
Simple Programming Problems

Whenever I’m TA for a introductory CS class where students learn some
programming language, I have trouble coming up with good exercises. Problems
from Project Euler and the like are usually much too difficult for beginners, especially
if they don’t have a strong background in mathematics.

This page is a collection of progressively more difficult exercises that are suitable
for people who just started learning. It will be extended as I come up with new
exercises. Except for the GUI questions, exercises are generally algorithmic and
should be solvable without learning any libraries. The difficulty of the exercises of
course somewhat depends on the programming language you use. The List
exercises for example are more complicated in languages like C that don’t have
build-in support for lists.

I suppose they are also useful, although much easier, whenever an experienced
person wants to learn a new language.

This guide has been translated to Chinese by Fidel Yi. Simple Programming
Problems in Chinese

Elementary

1. Write a program that prints ‘Hello World’ to the screen.

2. Write a program that asks the user for her name and greets her with her
name.

3. Modify the previous program such that only the users Alice and Bob are
greeted with their names.

4. Write a program that asks the user for a number n and prints the sum of the
numbers 1 to n

5. Modify the previous program such that only multiples of three or five are
considered in the sum, e.g. 3, 5, 6, 9, 10, 12, 15 for n=17

6. Write a program that asks the user for a number n and gives him the
possibility to choose between computing the sum and computing the product
of 1,…,n.

7. Write a program that prints a multiplication table for numbers up to 12.

8. Write a program that prints all prime numbers. (Note: if your programming
language does not support arbitrary size numbers, printing all primes up to
the largest number you can easily represent is fine too.)

9. Write a guessing game where the user has to guess a secret number. After
every guess the program tells the user whether their number was too large or
too small. At the end the number of tries needed should be printed. I counts
only as one try if they input the same number multiple times consecutively.

10. Write a program that prints the next 20 leap years.

http://projecteuler.net/
https://github.com/yisha7/SimpleProgrammingProblems

11. Write a program that computes

4⋅∑k=1106(−1)k+12k−1=4⋅(1−1/3+1/5−1/7+1/9−1/11…).

Lists, Strings

If your language of choice doesn’t have a build in list and/or string type (e.g. you use
C), these exercises should also be solvable for arrays. However, some solutions are
very different between an array-based list and a pointer based list, at least if you
care about the efficiency of your code. So you might want to either find a library, or
investigate how to implement your own linked list if your language doesn’t have it.

1. Write a function that returns the largest element in a list.

2. Write function that reverses a list, preferably in place.

3. Write a function that checks whether an element occurs in a list.

4. Write a function that returns the elements on odd positions in a list.

5. Write a function that computes the running total of a list.

6. Write a function that tests whether a string is a palindrome.

7. Write three functions that compute the sum of the numbers in a list: using a
for-loop, a while-loop and recursion. (Subject to availability of these
constructs in your language of choice.)

8. Write a function on_all that applies a function to every element of a list. Use
it to print the first twenty perfect squares.

9. Write a function that concatenates two lists.

10. Write a function that combines two lists by alternatingly taking elements, e.g.
[a,b,c], [1,2,3] → [a,1,b,2,c,3].

11. Write a function that merges two sorted lists into a new list.

12. Write a function that rotates a list by k elements. For example
[1,2,3,4,5,6] rotated by two becomes [3,4,5,6,1,2]. Try solving this
without creating a copy of the list. How many swap or move operations do
you need?

13. Write a function that computes the list of the first 100 Fibonacci numbers.

14. Write a function that takes a number and returns a list of its digits.

15. Write functions that add, subtract, and multiply two numbers in their digit-list
representation (and return a new digit list). If you’re ambitious you can
implement Karatsuba multiplication. Try different bases. What is the best
base if you care about speed? If you couldn’t completely solve the prime
number exercise above due to the lack of large numbers in your language,
you can now use your own library for this task.

16. Implement the following sorting algorithms: Selection sort, Insertion sort,
Merge sort, Quick sort, Stooge Sort. Check Wikipedia for descriptions.

https://en.wikipedia.org/wiki/Radix

17. Implement binary search.

18. Write a function that takes a list of strings an prints them, one per line, in a
rectangular frame. For example the list ["Hello", "World", "in", "a",
"frame"] gets printed as:

* Hello *
* World *
* in *
* a *
* frame *

19. Write function that translates a text to Pig Latin and back. English is
translated to Pig Latin by taking the first letter of every word, moving it to the
end of the word and adding ‘ay’. “The quick brown fox” becomes “Hetay
uickqay rownbay oxfay”.

Intermediate

1. Write a program that outputs all possibilities to put + or - or nothing between
the numbers 1,2,…,9 (in this order) such that the result is 100. For example 1
+ 2 + 3 - 4 + 5 + 6 + 78 + 9 = 100.

2. Write a program that takes the duration of a year (in fractional days) for an
imaginary planet as an input and produces a leap-year rule that minimizes
the difference to the planet’s solar year.

3. Implement a data structure for graphs that allows modification (insertion,
deletion). It should be possible to store values at edges and nodes. It might
be easiest to use a dictionary of (node, edgelist) to do this.

4. Write a function that generates a DOT representation of a graph.

5. Write a program that automatically generates essays for you.

1. Using a sample text, create a directed (multi-)graph where the words
of a text are nodes and there is a directed edge between u and v if u
is followed by v in your sample text. Multiple occurrences lead to
multiple edges.

2. Do a random walk on this graph: Starting from an arbitrary node
choose a random successor. If no successor exists, choose another
random node.

6. Write a program that automatically converts English text to Morse code and
vice versa.

7. Write a program that finds the longest palindromic substring of a given string.
Try to be as efficient as possible!

8. Think of a good interface for a list. What operations do you typically need?

You might want to investigate the list interface in your language and in some
other popular languages for inspiration.

9. Implement your list interface using a fixed chunk of memory, say an array of
size 100. If the user wants to add more stuff to your list than fits in your
memory you should produce some kind of error, for example you can throw
an exception if your language supports that.

10. Improve your previous implementation such that an arbitrary number of
elements can be stored in your list. You can for example allocate bigger and
bigger chunks of memory as your list grows, copy the old elements over and
release the old storage. You should probably also release this memory
eventually if your list shrinks enough not to need it anymore. Think about how
much bigger the new chunk of memory should be so that your performance
won’t be killed by allocations. Increasing the size by 1 element for example is
a bad idea.

11. If you chose your growth right in the previous problem, you typically won’t
allocate very often. However, adding to a big list sometimes consumes
considerable time. That might be problematic in some applications. Instead
try allocating new chunks of memory for new items. So when your list is full
and the user wants to add something, allocate a new chunk of 100 elements
instead of copying all elements over to a new large chunk. Think about where
to do the book-keeping about which chunks you have. Different book keeping
strategies can quite dramatically change the performance characteristics of
your list.

12. Implement a binary heap. Once using a list as the base data structure and
once by implementing a pointer-linked binary tree. Use it for implementing
heap-sort.

13. Implement an unbalanced binary search tree.

14. Implement a balanced binary search tree of your choice. I like (a,b)-trees
best.

15. Compare the performance of insertion, deletion and search on your
unbalanced search tree with your balanced search tree and a sorted list.
Think about good input sequences. If you implemented an (a,b)-tree, think
about good values of a and b.

Advanced

1. Given two strings, write a program that efficiently finds the longest common
subsequence.

2. Given an array with numbers, write a program that efficiently answers queries
of the form: “Which is the nearest larger value for the number at position i?”,
where distance is the difference in array indices. For example in the array
[1,4,3,2,5,7], the nearest larger value for 4 is 5. After linear time
preprocessing you should be able to answer queries in constant time.

3. Given two strings, write a program that outputs the shortest sequence of
character insertions and deletions that turn one string into the other.

4. Write a function that multiplies two matrices together. Make it as efficient as

you can and compare the performance to a polished linear algebra library for
your language. You might want to read about Strassen’s algorithm and the
effects CPU caches have. Try out different matrix layouts and see what
happens.

5. Implement a van Emde Boas tree. Compare it with your previous search tree
implementations.

6. Given a set of d-dimensional rectangular boxes, write a program that
computes the volume of their union. Start with 2D and work your way up.

GUI

Write a program that displays a bouncing ball.

Write a Memory game.

Write a Tetris clone

Open Ended

1. Write a program that plays Hangman as good as possible. For example you
can use a large dictionary like this and select the letter that excludes most
words that are still possible solutions. Try to make the program as efficient as
possible, i.e. don’t scan the whole dictionary in every turn.

2. Write a program that plays Rock, Paper, Scissors better than random
against a human. Try to exploit that humans are very bad at generating
random numbers.

3. Write a program that plays Battle Ship against human opponents. It takes
coordinates as input and outputs whether that was a hit or not and its own
shot’s coordinates.

Other Collections

Of course I’m not the first person to come up with the idea of having a list like this.

John Dalbey’s collection

Several small problems Programming Practice

CPE 101 Projects

Code Kata

99 Lisp Problems, 99 Haskell Problems. Most of these can also be done in
other languages.

Rosetta Code Programming Tasks. These come with solutions in many
languages!

Code Golf Challenges. The goal here is to solve the problem with as few
characters as possible.

https://en.wikipedia.org/wiki/Strassen_algorithm
https://en.wikipedia.org/wiki/Van_Emde_Boas_tree
https://en.wikipedia.org/wiki/Memory_%28game%29
http://wordlist.sourceforge.net/
http://users.csc.calpoly.edu/~jdalbey/
http://users.csc.calpoly.edu/~jdalbey/103/Projects/ProgrammingPractice.html
http://users.csc.calpoly.edu/~jdalbey/101/index.html
http://codekata.pragprog.com/
http://www.ic.unicamp.br/~meidanis/courses/mc336/2006s2/funcional/L-99_Ninety-Nine_Lisp_Problems.html
http://www.haskell.org/haskellwiki/99_Haskell_exercises
http://rosettacode.org/wiki/Category:Programming_Tasks
http://codegolf.com/competition/browse

CC-BY-SA Adrian Neumann (PGP Key A210311B) adriann.github.io

SPOJ Problems. This is a list of more than 13000 Problems!

Code Abbey According to Github user RodionGork, this is less mathy than
Project Euler.

mailto:adrian_neumann@gmx.de
http://adriann.github.io/ressources/pub.asc
http://adriann.github.io/
http://www.spoj.com/problems/classical/
http://codeabbey.com/

