Python Source Virus and Antivirus Tutorial

Please read all of this assignment closely before you begin!

This assignment is designed to reinforce basic concepts about how viruses work.
Please follow the naming/calling conventions used in this document exactly as you
write your code. This assignment will count as two homework grades. You will
submit your source code electronically as two email attachments. Please include
your name as part of each filename, e.g., smithVirus.py and
jonesAntivirus.py. Please send the final version of your code to
cs235homework@gmail.com. Questions should be sent to my Wofford email
address, sloanjd@wofford.edu. You may work on this individually or in pairs as you
see fit. But there should be no discussion of this assignment with anyone in the class
before submission with the exception of your partner when doing pair
programming.

You will be writing both a source code virus for Python files and antivirus software
designed to detect and remove your virus. This tutorial will step you through the
process. The virus you write will not be particularly virulent or dangerous provided
you stay within the bounds of this assignment. Nonetheless, you should do all your
coding on a personal computer and not on any of Wofford’s computers. For real
virus research, you would use an isolated machine used only for this purpose. For
this project, just keep all your code in a separate directory. And, yes, your code must
be written in Python for rather obvious reasons.

Writing the Virus:
Please put this code in a single file.

1. You will be writing a virus that “infects” Python source files. That is, it will
copy itself into a Python source file. This will be an appending virus so all the
code will be added at the end of the file. This will make it particularly easy to
add or remove. The first line of your virus will be a signature

"#Q@! infected by virus !@#"

Yes, it is a bit simplistic that the signature is so easily spotted, but this whole
assignment is a bit simplistic.

Write a function infected () that takes a file name as its only parameter. It
should return True or False depending on whether the file contains the
signature. Notice that the file that contains infected () would give a false
positive if checked with your code. Think about how you might fix but do not
attempt to do so.

Write a function selectTarget () that has no parameters. It should open
the current working directory, retrieve a list of all files in that directory, filter
out any non-Python files (files that don’t have a “. py” extension), and any
already infected files. (You'll use infected () to determine this. Randomly
select one of the remaining files. Return that file’s name. Return False if
there are no such files.

There are several commands in the os module that you will probably find
useful.

import os ## loads os
os.getcwd () ## returns the current directory
os.listdir(d) ## returns a list of files in d

Write a function copyCode () that takes a file name as an parameter. This
function will open two files, the file passed as a parameter will be the target
to be infected and will be open for appending. You will write the viral code to
the end of this file.

You will also need to open the current file (__file__) for reading so you
can search through it for the virus (conveniently located at the end of the
file). Read and ignore each line in this source file up to the line with the viral
signature. Everything from this point on will be appended to the target file.

Modify copyCode () so that immediately after writing the virus signature it
inserts an additional comment that specifies the name of the file that is the
source of the infection and the name of the file being infected. The first few
lines of an infection might look like:

"#Q@! infected by virus !@#"
#/Users/guest/Desktop/Virus/virus.py infected four.py

import os

This is just a precaution.

Write a function payload (). This should simply print a one-line message of
your choice. This is the viral payload.

Write a function infect () with no parameters. It should call
selectTarget () to identify a target. If a target exists, it should call
copyCode () with the target. If no target exists, it should occasionally call
payload(), say with a probability of 1 in 4.

(Deciding when to run payload () is the viral trigger. We could create more
elaborate tests if we wished.)

7. Add the line

infect ()
to the bottom of your code so the code will run automatically when loaded.

Your virus is complete. Test it only on your own files and computer.

AntiVirus Code:
Now we will write the antivirus code. Open a new file for this code.

1. First you will need code to determine if a file is infected. You have already
written this. Copy infected () into this file.

2. Write a function scan (), with no parameters, that scans the current
directory for infected files. It should print out the name of any file that is
infected. You'll likely want to use code from the selectTarget () function
you have already written. Don’t worry about false positives.

3. Write a function removeVirus () that take a file name as a parameter. It
should remove the viral code from this file. Open the file for reading and
record each line up to the line with the signature. This is the original source
code. Everything else is the virus. Close this file and reopen it for writing.
Write out the recorded code. Were that it was really this easy to remove a real
virus!

Ideally, you could modify scan () so that it automatically calls removeVirus ()
but we will not do this since many of our functions contain the viral signature and
our infected () function will give false positives.

Discussion:

This is a simplistic example but you have now seen how the basic components of
viral and antiviral code are written. There are lots and lots of additions we could
make—more elaborate tests to trigger the delivery of the payload, more elaborate
payloads, encryption, scanning the entire filesystem for targets, etc. And, we should
be working with machine code. Also, we used a very explicit signature that made
the coding quite easy.

False positives are a concern of any antivirus code, particularly if you want to do any
repairs to files. Our antivirus code will flag itself as infected. This problem comes up
when running multiple antivirus programs on the same computer.

Because we restricted our code to looking in a single directory, looking only at
Python files, limited the payload to printing a message, and made no effort to hide
the code, this is relatively harmless code. But I strongly recommend that you keep
this in a directory that is separate from any other Python code you are writing. And
if you plan on keeping the code, you might save it in a compressed format.

