‘exit’, ‘graceful’, ‘log’, and ‘main’). Frameworks and site containers are free to
define their own. If a message is sent to a channel that has not been defined or has no listeners, there is no effect.

In general, there should only ever be a single Bus object per process. Frameworks and site containers share a single
Bus object by publishing messages and subscribing listeners.

The Bus object works as a finite state machine which models the current state of the process. Bus methods move it
from one state to another; those methods then publish to subscribed listeners on the channel for the new state.:

o}

\

%

STOPPING —-> STOPPED --> EXITING -> X

A A |

\ N \

\ \ \

| vV

STARTED <-— STARTING

class cherrypy.process.wspbus.Bus
Bases: object

Process state-machine and messenger for HTTP site deployment.

All listeners for a given channel are guaranteed to be called even if others at the same channel fail. Each failure
is logged, but execution proceeds on to the next listener. The only way to stop all processing from inside a
listener is to raise SystemExit and stop the whole server.

block (interval=0.1)
Wait for the EXITING state, KeyboardInterrupt or SystemEXxit.

This function is intended to be called only by the main thread. After waiting for the EXITING state, it
also waits for all threads to terminate, and then calls os.execv if self.execv is True. This design allows
another thread to call bus.restart, yet have the main thread perform the actual execv call (required on some
platforms).

execv = False

exit ()
Stop all services and prepare to exit the process.

graceful ()
Advise all services to reload.

log (msg="", level=20, traceback=False)
Log the given message. Append the last traceback if requested.

max_cloexec files =524288

14.1. cherrypy package 139



https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

publish (channel, *args, **kwargs)
Return output of all subscribers for the given channel.

restart ()
Restart the process (may close connections).

This method does not restart the process from the calling thread; instead, it stops the bus and asks the main
thread to call execv.

start ()
Start all services.

start_with_callback (func, args=None, kwargs=None)
Start ‘func’ in a new thread T, then start self (and return T).

state = states.STOPPED
states = <cherrypy.process.wspbus._StateEnum object>

stop ()
Stop all services.

subscribe (channel, callback, priority=None)
Add the given callback at the given channel (if not present).

unsubscribe (channel, callback)
Discard the given callback (if present).

wait (state, interval=0.1, channel=None)
Poll for the given state(s) at intervals; publish to channel.

exception cherrypy.process.wspbus.ChannelFailures (*args, **kwargs)
Bases: Exception

Exception raised when errors occur in a listener during Bus.publish().
delimiter =“‘\n’

get_instances ()
Return a list of seen exception instances.

handle_exception ()
Append the current exception to self.

Module contents

Site container for an HTTP server.

A Web Site Process Bus object is used to connect applications, servers, and frameworks with site-wide services such
as daemonization, process reload, signal handling, drop privileges, PID file management, logging for all of these, and
many more.

The ‘plugins’ module defines a few abstract and concrete services for use with the bus. Some use tool-specific chan-
nels; see the documentation for each class.

cherrypy.scaffold package

Module contents

<MyProject>, a CherryPy application.

140 Chapter 14. Modules


https://docs.python.org/3/library/exceptions.html#Exception

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Use this as a base for creating new CherryPy applications. When you want to make a new app, copy and paste this
folder to some other location (maybe site-packages) and rename it to the name of your project, then tweak as desired.

Even before any tweaking, this should serve a few demonstration pages. Change to this directory and run:
cherryd -c site.conf

class cherrypy.scaffold.Root
Bases: object

default (*args, **kwargs)
files (*a, **kw)
index ()

other (a=2, b="bananas’, c=None)

cherrypy.test package

Submodules
cherrypy.test.benchmark module

CherryPy Benchmark Tool
Usage: benchmark.py [options]

—null: use a null Request object (to bench the HTTP server only) —notests: start the server but do not run the tests; this
allows

you to check the tested pages with a browser

—help: show this help message —cpmodpy: run tests via apache on 54583 (with the builtin _cpmodpy) —modpython:
run tests via apache on 54583 (with modpython_gateway) —ab=path: Use the ab script/executable at ‘path’ (see below)
—apache=path: Use the apache script/exe at ‘path’ (see below)

To run the benchmarks, the Apache Benchmark tool “ab” must either be on your system path, or specified via the
—ab=path option.

To run the modpython tests, the “apache” executable or script must be on your system path, or provided via the —
apache=path option. On some platforms, “apache” may be called “apachect]” or “apache2ctl”—create a symlink to
them if needed.

class cherrypy.test.benchmark.ABSession (path="/cpbench/users/rdelon/apps/blog/hello’, re-

quests=1000, concurrency=10)
Bases: object

A session of ‘ab’, the Apache HTTP server benchmarking tool.
Example output from ab:

This is ApacheBench, Version 2.0.40-dev <$Revision: 1.121.2.1 $> apache-2.0 Copyright (c) 1996 Adam Twiss,
Zeus Technology Ltd, http://www.zeustech.net/ Copyright (c) 1998-2002 The Apache Software Foundation,
http://www.apache.org/

Benchmarking 127.0.0.1 (be patient) Completed 100 requests Completed 200 requests Completed 300 requests
Completed 400 requests Completed 500 requests Completed 600 requests Completed 700 requests Completed
800 requests Completed 900 requests

Server Software: CherryPy/3.1beta Server Hostname: 127.0.0.1 Server Port: 54583

Document Path: /static/index.html Document Length: 14 bytes

14.1. cherrypy package 141


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
http://www.zeustech.net/
http://www.apache.org/

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Concurrency Level: 10 Time taken for tests: 9.643867 seconds Complete requests: 1000 Failed requests: 0
Write errors: 0 Total transferred: 189000 bytes HTML transferred: 14000 bytes Requests per second: 103.69
[#/sec] (mean) Time per request: 96.439 [ms] (mean) Time per request: 9.644 [ms] (mean, across all concurrent
requests) Transfer rate: 19.08 [Kbytes/sec] received

Connection Times (ms) min mean[+/-sd] median max
Connect: 00 2.9 0 10 Processing: 20 94 7.3 90 130 Waiting: 0 43 28.1 40 100 Total: 20 95 7.3 100 130
Percentage of the requests served within a certain time (ms)
50% 100 66% 100 75% 100 80% 100 90% 100 95% 100 98% 100 99% 110

100% 130 (longest request)
Finished 1000 requests
args ()
parse_patterns = [(‘complete_requests’, ‘Completed’, b’*Complete requests:\\s*(\\d+)’), (‘failed_requests’, ‘Failed’, |
run ()

class cherrypy.test.benchmark.Root
Bases: object

hello ()

index ()

sizer (size)
cherrypy.test.benchmark.print_report (rows)
cherrypy.test.benchmark.run_standard benchmarks ()

cherrypy.test.benchmark.size_report (sizes=(10, 100, 1000, 10000, 100000, 100000000), con-
currency=>50)

cherrypy.test.benchmark.thread_report (path="/cpbench/users/rdelon/apps/blog/hello’,  con-
currency=(25, 50, 100, 200, 400))

cherrypy.test.checkerdemo module

Demonstration app for cherrypy.checker.

This application is intentionally broken and badly designed. To demonstrate the output of the CherryPy Checker,
simply execute this module.

class cherrypy.test.checkerdemo.Root
Bases: object

cherrypy.test.helper module

A library of helper functions for the CherryPy test suite.

class cherrypy.test.helper.CPProcess (wait=False, daemonize=False, ssl=False,

socket_host=None, socket_port=None)
Bases: object

access_log = ‘‘home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/site-packages/chei
config_ file = ‘‘home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/site-packages/ch

142 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

config_template = ‘“[global]\nserver.socket_host: ‘% (host)s’\nserver.socket_port: % (port)s\nchecker.on: False\nlog.s
error_log = ‘‘home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/site-packages/cherr
get_pid()
join ()

Wait for the process to exit.
pid_file = ‘‘home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/site-packages/cherry;

start (imports=None)
Start cherryd in a subprocess.

write_ conf (extra=’")

class cherrypy.test.helper.CPWebCase (methodName="runTest’)
Bases: cherrypy.test.webtest.WebCase

assertEqualDates (dtl, dt2, seconds=None)
Assert abs(dt1 - dt2) is within Y seconds.

assertErrorPage (status, message=None, pattern="")
Compare the response body with a built in error page.

The function will optionally look for the regexp pattern, within the exception embedded in the error page.
available_servers = {‘wsgi’: <class ‘cherrypy.test.helper.LocalWSGISupervisor’>, ‘native’: <class ‘cherrypy.test.he
base ()
date_tolerance=2
default_server = ‘wsgi’
do_gc_test = False
exit ()

getPage (url, headers=None, method="GET’, body=None, protocol=None, raise_subcls=None)
Open the url. Return status, headers, body.

raise_subcls must be a tuple with the exceptions classes or a single exception class that are not going
to be considered a socket.error regardless that they were are subclass of a socket.error and therefore not
considered for a connection retry.

prefix ()

scheme = ‘http’

script_name = ¢

classmethod setup_class ()
skip (msg="skipped *)
classmethod teardown_class ()
test_gc ()

class cherrypy.test.helper.LocalSupervisor ( **kwargs)
Bases: cherrypy.test.helper.Supervisor

Base class for modeling/controlling servers which run in the same process.

When the server side runs in a different process, start/stop can dump all state between each test module easily.
When the server side runs in the same process as the client, however, we have to do a bit more work to ensure
config and mounted apps are reset between tests.

14.1. cherrypy package 143



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

start (modulename=None)
Load and start the HTTP server.

stop ()

sync_apps ()
Tell the server about any apps which the setup functions mounted.

using_apache = False
using wsgi = False

class cherrypy.test.helper.LocalWSGISupervisor (**kwargs)
Bases: cherrypy.test.helper.LocalSupervisor

Server supervisor for the builtin WSGI server.

get_app (app=None)
Obtain a new (decorated) WSGI app to hook into the origin server.

httpserver_class = ‘cherrypy._cpwsgi_server.CPWSGIServer’

sync_apps ()
Hook a new WSGI app into the origin server.

using_apache = False
using_wsgi = True

class cherrypy.test.helper.NativeServerSupervisor (**kwargs)
Bases: cherrypy.test.helper.LocalSupervisor

Server supervisor for the builtin HTTP server.

httpserver_class = ‘cherrypy._cpnative_server. CPHTTPServer’
using_apache = False

using_wsgi = False

class cherrypy.test.helper.Supervisor (**kwargs)
Bases: object

Base class for modeling and controlling servers during testing.
cherrypy.test.helper.get_cpmodpy supervisor (**options)
cherrypy.test.helper.get_modfastcgi_supervisor (**options)
cherrypy.test.helper.get_modfcgid_supervisor (**options)
cherrypy.test.helper.get_modpygw_supervisor (**options)
cherrypy.test.helper.get_modwsgi_supervisor (**options)
cherrypy.test.helper.get_wsgi_u_supervisor ( **options)
cherrypy.test.helper.log_to_stderr (msg, level)

cherrypy.test.helper.setup_client ()
Set up the WebCase classes to match the server’s socket settings.

cherrypy.test.logtest module

logtest, a unittest. TestCase helper for testing log output.

144 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class cherrypy.test.logtest.LogCase
Bases: object

unittest. TestCase mixin for testing log messages.

logfile: a filename for the desired log. Yes, I know modes are evil, but it makes the test functions so much
cleaner to set this once.

lastmarker: the last marker in the log. This can be used to search for messages since the last marker.

markerPrefix: a string with which to prefix log markers. This should be unique enough from normal log
output to use for marker identification.

assertInLog (line, marker=None)
Fail if the given (partial) line is not in the log.

The log will be searched from the given marker to the next marker. If marker is None, self.lastmarker is
used. If the log hasn’t been marked (using self.markl.og), the entire log will be searched.

assertlog (sliceargs, lines, marker=None)
Fail if log.readlines()[sliceargs] is not contained in ‘lines’.

The log will be searched from the given marker to the next marker. If marker is None, self.lastmarker is
used. If the log hasn’t been marked (using self.markLog), the entire log will be searched.

assertNotInlog (line, marker=None)
Fail if the given (partial) line is in the log.

The log will be searched from the given marker to the next marker. If marker is None, self.lastmarker is
used. If the log hasn’t been marked (using self.markLog), the entire log will be searched.

emptyLog ()
Overwrite self.logfile with O bytes.

exit ()
lastmarker = None
logfile = None

markLog (key=None)
Insert a marker line into the log and set self.lastmarker.

markerPrefix = b’test suite marker: ¢

cherrypy.test.logtest.getchar ()

cherrypy.test.modfastcgi module

Wrapper for mod_fastcgi, for use as a CherryPy HTTP server when testing.

To autostart fastcgi, the “apache” executable or script must be on your system path, or you must override the global
APACHE_PATH. On some platforms, “apache” may be called “apachectl”, “apache2ctl”, or “httpd”’—create a symlink
to them if needed.

You’ll also need the WSGIServer from flup.servers. See http://projects.amor.org/misc/wiki/ModPythonGateway

KNOWN BUGS

1. Apache processes Range headers automatically; CherryPy’s truncated output is then truncated again by
Apache. See test_core.testRanges. This was worked around in http://www.cherrypy.org/changeset/1319.

14.1. cherrypy package 145


https://docs.python.org/3/library/functions.html#object
http://projects.amor.org/misc/wiki/ModPythonGateway
http://www.cherrypy.org/changeset/1319

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

2. Apache does not allow custom HTTP methods like CONNECT as per the spec. See
test_core.testHTTPMethods.

3. Max request header and body settings do not work with Apache.

4. Apache replaces status “reason phrases” automatically. For example, CherryPy may set “304 Not modi-
fied” but Apache will write out “304 Not Modified” (capital “M”).

5. Apache does not allow custom error codes as per the spec.
6. Apache (or perhaps modpython, or modpython_gateway) unquotes %xx in the Request-URI too early.

7. mod_python will not read request bodies which use the “chunked” transfer-coding (it
passes REQUEST_CHUNKED_ERROR to ap_setup_client_block instead of RE-
QUEST_CHUNKED_DECHUNK, see Apache2’s http_protocol.c and mod_python’s requestobject.c).

8. Apache will output a “Content-Length: 0 response header even if there’s no response entity body. This
isn’t really a bug; it just differs from the CherryPy default.

class cherrypy.test.modfastcgi.ModFCGISupervisor (**kwargs)
Bases: cherrypy.test.helper.LocalWSGISupervisor

httpserver_class = ‘cherrypy.process.servers.FlupF CGIServer’
start (modulename)
start_apache ()

stop ()
Gracefully shutdown a server that is serving forever.

sync_apps ()
template = ‘\n# Apache2 server conf file for testing CherryPy with mod_fastcgi.\n# fumanchu: I had to hard-code path:
using_apache = True
using wsgi = True
cherrypy.test.modfastcgi.erase_script_name (environ, start_response)

cherrypy.test.modfastcgi.read_process (cmd, args="")

cherrypy.test.modfcgid module

Wrapper for mod_fcgid, for use as a CherryPy HTTP server when testing.

To autostart fcgid, the “apache” executable or script must be on your system path, or you must override the global
APACHE_PATH. On some platforms, “apache” may be called “apachectl”, “apache2ctl”, or “httpd”—create a symlink
to them if needed.

You’ll also need the WSGIServer from flup.servers. See http://projects.amor.org/misc/wiki/ModPythonGateway

KNOWN BUGS

1. Apache processes Range headers automatically; CherryPy’s truncated output is then truncated again by
Apache. See test_core.testRanges. This was worked around in http://www.cherrypy.org/changeset/1319.

2. Apache does not allow custom HTTP methods like CONNECT as per the spec. See
test_core.testHTTPMethods.

3. Max request header and body settings do not work with Apache.

146 Chapter 14. Modules


http://projects.amor.org/misc/wiki/ModPythonGateway
http://www.cherrypy.org/changeset/1319

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

4. Apache replaces status “reason phrases” automatically. For example, CherryPy may set “304 Not modi-
fied” but Apache will write out “304 Not Modified” (capital “M”).

5. Apache does not allow custom error codes as per the spec.
6. Apache (or perhaps modpython, or modpython_gateway) unquotes %xx in the Request-URI too early.

7. mod_python will not read request bodies which use the ‘““chunked” transfer-coding @it
passes REQUEST_CHUNKED_ERROR to ap_setup_client_block instead of RE-
QUEST_CHUNKED_DECHUNK, see Apache2’s http_protocol.c and mod_python’s requestobject.c).

8. Apache will output a “Content-Length: 0’ response header even if there’s no response entity body. This
isn’t really a bug; it just differs from the CherryPy default.

class cherrypy.test.modfcgid.ModFCGISupervisor (**kwargs)
Bases: cherrypy.test.helper.LocalSupervisor

start (modulename)
start_apache ()

stop ()
Gracefully shutdown a server that is serving forever.

sync_apps ()

template = ‘\n# Apache2 server conf file for testing CherryPy with mod_fcgid.\n\nDocumentRoot % (root)s’\nServerN
using_apache = True

using wsgi = True

cherrypy.test.modfcgid.read process (cmd, args="")

cherrypy.test.modpy module

Wrapper for mod_python, for use as a CherryPy HTTP server when testing.

To autostart modpython, the “apache” executable or script must be on your system path, or you must override the
global APACHE_PATH. On some platforms, “apache” may be called “apachectl” or “apache2ctl”— create a symlink
to them if needed.

If you wish to test the WSGI interface instead of our _cpmodpy interface, you also need the ‘modpython_gateway’
module at: http://projects.amor.org/misc/wiki/ModPythonGateway

KNOWN BUGS

1. Apache processes Range headers automatically; CherryPy’s truncated output is then truncated again by
Apache. See test_core.testRanges. This was worked around in http://www.cherrypy.org/changeset/1319.

2. Apache does not allow custom HTTP methods like CONNECT as per the spec. See
test_core.testHTTPMethods.

3. Max request header and body settings do not work with Apache.

4. Apache replaces status “reason phrases” automatically. For example, CherryPy may set “304 Not modi-
fied” but Apache will write out “304 Not Modified” (capital “M”).

5. Apache does not allow custom error codes as per the spec.

6. Apache (or perhaps modpython, or modpython_gateway) unquotes %xx in the Request-URI too early.

14.1. cherrypy package 147


http://projects.amor.org/misc/wiki/ModPythonGateway
http://www.cherrypy.org/changeset/1319

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

7. mod_python will not read request bodies which use the ‘“‘chunked” transfer-coding (it
passes REQUEST_CHUNKED_ERROR to ap_setup_client_block instead of RE-
QUEST_CHUNKED_DECHUNK, see Apache2’s http_protocol.c and mod_python’s requestobject.c).

8. Apache will output a “Content-Length: 0 response header even if there’s no response entity body. This
isn’t really a bug; it just differs from the CherryPy default.

class cherrypy.test.modpy.ModPythonSupervisor (**kwargs)
Bases: cherrypy.test.helper.Supervisor

start (modulename)

stop ()
Gracefully shutdown a server that is serving forever.

template = None

using_apache = True

using wsgi = False
cherrypy.test.modpy.cpmodpysetup (req)
cherrypy.test.modpy.read_process (cmd, args="")

cherrypy.test .modpy.wsgisetup (req)

cherrypy.test.modwsgi module

Wrapper for mod_wsgi, for use as a CherryPy HTTP server.

To autostart modwsgi, the “apache” executable or script must be on your system path, or you must override the global
APACHE_PATH. On some platforms, “apache” may be called “apachectl” or “apache2ctl”— create a symlink to them
if needed.

KNOWN BUGS

##1. Apache processes Range headers automatically; CherryPy’s truncated ## output is then truncated again by
Apache. See test_core.testRanges. ## This was worked around in http://www.cherrypy.org/changeset/1319. 2. Apache
does not allow custom HTTP methods like CONNECT as per the spec.

See test_core.testHTTPMethods.

3. Max request header and body settings do not work with Apache. ##4. Apache replaces status “reason phrases” au-
tomatically. For example, ## CherryPy may set “304 Not modified” but Apache will write out ## “304 Not Modified”
(capital “M”). ##5. Apache does not allow custom error codes as per the spec. ##6. Apache (or perhaps modpython,
or modpython_gateway) unquotes %xx in the ## Request-URI too early. 7. mod_wsgi will not read request bodies
which use the “chunked”

transfer-coding (it passes REQUEST_CHUNKED_ERROR to ap_setup_client_block instead of RE-
QUEST_CHUNKED_DECHUNK, see Apache2’s http_protocol.c and mod_python’s requestobject.c).

8. When responding with 204 No Content, mod_wsgi adds a Content-Length header for you.

9. When an error is raised, mod_wsgi has no facility for printing a traceback as the response content (it’s sent
to the Apache log instead).

10. Startup and shutdown of Apache when running mod_wsgi seems slow.

148 Chapter 14. Modules


http://www.cherrypy.org/changeset/1319

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class cherrypy.test.modwsgi .ModWSGISupervisor (**kwargs)
Bases: cherrypy.test.helper.Supervisor

Server Controller for ModWSGI and CherryPy.
start (modulename)

stop ()
Gracefully shutdown a server that is serving forever.

template = ‘\n# Apache2 server conf file for testing CherryPy with modpython_gateway.\n\nServerName 127.0.0.1\nDo
using_apache = True
using_wsgi = True

cherrypy.test.modwsgi.application (environ, start_response)

cherrypy.test.modwsgi.read_process (cmd, args="")

cherrypy.test.sessiondemo module

A session demonstration app.

class cherrypy.test.sessiondemo.Root
Bases: object

expire ()
index ()
page ()

regen ()

cherrypy.test.test_auth_basic module

class cherrypy.test.test_auth_basic.BasicAuthTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testBasic ()
testBasic2 ()

testPublic()

cherrypy.test.test_auth_digest module

class cherrypy.test.test_auth_digest.DigestAuthTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testDigest ()
testPublic ()

14.1. cherrypy package 149


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_bus module

class cherrypy.test.test_bus.BusMethodTests (methodName="runTest’)
Bases: unittest.case.TestCase

assertLog (entries)
get_listener (channel, index)
log (bus)

test_block ()

test_exit ()
test_graceful ()
test_log()

test_start ()
test_start_with_callback ()
test_stop ()

test_wait ()

class cherrypy.test.test_bus.PublishSubscribeTests (methodName="runTest’)
Bases: unittest.case.TestCase

get_listener (channel, index)
test_builtin channels ()
test_custom_channels ()

test_listener errors ()

cherrypy.test.test_caching module

class cherrypy.test.test_caching.CacheTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testCaching ()
testExpiresTool ()
testLastModified()
testVaryHeader ()
test_antistampede ()

test_cache control ()

cherrypy.test.test_compat module

Test Python 2/3 compatibility module.

150 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class cherrypy.test.test_compat .EscapeTester (methodName="runTest’)
Bases: unittest.case.TestCase

Class to test escape_html function from _cpcompat.

test_escape_quote ()
test_escape_quote - Verify the output for &<>

999

chars.

class cherrypy.test.test_compat.StringTester (methodName="runTest’)
Bases: unittest.case.TestCase

Tests for string conversion.

test_ntob_non _native ()
ntob should raise an Exception on unicode.

(Python 2 only)

See #1132 for discussion.

cherrypy.test.test_config module

Tests for the CherryPy configuration system.

class cherrypy.test.test_config.CallablesInConfigTest (methodName="runTest’)
Bases: unittest.case.TestCase

static setup_server ()
test_call_with_kwargs ()
test_call with_literal dict ()

class cherrypy.test.test_config.ConfigTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

testConfig ()

testCustomNamespaces ()

testHandlerToolConfigOverride ()

testRespNamespaces ()

testUnrepr ()

test_request_body_ namespace ()
cherrypy.test.test_config.StringIOFromNative (x)

class cherrypy.test.test_config.VariableSubstitutionTests (methodName="runTest’)
Bases: unittest.case.TestCase

static setup_server ()
test_config()

cherrypy.test.test_config.setup_server ()

14.1. cherrypy package 151



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_config_server module

Tests for the CherryPy configuration system.

class cherrypy.test.test_config_server.ServerConfigTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

PORT = 9876

static setup_server ()
testAdditionalServers ()
testBasicConfig ()
testMaxRequestSize ()

testMaxRequestSizePerHandler ()

cherrypy.test.test_conn module

Tests for TCP connection handling, including proper and timely close.

class cherrypy.test.test_conn.BadRequestTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_No_CRLF ()

class cherrypy.test.test_conn.ConnectionCloseTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_HTTP10_KeepAlive ()
test_HTTP1l1 ()
test_Streaming no_len|()
test_Streaming with_len/()

class cherrypy.test.test_conn.ConnectionTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_598 ()

test_Chunked_Encoding ()
test_Content_Length_in()
test_Content_Length_out_postheaders ()
test_Content_Length_out_preheaders ()
test_No_Message_Body ()

test_readall or_close ()

class cherrypy.test.test_conn.LimitedRequestQueueTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

152 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_queue_full ()

class cherrypy.test.test_conn.PipelineTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_100_Continue ()

test_HTTP1l1l_Timeout ()

test_HTTP1ll_Timeout_after_request ()

test_HTTP1ll_pipelining ()
cherrypy.test.test_conn.setup_server ()
cherrypy.test.test_conn.setup_upload_ server ()

cherrypy.test.test_conn.socket_reset_errors =[104, ‘Remote end closed connection without response’]
reset error numbers available on this platform

cherrypy.test.test_core module

Basic tests for the CherryPy core: request handling.

class cherrypy.test.test_core.CoreRequestHandlingTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

skip_if bad_cookies ()
cookies module fails to reject invalid cookies https://github.com/cherrypy/cherrypy/issues/1405

testCookies ()
testDefaultContentType ()
testFavicon ()
testFlatten ()
testRanges ()
testRedirect ()
testSlashes ()
testStatus ()
test_InternalRedirect ()
test_cherrypy url()
test_expose_decorator ()
test_multiple_ headers ()
test_on_end resource_status ()

test_redirect_with_unicode ()
A redirect to a URL with Unicode should return a Location header containing that Unicode URL.

test_redirect_with xss ()
A redirect to a URL with HTML injected should result in page contents escaped.

14.1. cherrypy package 153


https://github.com/cherrypy/cherrypy/issues/1405

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

class cherrypy.test.test_core.ErrorTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_contextmanager ()
test_start_response_error()

class cherrypy.test.test_core.TestBinding
Bases: object

test_bind_ephemeral_port ()
A server configured to bind to port O will bind to an ephemeral port and indicate that port number on
startup.

cherrypy.test.test_dynamicobjectmapping module

class cherrypy.test.test_dynamicobjectmapping.DynamicObjectMappingTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

testMethodDispatch ()
testObjectMapping ()
testVpathDispatch ()

cherrypy.test.test_dynamicobjectmapping.setup_server ()

cherrypy.test.test_encoding module

class cherrypy.test.test_encoding.EncodingTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testEncoding ()

testGzip ()
test_UnicodeHeaders ()
test_decode_tool ()
test_multipart_decoding()

test_multipart_decoding bigger maxrambytes ()
Decoding of a multipart entity should also pass when the entity is bigger than maxrambytes. See ticket
#1352.

test_multipart_decoding no_charset ()
test_multipart_decoding no_successful_charset ()
test_nontext ()

test_query_ string decoding ()

test_urlencoded _decoding ()

154 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_etags module

class cherrypy.test.test_etags.ETagTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_errors ()
test_etags ()

test_unicode_body ()

cherrypy.test.test_http module

Tests for managing HTTP issues (malformed requests, etc).

class cherrypy.test.test_http.HTTPTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

make_connection ()

static setup_server ()
test_garbage_in ()
test_http_over https()
test_malformed header ()
test_malformed_request_line ()
test_no_content_length ()

test_post_filename_with_special_characters ()
Testing that we can handle filenames with special characters. This was reported as a bug in:

https://github.com/cherrypy/cherrypy/issues/1146/ https://github.com/cherrypy/cherrypy/issues/
1397

test_post_multipart ()
test_request_line_split_issue_1220 ()

cherrypy.test.test_http.encode_multipart_formdata (files)
Return (content_type, body) ready for httplib. HTTP instance.

files: a sequence of (name, filename, value) tuples for multipart uploads.

cherrypy.test.test_httpauth module

class cherrypy.test.test_httpauth.HTTPAuthTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testBasic()
testBasic2 ()
testDigest ()

testPublic ()

14.1. cherrypy package 155


https://github.com/cherrypy/cherrypy/issues/1146/
https://github.com/cherrypy/cherrypy/issues/1397
https://github.com/cherrypy/cherrypy/issues/1397

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_httplib module

Tests for cherrypy/lib/httputil.py.

class cherrypy.test.test_httplib.UtilityTests (methodName="runTest’)
Bases: unittest.case.TestCase

test_urljoin()

cherrypy.test.test_iterator module

class cherrypy.test.test_iterator.IteratorBase
Bases: object

created =0

datachunk = ‘butternut squashbutternut squashbutternut squashbutternut squashbutternut squashbutternut squashbut
classmethod decr ()

classmethod incr ()

class cherrypy.test.test_iterator.IteratorTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_iterator ()

class cherrypy.test.test_iterator.OurClosablelIterator
Bases: cherrypy.test.test_iterator.Ouriterator

close ()

class cherrypy.test.test_iterator.OurGenerator
Bases: cherrypy.test.test_iterator.IteratorBase

class cherrypy.test.test_iterator.OurIterator
Bases: cherrypy.test.test_iterator.IteratorBase

closed off = False
count =0
decrement ()
increment ()

next ()

started = False

class cherrypy.test.test_iterator.OurNotClosableIterator
Bases: cherrypy.test.test_iterator.Ourlterator

close (somearg)

class cherrypy.test.test_iterator.OurUnclosableIterator
Bases: cherrypy.test.test_iterator.Ouriterator

close = ‘close’

156 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_json module

class cherrypy.test.test_json.JsonTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_cached()
test_json_input ()

test_json_output ()

cherrypy.test.test_logging module

Basic tests for the CherryPy core: request handling.

class cherrypy.test.test_logging.AccessLogTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase, cherrypy.test.logtest.LogCase

logfile = ‘‘home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/site-packages/cherryp:
static setup_server ()

testCustomLogFormat ()
Test a customized access_log_format string, which is a feature of _cplogging.LLogManager.access()

testEscapedOutput ()
testNormalReturn ()
testNormalYield ()

class cherrypy.test.test_logging.ErrorLogTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase, cherrypy.test.logtest.LogCase

logfile = ‘‘home/docs/checkouts/readthedocs.org/user_builds/cherrypy/envs/latest/lib/python3.5/site-packages/cherryp:
static setup_server ()
testTracebacks ()

cherrypy.test.test_logging.setup_server ()

cherrypy.test.test_mime module

Tests for various MIME issues, including the safe_multipart Tool.

class cherrypy.test.test_mime.MultipartTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_multipart ()
test_multipart_form data ()

class cherrypy.test.test_mime.SafeMultipartHandlingTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_Flash Upload()

14.1. cherrypy package 157



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_mime.setup_server ()

cherrypy.test.test_misc_tools module

class cherrypy.test.test_misc_tools.AcceptTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_Accept_Tool ()
test_accept_selection ()

class cherrypy.test.test_misc_tools.AutoVaryTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testAutoVary ()

class cherrypy.test.test_misc_tools.RefererTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testReferer ()

class cherrypy.test.test_misc_tools.ResponseHeadersTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testResponseHeaders ()
testResponseHeadersDecorator ()

cherrypy.test.test_misc_tools.setup_server ()

cherrypy.test.test_objectmapping module

class cherrypy.test.test_objectmapping.ObjectMappingTest (methodName="runlest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testExpose ()
testKeywords ()
testMethodDispatch ()
testObjectMapping ()
testPositionalParams ()
testTreeMounting ()
test_redir_ using_url()

test_translate ()

158 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_params module

class cherrypy.test.test_params.ParamsTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test_error ()
test_pass ()
test_syntax ()

cherrypy.test.test_proxy module

class cherrypy.test.test_proxy.ProxyTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

testProxy ()

cherrypy.test.test_refleaks module

Tests for refleaks.

class cherrypy.test.test_refleaks.ReferenceTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_threadlocal_garbage ()

cherrypy.test.test_request_obj module

Basic tests for the cherrypy.Request object.

class cherrypy.test.test_request_obj.RequestObjectTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testAbsoluteURIPathInfo ()
testEmptyThreadlocals ()
testErrorHandling ()
testExpect ()
testHeaderElements ()
testParamErrors ()
testParams ()
testRelativeURIPathInfo ()
test_CONNECT method ()

test_CONNECT_method_invalid authority ()

14.1. cherrypy package 159



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_basic HTTPMethods ()
test_encoded headers ()
test_header_ presence ()
test_repeated headers ()

test_scheme ()

cherrypy.test.test_routes module

Test Routes dispatcher.

class cherrypy.test.test_routes.RoutesDispatchTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

Routes dispatcher test suite.

static setup_server ()
Set up cherrypy test instance.

test_Routes_Dispatch ()
Check that routes package based URI dispatching works correctly.

cherrypy.test.test_session module

class cherrypy.test.test_session.MemcachedSessionTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
test ()

class cherrypy.test.test_session.SessionTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
tearDown ()
test_0_Session ()
test_1_Ram_Concurrency ()
test_2 File_Concurrency ()
test_3_Redirect ()
test_4 File_deletion()
test_5_Error_paths()
test_6_regenerate ()
test_7_ session_ cookies ()
test_8_Ram Cleanup ()
cherrypy.test.test_session.http_methods_allowed (methods=['GET’, ‘HEAD’])

cherrypy.test.test_session.setup_server ()

160 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_sessionauthenticate module

class cherrypy.test.test_sessionauthenticate.SessionAuthenticateTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

testSessionAuthenticate ()

cherrypy.test.test_states module

class cherrypy.test.test_states.Dependency (bus)
Bases: object

graceful ()

start ()

startthread (thread_id)
stop ()

stopthread (thread_id)
subscribe ()

class cherrypy.test.test_states.PluginTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

test_daemonize ()

class cherrypy.test.test_states.ServerStateTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

setUp ()

static setup_server ()
test_0_NormalStateFlow ()
test_1 Restart ()
test_2_KeyboardInterrupt ()
test_3_Deadlocks ()
test_4_Autoreload()
test_5_Start_Error()

class cherrypy.test.test_states.SignalHandlingTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

test_SIGHUP_daemonized ()
test_SIGHUP_tty ()

test_SIGTERM()
SIGTERM should shut down the server whether daemonized or not.

test_signal_handler_unsubscribe ()

class cherrypy.test.test_states.WaitTests (methodName="runTest’)
Bases: unittest.case.TestCase

14.1. cherrypy package 161


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_safe _wait INADDR_ANY ()
‘Wait on INADDR_ANY should not raise IOError

In cases where the loopback interface does not exist, CherryPy cannot effectively determine if a port
binding to INADDR_ANY was effected. In this situation, CherryPy should assume that it failed to detect
the binding (not that the binding failed) and only warn that it could not verify it.

cherrypy.test.test_states.setup_server ()

cherrypy.test.test_static module

class cherrypy.test.test_static.StaticTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

Py27_on_windows = False

static setup_server ()

static teardown_server ()
test_755_vhost ()
test_config _errors()
test_error_page_with_serve_file()
test_fallthrough ()
test_file_ stream()
test_file stream deadlock ()
test_index ()

test_modif ()
test_null_bytes ()
test_security ()
test_serve_bytesio()
test_serve_fileobj ()
test_static()
test_unicode ()

static unicode_file ()

cherrypy.test.test_static.ensure_unicode_filesystem()
TODO: replace with simply pytest fixtures once webtest.TestCase no longer implies unittest.

cherrypy.test.test_static.error_page_404 (status, message, traceback, version)

cherrypy.test.test_static.unicode_filesystem (rmpdir)

cherrypy.test.test_tools module

Test the various means of instantiating and invoking tools.

class cherrypy.test.test_tools.SessionAuthTest (methodName="runTest’)
Bases: unittest.case.TestCase

162 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_login_screen_returns_bytes ()
login_screen must return bytes even if unicode parameters are passed. Issue 1132 revealed that lo-
gin_screen would return unicode if the username and password were unicode.

class cherrypy.test.test_tools.ToolTests (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testBareHooks ()
testCombinedTools ()
testDecorator ()
testEndRequestOnDrop ()
testGuaranteedHooks ()
testHandlerWrapperTool ()
testHookErrors ()
testToolWithConfig ()

testWarnToolOn ()

cherrypy.test.test_tutorials module

class cherrypy.test.test_tutorials.TutorialTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static Load_module (name)
Import or reload tutorial module as needed.

classmethod setup_server ()
Mount something so the engine starts.

classmethod setup_tutorial (name, root_name, config={})
testO0lHelloWorld ()

test02ExposeMethods ()

test03GetAndPost ()

test04ComplexSite ()

test05DerivedObjects ()

test06DefaultMethod ()

test07Sessions ()

test08GeneratorsAndYield ()

testO9Files ()

testl0HTTPErrors ()

14.1. cherrypy package 163



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_virtualhost module

class cherrypy.test.test_virtualhost.VirtualHostTest (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testVirtualHost ()

test_VHost_plus_Static()

cherrypy.test.test_wsgi_ns module

class cherrypy.test.test_wsgi_ns.WSGI_Namespace_Test (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_pipeline ()

cherrypy.test.test_wsgi_unix_socket module

class cherrypy.test.test_wsgi_unix_socket .USocketHTTPConnection (path)
Bases: http.client .HTTPConnection

HTTPConnection over a unix socket.

connect ()
Override the connect method and assign a unix socket as a transport.

class cherrypy.test.test_wsgi_unix_socket .WSGI_UnixSocket_Test (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

Test basic behavior on a cherrypy wsgi server listening on a unix socket.

It exercises the config option server.socket_file.

HTTP_CONN = <cherrypy.test.test_wsgi_unix_socket.USocketHTTPConnection object>
pytestmark = [Mark(name="skipif’, args=(‘‘sys.platform == ‘win32’”,), kwargs={})]
static setup_server ()

tearDown ()

test_internal error ()

test_not_found()

test_simple_request ()

cherrypy.test.test_wsgi_unix_socket.usocket_path ()

cherrypy.test.test_wsgi_vhost module

class cherrypy.test.test_wsgi_vhost .WSGI_VirtualHost_Test (methodName="runTest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_welcome ()

164 Chapter 14. Modules


https://docs.python.org/3/library/http.client.html#http.client.HTTPConnection

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_wsgiapps module

class cherrypy.test.test_wsgiapps.WSGIGraftTests (methodName="runlest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()

test_01_standard app ()

test_04_pure_wsgi ()

test_05_wrapped_cp_app ()

test_06_empty string_ app ()

wsgi_output = ‘Hello, world!\nThis is a wsgi app running within CherryPy!’

cherrypy.test.test_xmlirpc module

class cherrypy.test.test_xmlrpc.XmlRpcTest (methodName="runlest’)
Bases: cherrypy.test.helper.CPWebCase

static setup_server ()
testXmlRpc ()

cherrypy.test.test_xmlrpc.setup_server )

cherrypy.test.webtest module

Extensions to unittest for web frameworks.

Use the WebCase.getPage method to request a page from your HTTP server.

Framework Integration

If you have control over your server process, you can handle errors in the server-side of the HTTP conversation a bit
better. You must run both the client (your WebCase tests) and the server in the same process (but in separate threads,
obviously).

When an error occurs in the framework, call server_error. It will print the traceback to stdout, and keep any assertions
you have from running (the assumption is that, if the server errors, the page output will not be of further significance
to your tests).

class cherrypy.test.webtest .NonDataProperty (fget)
Bases: object

class cherrypy.test.webtest .ReloadingTestLoader
Bases: unittest.loader.TestLoader

loadTestsFromName (name, module=None)
Return a suite of all tests cases given a string specifier.

The name may resolve either to a module, a test case class, a test method within a test case class, or a
callable object which returns a TestCase or TestSuite instance.

The method optionally resolves the names relative to a given module.

14.1. cherrypy package 165


https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

exception cherrypy.test.webtest.ServerError

Bases: Exception

on = False

class cherrypy.test.webtest . TerseTestResult (stream, descriptions, verbosity)

Bases: unittest.runner.TextTestResult

printErrors ()

class cherrypy.test.webtest . TerseTestRunner (stream=None, descriptions=True, verbosity=1,
failfast=False, buffer=False, resultclass=None,
warnings=None, *, tb_locals=False)

class cherrypy.test.webtest .WebCase (methodName="runTest’)

Bases: unittest.runner.TextTestRunner
A test runner class that displays results in textual form.

run (fest)
Run the given test case or test suite.

Bases: unittest.case.TestCase
HOST = ‘127.0.0.1°

HTTP_CONN
alias of HTTPConnection

PORT = 8000
PROTOCOL = ‘HTTP/1.1°

assertBody (value, msg=None)
Fail if value != self.body.

assertHeader (key, value=None, msg=None)
Fail if (key, [value]) not in self.headers.

assertHeaderlIn (key, values, msg=None)
Fail if header indicated by key doesn’t have one of the values.

assertHeaderItemValue (key, value, msg=None)
Fail if the header does not contain the specified value

assertInBody (value, msg=None)
Fail if value not in self.body.

assertMatchesBody (pattern, msg=None, flags=0)
Fail if value (a regex pattern) is not in self.body.

assertNoHeader (key, msg=None)
Fail if key in self.headers.

assertNot InBody (value, msg=None)
Fail if value in self.body.

assertStatus (status, msg=None)
Fail if self.status != status.

body = None
console_height =30
encoding = ‘utf-8’

exit ()

166

Chapter 14. Modules


https://docs.python.org/3/library/exceptions.html#Exception

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

getPage (url, headers=None, method="GET’, body=None, protocol=None, raise_subcls=None)
Open the url with debugging support. Return status, headers, body.

raise_subcls must be a tuple with the exceptions classes or a single exception class that are not going
to be considered a socket.error regardless that they were are subclass of a socket.error and therefore not
considered for a connection retry.

get_conn (auto_open=False)
Return a connection to our HTTP server.

headers = None
interactive

interface ()
Return an IP address for a client connection.

If the server is listening on ‘0.0.0.0° (INADDR_ANY) or “::> (IN6GADDR_ANY), this will return the
proper localhost.

persistent
scheme = ‘http’

set_persistent (on=True, auto_open=False)
Make our HTTP_CONN persistent (or not).

If the ‘on’ argument is True (the default), then self. HTTP_CONN will be set to an instance of HTTPCon-
nection (or HTTPS if self.scheme is “https’). This will then persist across requests.

We only allow for a single open connection, so if you call this and we currently have an open connection,
it will be closed.

status = None
time = None
url = None

cherrypy.test.webtest.cleanHeaders (headers, method, body, host, port)
Return request headers, with required headers added (if missing).

cherrypy.test.webtest.getchar ()

cherrypy.test.webtest.interface (host)
Return an IP address for a client connection given the server host.

If the server is listening on ‘0.0.0.0’ (INADDR_ANY) or ‘::> (INGADDR_ANY), this will return the proper

localhost.
cherrypy.test.webtest.openURL (url, headers=None, method="GET’, body=None,
host=127.0.0.1", port=8000, http_conn=<class
‘hitp.client. HTTPConnection’>, protocol="HTTP/1.1’,

raise_subcls=None)
Open the given HTTP resource and return status, headers, and body.

raise_subcls must be a tuple with the exceptions classes or a single exception class that are not going to be
considered a socket.error regardless that they were are subclass of a socket.error and therefore not considered
for a connection retry.

cherrypy.test.webtest.server_error (exc=None)
Server debug hook. Return True if exception handled, False if ignored.

You probably want to wrap this, so you can still handle an error using your framework when it’s ignored.

14.1. cherrypy package 167



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.webtest.shb (response)
Return status, headers, body the way we like from a response.

Module contents

Regression test suite for CherryPy.
cherrypy.test.newexit ()
cherrypy.test.setup ()

cherrypy.test.teardown ()

cherrypy.tutorial package

Submodules
cherrypy.tutorial.tut01_helloworld module

Tutorial - Hello World
The most basic (working) CherryPy application possible.

class cherrypy.tutorial.tut0l_helloworld.HelloWorld
Bases: object

Sample request handler class.

index ()

cherrypy.tutorial.tut02_expose_methods module

Tutorial - Multiple methods
This tutorial shows you how to link to other methods of your request handler.

class cherrypy.tutorial.tut02_expose_methods.HelloWorld
Bases: object

index ()

show_msg ()

cherrypy.tutorial.tut03_get_and_post module

Tutorial - Passing variables
This tutorial shows you how to pass GET/POST variables to methods.

class cherrypy.tutorial.tut03_get_and_post.WelcomePage
Bases: object

greetUser (name=None)

index ()

168 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.tutorial.tut04_complex_site module

Tutorial - Multiple objects
This tutorial shows you how to create a site structure through multiple possibly nested request handler objects.

class cherrypy.tutorial.tut04_complex_site.ExtraLinksPage
Bases: object

index ()

class cherrypy.tutorial.tut04_complex_site.HomePage
Bases: object

index ()

class cherrypy.tutorial.tut04_complex_site.JokePage
Bases: object

index ()

class cherrypy.tutorial.tut04_complex_site.LinksPage
Bases: object

index ()

cherrypy.tutorial.tut05_derived_objects module

Tutorial - Object inheritance

You are free to derive your request handler classes from any base class you wish. In most real-world applications,
you will probably want to create a central base class used for all your pages, which takes care of things like printing a
common page header and footer.

class cherrypy.tutorial.tut05_derived_objects.AnotherPage
Bases: cherrypy.tutorial.tut05 derived objects.Page

index ()
title = ‘Another Page’

class cherrypy.tutorial.tut05_derived_objects.HomePage
Bases: cherrypy.tutorial.tut05 derived objects.Page

index ()
title = ‘Tutorial 5°

class cherrypy.tutorial.tut05_derived_objects.Page
Bases: object

footer ()
header ()
title = ‘Untitled Page’

cherrypy.tutorial.tut06_default_method module

Tutorial - The default method

14.1. cherrypy package 169


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

Request handler objects can implement a method called “default” that is called when no other suitable method/object
could be found. Essentially, if CherryPy2 can’t find a matching request handler object for the given request URI, it
will use the default method of the object located deepest on the URI path.

Using this mechanism you can easily simulate virtual URI structures by parsing the extra URI string, which you can
access through cherrypy.request.virtualPath.

The application in this tutorial simulates an URI structure looking like /users/<username>. Since the <username> bit
will not be found (as there are no matching methods), it is handled by the default method.

class cherrypy.tutorial.tut06_default_method.UsersPage
Bases: object

default (user)

index ()

cherrypy.tutorial.tut07_sessions module

Tutorial - Sessions

Storing session data in CherryPy applications is very easy: cherrypy provides a dictionary called “session” that repre-
sents the session data for the current user. If you use RAM based sessions, you can store any kind of object into that
dictionary; otherwise, you are limited to objects that can be pickled.

class cherrypy.tutorial.tut07_sessions.HitCounter
Bases: object

index ()

cherrypy.tutorial.tut08_generators_and_yield module

Bonus Tutorial: Using generators to return result bodies

Instead of returning a complete result string, you can use the yield statement to return one result part after another.
This may be convenient in situations where using a template package like CherryPy or Cheetah would be overkill, and
messy string concatenation too uncool. ;-)

class cherrypy.tutorial.tut08_generators_and_yield.GeneratorDemo
Bases: object

footer ()
header ()

index ()

cherrypy.tutorial.tut09_files module

Tutorial: File upload and download

Uploads

When a client uploads a file to a CherryPy application, it’s placed on disk immediately. CherryPy will pass it to your
exposed method as an argument (see “myFile” below); that arg will have a “file” attribute, which is a handle to the

170 Chapter 14. Modules


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

temporary uploaded file. If you wish to permanently save the file, you need to read() from myFile.file and write()
somewhere else.

939

Note the use of ‘enctype="multipart/form-data
the file.

and ‘input type="file””” in the HTML which the client uses to upload

Downloads

If you wish to send a file to the client, you have two options: First, you can simply return a file-like object from your
page handler. CherryPy will read the file and serve it as the content (HTTP body) of the response. However, that
doesn’t tell the client that the response is a file to be saved, rather than displayed. Use cherrypy.lib.static.serve_file for
that; it takes four arguments:

serve_file(path, content_type=None, disposition=None, name=None)

Set “name” to the filename that you expect clients to use when they save your file. Note that the “name” argument is
ignored if you don’t also provide a “disposition” (usually “attachement”). You can manually set “content_type”, but
be aware that if you also use the encoding tool, it may choke if the file extension is not recognized as belonging to a
known Content-Type. Setting the content_type to “application/x-download” works in most cases, and should prompt
the user with an Open/Save dialog in popular browsers.

class cherrypy.tutorial.tut09_files.FileDemo
Bases: object

download ()
index ()

upload (myFile)

cherrypy.tutorial.tut10_http_errors module

Tutorial: HTTP errors

HTTPETrror is used to return an error response to the client. CherryPy has lots of options regarding how such errors
are logged, displayed, and formatted.

class cherrypy.tutorial.tutl0_http_errors.HTTPErrorDemo
Bases: object

error (code)
index ()
messageArqg ()

toggleTracebacks ()

Module contents

Submodules

cherrypy.daemon module

The CherryPy daemon.

cherrypy.daemon.run ()

14.1. cherrypy package 171


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.daemon.start (configfiles=None, daemonize=False, environment=None, fastcgi=False,
scgi=False, pidfile=None, imports=None, cgi=False)
Subscribe all engine plugins and start the engine.

Module contents

CherryPy is a pythonic, object-oriented HTTP framework.
CherryPy consists of not one, but four separate API layers.

The APPLICATION LAYER is the simplest. CherryPy applications are written as a tree of classes and methods, where
each branch in the tree corresponds to a branch in the URL path. Each method is a ‘page handler’, which receives
GET and POST params as keyword arguments, and returns or yields the (HTML) body of the response. The special
method name ‘index’ is used for paths that end in a slash, and the special method name ‘default’ is used to handle
multiple paths via a single handler. This layer also includes:

* the ‘exposed’ attribute (and cherrypy.expose)
e cherrypy.quickstart()

* _cp_config attributes

¢ cherrypy.tools (including cherrypy.session)

e cherrypy.url()

The ENVIRONMENT LAYER is used by developers at all levels. It provides information about the current request
and response, plus the application and server environment, via a (default) set of top-level objects:

e cherrypy.request
* cherrypy.response
* cherrypy.engine
* cherrypy.server
e cherrypy.tree
* cherrypy.config
e cherrypy.thread_data
e cherrypy.log
e cherrypy. HTTPError, NotFound, and HTTPRedirect
* cherrypy.lib
The EXTENSION LAYER allows advanced users to construct and share their own plugins. It consists of:
* Hook API
* Tool API
* Toolbox API
* Dispatch API
* Config Namespace API

Finally, there is the CORE LAYER, which uses the core API’s to construct the default components which are available
at higher layers. You can think of the default components as the ‘reference implementation’ for CherryPy. Megaframe-
works (and advanced users) may replace the default components with customized or extended components. The core
APT’s are:

172 Chapter 14. Modules



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

* Application API
* Engine API

* Request API

* Server API
WSGI API

These API’s are described in the CherryPy specification.

cherrypy.quickstart (root=None, script_name=""*, config=None)
Mount the given root, start the builtin server (and engine), then block.

root: an instance of a “controller class” (a collection of page handler methods) which represents the root of
the application.

script_name: a string containing the “mount point” of the application. This should start with a slash, and
be the path portion of the URL at which to mount the given root. For example, if root.index() will
handle requests to “http://www.example.com:8080/dept/app1/”, then the script_name argument would be
“/dept/appl”.

It MUST NOT end in a slash. If the script_name refers to the root of the URI, it MUST be an empty string
(not “/”).

config: a file or dict containing application config. If this contains a [global] section, those entries will be
used in the global (site-wide) config.

CherryPy is a pythonic, object-oriented web framework.

CherryPy allows developers to build web applications in much the same way they would build any other object-oriented
Python program. This results in smaller source code developed in less time.

CherryPy is now more than ten years old and it is has proven to be fast and reliable. It is being used in production by
many sites, from the simplest to the most demanding.

A CherryPy application typically looks like this:

import cherrypy

class HelloWorld (object) :
@cherrypy.expose
def index(self):
return "Hello World!"

cherrypy.quickstart (HelloWorld())

In order to make the most of CherryPy, you should start with the turorials that will lead you through the most common
aspects of the framework. Once done, you will probably want to browse through the basics and advanced sections
that will demonstrate how to implement certain operations. Finally, you will want to carefully read the configuration
and extend sections that go in-depth regarding the powerful features provided by the framework.

Above all, have fun with your application!

14.1. cherrypy package 173



https://bitbucket.org/cherrypy/cherrypy/wiki/CherryPySpec
http://www.example.com:8080/dept/app1/
http://www.cherrypy.org

CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

174 Chapter 14. Modules



Python Module Index

C

cherrypy, 172
cherrypy.daemon, 171
cherrypy.lib, 131
cherrypy.lib.auth, 103
cherrypy.lib.auth_basic, 104
cherrypy.lib.auth_digest, 104
cherrypy.lib.caching, 106
cherrypy.lib.covercp, 109
cherrypy.lib.cpstats, 109
cherrypy.lib.cptools, 113
cherrypy.lib.encoding, 116
cherrypy.lib.gctools, 117
cherrypy.lib.httpauth, 117
cherrypy.lib.httputil, 118
cherrypy.lib. jsontools, 121
cherrypy.lib.lockfile, 121
cherrypy.lib.locking, 122
cherrypy.lib.profiler, 122
cherrypy.lib.reprconf, 123
cherrypy.lib.sessions, 125
cherrypy.lib.static, 129
cherrypy.lib.xmlrpcutil, 130
cherrypy.process, 140
cherrypy.process.plugins, 131
cherrypy.process.servers, 135
cherrypy.process.win32, 138
cherrypy.process.wspbus, 138
cherrypy.scaffold, 140
cherrypy.test, 168
cherrypy.test.benchmark, 141
cherrypy.test.checkerdemo, 142
cherrypy.test.helper, 142
cherrypy.test.logtest, 144
cherrypy.test.modfastcgi, 145
cherrypy.test.modfcgid, 146
cherrypy.test.modpy, 147
cherrypy.test.modwsgi, 148
cherrypy.test.sessiondemo, 149

cherrypy.test

cherrypy.test.
.test_bus, 150
.test_caching, 150
.test_compat, 150
.test_config, 151

cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test

cherrypy.test.
.test_conn, 152
.test_core, 153
.test_dynamicobjectmapping,

cherrypy.test

cherrypy.test

cherrypy.test
154

cherrypy.test.
.test_etags, 155
.test_http, 155
.test_httpauth, 155
.test_httplib, 156

cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test

cherrypy.test.
.test_json, 157
.test_logging, 157
.test_mime, 157
.test_misc_tools, 158
.test_objectmapping, 158
.test_params, 159
.test_proxy, 159
.test_refleaks, 159
.test_request_obj, 159
.test_routes, 160
.test_session, 160
.test_sessionauthenticate,

cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test
161
cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test

cherrypy.test.
.test_wsgi_ns, 164
.test_wsgi_unix_socket, 164
.test_wsgi_vhost, 164
.test_wsgiapps, 165
cherrypy.test.

cherrypy.test
cherrypy.test
cherrypy.test
cherrypy.test

.test_auth_basic, 149

test_auth_digest, 149

test_config_server, 152

test_encoding, 154

test_iterator, 156

.test_states, 161
.test_static, 162
.test_tools, 162
.test_tutorials, 163

test_virtualhost, 164

test_xmlrpc, 165

175



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.webtest, 165

cherrypy.tutorial,
cherrypy.tutorial.
.tut02_expose_methods,

cherrypy.tutorial
168

cherrypy.tutorial.

168

cherrypy.tutorial.

169
cherrypy.tutorial
169

cherrypy.tutorial.

169

cherrypy.tutorial.
.tut08_generators_and_yield,

cherrypy.tutorial
170

cherrypy.tutorial.
cherrypy.tutorial.

171
tut0l_helloworld, 168

tut03_get_and_post,

tut04_complex_site,

.tut05_derived_objects,

tutO06_default_method,

tut07_sessions, 170

tut09_files, 170
tutlO_http_errors, 171

176

Python Module Index



Index

Symbols

-P, —Path

cherryd command line option, 7
-c, —config

cherryd command line option, 7
-d

cherryd command line option, 7
-e, —environment

cherryd command line option, 7

-f

cherryd command line option, 7
-1, —import

cherryd command line option, 7
-p, —pidfile

cherryd command line option, 7
-s
cherryd command line option, 7

A

ABSession (class in cherrypy.test.benchmark), 141

accept() (in module cherrypy.lib.cptools), 114

AcceptElement (class in cherrypy.lib.httputil), 119

AcceptTest (class in cherrypy.test.test_misc_tools), 158

access_log (cherrypy.test.helper.CPProcess attribute), 142

AccessLogTests (class in cherrypy.test.test_logging), 157

acquire_lock() (cherrypy.lib.sessions.FileSession
method), 126

acquire_lock() (cherrypy.lib.sessions.MemcachedSession
method), 127

acquire_lock() (cherrypy.lib.sessions.RamSession
method), 127

acquire_thread() (cherrypy.process.plugins.ThreadManager

method), 134

add_charset (cherrypy.lib.encoding.ResponseEncoder at-
tribute), 116

after() (cherrypy.lib.locking.Timer class method), 122

after_request() (cherrypy.lib.gctools.RequestCounter
method), 117

allow() (in module cherrypy.lib.cptools), 114

annotated_file()
method), 109
anonymous() (cherrypy.lib.cptools.SessionAuth method),
113
AnotherPage (class in
rypy.tutorial.tut05_derived_objects), 169
antistampede_timeout
rypy.lib.caching. MemoryCache
107
AntiStampedeCache (class in cherrypy.lib.caching), 106
application, 91
application() (in module cherrypy.test. modwsgi), 149
args() (cherrypy.test.benchmark.ABSession method), 142
as_dict() (cherrypy.lib.reprconf.Parser method), 124
as_dict() (in module cherrypy.lib.reprconf), 124
ascend() (cherrypy.lib.gctools.ReferrerTree method), 117
assertBody() (cherrypy.test.webtest. WebCase method),

(cherrypy.lib.covercp.CoverStats

cher-

(cher-
attribute),

166

assertEqualDates() (cherrypy.test.helper. CPWebCase
method), 143

assertErrorPage() (cherrypy.test.helper. CPWebCase

method), 143
assertHeader() (cherrypy.test.webtest. WebCase method),
166

assertHeaderIn()
method), 166

assertHeaderItemValue() (cherrypy.test.webtest. WebCase
method), 166

assertInBody() (cherrypy.test.webtest. WebCase method),
166

assertlnLog() (cherrypy.test.logtest.LogCase method),
145

assertLog() (cherrypy.test.logtest. LogCase method), 145

assertLog() (cherrypy.test.test_bus.BusMethodTests
method), 150

assertMatchesBody()
method), 166

assertNoHeader()
method), 166

assertNotInBody()

(cherrypy.test.webtest. WebCase

(cherrypy.test.webtest. WebCase
(cherrypy.test.webtest. WebCase

(cherrypy.test.webtest. WebCase

177



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

method), 166

assertNotInLog()
method), 145

assertStatus() (cherrypy.test.webtest. WebCase method),
166

attributes() (in module cherrypy.lib.reprconf), 124

Autoreloader (class in cherrypy.process.plugins), 131

autovary() (in module cherrypy.lib.cptools), 114

AutoVaryTest (class in cherrypy.test.test_misc_tools),
158

available_servers (cherrypy.test.helper.CPWebCase at-
tribute), 143

average_uriset_time() (in module cherrypy.lib.cpstats),
113

(cherrypy.test.logtest.LogCase

B

BackgroundTask (class in cherrypy.process.plugins), 132
BadRequestTests (class in cherrypy.test.test_conn), 152
base() (cherrypy.test.helper. CPWebCase method), 143
basic_auth() (in module cherrypy.lib.auth), 103
basic_auth() (in module cherrypy.lib.auth_basic), 104
basicAuth() (in module cherrypy.lib.httpauth), 118
BasicAuthTest (class in cherrypy.test.test_auth_basic),
149
before_request()  (cherrypy.lib.gctools.RequestCounter
method), 117
block() (cherrypy.process.wspbus.Bus method), 139
body (cherrypy.test.webtest. WebCase attribute), 166
bound_addr (cherrypy.process.servers.ServerAdapter at-
tribute), 137
(cherrypy.process.plugins.SimplePlugin attribute),
134
Bus (class in cherrypy.process.wspbus), 139
BusMethodTests (class in cherrypy.test.test_bus), 150
ByteCountWrapper (class in cherrypy.lib.cpstats), 112

C

cache (cherrypy.lib.sessions.RamSession attribute), 127

Cache (class in cherrypy.lib.caching), 107

CacheTest (class in cherrypy.test.test_caching), 150

calculateNonce() (in module cherrypy.lib.httpauth), 118

CallablesInConfigTest (class in cherrypy.test.test_config),
151

callback (cherrypy.process.plugins.Monitor

133

(cherrypy.process.plugins.BackgroundTask

method), 132

CaselnsensitiveDict (class in cherrypy.lib.httputil), 119

ChannelFailures, 140

check_auth() (in module cherrypy.lib.auth), 103

check_username_and_password() (cher-
rypy.lib.cptools.SessionAuth method), 113

checkpassword_dict() (in module cher-
rypy.lib.auth_basic), 104

bus

attribute),

cancel()

checkResponse() (in module cherrypy.lib.httpauth), 118
cherryd command line option

-P, —Path, 7

-c, —config, 7

-d, 7

-e, —environment, 7

-£,7

-i, -import, 7

-p, —pidfile, 7

-s, 7
cherrypy (module), 172
cherrypy.daemon (module), 171
cherrypy.lib (module), 131
cherrypy.lib.auth (module), 103
cherrypy.lib.auth_basic (module), 104
cherrypy.lib.auth_digest (module), 104
cherrypy.lib.caching (module), 106
cherrypy.lib.covercp (module), 109
cherrypy.lib.cpstats (module), 109
cherrypy.lib.cptools (module), 113
cherrypy.lib.encoding (module), 116
cherrypy.lib.gctools (module), 117
cherrypy.lib.httpauth (module), 117
cherrypy.lib.httputil (module), 118
cherrypy.lib.jsontools (module), 121
cherrypy.lib.lockfile (module), 121
cherrypy.lib.locking (module), 122
cherrypy.lib.profiler (module), 122
cherrypy.lib.reprconf (module), 123
cherrypy.lib.sessions (module), 125
cherrypy.lib.static (module), 129
cherrypy.lib.xmlrpcutil (module), 130
cherrypy.process (module), 140
cherrypy.process.plugins (module), 131
cherrypy.process.servers (module), 135
cherrypy.process.win32 (module), 138
cherrypy.process.wspbus (module), 138
cherrypy.scaffold (module), 140
cherrypy.test (module), 168
cherrypy.test.benchmark (module), 141
cherrypy.test.checkerdemo (module), 142
cherrypy.test.helper (module), 142
cherrypy.test.logtest (module), 144
cherrypy.test.modfastcgi (module), 145
cherrypy.test. modfcgid (module), 146
cherrypy.test. modpy (module), 147
cherrypy.test. modwsgi (module), 148
cherrypy.test.sessiondemo (module), 149
cherrypy.test.test_auth_basic (module), 149
cherrypy.test.test_auth_digest (module), 149
cherrypy.test.test_bus (module), 150
cherrypy.test.test_caching (module), 150
cherrypy.test.test_compat (module), 150
cherrypy.test.test_config (module), 151

178

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

cherrypy.test.test_config_server (module), 152
cherrypy.test.test_conn (module), 152
cherrypy.test.test_core (module), 153
cherrypy.test.test_dynamicobjectmapping (module), 154
cherrypy.test.test_encoding (module), 154
cherrypy.test.test_etags (module), 155
cherrypy.test.test_http (module), 155
cherrypy.test.test_httpauth (module), 155
cherrypy.test.test_httplib (module), 156
cherrypy.test.test_iterator (module), 156
cherrypy.test.test_json (module), 157
cherrypy.test.test_logging (module), 157
cherrypy.test.test_mime (module), 157
cherrypy.test.test_misc_tools (module), 158
cherrypy.test.test_objectmapping (module), 158
cherrypy.test.test_params (module), 159
cherrypy.test.test_proxy (module), 159
cherrypy.test.test_refleaks (module), 159
cherrypy.test.test_request_obj (module), 159
cherrypy.test.test_routes (module), 160
cherrypy.test.test_session (module), 160
cherrypy.test.test_sessionauthenticate (module), 161
cherrypy.test.test_states (module), 161
cherrypy.test.test_static (module), 162
cherrypy.test.test_tools (module), 162
cherrypy.test.test_tutorials (module), 163
cherrypy.test.test_virtualhost (module), 164
cherrypy.test.test_wsgi_ns (module), 164
cherrypy.test.test_wsgi_unix_socket (module), 164
cherrypy.test.test_wsgi_vhost (module), 164
cherrypy.test.test_wsgiapps (module), 165
cherrypy.test.test_xmlrpc (module), 165
cherrypy.test.webtest (module), 165
cherrypy.tutorial (module), 171
cherrypy.tutorial.tutO1_helloworld (module), 168
cherrypy.tutorial.tut02_expose_methods (module), 168
cherrypy.tutorial.tut03_get_and_post (module), 168
cherrypy.tutorial.tut04_complex_site (module), 169
cherrypy.tutorial.tut05_derived_objects (module), 169
cherrypy.tutorial.tut06_default_method (module), 169
cherrypy.tutorial.tutQ7_sessions (module), 170
cherrypy.tutorial.tutO8_generators_and_yield (module),
170
cherrypy.tutorial.tut09_files (module), 170
cherrypy.tutorial.tut10_http_errors (module), 171
classes (cherrypy.lib.gctools.GCRoot attribute), 117
clean_freq (cherrypy.lib.sessions.Session attribute), 127

clean_thread (cherrypy.lib.sessions.Session attribute),
127

clean_up() (cherrypy.lib.sessions.FileSession method),
126

clean_up() (cherrypy.lib.sessions.RamSession method),
127

clean_up() (cherrypy.lib.sessions.Session method), 127

cleanHeaders() (in module cherrypy.test.webtest), 167

clear() (cherrypy.lib.caching.Cache method), 107

clear() (cherrypy.lib.caching.MemoryCache method), 107

clear() (cherrypy.lib.sessions.Session method), 127

close (cherrypy.test.test_iterator.OurUnclosablelterator
attribute), 156

close() (cherrypy.lib.cpstats.ByteCountWrapper method),

112

(cherrypy.lib.encoding. UTF8StreamEncoder

method), 116

(cherrypy.test.test_iterator.OurClosablelterator

method), 156

close() (cherrypy.test.test_iterator.OurNotClosablelterator
method), 156

close() (in module cherrypy.lib.sessions), 128

closed_off (cherrypy.test.test_iterator.Ourlterator  at-
tribute), 156

compress() (in module cherrypy.lib.encoding), 116

Config (class in cherrypy.lib.reprconf), 124

config_file (cherrypy.test.helper.CPProcess attribute), 142

config_template  (cherrypy.test.helper.CPProcess  at-
tribute), 142

ConfigTests (class in cherrypy.test.test_config), 151

close()

close()

connect() (cherrypy.test.test_wsgi_unix_socket.USocketHTTPConnection

method), 164

ConnectionCloseTests (class in cherrypy.test.test_conn),
152

ConnectionTests (class in cherrypy.test.test_conn), 152

console_height  (cherrypy.test.webtest. WebCase  at-
tribute), 166

ConsoleCtrlHandler (class in cherrypy.process.win32),
138

controller, 91

convert_params() (in module cherrypy.lib.cptools), 114

copy() (cherrypy.lib.reprconf.NamespaceSet method),
124
CoreRequestHandlingTest (class in cher-

rypy.test.test_core), 153
count (cherrypy.test.test_iterator.Ourlterator attribute),
156
CoverStats (class in cherrypy.lib.covercp), 109
cpmodpysetup() (in module cherrypy.test.modpy), 148
CPProcess (class in cherrypy.test.helper), 142
CPWebCase (class in cherrypy.test.helper), 143
created (cherrypy.test.test_iterator.IteratorBase attribute),
156
Ctrl-C, 49

D

Daemonizer (class in cherrypy.process.plugins), 132

data() (cherrypy.lib.cpstats.StatsPage method), 112

datachunk (cherrypy.test.test_iterator.IteratorBase at-
tribute), 156

Index

179



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

date_tolerance  (cherrypy.test.helper. CPWebCase  at-
tribute), 143

debug (cherrypy.lib.caching.MemoryCache
107

debug (cherrypy.lib.cptools.SessionAuth attribute), 113

debug  (cherrypy.lib.encoding.ResponseEncoder  at-
tribute), 116

debug (cherrypy.lib.sessions.Session attribute), 127

decode() (in module cherrypy.lib.encoding), 116

decode_TEXT() (in module cherrypy.lib.httputil), 120

decompress() (in module cherrypy.lib.encoding), 116

attribute),

decr()  (cherrypy.test.test_iterator.IteratorBase  class
method), 156
decrement() (cherrypy.test.test_iterator.Ourlterator

method), 156
default() (cherrypy.scaffold.Root method), 141

default() (cherrypy.tutorial.tut06_default_method.UsersPageencoding

method), 170

default_encoding (cher-
rypy.lib.encoding.ResponseEncoder attribute),
116

default_server  (cherrypy.test.helper. CPWebCase  at-
tribute), 143

defaults (cherrypy.lib.reprconf.Config attribute), 124

delay (cherrypy.lib.caching. MemoryCache attribute), 107

delete() (cherrypy.lib.caching.Cache method), 107

delete() (cherrypy.lib.caching.MemoryCache method),
107

delete() (cherrypy.lib.sessions.Session method), 127

delimiter (cherrypy.process.wspbus.ChannelFailures at-
tribute), 140

Dependency (class in cherrypy.test.test_states), 161

description (cherrypy.process.servers.ServerAdapter at-
tribute), 137

dict_from_file() (cherrypy.lib.reprconf.Parser method),
124

digest_auth() (in module cherrypy.lib.auth), 103

digest_auth() (in module cherrypy.lib.auth_digest), 105

digestAuth() (in module cherrypy.lib.httpauth), 118

DigestAuthTest (class in cherrypy.test.test_auth_digest),
149

do_check() (cherrypy.lib.cptools.SessionAuth method),
113

do_gc_test (cherrypy.test.helper.CPWebCase attribute),
143

do_login() (cherrypy.lib.cptools.SessionAuth method),
113

do_logout() (cherrypy.lib.cptools.SessionAuth method),
113

doAuth() (in module cherrypy.lib.httpauth), 118

download() (cherrypy.tutorial.tut09_files.FileDemo
method), 171

DropPrivileges (class in cherrypy.process.plugins), 132

DynamicObjectMappingTest (class in cher-

rypy.test.test_dynamicobjectmapping), 154

E

elements() (cherrypy.lib.httputil. HeaderMap method),
119

emptyLog() (cherrypy.test.logtest.LogCase method), 145

encode() (cherrypy.lib.httputil. HeaderMap class method),
119

encode_header_items() (cherrypy.lib.httputil. HeaderMap
class method), 119

encode_multipart_formdata()
rypy.test.test_http), 155

encode_stream() (cherrypy.lib.encoding.ResponseEncoder
method), 116

encode_string() (cherrypy.lib.encoding.ResponseEncoder

method), 116

(cherrypy.lib.encoding.ResponseEncoder

attribute), 116

encoding (cherrypy.test.webtest. WebCase attribute), 166

encodings (cherrypy.lib.httputil. HeaderMap  attribute),
119

EncodingTests (class in cherrypy.test.test_encoding), 154

ensure_unicode_filesystem() (in module cher-
rypy.test.test_static), 162

environments (cherrypy.lib.reprconf.Config attribute),
124

erase_script_name() (in
rypy.test.modfastcgi), 146

errmsg() (cherrypy.lib.auth_digest.HttpDigestAuthorization
method), 105

(in  module cher-

module cher-

error() (cherrypy.tutorial.tut10_http_errors. HTTPErrorDemo

method), 171
error_log (cherrypy.test.helper.CPProcess attribute), 143
error_page_404() (in module cherrypy.test.test_static),
162
ErrorLogTests (class in cherrypy.test.test_logging), 157
errors  (cherrypy.lib.encoding.ResponseEncoder  at-
tribute), 116
ErrorTests (class in cherrypy.test.test_core), 153
EscapeTester (class in cherrypy.test.test_compat), 150
ETagTest (class in cherrypy.test.test_etags), 155
execv (cherrypy.process.wspbus.Bus attribute), 139
exit() (cherrypy.process.plugins.PIDFile method), 133
exit() (cherrypy.process.wspbus.Bus method), 139
exit() (cherrypy.test.helper. CPWebCase method), 143
exit() (cherrypy.test.logtest. LogCase method), 145
exit() (cherrypy.test.webtest. WebCase method), 166
expire() (cherrypy.test.sessiondemo.Root method), 149
expire() (in module cherrypy.lib.sessions), 128
expire_cache() (cherrypy.lib.caching. MemoryCache
method), 107
expire_freq  (cherrypy.lib.caching.MemoryCache at-
tribute), 107

180

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

expired() (cherrypy.lib.locking.LockChecker method),
122

expired() (cherrypy.lib.locking.NeverExpires
122

expired() (cherrypy.lib.locking. Timer method), 122

expires() (in module cherrypy.lib.caching), 108

exposed, 91

ExtraLinksPage (class in
rypy.tutorial.tutO4_complex_site), 169

extrapolate_statistics() (in module cherrypy.lib.cpstats),
113

method),

cher-

F

failmsg  (cherrypy.lib.encoding.ResponseEncoder  at-

tribute), 116

FastCGl, 7, 135

file_generator (class in cherrypy.lib), 131

file_generator_limited() (in module cherrypy.lib), 131

FileDemo (class in cherrypy.tutorial.tut09_files), 171

files (cherrypy.process.plugins.Autoreloader attribute),
131

files() (cherrypy.scaffold.Root method), 141

FileSession (class in cherrypy.lib.sessions), 126

find_acceptable_charset()
rypy.lib.encoding.ResponseEncoder
116

flatten() (in module cherrypy.lib.cptools), 114

FlupCGlIServer (class in cherrypy.process.servers), 136

FlupFCGlIServer (class in cherrypy.process.servers), 137

FlupSCGIServer (class in cherrypy.process.servers), 137

footer() (cherrypy.tutorial.tutO5_derived_objects.Page
method), 169

(cher-
method),

footer() (cherrypy.tutorial.tutO8_generators_and_yield. Geneggtoreddiogid_supervisor()

method), 170
format() (cherrypy.lib.gctools.ReferrerTree method), 117
formatting (cherrypy.lib.cpstats.StatsPage attribute), 112
free (cherrypy.process.servers. Timeouts attribute), 138
frequency (cherrypy.process.plugins.Autoreloader at-
tribute), 132
frequency (cherrypy.process.plugins.Monitor attribute),
133

from_str() (cherrypy.lib.httputil. AcceptElement class
method), 119
from_str() (cherrypy.lib.httputil. HeaderElement class

method), 119
fromkeys() (cherrypy.lib.httputil. CaselnsensitiveDict
class method), 119

G

GCRoot (class in cherrypy.lib.gctools), 117
generate_id() (cherrypy.lib.sessions.Session method), 127

GeneratorDemo (class in cher-
rypy.tutorial.tutO8_generators_and_yield),
170

get() (cherrypy.lib.caching.Cache method), 107

get() (cherrypy.lib.caching. MemoryCache method), 107

get() (cherrypy.lib.cptools.MonitoredHeaderMap
method), 113

get() (cherrypy.lib.httputil.CaselnsensitiveDict method),
119

get() (cherrypy.lib.sessions.Session method), 127

get() (in module cherrypy.lib.caching), 108

get_app()  (cherrypy.test.helper.Local WSGISupervisor
method), 144

get_conn() (cherrypy.test.webtest. WebCase method), 167

get_context() (in module cherrypy.lib.gctools), 117

get_cpmodpy_supervisor() (in module
rypy.test.helper), 144

get_dict_collection() (cherrypy.lib.cpstats.StatsPage
method), 112

get_hal_dict() (in module cherrypy.lib.auth_digest), 105

cher-

get_hal_dict_plain() (in module cher-
rypy.lib.auth_digest), 105
get_hal_file_htdigest() (in module cher-

rypy.lib.auth_digest), 105

get_instances() (cherrypy.process.wspbus.ChannelFailures
method), 140

get_instances() (in module cherrypy.lib.gctools), 117

get_list_collection() (cherrypy.lib.cpstats.StatsPage
method), 112

get_listener()  (cherrypy.test.test_bus.BusMethodTests
method), 150

get_listener() (cherrypy.test.test_bus.PublishSubscribeTests
method), 150

get_modfastcgi_supervisor() (in module cher-
rypy.test.helper), 144
(in module cher-
rypy.test.helper), 144
get_modpygw_supervisor() (in module cher-
rypy.test.helper), 144
get_modwsgi_supervisor() (in module cher-

rypy.test.helper), 144
get_namespaces() (cherrypy.lib.cpstats.StatsPage
method), 112
get_pid() (cherrypy.test.helper.CPProcess method), 143
get_ranges() (in module cherrypy.lib.httputil), 120
get_tree() (in module cherrypy.lib.covercp), 109
get_wsgi_u_supervisor() (in module
rypy.test.helper), 144
getchar() (in module cherrypy.test.logtest), 145
getchar() (in module cherrypy.test.webtest), 167
getPage() (cherrypy.test.helper. CPWebCase method), 143
getPage() (cherrypy.test.webtest. WebCase method), 166
gid (cherrypy.process.plugins.DropPrivileges attribute),
132
graceful() (cherrypy.process.plugins.Monitor method),
133
graceful()

cher-

(cherrypy.process.plugins. ThreadManager

Index

181



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

method), 134
graceful() (cherrypy.process.wspbus.Bus method), 139
graceful() (cherrypy.test.test_states.Dependency method),

httpserver_class (cherrypy.test.helper.LocalWSGISupervisor
attribute), 144

httpserver_class (cherrypy.test.helper.NativeServerSupervisor
attribute), 144

greetUser() (cherrypy.tutorial.tut03_get_and_post. WelcomeBagmerver_class (cherrypy.test. modfastcgi. ModFCGISupervisor

161
method), 168
gzip() (in module cherrypy.lib.encoding), 116

H

H() (in module cherrypy.lib.auth_digest), 104

HAZ2() (cherrypy.lib.auth_digest.HttpDigestAuthorization

method), 105

(cherrypy.process.win32.ConsoleCtrlHandler

method), 138

handle_exception() (cher-
rypy.process.wspbus.ChannelFailures method),
140

handle_SIGHUP()
rypy.process.plugins.SignalHandler
134

handle()

(cher-
method),

handlers (cherrypy.process.plugins.SignalHandler at-
tribute), 134
header()  (cherrypy.tutorial.tut05_derived_objects.Page

method), 169

attribute), 146
HTTPTests (class in cherrypy.test.test_http), 155

id (cherrypy.lib.sessions.Session attribute), 127
id_observers (cherrypy.lib.sessions.Session attribute), 127
ignore_headers() (in module cherrypy.lib.cptools), 114

incr()  (cherrypy.test.test_iterator.IteratorBase  class
method), 156
increment() (cherrypy.test.test_iterator.Ourlterator

method), 156
index() (cherrypy.lib.covercp.CoverStats method), 109
index() (cherrypy.lib.cpstats.StatsPage method), 113
index() (cherrypy.lib.gctools. GCRoot method), 117
index() (cherrypy.lib.profiler.Profiler method), 123
index() (cherrypy.scaffold.Root method), 141
index() (cherrypy.test.benchmark.Root method), 142
index() (cherrypy.test.sessiondemo.Root method), 149
index() (cherrypy.tutorial.tutO1_helloworld.HelloWorld

header() (cherrypy.tutorial.tutO8_generators_and_yield.GeneratorDemmethod), 168

method), 170
header_elements() (in module cherrypy.lib.httputil), 120
HeaderElement (class in cherrypy.lib.httputil), 119
HeaderMap (class in cherrypy.lib.httputil), 119
headers (cherrypy.test.webtest. WebCase attribute), 167
hello() (cherrypy.test.benchmark.Root method), 142
HelloWorld (class in cherrypy.tutorial.tutO1_helloworld),
168
HelloWorld (class in
rypy.tutorial.tut02_expose_methods), 168
HitCounter (class in cherrypy.tutorial.tutO7_sessions),

cher-

170
HomePage (class in cher-
rypy.tutorial.tutO4_complex_site), 169
HomePage (class in cher-

rypy.tutorial.tut05_derived_objects), 169
HOST (cherrypy.test.webtest. WebCase attribute), 166
Host (class in cherrypy.lib.httputil), 120

index() (cherrypy.tutorial.tut02_expose_methods.HelloWorld
method), 168

index() (cherrypy.tutorial.tut03_get_and_post.WelcomePage
method), 168

index() (cherrypy.tutorial.tutO4_complex_site.ExtraLinksPage
method), 169

index() (cherrypy.tutorial.tut04_complex_site.HomePage

method), 169

(cherrypy.tutorial.tut04_complex_site.JokePage

method), 169

index() (cherrypy.tutorial.tut0O4_complex_site.LinksPage
method), 169

index() (cherrypy.tutorial.tutO5_derived_objects. AnotherPage
method), 169

index() (cherrypy.tutorial.tut05_derived_objects.HomePage
method), 169

index() (cherrypy.tutorial.tut06_default_method.UsersPage
method), 170

index()

HTTP_CONN (cherrypy.test.test_wsgi_unix_socket. WSGI_idéxSpcket_(Bhetrrypy.tutorial.tut07_sessions.HitCounter

attribute), 164
HTTP_CONN (cherrypy.test.webtest. WebCase attribute),
166
http_methods_allowed() (in
rypy.test.test_session), 160
HTTPAuthTest (class in cherrypy.test.test_httpauth), 155

module cher-

HttpDigestAuthorization (class in cher-
rypy.lib.auth_digest), 104
HTTPErrorDemo (class in cher-

rypy.tutorial.tut10_http_errors), 171

method), 170

index() (cherrypy.tutorial.tutO8_generators_and_yield.GeneratorDemo

method), 170

index() (cherrypy.tutorial.tut09_files.File(Demo method),
171

index() (cherrypy.tutorial.tut10_http_errors. HTTPErrorDemo
method), 171

init() (in module cherrypy.lib.sessions), 128

interactive (cherrypy.test.webtest. WebCase attribute), 167

interface() (cherrypy.test.webtest. WebCase method), 167

182

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

interface() (in module cherrypy.test.webtest), 167
ip (cherrypy.lib.httputil. Host attribute), 120
is_closable_iterator() (in module cherrypy.lib), 131
is_iterator() (in module cherrypy.lib), 131

log_request_headers() (in module cherrypy.lib.cptools),
114

log_to_stderr() (in module cherrypy.test.helper), 144

log_traceback() (in module cherrypy.lib.cptools), 114

is_nonce_stale() (cherrypy.lib.auth_digest.HttpDigestAuthodizat{dase (class in cherrypy.test.logtest), 144

method), 105
iso_format() (in module cherrypy.lib.cpstats), 113
items() (cherrypy.lib.sessions.Session method), 128
IteratorBase (class in cherrypy.test.test_iterator), 156
IteratorTest (class in cherrypy.test.test_iterator), 156

J

join() (cherrypy.test.helper.CPProcess method), 143
JokePage (class in cherrypy.tutorial.tutO4_complex_site),
169
json_handler() (in module cherrypy.lib.jsontools), 121
json_in() (in module cherrypy.lib.jsontools), 121
json_out() (in module cherrypy.lib.jsontools), 121
json_processor() (in module cherrypy.lib.jsontools), 121
JsonTest (class in cherrypy.test.test_json), 157

K

keys() (cherrypy.lib.sessions.Session method), 128

L

lastmarker (cherrypy.test.logtest.LogCase attribute), 145

LimitedRequestQueueTests (class in cher-
rypy.test.test_conn), 152
LinksPage (class in cher-

rypy.tutorial.tut04_complex_site), 169

load() (cherrypy.lib.sessions.Session method), 128

load_module() (cherrypy.test.test_tutorials.Tutorial Test
static method), 163

loaded (cherrypy.lib.sessions.Session attribute), 128

loadTestsFromName() (cher-
rypy.test.webtest.ReloadingTestLoader
method), 165

locale_date() (in module cherrypy.lib.cpstats), 113

LocalSupervisor (class in cherrypy.test.helper), 143

LocalWSGISupervisor (class in cherrypy.test.helper), 144

LOCK_SUFFIX (cherrypy.lib.sessions.FileSession at-
tribute), 126

LockChecker (class in cherrypy.lib.locking), 122

locked (cherrypy.lib.sessions.Session attribute), 128

LockError, 121

LockFile (in module cherrypy.lib.lockfile), 121

locks  (cherrypy.lib.sessions.MemcachedSession  at-
tribute), 127

locks (cherrypy.lib.sessions.RamSession attribute), 127

LockTimeout, 122

log() (cherrypy.process.wspbus.Bus method), 139

log() (cherrypy.test.test_bus.BusMethodTests method),
150

log_hooks() (in module cherrypy.lib.cptools), 114

logfile (cherrypy.test.logtest.LogCase attribute), 145

logfile (cherrypy.test.test_logging.AccessLogTests
attribute), 157
logfile  (cherrypy.test.test_logging.ErrorLogTests  at-

tribute), 157
login_screen()
method), 113

(cherrypy.lib.cptools.SessionAuth

M

make_app (class in cherrypy.lib.profiler), 123

make_connection()  (cherrypy.test.test_http. HTTPTests
method), 155

markerPrefix (cherrypy.test.logtest.LogCase attribute),
145

markLog() (cherrypy.test.logtest. LogCase method), 145

match (cherrypy.process.plugins.Autoreloader attribute),
132

max_cloexec_files  (cherrypy.process.wspbus.Bus at-
tribute), 139

maxobj_size (cherrypy.lib.caching.MemoryCache at-
tribute), 107

maxobjects  (cherrypy.lib.caching.MemoryCache  at-
tribute), 108

maxsize (cherrypy.lib.caching.MemoryCache attribute),
108

mc_lock (cherrypy.lib.sessions.MemcachedSession at-
tribute), 127

md5_hex() (in module cherrypy.lib.auth_digest), 106

mdSSessionKey() (in module cherrypy.lib.httpauth), 118

MemcachedSession (class in cherrypy.lib.sessions), 126

MemcachedSessionTest (class in cher-
rypy.test.test_session), 160

MemoryCache (class in cherrypy.lib.caching), 107

menu() (cherrypy.lib.covercp.CoverStats method), 109

menu() (cherrypy.lib.profiler.Profiler method), 123

messageArg() (cherrypy.tutorial.tut10_http_errors. HTTPErrorDemo

method), 171
missing (cherrypy.lib.sessions.Session attribute), 128
ModFCGISupervisor (class in cherrypy.test.modfastcgi),

146

ModFCGISupervisor (class in cherrypy.test. modfcgid),
147

ModPythonSupervisor (class in cherrypy.test.modpy),
148

modules() (in module cherrypy.lib.reprconf), 124

ModWSGISupervisor (class in cherrypy.test. modwsgi),
148

Monitor (class in cherrypy.process.plugins), 133

MonitoredHeaderMap (class in cherrypy.lib.cptools), 113

Index

183



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

msg (cherrypy.lib.lockfile.LockError attribute), 121
msg (cherrypy.lib.lockfile.UnlockError attribute), 122
MultipartTest (class in cherrypy.test.test_mime), 157

N

name (cherrypy.lib.httputil.Host attribute), 120

namespaces (cherrypy.lib.reprconf.Config attribute), 124

NamespaceSet (class in cherrypy.lib.reprconf), 124

NativeServerSupervisor (class in cherrypy.test.helper),
144

NeverExpires (class in cherrypy.lib.locking), 122

new_func_strip_path() (in module cherrypy.lib.profiler),
123

newexit() (in module cherrypy.test), 168

next() (cherrypy.lib.cpstats.ByteCountWrapper method),

112

(cherrypy.lib.encoding. UTF8StreamEncoder

method), 116

next() (cherrypy.lib.file_generator method), 131

next() (cherrypy.test.test_iterator.Ourlterator method),
156

NonDataProperty (class in cherrypy.test.webtest), 165

now() (cherrypy.lib.sessions.Session method), 128

O

ObjectMappingTest (class in
rypy.test.test_objectmapping), 158

occupied (cherrypy.process.servers. Timeouts attribute),
138

on (cherrypy.test.webtest.ServerError attribute), 166

on_check() (cherrypy.lib.cptools.SessionAuth method),
113

on_error() (in module cherrypy.lib.xmlrpcutil), 130

on_login() (cherrypy.lib.cptools.SessionAuth method),
114

on_logout() (cherrypy.lib.cptools.SessionAuth method),
114

openURL() (in module cherrypy.test.webtest), 167

optionxform() (cherrypy.lib.reprconf.Parser method), 124

originalid (cherrypy.lib.sessions.Session attribute), 128

other() (cherrypy.scaffold.Root method), 141

OurClosablelterator (class in cherrypy.test.test_iterator),
156

OurGenerator (class in cherrypy.test.test_iterator), 156

Ourlterator (class in cherrypy.test.test_iterator), 156

next()

cher-

OurNotClosablelterator (class in cher-
rypy.test.test_iterator), 156
OurUnclosablelterator (class in cher-

rypy.test.test_iterator), 156
output() (cherrypy.lib.httputil. HeaderMap method), 119

P

Page (class in cherrypy.tutorial.tut05_derived_objects),
169

page handler, 91

page() (cherrypy.test.sessiondemo.Root method), 149

ParamsTest (class in cherrypy.test.test_params), 159

parse() (cherrypy.lib.httputil. HeaderElement
method), 119

parse_patterns (cherrypy.test.benchmark.ABSession at-
tribute), 142

parse_query_string() (in module cherrypy.lib.httputil),
120

parseAuthorization() (in module cherrypy.lib.httpauth),
118

Parser (class in cherrypy.lib.reprconf), 124

patched_path() (in module cherrypy.lib.xmlrpcutil), 130

pause() (cherrypy.lib.cpstats.StatsPage method), 113

pause_resume() (in module cherrypy.lib.cpstats), 113

peek() (cherrypy.lib.gctools.ReferrerTree method), 117

peek_length (cherrypy.lib.gctools.ReferrerTree attribute),
117

PerpetualTimer (class in cherrypy.process.plugins), 133

persistent (cherrypy.test.webtest. WebCase attribute), 167

pickle_protocol (cherrypy.lib.sessions.FileSession at-
tribute), 126

PID file, 7

pid_file (cherrypy.test.helper.CPProcess attribute), 143

PIDFile (class in cherrypy.process.plugins), 133

PipelineTests (class in cherrypy.test.test_conn), 153

PluginTests (class in cherrypy.test.test_states), 161

pop() (cherrypy.lib.httputil.CaselnsensitiveDict method),
119

pop() (cherrypy.lib.sessions.Session method), 128

port (cherrypy.lib.httputil. Host attribute), 120

PORT (cherrypy.test.test_config_server.ServerConfigTests
attribute), 152

PORT (cherrypy.test.webtest. WebCase attribute), 166

prefix() (cherrypy.test.helper. CPWebCase method), 143

print_report() (in module cherrypy.test.benchmark), 142

printErrors() (cherrypy.test.webtest. TerseTestResult
method), 166

proc_time() (in module cherrypy.lib.cpstats), 113

process_body() (in module cherrypy.lib.xmlrpcutil), 130

ProfileAggregator (class in cherrypy.lib.profiler), 123

Profiler (class in cherrypy.lib.profiler), 123

protocol (cherrypy.lib.httputil. HeaderMap attribute), 120

PROTOCOL (cherrypy.test.webtest. WebCase attribute),
166

protocol_from_http() (in module cherrypy.lib.httputil),
120

proxy() (in module cherrypy.lib.cptools), 115

ProxyTest (class in cherrypy.test.test_proxy), 159

publish() (cherrypy.process.wspbus.Bus method), 139

PublishSubscribeTests (class in cherrypy.test.test_bus),
150

put() (cherrypy.lib.caching.Cache method), 107

put() (cherrypy.lib.caching.MemoryCache method), 108

static

184

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

py27_on_windows (cherrypy.test.test_static.StaticTest at- report() (cherrypy.lib.profiler.Profiler method), 123
tribute), 162 request_digest() (cherrypy.lib.auth_digest.HttpDigestAuthorization
pytestmark (cherrypy.test.test_wsgi_unix_socket. WSGI_UnixSocket_Thesthod), 105

attribute), 164
Python Enhancement Proposals
PEP 249, 52
PEP 333,51, 52,79
PEP 3333, 51, 52,79
PEP 343, 61

Q

quickstart() (in module cherrypy), 173
qvalue (cherrypy.lib.httputil. AcceptElement attribute),
119

R

RamSession (class in cherrypy.lib.sessions), 127

read() (cherrypy.lib.cpstats.ByteCountWrapper method),
112

read() (cherrypy.lib.reprconf.Parser method), 124

read_process() (in module cherrypy.test.modfastcgi), 146

read_process() (in module cherrypy.test. modfcgid), 147

read_process() (in module cherrypy.test.modpy), 148

read_process() (in module cherrypy.test. modwsgi), 149

readline() (cherrypy.lib.cpstats.ByteCountWrapper
method), 112

readlines() (cherrypy.lib.cpstats.ByteCountWrapper
method), 112

record_start() (cherrypy.lib.cpstats.StatsTool method),
113

record_stop() (cherrypy.lib.cpstats.StatsTool
113

redirect() (in module cherrypy.lib.cptools), 115

ReferenceTests (class in cherrypy.test.test_refleaks), 159

referer() (in module cherrypy.lib.cptools), 115

RefererTest (class in cherrypy.test.test_misc_tools), 158

ReferrerTree (class in cherrypy.lib.gctools), 117

regen() (cherrypy.test.sessiondemo.Root method), 149

regenerate() (cherrypy.lib.sessions.Session method), 128

regenerated (cherrypy.lib.sessions.Session attribute), 128

release() (cherrypy.lib.lockfile.SystemLockFile method),
121

release_lock()
method), 126

release_lock() (cherrypy.lib.sessions.MemcachedSession
method), 127

release_lock() (cherrypy.lib.sessions.RamSession
method), 127

release_thread() (cherrypy.process.plugins.ThreadManager
method), 134

ReloadingTestLoader (class in cherrypy.test.webtest), 165

remove() (cherrypy.lib.lockfile.SystemLockFile method),
121

report() (cherrypy.lib.covercp.CoverStats method), 109

method),

(cherrypy.lib.sessions.FileSession

RequestCounter (class in cherrypy.lib.gctools), 117
RequestObjectTests (class in
rypy.test.test_request_obj), 159
reset() (cherrypy.lib.reprconf.Config method), 124
respond() (in module cherrypy.lib.xmlrpcutil), 131
response_headers() (in module cherrypy.lib.cptools), 115
ResponseEncoder (class in cherrypy.lib.encoding), 116
ResponseHeadersTest (class in cher-
rypy.test.test_misc_tools), 158
(cherrypy.process.servers.ServerAdapter
method), 137
restart() (cherrypy.process.wspbus.Bus method), 140
resume() (cherrypy.lib.cpstats.StatsPage method), 113
RFC
RFC 2047, 119, 120
RFC 2616, 11, 115
RFC 2616#sec10.4.5, 74
RFC 2617, 40, 104, 105, 117
Root (class in cherrypy.scaffold), 141
Root (class in cherrypy.test.benchmark), 142
Root (class in cherrypy.test.checkerdemo), 142
Root (class in cherrypy.test.sessiondemo), 149
RoutesDispatchTest (class in cherrypy.test.test_routes),
160
run() (cherrypy.lib.cptools.SessionAuth method), 114
run() (cherrypy.lib.profiler.ProfileAggregator method),
123
run() (cherrypy.lib.profiler.Profiler method), 123
run() (cherrypy.process.plugins.Autoreloader method),
132
(cherrypy.process.plugins.BackgroundTask
method), 132
run() (cherrypy.process.plugins.PerpetualTimer method),
133
run() (cherrypy.test.benchmark.ABSession method), 142
run() (cherrypy.test.webtest. TerseTestRunner method),
166
run() (in module cherrypy.daemon), 171

cher-

restart()

run()

run_standard_benchmarks() (in module cher-
rypy.test.benchmark), 142

S

SafeMultipartHandlingTest (class in cher-

rypy.test.test_mime), 157
save() (cherrypy.lib.sessions.Session method), 128
save() (in module cherrypy.lib.sessions), 129
SCGI, 7, 135
scheme (cherrypy.test.helper.CPWebCase attribute), 143
scheme (cherrypy.test.webtest. WebCase attribute), 167
script_name (cherrypy.test.helper. CPWebCase attribute),
143

Index

185



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

serve() (in module cherrypy.lib.covercp), 109

serve() (in module cherrypy.lib.profiler), 123

serve_download() (in module cherrypy.lib.static), 129

serve_file() (in module cherrypy.lib.static), 129

serve_fileobj() (in module cherrypy.lib.static), 130

server_error() (in module cherrypy.test.webtest), 167

ServerAdapter (class in cherrypy.process.servers), 137

ServerConfigTests (class in cher-
rypy.test.test_config_server), 152

ServerError, 165

servers  (cherrypy.lib.sessions.MemcachedSession —at-
tribute), 127

ServerStateTests (class in cherrypy.test.test_states), 161

Session (class in cherrypy.lib.sessions), 127

session_auth() (in module cherrypy.lib.cptools), 115

session_key (cherrypy.lib.cptools.SessionAuth attribute),
114

SESSION_PREFIX (cherrypy.lib.sessions.FileSession at-
tribute), 126

SessionAuth (class in cherrypy.lib.cptools), 113

SessionAuthenticateTest (class in
rypy.test.test_sessionauthenticate), 161

SessionAuthTest (class in cherrypy.test.test_tools), 162

SessionTest (class in cherrypy.test.test_session), 160

set_handler()  (cherrypy.process.plugins.SignalHandler
method), 134

set_persistent() (cherrypy.test.webtest. WebCase method),
167

set_response_cookie() (in module cherrypy.lib.sessions),
129

set_vary_header() (in module cherrypy.lib), 131

setdefault() (cherrypy.lib.httputil. CaselnsensitiveDict
method), 119

setdefault() (cherrypy.lib.sessions.Session method), 128

setup() (cherrypy.lib.sessions.FileSession class method),

cher-

126
setup() (cherrypy.lib.sessions.MemcachedSession class
method), 127

setUp() (cherrypy.test.test_states.ServerStateTests

method), 161

setup() (in module cherrypy.test), 168

setup_class()  (cherrypy.test.helper.CPWebCase
method), 143

setup_client() (in module cherrypy.test.helper), 144

class

setup_server() (cherrypy.test.test_config. VariableSubstitutionTests
static method), 151

setup_server() (cherrypy.test.test_config_server.ServerConfigTests
static method), 152

setup_server() (cherrypy.test.test_conn.BadRequestTests
static method), 152

setup_server() (cherrypy.test.test_conn.ConnectionCloseTests
static method), 152

setup_server() (cherrypy.test.test_conn.ConnectionTests
static method), 152

setup_server() (cherrypy.test.test_conn.LimitedRequestQueueTests
static method), 152

setup_server() (cherrypy.test.test_conn.PipelineTests
static method), 153

setup_server() (cherrypy.test.test_core.CoreRequestHandlingTest
static method), 153

setup_server() (cherrypy.test.test_core.ErrorTests static
method), 154

setup_server() (cherrypy.test.test_dynamicobjectmapping.DynamicObjectM

static method), 154

setup_server() (cherrypy.test.test_encoding.EncodingTests
static method), 154

setup_server() (cherrypy.test.test_etags.ETagTest static
method), 155

setup_server() (cherrypy.test.test_http. HTTPTests static
method), 155

setup_server() (cherrypy.test.test_httpauth. HTTPAuthTest
static method), 155

setup_server() (cherrypy.test.test_iterator.IteratorTest
static method), 156

setup_server() (cherrypy.test.test_json.JsonTest
method), 157

setup_server() (cherrypy.test.test_logging.AccessLogTests
static method), 157

setup_server() (cherrypy.test.test_logging.ErrorLogTests
static method), 157

setup_server() (cherrypy.test.test_mime.MultipartTest
static method), 157

setup_server() (cherrypy.test.test_mime.SafeMultipartHandlingTest
static method), 157

setup_server() (cherrypy.test.test_misc_tools.AcceptTest
static method), 158

setup_server() (cherrypy.test.test_misc_tools.AutoVaryTest
static method), 158

static

setup_server() (cherrypy.test.test_auth_basic.BasicAuthTestsetup_server() (cherrypy.test.test_misc_tools.RefererTest

static method), 149

static method), 158

setup_server() (cherrypy.test.test_auth_digest.DigestAuthTesetup_server() (cherrypy.test.test_misc_tools.ResponseHeadersTest

static method), 149
setup_server() (cherrypy.test.test_caching.CacheTest
static method), 150

setup_server() (cherrypy.test.test_config.CallablesInConfigTestup_server()

static method), 151
setup_server() (cherrypy.test.test_config.ConfigTests
static method), 151

static method), 158
setup_server() (cherrypy.test.test_objectmapping.ObjectMappingTest
static method), 158
(cherrypy.test.test_params.ParamsTest
static method), 159
setup_server() (cherrypy.test.test_proxy.ProxyTest static
method), 159

186

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

setup_server() (cherrypy.test.test_refleaks.ReferenceTests
static method), 159

setup_server() (cherrypy.test.test_request_obj.RequestObjectTests

static method), 159

161

(cherrypy.process.plugins.SignalHandler  at-
tribute), 134

SimplePlugin (class in cherrypy.process.plugins), 134

signals

setup_server() (cherrypy.test.test_routes.RoutesDispatchTessize_report() (in module cherrypy.test.benchmark), 142

static method), 160

sizer() (cherrypy.test.benchmark.Root method), 142

setup_server() (cherrypy.test.test_session.MemcachedSessiosklip€) (cherrypy.test.helper. CPWebCase method), 143

static method), 160
setup_server() (cherrypy.test.test_session.SessionTest
static method), 160

skip_if_bad_cookies() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

setup_server() (cherrypy.test.test_sessionauthenticate.Sessiongchtiten¢setteFesrs (in module cherrypy.test.test_conn),

static method), 161

setup_server() (cherrypy.test.test_states.ServerStateTests
static method), 161

setup_server() (cherrypy.test.test_static.StaticTest static
method), 162

setup_server() (cherrypy.test.test_tools.ToolTests static
method), 163

setup_server()  (cherrypy.test.test_tutorials. Tutorial Test
class method), 163

start() (chelriipy.lib. gctools.RequestCounter method), 117
start() (cherrypy.process.plugins.Autoreloader method),
start() (clllsrzrypy.process.plugins.Daemonizer method),
start() (cheliipy.process.plugins.DropPrivileges method),
start() (cheléifpy.process.plugins.Monitor method), 133

setup_server() (cherrypy.test.test_virtualhost. VirtualHostTesstart() (cherrypy.process.plugins.PIDFile method), 133

static method), 164

start() (cherrypy.process.servers.FlupCGIServer method),
137

setup_server() (cherrypy.test.test_wsgi_ns.WSGI_Namespace_Test
static method), 164 start() (cherrypy.process.servers.FlupFCGIServer
setup_server() (cherrypy.test.test_wsgi_unix_socket. WSGI_UnixSockatetfesd), 137
static method), 164 start() (cherrypy.process.servers. FlupSCGIServer
setup_server() (cherrypy.test.test_wsgi_vhost. WSGI_VirtualHost_Testmethod), 137

static method), 164

setup_server() (cherrypy.test.test_wsgiapps. WSGIGraftTests

static method), 165
setup_server()  (cherrypy.test.test_xmlrpc.XmIRpcTest
static method), 165
setup_server() (in module cherrypy.test.test_config), 151
setup_server() (in module cherrypy.test.test_conn), 153
setup_server() (in module cher-
rypy.test.test_dynamicobjectmapping), 154
setup_server() (in module cherrypy.test.test_logging), 157
setup_server() (in module cherrypy.test.test_mime), 157
setup_server() (in module cherrypy.test.test_misc_tools),
158
setup_server() (in module cherrypy.test.test_session), 160
setup_server() (in module cherrypy.test.test_states), 162
setup_server() (in module cherrypy.test.test_xmlrpc), 165
setup_tutorial() (cherrypy.test.test_tutorials. Tutorial Test
class method), 163
setup_upload_server() (in
rypy.test.test_conn), 153
shb() (in module cherrypy.test.webtest), 167

module cher-

show_msg() (cherrypy.tutorial.tut02_expose_methods.HelloWorld

method), 168
shutdown, 49
signal_child() (in module cherrypy.process.win32), 138
SignalHandler (class in cherrypy.process.plugins), 133
SignalHandlingTests (class in cherrypy.test.test_states),

start() (cherrypy.process.servers.ServerAdapter method),

137
(cherrypy.process.win32.ConsoleCtrlHandler

method), 138

start() (cherrypy.process.wspbus.Bus method), 140

start() (cherrypy.test.helper.CPProcess method), 143

start() (cherrypy.test.helper.LocalSupervisor method),

143

start()

start() (cherrypy.test. modfastcgi. ModFCGISupervisor
method), 146

start() (cherrypy.test. modfcgid. ModFCGISupervisor
method), 147

start() (cherrypy.test. modpy.ModPythonSupervisor
method), 148

start() (cherrypy.test. modwsgi.ModWSGISupervisor
method), 149

start() (cherrypy.test.test_states.Dependency method),
161

start() (in module cherrypy.daemon), 171

start() (in module cherrypy.lib.covercp), 109

start_apache() (cherrypy.test.modfastcgi.ModFCGISupervisor

method), 146

start_apache() (cherrypy.test. modfcgid. ModFCGISupervisor
method), 147

start_with_callback()
method), 140

started (cherrypy.test.test_iterator.Ourlterator attribute),

(cherrypy.process.wspbus.Bus

Index

187



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

156
startthread() (cherrypy.test.test_states.Dependency
method), 161
state (cherrypy.process.win32.Win32Bus attribute), 138
state (cherrypy.process.wspbus.Bus attribute), 140
states (cherrypy.process.wspbus.Bus attribute), 140
statfiles() (cherrypy.lib.profiler.Profiler method), 123
staticdir() (in module cherrypy.lib.static), 130
staticfile() (in module cherrypy.lib.static), 130
StaticTest (class in cherrypy.test.test_static), 162
stats() (cherrypy.lib.gctools.GCRoot method), 117
stats() (cherrypy.lib.profiler.Profiler method), 123
StatsPage (class in cherrypy.lib.cpstats), 112
StatsTool (class in cherrypy.lib.cpstats), 113
status (cherrypy.test.webtest. WebCase attribute), 167
stop() (cherrypy.process.plugins.Monitor method), 133
stop() (cherrypy.process.plugins. ThreadManager
method), 134
stop() (cherrypy.process.servers.FlupCGIServer method),

137

stop() (cherrypy.process.servers. FlupFCGIServer
method), 137

stop() (cherrypy.process.servers.FlupSCGIServer

method), 137
stop() (cherrypy.process.servers.ServerAdapter method),
137
(cherrypy.process.win32.ConsoleCtrlHandler
method), 138
stop() (cherrypy.process.wspbus.Bus method), 140

stop()

method), 161

Supervisor (class in cherrypy.test.helper), 144

sync_apps() (cherrypy.test.helper.LocalSupervisor
method), 144

sync_apps() (cherrypy.test.helper.LocalWSGISupervisor
method), 144

sync_apps() (cherrypy.test. modfastcgi.ModFCGISupervisor
method), 146

sync_apps() (cherrypy.test. modfcgid. ModFCGISupervisor
method), 147

synthesize_nonce() (in module cherrypy.lib.auth_digest),
106

sysfiles() (cherrypy.process.plugins. Autoreloader

method), 132

SystemLockFile (class in cherrypy.lib.lockfile), 121

tearDown() (cherrypy.test.test_session.SessionTest
method), 160

tearDown() (cherrypy.test.test_wsgi_unix_socket. WSGI_UnixSocket_Test

method), 164

teardown() (in module cherrypy.test), 168

teardown_class() (cherrypy.test.helper.CPWebCase class
method), 143

teardown_server() (cherrypy.test.test_static.StaticTest
static method), 162

tee_output() (in module cherrypy.lib.caching), 109

template (cherrypy.test.modfastcgi. ModFCGISupervisor
attribute), 146

stop() ~ (cherrypy.test.helper.LocalSupervisor method), template (cherrypy.test.modfcgid. ModFCGISupervisor
144 attribute), 147

stop()  (cherrypy.test.modfastcgi. ModFCGISupervisor  template (cherrypy.test.modpy.ModPythonSupervisor at-
method), 146 tribute), 148

stop() (cherrypy.test.modfcgid. ModFCGISupervisor  template  (cherrypy.test. modwsgi.ModWSGISupervisor
method), 147 attribute), 149

stop() (cherrypy.test.modpy.ModPythonSupervisor  TerseTestResult (class in cherrypy.test.webtest), 166
method), 148 TerseTestRunner (class in cherrypy.test.webtest), 166

stop() (cherrypy.test. modwsgi.ModWSGISupervisor test() (cherrypy.test.test_session.MemcachedSessionTest
method), 149 method), 160

stop()  (cherrypy.test.test_states.Dependency method), test01HelloWorld() (cher-
161 rypy.test.test_tutorials. TutorialTest ~ method),

stopthread() (cherrypy.test.test_states.Dependency 163
method), 161 testO2ExposeMethods() (cher-

StringlOFromNative() (in module cher- rypy.test.test_tutorials.TutorialTest ~ method),
rypy.test.test_config), 151 163

StringTester (class in cherrypy.test.test_compat), 151 test03GetAndPost() (cher-

subscribe() (cherrypy.process.plugins.SignalHandler rypy.test.test_tutorials. TutorialTest ~ method),
method), 134 163

subscribe() (cherrypy.process.plugins.SimplePlugin test04ComplexSite() (cher-
method), 134 rypy.test.test_tutorials.TutorialTest ~ method),

subscribe() (cherrypy.process.servers.ServerAdapter 163
method), 137 test05DerivedObjects() (cher-

subscribe() (cherrypy.process.wspbus.Bus method), 140 rypy.test.test_tutorials. TutorialTest ~ method),

subscribe() (cherrypy.test.test_states.Dependency 163

188 Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

testO6DefaultMethod()
rypy.test.test_tutorials. Tutorial Test
163

testO7Sessions() (cherrypy.test.test_tutorials. Tutorial Test
method), 163

(cher-
method),

test08GeneratorsAndYield() (cher-
rypy.test.test_tutorials. TutorialTest ~ method),
163

testO9Files() (cherrypy.test.test_tutorials. Tutorial Test
method), 163

testlOHTTPErrors() (cher-
rypy.test.test_tutorials. TutorialTest ~ method),
163

test_01_standard_app() (cher-
rypy.test.test_wsgiapps.WSGIGraftTests
method), 165

test_04_pure_wsgi() (cher-
rypy.test.test_wsgiapps.WSGIGraftTests
method), 165

test_05_wrapped_cp_app() (cher-
rypy.test.test_wsgiapps. WSGIGraftTests
method), 165

test_06_empty_string_app() (cher-
rypy.test.test_wsgiapps. WSGIGraftTests
method), 165

test_0_NormalStateFlow() (cher-

rypy.test.test_states.ServerStateTests method),
161

test_0_Session() (cherrypy.test.test_session.SessionTest
method), 160

test_100_Continue() (cher-
rypy.test.test_conn.PipelineTests method),
153

test_1_Ram_Concurrency() (cher-
rypy.test.test_session.SessionTest method),
160

test_1_Restart() (cherrypy.test.test_states.ServerStateTests
method), 161

test_2_File_Concurrency() (cher-
rypy.test.test_session.SessionTest method),
160

test_2_KeyboardInterrupt() (cher-

rypy.test.test_states.ServerStateTests method),
161

test_3_Deadlocks() (cher-
rypy.test.test_states.ServerStateTests method),

161
test_3_Redirect() (cherrypy.test.test_session.SessionTest
method), 160

test_4_Autoreload() (cher-
rypy.test.test_states.ServerStateTests method),
161

test_4_File_deletion()
rypy.test.test_session.SessionTest

(cher-
method),

160
test_598() (cherrypy.test.test_conn.ConnectionTests

method), 152

test_S_Error_paths() (cher-
rypy.test.test_session.SessionTest method),
160

test_5_Start_Error() (cher-

rypy.test.test_states.ServerStateTests method),
161

test_6_regenerate()
rypy.test.test_session.SessionTest
160

test_755_vhost() (cherrypy.test.test_static.StaticTest
method), 162

(cher-
method),

test_7_session_cookies() (cher-
rypy.test.test_session.SessionTest method),
160

test_8_Ram_Cleanup() (cher-
rypy.test.test_session.SessionTest method),
160

test_accept_selection() (cher-
rypy.test.test_misc_tools.AcceptTest method),
158

test_Accept_Tool() (cher-
rypy.test.test_misc_tools.AcceptTest method),
158

test_antistampede() (cher-
rypy.test.test_caching.CacheTest method),
150

test_basic_ HTTPMethods() (cher-

rypy.test.test_request_obj.RequestObjectTests
method), 159
test_bind_ephemeral_port()
rypy.test.test_core.TestBinding
154
test_block() (cherrypy.test.test_bus.BusMethodTests
method), 150

(cher-
method),

test_builtin_channels() (cher-
rypy.test.test_bus.PublishSubscribeTests
method), 150

test_cache_control() (cher-
rypy.test.test_caching.CacheTest method),
150

test_cached() (cherrypy.test.test_json.JsonTest method),
157

test_call_with_kwargs() (cher-

rypy.test.test_config.CallablesInConfigTest
method), 151

test_call_with_literal_dict() (cher-
rypy.test.test_config.CallablesInConfigTest
method), 151

test_cherrypy_url() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

Index

189



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_Chunked_Encoding()
rypy.test.test_conn.ConnectionTests
152

(cher-
method),

test_config() (cherrypy.test.test_config. VariableSubstitutionTests Flash_Upload()

method), 151

test_config_errors()  (cherrypy.test.test_static.StaticTest
method), 162

test_CONNECT_method() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 159

test_CONNECT _method_invalid_authority() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 159

test_Content_Length_in() (cher-
rypy.test.test_conn.ConnectionTests method),
152

test_Content_Length_out_postheaders() (cher-
rypy.test.test_conn.ConnectionTests method),
152

test_Content_Length_out_preheaders() (cher-
rypy.test.test_conn.ConnectionTests method),

152

test_contextmanager() (cherrypy.test.test_core.ErrorTests
method), 154

test_custom_channels()
rypy.test.test_bus.PublishSubscribeTests
method), 150

test_daemonize()  (cherrypy.test.test_states.PluginTests
method), 161

(cher-

test_decode_tool() (cher-
rypy.test.test_encoding.EncodingTests
method), 154

test_encoded_headers() (cher-

rypy.test.test_request_obj.RequestObjectTests
method), 160
test_error() (cherrypy.test.test_params.ParamsTest
method), 159
test_error_page_with_serve_file() (cher-
rypy.test.test_static.StaticTest method), 162
test_errors() (cherrypy.test.test_etags.ETagTest method),
155

test_escape_quote() (cher-
rypy.test.test_compat.EscapeTester = method),
151

test_etags() (cherrypy.test.test_etags.ETagTest method),
155

test_exit() (cherrypy.test.test_bus.BusMethodTests

method), 150

test_expose_decorator() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

test_fallthrough() (cherrypy.test.test_static.StaticTest
method), 162

test_file_stream() (cherrypy.test.test_static.StaticTest

method), 162

test_file_stream_deadlock() (cher-
rypy.test.test_static.StaticTest method), 162

(cher-
rypy.test.test_mime.SafeMultipartHandling Test
method), 157

test_garbage_in() (cherrypy.test.test_http. HTTPTests
method), 155

test_gc() (cherrypy.test.helper. CPWebCase method), 143

test_graceful()  (cherrypy.test.test_bus.BusMethodTests
method), 150

test_header_presence() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 160

test_ HTTP10_KeepAlive()
rypy.test.test_conn.ConnectionCloseTests
method), 152

(cher-

test_ HTTP11() (cherrypy.test.test_conn.ConnectionCloseTests

method), 152

test_ HTTP11_pipelining() (cher-
rypy.test.test_conn.PipelineTests method),
153

test_ HTTP11_Timeout() (cher-
rypy.test.test_conn.PipelineTests method),
153

test_ HTTP11_Timeout_after_request() (cher-
rypy.test.test_conn.PipelineTests method),

153

test_http_over_https() (cherrypy.test.test_http. HTTPTests
method), 155

test_index() (cherrypy.test.test_static.StaticTest method),
162

test_internal_error() (cher-

rypy.test.test_wsgi_unix_socket. WSGI_UnixSocket_Test

method), 164
test_InternalRedirect() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153
test_iterator() (cherrypy.test.test_iterator.IteratorTest
method), 156
test_json_input()
method), 157
test_json_output()
method), 157
test_listener_errors()
rypy.test.test_bus.PublishSubscribeTests
method), 150
(cherrypy.test.test_bus.BusMethodTests
method), 150
test_login_screen_returns_bytes() (cher-
rypy.test.test_tools.SessionAuthTest method),
162
test_malformed_header() (cher-
rypy.test.test_http. HTTPTests method), 155

(cherrypy.test.test_json.JsonTest
(cherrypy.test.test_json.JsonTest

(cher-

test_log()

190

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_malformed_request_line() (cher-
rypy.test.test_http. HTTPTests method), 155
test_modif() (cherrypy.test.test_static.StaticTest method),

162
test_multipart()  (cherrypy.test.test_mime.MultipartTest
method), 157

test_multipart_decoding() (cher-
rypy.test.test_encoding.EncodingTests
method), 154

test_multipart_decoding_bigger_maxrambytes()
(cherrypy.test.test_encoding.EncodingTests
method), 154

test_multipart_decoding_no_charset()
rypy.test.test_encoding.EncodingTests
method), 154

test_multipart_decoding_no_successful_charset()
(cherrypy.test.test_encoding.EncodingTests
method), 154

(cher-

test_multipart_form_data() (cher-
rypy.test.test_mime.MultipartTest method),
157

test_multiple_headers() (cher-

rypy.test.test_core.CoreRequestHandling Test
method), 153

test_no_content_length() (cher-
rypy.test.test_http. HTTPTests method), 155

test_No_CRLF() (cher-
rypy.test.test_conn.BadRequestTests method),
152

test_No_Message_Body()
rypy.test.test_conn.ConnectionTests
152

test_nontext() (cherrypy.test.test_encoding.EncodingTests
method), 154

(cher-
method),

method), 154

test_queue_full() (cher-
rypy.test.test_conn.LimitedRequestQueueTests
method), 152

test_readall_or_close() (cher-
rypy.test.test_conn.ConnectionTests method),
152

test_redir_using_url() (cher-

rypy.test.test_objectmapping.ObjectMappingTest
method), 158

test_redirect_with_unicode() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

test_redirect_with_xss() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

test_repeated_headers() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 160

test_request_body_namespace() (cher-
rypy.test.test_config.ConfigTests method),
151

test_request_line_split_issue_1220() (cher-

rypy.test.test_http. HTTPTests method), 155

test_Routes_Dispatch() (cher-
rypy.test.test_routes.RoutesDispatchTest
method), 160

test_safe_wait_ INADDR_ANY() (cher-
rypy.test.test_states. WaitTests method), 161

test_scheme() (cherrypy.test.test_request_obj.RequestObjectTests
method), 160

test_security() (cherrypy.test.test_static.StaticTest
method), 162

test_serve_bytesio() (cherrypy.test.test_static.StaticTest

test_not_found() (cherrypy.test.test_wsgi_unix_socket. WSGI_UnixSonkethd®st 162

method), 164

test_ntob_non_native()
rypy.test.test_compat.StringTester
151

test_null_bytes() (cherrypy.test.test_static.StaticTest
method), 162

test_on_end_resource_status() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

test_pass() (cherrypy.test.test_params.ParamsTest
method), 159

(cher-
method),

test_pipeline() (cherrypy.test.test_wsgi_ns.WSGI_Namespa¢estTGHIGTERM()

method), 164
test_post_filename_with_special_characters() (cher-
rypy.test.test_http. HTTPTests method), 155
test_post_multipart() (cherrypy.test.test_http. HTTPTests
method), 155
test_query_string_decoding()
rypy.test.test_encoding.EncodingTests

(cher-

test_serve_fileobj()  (cherrypy.test.test_static.StaticTest
method), 162

test_ SIGHUP_daemonized()
rypy.test.test_states.SignalHandlingTests
method), 161

test_SIGHUP_tty()
rypy.test.test_states.SignalHandlingTests
method), 161

test_signal_handler_unsubscribe()
rypy.test.test_states.SignalHandlingTests
method), 161

(cher-

(cher-

(cher-

(cher-
rypy.test.test_states.SignalHandlingTests
method), 161

test_simple_request() (cher-
rypy.test.test_wsgi_unix_socket. WSGI_UnixSocket_Test
method), 164

test_start() (cherrypy.test.test_bus.BusMethodTests
method), 150

Index

191



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

test_start_response_error() (cher-
rypy.test.test_core.ErrorTests method), 154

test_start_with_callback() (cher-
rypy.test.test_bus.BusMethodTests  method),
150

test_static() (cherrypy.test.test_static.StaticTest method),
162

test_stop() (cherrypy.test.test_bus.BusMethodTests
method), 150

test_Streaming_no_len()
rypy.test.test_conn.ConnectionCloseTests
method), 152

test_Streaming_with_len()
rypy.test.test_conn.ConnectionCloseTests
method), 152

test_syntax() (cherrypy.test.test_params.ParamsTest
method), 159

test_threadlocal_garbage() (cher-
rypy.test.test_refleaks.ReferenceTests method),
159

(cher-

(cher-

test_translate() (cherrypy.test.test_objectmapping.ObjectMapgut{gItstmNamespaces()

method), 158
test_unicode() (cherrypy.test.test_static.StaticTest
method), 162
test_unicode_body()
method), 155

(cherrypy.test.test_etags.ETagTest

test_UnicodeHeaders() (cher-
rypy.test.test_encoding.EncodingTests
method), 154

test_urlencoded_decoding() (cher-

rypy.test.test_encoding.EncodingTests
method), 154

test_urljoin() (cherrypy.test.test_httplib. Utility Tests
method), 156

test_VHost_plus_Static()
rypy.test.test_virtualhost. VirtualHostTest
method), 164

test_wait() (cherrypy.test.test_bus.BusMethodTests
method), 150

(cher-

test_welcome() (cherrypy.test.test_wsgi_vhost. WSGI_ Virtuatkibstrotbkindling()

method), 164

testAbsoluteURIPathInfo() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 159

testAdditionalServers() (cher-
rypy.test.test_config_server.ServerConfigTests
method), 152

method), 155

testBasic2() (cherrypy.test.test_auth_basic.BasicAuthTest
method), 149

testBasic2() (cherrypy.test.test_httpauth. HTTPAuthTest
method), 155

testBasicConfig() (cher-
rypy.test.test_config_server.ServerConfigTests
method), 152

TestBinding (class in cherrypy.test.test_core), 154

testCaching() (cherrypy.test.test_caching.CacheTest
method), 150

testCombinedTools() (cherrypy.test.test_tools.ToolTests
method), 163

testConfig() (cherrypy.test.test_config.ConfigTests
method), 151

testCookies() (cherrypy.test.test_core.CoreRequestHandlingTest
method), 153

testCustomLogFormat() (cher-
rypy.test.test_logging.AccessLogTests
method), 157
(cher-
rypy.test.test_config.ConfigTests method),

151

testDecorator()
method), 163

testDefaultContentType() (cher-
rypy.test.test_core.CoreRequestHandlingTest
method), 153

testDigest() (cherrypy.test.test_auth_digest.DigestAuthTest
method), 149

testDigest()  (cherrypy.test.test_httpauth. HTTPAuthTest
method), 155

testEmptyThreadlocals() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 159

testEncoding() (cherrypy.test.test_encoding.EncodingTests
method), 154

testEndRequestOnDrop() (cher-
rypy.test.test_tools.ToolTests method), 163

(cher-
rypy.test.test_request_obj.RequestObjectTests
method), 159

testEscapedOutput()
rypy.test.test_logging.AccessLogTests
method), 157

testExpect() (cherrypy.test.test_request_obj.RequestObjectTests
method), 159

(cherrypy.test.test_tools.ToolTests

(cher-

testAutoVary() (cherrypy.test.test_misc_tools.AutoVaryTest testExpiresTool() (cherrypy.test.test_caching.CacheTest

method), 158
testBareHooks()
method), 163
testBasic() (cherrypy.test.test_auth_basic.BasicAuthTest
method), 149
testBasic()  (cherrypy.test.test_httpauth. HTTPAuthTest

(cherrypy.test.test_tools.Tool Tests

method), 150

testExpose() (cherrypy.test.test_objectmapping.ObjectMappingTest
method), 158

testFavicon() (cherrypy.test.test_core.CoreRequestHandlingTest
method), 153

testFlatten() (cherrypy.test.test_core.CoreRequestHandlingTest

192

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

method), 153
testGuaranteedHooks() (cher-
rypy.test.test_tools.ToolTests method), 163
testGzip()  (cherrypy.test.test_encoding.EncodingTests
method), 154

testHandlerToolConfigOverride() (cher-
rypy.test.test_config.ConfigTests method),
151

testHandlerWrapperTool() (cher-
rypy.test.test_tools.ToolTests method), 163

testHeaderElements() (cher-

rypy.test.test_request_obj.RequestObjectTests
method), 159

testHookErrors() (cherrypy.test.test_tools.Tool Tests
method), 163

method), 149

testPublic() (cherrypy.test.test_auth_digest.DigestAuthTest
method), 149

testPublic()  (cherrypy.test.test_httpauth. HTTPAuthTest
method), 155

testRanges() (cherrypy.test.test_core.CoreRequestHandlingTest
method), 153

testRedirect() (cherrypy.test.test_core.CoreRequestHandlingTest
method), 153

testReferer()  (cherrypy.test.test_misc_tools.RefererTest
method), 158

testRelativeURIPathInfo() (cher-
rypy.test.test_request_obj.RequestObjectTests
method), 159

testKeywords() (cherrypy.test.test_objectmapping.ObjectMappingTestrypy.test.test_config.ConfigTests method),

method), 158
testLastModified() (cherrypy.test.test_caching.CacheTest
method), 150

testMaxRequestSize() (cher-
rypy.test.test_config_server.ServerConfigTests
method), 152

testMaxRequestSizePerHandler() (cher-

rypy.test.test_config_server.ServerConfigTests
method), 152
testMethodDispatch() (cher-

testRespNamespaces() (cher-
151
testResponseHeaders() (cher-

rypy.test.test_misc_tools.ResponseHeadersTest
method), 158

testResponseHeadersDecorator() (cher-
rypy.test.test_misc_tools.ResponseHeadersTest
method), 158

testSessionAuthenticate() (cher-
rypy.test.test_sessionauthenticate.SessionAuthenticateTest
method), 161

rypy.test.test_dynamicobjectmapping.DynamicObjestSlkmhmis(g Tekerrypy.test.test_core.CoreRequestHandlingTest

method), 154
testMethodDispatch() (cher-

rypy.test.test_objectmapping.ObjectMappingTest

method), 158

testNormalReturn() (cher-
rypy.test.test_logging.AccessLogTests
method), 157

testNormalYield() (cher-
rypy.test.test_logging.AccessLogTests
method), 157

testObjectMapping() (cher-

method), 153

testStatus() (cherrypy.test.test_core.CoreRequestHandlingTest
method), 153

testToolWithConfig() (cherrypy.test.test_tools.ToolTests
method), 163

testTracebacks() (cherrypy.test.test_logging.ErrorLogTests
method), 157

testTreeMounting() (cher-
rypy.test.test_objectmapping.ObjectMappingTest
method), 158

testUnrepr() (cherrypy.test.test_config.ConfigTests

rypy.test.test_dynamicobjectmapping.DynamicObjectMappimgilest), 151

method), 154

testVaryHeader() (cherrypy.test.test_caching.CacheTest

testObjectMapping() (cher- method), 150
rypy.test.test_objectmapping.ObjectMappingTest testVirtualHost() (cher-
method), 158 rypy.test.test_virtualhost. VirtualHostTest

testParamErrors() (cher- method), 164

rypy.test.test_request_obj.RequestObjectTests
method), 159

testVpathDispatch() (cher-

rypy.test.test_dynamicobjectmapping.DynamicObjectMappingTe:

testParams() (cherrypy.test.test_request_obj.RequestObjectTests method), 154

method), 159
testPositionalParams() (cher-

testWarnToolOn() (cherrypy.test.test_tools.ToolTests
method), 163

rypy.test.test_objectmapping.ObjectMappingTest testXmIRpc() (cherrypy.test.test_xmlrpc. XmIRpcTest

method), 158

testProxy() (cherrypy.test.test_proxy.ProxyTest method),
159

testPublic() (cherrypy.test.test_auth_basic.BasicAuthTest

method), 165

text_only (cherrypy.lib.encoding.ResponseEncoder at-
tribute), 116

thread (cherrypy.process.plugins.Monitor attribute), 133

Index

193



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

thread_report() (in module cherrypy.test.benchmark), 142

ThreadManager (class in cherrypy.process.plugins), 134

threads (cherrypy.process.plugins.ThreadManager at-
tribute), 135

time (cherrypy.test.webtest. WebCase attribute), 167

timeout (cherrypy.lib.sessions.Session attribute), 128

Timeouts (class in cherrypy.process.servers), 138

Timer (class in cherrypy.lib.locking), 122

title (cherrypy.tutorial.tut05_derived_objects.AnotherPage
attribute), 169

title (cherrypy.tutorial.tut05_derived_objects.HomePage
attribute), 169

title  (cherrypy.tutorial.tutO5_derived_objects.Page at-
tribute), 169

toggleTracebacks() (cher-
rypy.tutorial.tut10_http_errors. HTTPErrorDemo

method), 171
ToolTests (class in cherrypy.test.test_tools), 163
TRACE() (in module cherrypy.lib.auth_digest), 105
trailing_slash() (in module cherrypy.lib.cptools), 115
TutorialTest (class in cherrypy.test.test_tutorials), 163

U

uid (cherrypy.process.plugins.DropPrivileges attribute),

132

(cherrypy.process.plugins.DropPrivileges

tribute), 132

unicode_file() (cherrypy.test.test_static.StaticTest static
method), 162

unicode_filesystem() (in
rypy.test.test_static), 162

UnixLockFile (class in cherrypy.lib.lockfile), 121

UnlockError, 121

unrepr() (in module cherrypy.lib.reprconf), 124

unsubscribe()  (cherrypy.process.plugins.SignalHandler
method), 134

unsubscribe()  (cherrypy.process.plugins.SimplePlugin
method), 134

unsubscribe()  (cherrypy.process.servers.ServerAdapter
method), 137

unsubscribe() (cherrypy.process.wspbus.Bus
140

umask at-

module cher-

method),
update() (cherrypy.lib.httputil. CaselnsensitiveDict
method), 119
update() (cherrypy.lib.reprconf.Config method), 124
update() (cherrypy.lib.sessions.Session method), 128
upload() (cherrypy.tutorial.tut09_files.FileDemo
method), 171
url (cherrypy.test.webtest. WebCase attribute), 167
urljoin() (in module cherrypy.lib.httputil), 120
urljoin_bytes() (in module cherrypy.lib.httputil), 120
use_rfc_2047 (cherrypy.lib.httputil. HeaderMap attribute),
120

UsersPage (class in cher-
rypy.tutorial.tut06_default_method), 170

using_apache (cherrypy.test.helper.LocalSupervisor at-
tribute), 144

using_apache (cherrypy.test.helper.Local WS GISupervisor
attribute), 144

using_apache (cherrypy.test.helper.NativeServerSupervisor
attribute), 144

using_apache (cherrypy.test.modfastcgi. ModFCGISupervisor
attribute), 146

using_apache (cherrypy.test.modfcgid. ModFCGISupervisor
attribute), 147

using_apache (cherrypy.test.modpy.ModPythonSupervisor
attribute), 148

using_apache (cherrypy.test. modwsgi.ModWSGISupervisor
attribute), 149

using_wsgi  (cherrypy.test.helper.LocalSupervisor
tribute), 144

using_wsgi (cherrypy.test.helper.Local WSGISupervisor
attribute), 144

using_wsgi (cherrypy.test.helper.NativeServerSupervisor
attribute), 144

using_wsgi (cherrypy.test.modfastcgi.ModFCGISupervisor
attribute), 146

using_wsgi (cherrypy.test. modfcgid. ModFCGISupervisor
attribute), 147

using_wsgi (cherrypy.test. modpy.ModPythonSupervisor
attribute), 148

using_wsgi (cherrypy.test. modwsgi.ModWSGISupervisor
attribute), 149

at-

usocket_path() (in module cher-
rypy.test.test_wsgi_unix_socket), 164
USocketHTTPConnection (class in cher-

rypy.test.test_wsgi_unix_socket), 164
UTF8StreamEncoder (class in cherrypy.lib.encoding),
116
UtilityTests (class in cherrypy.test.test_httplib), 156

V

valid_status() (in module cherrypy.lib.httputil), 120

validate_etags() (in module cherrypy.lib.cptools), 115

validate_nonce() (cher-
rypy.lib.auth_digest.HttpDigestAuthorization
method), 105

validate_since() (in module cherrypy.lib.cptools), 115

values() (cherrypy.lib.httputil. HeaderMap method), 120

values() (cherrypy.lib.sessions.Session method), 128

VariableSubstitutionTests (class in
rypy.test.test_config), 151

VirtualHostTest (class in cherrypy.test.test_virtualhost),
164

cher-

W

wait() (cherrypy.lib.caching. AntiStampedeCache

194

Index



CherryPy Documentation, Release 11.0.1.dev70+g1b979¢3.d20170814

method), 106

wait() (cherrypy.process.servers.ServerAdapter method),
137

wait() (cherrypy.process.win32.Win32Bus method), 138

wait() (cherrypy.process.wspbus.Bus method), 140

WaitTests (class in cherrypy.test.test_states), 161

WebCase (class in cherrypy.test.webtest), 166

WelcomePage (class in cher-
rypy.tutorial.tut03_get_and_post), 168

Win32Bus (class in cherrypy.process.win32), 138

Windows, 49

WindowsLockFile (class in cherrypy.lib.lockfile), 122

write_conf() (cherrypy.test.helper.CPProcess method),
143

WSGI_Namespace_Test (class in cher-
rypy.test.test_wsgi_ns), 164

wsgi_output (cherrypy.test.test_wsgiapps. WSGIGraftTests
attribute), 165

WSGI_UnixSocket_Test (class in cher-
rypy.test.test_wsgi_unix_socket), 164
WSGI_VirtualHost_Test (class in cher-

rypy.test.test_wsgi_vhost), 164
WSGIGraftTests (class in cherrypy.test.test_wsgiapps),

165
wsgisetup() (in module cherrypy.test.modpy), 148
www_authenticate() (in module cher-

rypy.lib.auth_digest), 106

X

XmlRpcTest (class in cherrypy.test.test_xmlrpc), 165

Index

195



	Foreword
	Why CherryPy?
	Success Stories

	Installation
	Requirements
	Supported python version
	Installing
	Run it

	Tutorials
	Tutorial 1: A basic web application
	Tutorial 2: Different URLs lead to different functions
	Tutorial 3: My URLs have parameters
	Tutorial 4: Submit this form
	Tutorial 5: Track my end-user's activity
	Tutorial 6: What about my javascripts, CSS and images?
	Tutorial 7: Give us a REST
	Tutorial 8: Make it smoother with Ajax
	Tutorial 9: Data is all my life
	Tutorial 10: Make it a modern single-page application with React.js
	Tutorial 11: Organize my code

	Basics
	The one-minute application example
	Hosting one or more applications
	Logging
	Configuring
	Cookies
	Using sessions
	Static content serving
	Dealing with JSON
	Authentication
	Favicon

	Advanced
	Set aliases to page handlers
	RESTful-style dispatching
	Error handling
	Streaming the response body
	Response timeouts
	Deal with signals
	Securing your server
	Multiple HTTP servers support
	WSGI support
	WebSocket support
	Database support
	HTML Templating support
	Testing your application

	Configure
	Architecture
	Declaration
	Namespaces

	Extend
	Server-wide functions
	Per-request functions
	Tailored dispatchers
	Request body processors

	Deploy
	Run as a daemon
	Run as a different user
	PID files
	Systemd socket activation
	Control via Supervisord
	SSL support
	WSGI servers
	Virtual Hosting
	Reverse-proxying

	Support
	I have a question
	I have found a bug
	I have a feature request
	I want to converse

	Contribute
	StackOverflow
	Filing Bug Reports
	Fixing Bugs
	Writing Pull Requests

	Testing
	Glossary
	History
	v11.0.0
	v10.2.2
	v10.2.1
	v10.2.0
	v10.1.1
	v10.1.0
	v10.0.0
	v9.0.0
	v8.9.1
	v8.9.0
	v8.8.0
	v8.7.0
	v8.6.0
	v8.5.0
	v8.4.0
	v8.3.1
	v8.3.0
	v8.2.0
	v8.1.3
	v8.1.2
	v8.1.1
	v8.1.0
	v8.0.1
	v8.0.0
	v7.1.0
	v7.0.0
	v6.2.1
	v6.2.0
	v6.1.1
	v6.1.0
	v6.0.2
	v6.0.1
	v6.0.0
	v5.6.0
	v5.5.0
	v5.4.0
	v5.3.0
	v5.2.0
	v5.1.0
	v5.0.1
	v5.0.0
	v4.0.0
	v3.8.2
	v3.8.0
	v3.7.0
	v3.6.0
	v3.5.0
	v3.4.0
	v3.3.0

	Modules
	cherrypy package

	Python Module Index

