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How	to	Make	a	Computer	Operating
System
Online	book	about	how	to	write	a	computer	operating	system	in	C/C++	from	scratch.

Caution:	This	repository	is	a	remake	of	my	old	course.	It	was	written	several	years	ago	as
one	of	my	first	projects	when	I	was	in	High	School,	I'm	still	refactoring	some	parts.	The
original	course	was	in	French	and	I'm	not	an	English	native.	I'm	going	to	continue	and
improve	this	course	in	my	free-time.

Book:	An	online	version	is	available	at	http://samypesse.gitbooks.io/how-to-create-an-
operating-system/	(PDF,	Mobi	and	ePub).	It	was	generated	using	GitBook.

Source	Code:	All	the	system	source	code	will	be	stored	in	the	src	directory.	Each	step	will
contain	links	to	the	different	related	files.

Contributions:	This	course	is	open	to	contributions,	feel	free	to	signal	errors	with	issues	or
directly	correct	the	errors	with	pull-requests.

Questions:	Feel	free	to	ask	any	questions	by	adding	issues	or	commenting	sections.

You	can	follow	me	on	Twitter	@SamyPesse	or	GitHub.

What	kind	of	OS	are	we	building?

The	goal	is	to	build	a	very	simple	UNIX-based	operating	system	in	C++,	not	just	a	"proof-of-
concept".	The	OS	should	be	able	to	boot,	start	a	userland	shell,	and	be	extensible.
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Chapter	1:	Introduction	to	the	x86	architecture
and	about	our	OS

What	is	the	x86	architecture?

The	term	x86	denotes	a	family	of	backward	compatible	instruction	set	architectures
based	on	the	Intel	8086	CPU.

The	x86	architecture	is	the	most	common	instruction	set	architecture	since	its	introduction	in
1981	for	the	IBM	PC.	A	large	amount	of	software,	including	operating	systems	(OS's)	such
as	DOS,	Windows,	Linux,	BSD,	Solaris	and	Mac	OS	X,	function	with	x86-based	hardware.

In	this	course	we	are	not	going	to	design	an	operating	system	for	the	x86-64	architecture	but
for	x86-32,	thanks	to	backward	compatibility,	our	OS	will	be	compatible	with	our	newer	PCs
(but	take	caution	if	you	want	to	test	it	on	your	real	machine).

Our	Operating	System

The	goal	is	to	build	a	very	simple	UNIX-based	operating	system	in	C++,	but	the	goal	is	not	to
just	build	a	"proof-of-concept".	The	OS	should	be	able	to	boot,	start	a	userland	shell	and	be
extensible.

The	OS	will	be	built	for	the	x86	architecture,	running	on	32	bits,	and	compatible	with	IBM
PCs.

Specifications:

Code	in	C++
x86,	32	bit	architecture
Boot	with	Grub
Kind	of	modular	system	for	drivers
Kind	of	UNIX	style
Multitasking
ELF	executable	in	userland
Modules	(accessible	in	userland	using	/dev/...)	:

IDE	disks
DOS	partitions
Clock
EXT2	(read	only)
Boch	VBE

Userland	:

Introduction	about	the	x86	architecture	and	about	our	OS

5



API	Posix
LibC
"Can"	run	a	shell	or	some	executables	(e.g.,	lua)

Introduction	about	the	x86	architecture	and	about	our	OS
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Chapter	2:	Setup	the	development	environment
The	first	step	is	to	setup	a	good	and	viable	development	environment.	Using	Vagrant	and
Virtualbox,	you'll	be	able	to	compile	and	test	your	OS	from	all	the	OSs	(Linux,	Windows	or
Mac).

Install	Vagrant

Vagrant	is	free	and	open-source	software	for	creating	and	configuring	virtual
development	environments.	It	can	be	considered	a	wrapper	around	VirtualBox.

Vagrant	will	help	us	create	a	clean	virtual	development	environment	on	whatever	system	you
are	using.	The	first	step	is	to	download	and	install	Vagrant	for	your	system	at
http://www.vagrantup.com/.

Install	Virtualbox

Oracle	VM	VirtualBox	is	a	virtualization	software	package	for	x86	and	AMD64/Intel64-
based	computers.

Vagrant	needs	Virtualbox	to	work,	Download	and	install	for	your	system	at
https://www.virtualbox.org/wiki/Downloads.

Start	and	test	your	development	environment

Once	Vagrant	and	Virtualbox	are	installed,	you	need	to	download	the	ubuntu	lucid32	image
for	Vagrant:

vagrant	box	add	lucid32	http://files.vagrantup.com/lucid32.box

Once	the	lucid32	image	is	ready,	we	need	to	define	our	development	environment	using	a
Vagrantfile,	create	a	file	named	Vagrantfile.	This	file	defines	what	prerequisites	our
environment	needs:	nasm,	make,	build-essential,	grub	and	qemu.

Start	your	box	using:

vagrant	up

You	can	now	access	your	box	by	using	ssh	to	connect	to	the	virtual	box	using:

Setup	the	development	environment
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vagrant	ssh

The	directory	containing	the	Vagrantfile	will	be	mounted	by	default	in	the	/vagrant	directory
of	the	guest	VM	(in	this	case,	Ubuntu	Lucid32):

cd	/vagrant

Build	and	test	our	operating	system

The	file	Makefile	defines	some	basics	rules	for	building	the	kernel,	the	user	libc	and	some
userland	programs.

Build:

make	all

Test	our	operating	system	with	qemu:

make	run

The	documentation	for	qemu	is	available	at	QEMU	Emulator	Documentation.

You	can	exit	the	emulator	using:	Ctrl-a.

Setup	the	development	environment
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Chapter	3:	First	boot	with	GRUB

How	the	boot	works?

When	an	x86-based	computer	is	turned	on,	it	begins	a	complex	path	to	get	to	the	stage
where	control	is	transferred	to	our	kernel's	"main"	routine	(	kmain()	).	For	this	course,	we	are
only	going	to	consider	the	BIOS	boot	method	and	not	it's	successor	(UEFI).

The	BIOS	boot	sequence	is:	RAM	detection	->	Hardware	detection/Initialization	->	Boot
sequence.

The	most	important	step	for	us	is	the	"Boot	sequence",	where	the	BIOS	is	done	with	its
initialization	and	tries	to	transfer	control	to	the	next	stage	of	the	bootloader	process.

During	the	"Boot	sequence",	the	BIOS	will	try	to	determine	a	"boot	device"	(e.g.	floppy	disk,
hard-disk,	CD,	USB	flash	memory	device	or	network).	Our	Operating	System	will	initially
boot	from	the	hard-disk	(but	it	will	be	possible	to	boot	it	from	a	CD	or	a	USB	flash	memory
device	in	future).	A	device	is	considered	bootable	if	the	bootsector	contains	the	valid
signature	bytes		0x55		and		0xAA		at	offsets	511	and	512	respectively	(called	the	magic	bytes
of	the	Master	Boot	Record,	also	known	as	the	MBR).	This	signature	is	represented	(in
binary)	as	0b1010101001010101.	The	alternating	bit	pattern	was	thought	to	be	a	protection
against	certain	failures	(drive	or	controller).	If	this	pattern	is	garbled	or	0x00,	the	device	is
not	considered	bootable.

BIOS	physically	searches	for	a	boot	device	by	loading	the	first	512	bytes	from	the	bootsector
of	each	device	into	physical	memory,	starting	at	the	address		0x7C00		(1	KiB	below	the	32
KiB	mark).	When	the	valid	signature	bytes	are	detected,	BIOS	transfers	control	to	the
	0x7C00		memory	address	(via	a	jump	instruction)	in	order	to	execute	the	bootsector	code.

Throughout	this	process	the	CPU	has	been	running	in	16-bit	Real	Mode,	which	is	the	default
state	for	x86	CPUs	in	order	to	maintain	backwards	compatibility.	To	execute	the	32-bit
instructions	within	our	kernel,	a	bootloader	is	required	to	switch	the	CPU	into	Protected
Mode.

What	is	GRUB?

GNU	GRUB	(short	for	GNU	GRand	Unified	Bootloader)	is	a	boot	loader	package	from
the	GNU	Project.	GRUB	is	the	reference	implementation	of	the	Free	Software
Foundation's	Multiboot	Specification,	which	provides	a	user	the	choice	to	boot	one	of
multiple	operating	systems	installed	on	a	computer	or	select	a	specific	kernel
configuration	available	on	a	particular	operating	system's	partitions.

First	boot	with	GRUB
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To	make	it	simple,	GRUB	is	the	first	thing	booted	by	the	machine	(a	boot-loader)	and	will
simplify	the	loading	of	our	kernel	stored	on	the	hard-disk.

Why	are	we	using	GRUB?

GRUB	is	very	simple	to	use
Make	it	very	simple	to	load	32bits	kernels	without	needs	of	16bits	code
Multiboot	with	Linux,	Windows	and	others
Make	it	easy	to	load	external	modules	in	memory

How	to	use	GRUB?

GRUB	uses	the	Multiboot	specification,	the	executable	binary	should	be	32bits	and	must
contain	a	special	header	(multiboot	header)	in	its	8192	first	bytes.	Our	kernel	will	be	a	ELF
executable	file	("Executable	and	Linkable	Format",	a	common	standard	file	format	for
executables	in	most	UNIX	system).

The	first	boot	sequence	of	our	kernel	is	written	in	Assembly:	start.asm	and	we	use	a	linker
file	to	define	our	executable	structure:	linker.ld.

This	boot	process	also	initializes	some	of	our	C++	runtime,	it	will	be	described	in	the	next
chapter.

Multiboot	header	structure:

First	boot	with	GRUB
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struct	multiboot_info	{

				u32	flags;

				u32	low_mem;

				u32	high_mem;

				u32	boot_device;

				u32	cmdline;

				u32	mods_count;

				u32	mods_addr;

				struct	{

								u32	num;

								u32	size;

								u32	addr;

								u32	shndx;

				}	elf_sec;

				unsigned	long	mmap_length;

				unsigned	long	mmap_addr;

				unsigned	long	drives_length;

				unsigned	long	drives_addr;

				unsigned	long	config_table;

				unsigned	long	boot_loader_name;

				unsigned	long	apm_table;

				unsigned	long	vbe_control_info;

				unsigned	long	vbe_mode_info;

				unsigned	long	vbe_mode;

				unsigned	long	vbe_interface_seg;

				unsigned	long	vbe_interface_off;

				unsigned	long	vbe_interface_len;

};

You	can	use	the	command		mbchk	kernel.elf		to	validate	your	kernel.elf	file	against	the
multiboot	standard.	You	can	also	use	the	command		nm	-n	kernel.elf		to	validate	the	offset
of	the	different	objects	in	the	ELF	binary.

Create	a	disk	image	for	our	kernel	and	grub

The	script	diskimage.sh	will	generate	a	hard	disk	image	that	can	be	used	by	QEMU.

The	first	step	is	to	create	a	hard-disk	image	(c.img)	using	qemu-img:

qemu-img	create	c.img	2M

We	need	now	to	partition	the	disk	using	fdisk:

First	boot	with	GRUB
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fdisk	./c.img

#	Switch	to	Expert	commands

>	x

#	Change	number	of	cylinders	(1-1048576)

>	c

>	4

#	Change	number	of	heads	(1-256,	default	16):

>	h

>	16

#	Change	number	of	sectors/track	(1-63,	default	63)

>	s

>	63

#	Return	to	main	menu

>	r

#	Add	a	new	partition

>	n

#	Choose	primary	partition

>	p

#	Choose	partition	number

>	1

#	Choose	first	sector	(1-4,	default	1)

>	1

#	Choose	last	sector,	+cylinders	or	+size{K,M,G}	(1-4,	default	4)

>	4

#	Toggle	bootable	flag

>	a

#	Choose	first	partition	for	bootable	flag

>	1

#	Write	table	to	disk	and	exit

>	w

We	need	now	to	attach	the	created	partition	to	the	loop-device	using	losetup.	This	allows	a
file	to	be	access	like	a	block	device.	The	offset	of	the	partition	is	passed	as	an	argument	and
calculated	using:	offset=	start_sector	*	bytes_by_sector.

Using		fdisk	-l	-u	c.img	,	you	get:	63	*	512	=	32256.

First	boot	with	GRUB
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losetup	-o	32256	/dev/loop1	./c.img

We	create	a	EXT2	filesystem	on	this	new	device	using:

mke2fs	/dev/loop1

We	copy	our	files	on	a	mounted	disk:

mount		/dev/loop1	/mnt/

cp	-R	bootdisk/*	/mnt/

umount	/mnt/

Install	GRUB	on	the	disk:

grub	--device-map=/dev/null	<<	EOF

device	(hd0)	./c.img

geometry	(hd0)	4	16	63

root	(hd0,0)

setup	(hd0)

quit

EOF

And	finally	we	detach	the	loop	device:

losetup	-d	/dev/loop1

See	Also

GNU	GRUB	on	Wikipedia
Multiboot	specification

First	boot	with	GRUB
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Chapter	4:	Backbone	of	the	OS	and	C++
runtime

C++	kernel	run-time

A	kernel	can	be	written	in	C++	just	as	it	can	be	in	C,	with	the	exception	of	a	few	pitfalls	that
come	with	using	C++	(runtime	support,	constructors,	etc).

The	compiler	will	assume	that	all	the	necessary	C++	runtime	support	is	available	by	default,
but	as	we	are	not	linking	libsupc++	into	your	C++	kernel,	we	need	to	add	some	basic
functions	that	can	be	found	in	the	cxx.cc	file.

Caution:	The	operators		new		and		delete		cannot	be	used	before	virtual	memory	and
pagination	have	been	initialized.

Basic	C/C++	functions

The	kernel	code	can't	use	functions	from	the	standard	libraries	so	we	need	to	add	some
basic	functions	for	managing	memory	and	strings:

void					itoa(char	*buf,	unsigned	long	int	n,	int	base);

void	*				memset(char	*dst,char	src,	int	n);

void	*				memcpy(char	*dst,	char	*src,	int	n);

int					strlen(char	*s);

int					strcmp(const	char	*dst,	char	*src);

int					strcpy(char	*dst,const	char	*src);

void					strcat(void	*dest,const	void	*src);

char	*				strncpy(char	*destString,	const	char	*sourceString,int	maxLength);

int					strncmp(	const	char*	s1,	const	char*	s2,	int	c	);

These	functions	are	defined	in	string.cc,	memory.cc,	itoa.cc

C	types

In	the	next	step,	we're	going	to	define	different	types	we're	going	to	use	in	our	code.	Most	of
our	variable	types	are	going	to	be	unsigned.	This	means	that	all	the	bits	are	used	to	store
the	integer.	Signed	variables	use	their	first	bit	to	indicate	their	sign.

Backbone	of	the	OS	and	C++	runtime
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typedef	unsigned	char					u8;

typedef	unsigned	short					u16;

typedef	unsigned	int					u32;

typedef	unsigned	long	long					u64;

typedef	signed	char					s8;

typedef	signed	short					s16;

typedef	signed	int									s32;

typedef	signed	long	long				s64;

Compile	our	kernel

Compiling	a	kernel	is	not	the	same	thing	as	compiling	a	linux	executable,	we	can't	use	a
standard	library	and	should	have	no	dependencies	to	the	system.

Our	Makefile	will	define	the	process	to	compile	and	link	our	kernel.

For	x86	architecture,	the	followings	arguments	will	be	used	for	gcc/g++/ld:

#	Linker

LD=ld

LDFLAG=	-melf_i386	-static		-L	./		-T	./arch/$(ARCH)/linker.ld

#	C++	compiler

SC=g++

FLAG=	$(INCDIR)	-g	-O2	-w	-trigraphs	-fno-builtin		-fno-exceptions	-fno-stack-protecto

r	-O0	-m32		-fno-rtti	-nostdlib	-nodefaultlibs	

#	Assembly	compiler

ASM=nasm

ASMFLAG=-f	elf	-o

Backbone	of	the	OS	and	C++	runtime
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Chapter	5:	Base	classes	for	managing	x86
architecture
Now	that	we	know	how	to	compile	our	C++	kernel	and	boot	the	binary	using	GRUB,	we	can
start	to	do	some	cool	things	in	C/C++.

Printing	to	the	screen	console

We	are	going	to	use	VGA	default	mode	(03h)	to	display	some	text	to	the	user.	The	screen
can	be	directly	accessed	using	the	video	memory	at	0xB8000.	The	screen	resolution	is
80x25	and	each	character	on	the	screen	is	defined	by	2	bytes:	one	for	the	character	code,
and	one	for	the	style	flag.	This	means	that	the	total	size	of	the	video	memory	is	4000B
(80B25B2B).

In	the	IO	class	(io.cc),:

x,y:	define	the	cursor	position	on	the	screen
real_screen:	define	the	video	memory	pointer
putc(char	c):	print	a	unique	character	on	the	screen	and	manage	cursor	position
printf(char*	s,	...):	print	a	string

We	add	a	method	putc	to	the	IO	Class	to	put	a	character	on	the	screen	and	update	the	(x,y)
position.

Base	classes	for	managing	x86	architecture
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/*	put	a	byte	on	screen	*/

void	Io::putc(char	c){

				kattr	=	0x07;

				unsigned	char	*video;

				video	=	(unsigned	char	*)	(real_screen+	2	*	x	+	160	*	y);

				//	newline

				if	(c	==	'\n')	{

								x	=	0;

								y++;

				//	back	space

				}	else	if	(c	==	'\b')	{

								if	(x)	{

												*(video	+	1)	=	0x0;

												x--;

								}

				//	horizontal	tab

				}	else	if	(c	==	'\t')	{

								x	=	x	+	8	-	(x	%	8);

				//	carriage	return

				}	else	if	(c	==	'\r')	{

								x	=	0;

				}	else	{

								*video	=	c;

								*(video	+	1)	=	kattr;

								x++;

								if	(x	>	79)	{

												x	=	0;

												y++;

								}

				}

				if	(y	>	24)

								scrollup(y	-	24);

}

We	also	add	a	useful	and	very	known	method:	printf

/*	put	a	string	in	screen	*/

void	Io::print(const	char	*s,	...){

				va_list	ap;

				char	buf[16];

				int	i,	j,	size,	buflen,	neg;

				unsigned	char	c;

				int	ival;

				unsigned	int	uival;

				va_start(ap,	s);

				while	((c	=	*s++))	{

Base	classes	for	managing	x86	architecture
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								size	=	0;

								neg	=	0;

								if	(c	==	0)

												break;

								else	if	(c	==	'%')	{

												c	=	*s++;

												if	(c	>=	'0'	&&	c	<=	'9')	{

																size	=	c	-	'0';

																c	=	*s++;

												}

												if	(c	==	'd')	{

																ival	=	va_arg(ap,	int);

																if	(ival	<	0)	{

																				uival	=	0	-	ival;

																				neg++;

																}	else

																				uival	=	ival;

																itoa(buf,	uival,	10);

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																if	(neg)

																				print("-%s",	buf);

																else

																				print(buf);

												}

													else	if	(c	==	'u')	{

																uival	=	va_arg(ap,	int);

																itoa(buf,	uival,	10);

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																print(buf);

												}	else	if	(c	==	'x'	||	c	==	'X')	{

																uival	=	va_arg(ap,	int);

																itoa(buf,	uival,	16);

																buflen	=	strlen(buf);

																if	(buflen	<	size)

Base	classes	for	managing	x86	architecture
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																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																print("0x%s",	buf);

												}	else	if	(c	==	'p')	{

																uival	=	va_arg(ap,	int);

																itoa(buf,	uival,	16);

																size	=	8;

																buflen	=	strlen(buf);

																if	(buflen	<	size)

																				for	(i	=	size,	j	=	buflen;	i	>=	0;

																									i--,	j--)

																								buf[i]	=

																												(j	>=

																													0)	?	buf[j]	:	'0';

																print("0x%s",	buf);

												}	else	if	(c	==	's')	{

																print((char	*)	va_arg(ap,	int));

												}

								}	else

												putc(c);

				}

				return;

}

Assembly	interface

A	large	number	of	instructions	are	available	in	Assembly	but	there	is	not	equivalent	in	C	(like
cli,	sti,	in	and	out),	so	we	need	an	interface	to	these	instructions.

In	C,	we	can	include	Assembly	using	the	directive	"asm()",	gcc	use	gas	to	compile	the
assembly.

Caution:	gas	uses	the	AT&T	syntax.

Base	classes	for	managing	x86	architecture
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/*	output	byte	*/

void	Io::outb(u32	ad,	u8	v){

				asmv("outb	%%al,	%%dx"	::	"d"	(ad),	"a"	(v));;

}

/*	output	word	*/

void	Io::outw(u32	ad,	u16	v){

				asmv("outw	%%ax,	%%dx"	::	"d"	(ad),	"a"	(v));

}

/*	output	word	*/

void	Io::outl(u32	ad,	u32	v){

				asmv("outl	%%eax,	%%dx"	:	:	"d"	(ad),	"a"	(v));

}

/*	input	byte	*/

u8	Io::inb(u32	ad){

				u8	_v;							\

				asmv("inb	%%dx,	%%al"	:	"=a"	(_v)	:	"d"	(ad));	\

				return	_v;

}

/*	input	word	*/

u16				Io::inw(u32	ad){

				u16	_v;												\

				asmv("inw	%%dx,	%%ax"	:	"=a"	(_v)	:	"d"	(ad));				\

				return	_v;

}

/*	input	word	*/

u32				Io::inl(u32	ad){

				u32	_v;												\

				asmv("inl	%%dx,	%%eax"	:	"=a"	(_v)	:	"d"	(ad));				\

				return	_v;

}

Base	classes	for	managing	x86	architecture
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Chapter	6:	GDT
Thanks	to	GRUB,	your	kernel	is	no	longer	in	real-mode,	but	already	in	protected	mode,	this
mode	allows	us	to	use	all	the	possibilities	of	the	microprocessor	such	as	virtual	memory
management,	paging	and	safe	multi-tasking.

What	is	the	GDT?

The	GDT	("Global	Descriptor	Table")	is	a	data	structure	used	to	define	the	different	memory
areas:	the	base	address,	the	size	and	access	privileges	like	execute	and	write.	These
memory	areas	are	called	"segments".

We	are	going	to	use	the	GDT	to	define	different	memory	segments:

"code":	kernel	code,	used	to	stored	the	executable	binary	code
"data":	kernel	data
"stack":	kernel	stack,	used	to	stored	the	call	stack	during	kernel	execution
"ucode":	user	code,	used	to	stored	the	executable	binary	code	for	user	program
"udata":	user	program	data
"ustack":	user	stack,	used	to	stored	the	call	stack	during	execution	in	userland

How	to	load	our	GDT?

GRUB	initializes	a	GDT	but	this	GDT	is	does	not	correspond	to	our	kernel.	The	GDT	is
loaded	using	the	LGDT	assembly	instruction.	It	expects	the	location	of	a	GDT	description
structure:

And	the	C	structure:

GDT
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struct	gdtr	{

				u16	limite;

				u32	base;

}	__attribute__	((packed));

Caution:	the	directive		__attribute__	((packed))		signal	to	gcc	that	the	structure	should	use
as	little	memory	as	possible.	Without	this	directive,	gcc	include	some	bytes	to	optimize	the
memory	alignment	and	the	access	during	execution.

Now	we	need	to	define	our	GDT	table	and	then	load	it	using	LGDT.	The	GDT	table	can	be
stored	wherever	we	want	in	memory,	its	address	should	just	be	signaled	to	the	process
using	the	GDTR	registry.

The	GDT	table	is	composed	of	segments	with	the	following	structure:

And	the	C	structure:

struct	gdtdesc	{

				u16	lim0_15;

				u16	base0_15;

				u8	base16_23;

				u8	acces;

				u8	lim16_19:4;

				u8	other:4;

				u8	base24_31;

}	__attribute__	((packed));

How	to	define	our	GDT	table?

We	need	now	to	define	our	GDT	in	memory	and	finally	load	it	using	the	GDTR	registry.

We	are	going	to	store	our	GDT	at	the	address:

#define	GDTBASE				0x00000800

GDT
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The	function	init_gdt_desc	in	x86.cc	initialize	a	gdt	segment	descriptor.

void	init_gdt_desc(u32	base,	u32	limite,	u8	acces,	u8	other,	struct	gdtdesc	*desc)

{

				desc->lim0_15	=	(limite	&	0xffff);

				desc->base0_15	=	(base	&	0xffff);

				desc->base16_23	=	(base	&	0xff0000)	>>	16;

				desc->acces	=	acces;

				desc->lim16_19	=	(limite	&	0xf0000)	>>	16;

				desc->other	=	(other	&	0xf);

				desc->base24_31	=	(base	&	0xff000000)	>>	24;

				return;

}

And	the	function	init_gdt	initialize	the	GDT,	some	parts	of	the	below	function	will	be
explained	later	and	are	used	for	multitasking.

GDT
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void	init_gdt(void)

{

				default_tss.debug_flag	=	0x00;

				default_tss.io_map	=	0x00;

				default_tss.esp0	=	0x1FFF0;

				default_tss.ss0	=	0x18;

				/*	initialize	gdt	segments	*/

				init_gdt_desc(0x0,	0x0,	0x0,	0x0,	&kgdt[0]);

				init_gdt_desc(0x0,	0xFFFFF,	0x9B,	0x0D,	&kgdt[1]);				/*	code	*/

				init_gdt_desc(0x0,	0xFFFFF,	0x93,	0x0D,	&kgdt[2]);				/*	data	*/

				init_gdt_desc(0x0,	0x0,	0x97,	0x0D,	&kgdt[3]);								/*	stack	*/

				init_gdt_desc(0x0,	0xFFFFF,	0xFF,	0x0D,	&kgdt[4]);				/*	ucode	*/

				init_gdt_desc(0x0,	0xFFFFF,	0xF3,	0x0D,	&kgdt[5]);				/*	udata	*/

				init_gdt_desc(0x0,	0x0,	0xF7,	0x0D,	&kgdt[6]);								/*	ustack	*/

				init_gdt_desc((u32)	&	default_tss,	0x67,	0xE9,	0x00,	&kgdt[7]);				/*	descripteur	

de	tss	*/

				/*	initialize	the	gdtr	structure	*/

				kgdtr.limite	=	GDTSIZE	*	8;

				kgdtr.base	=	GDTBASE;

				/*	copy	the	gdtr	to	its	memory	area	*/

				memcpy((char	*)	kgdtr.base,	(char	*)	kgdt,	kgdtr.limite);

				/*	load	the	gdtr	registry	*/

				asm("lgdtl	(kgdtr)");

				/*	initiliaz	the	segments	*/

				asm("			movw	$0x10,	%ax				\n	\

												movw	%ax,	%ds				\n	\

												movw	%ax,	%es				\n	\

												movw	%ax,	%fs				\n	\

												movw	%ax,	%gs				\n	\

												ljmp	$0x08,	$next				\n	\

												next:								\n");

}

GDT
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Chapter	7:	IDT	and	interrupts
An	interrupt	is	a	signal	to	the	processor	emitted	by	hardware	or	software	indicating	an	event
that	needs	immediate	attention.

There	are	3	types	of	interrupts:

Hardware	interrupts:	are	sent	to	the	processor	from	an	external	device	(keyboard,
mouse,	hard	disk,	...).	Hardware	interrupts	were	introduced	as	a	way	to	reduce	wasting
the	processor's	valuable	time	in	polling	loops,	waiting	for	external	events.
Software	interrupts:	are	initiated	voluntarily	by	the	software.	It's	used	to	manage
system	calls.
Exceptions:	are	used	for	errors	or	events	occurring	during	program	execution	that	are
exceptional	enough	that	they	cannot	be	handled	within	the	program	itself	(division	by
zero,	page	fault,	...)

The	keyboard	example:

When	the	user	pressed	a	key	on	the	keyboard,	the	keyboard	controller	will	signal	an
interrupt	to	the	Interrupt	Controller.	If	the	interrupt	is	not	masked,	the	controller	will	signal	the
interrupt	to	the	processor,	the	processor	will	execute	a	routine	to	manage	the	interrupt	(key
pressed	or	key	released),	this	routine	could,	for	example,	get	the	pressed	key	from	the
keyboard	controller	and	print	the	key	to	the	screen.	Once	the	character	processing	routine	is
completed,	the	interrupted	job	can	be	resumed.

What	is	the	PIC?

The	PIC	(Programmable	interrupt	controller)is	a	device	that	is	used	to	combine	several
sources	of	interrupt	onto	one	or	more	CPU	lines,	while	allowing	priority	levels	to	be	assigned
to	its	interrupt	outputs.	When	the	device	has	multiple	interrupt	outputs	to	assert,	it	asserts
them	in	the	order	of	their	relative	priority.

The	best	known	PIC	is	the	8259A,	each	8259A	can	handle	8	devices	but	most	computers
have	two	controllers:	one	master	and	one	slave,	this	allows	the	computer	to	manage
interrupts	from	14	devices.

In	this	chapter,	we	will	need	to	program	this	controller	to	initialize	and	mask	interrupts.

What	is	the	IDT?

IDT	and	interrupts
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The	Interrupt	Descriptor	Table	(IDT)	is	a	data	structure	used	by	the	x86	architecture	to
implement	an	interrupt	vector	table.	The	IDT	is	used	by	the	processor	to	determine	the
correct	response	to	interrupts	and	exceptions.

Our	kernel	is	going	to	use	the	IDT	to	define	the	different	functions	to	be	executed	when	an
interrupt	occurred.

Like	the	GDT,	the	IDT	is	loaded	using	the	LIDTL	assembly	instruction.	It	expects	the	location
of	a	IDT	description	structure:

struct	idtr	{

				u16	limite;

				u32	base;

}	__attribute__	((packed));

The	IDT	table	is	composed	of	IDT	segments	with	the	following	structure:

struct	idtdesc	{

				u16	offset0_15;

				u16	select;

				u16	type;

				u16	offset16_31;

}	__attribute__	((packed));

Caution:	the	directive		__attribute__	((packed))		signal	to	gcc	that	the	structure	should	use
as	little	memory	as	possible.	Without	this	directive,	gcc	includes	some	bytes	to	optimize	the
memory	alignment	and	the	access	during	execution.

Now	we	need	to	define	our	IDT	table	and	then	load	it	using	LIDTL.	The	IDT	table	can	be
stored	wherever	we	want	in	memory,	its	address	should	just	be	signaled	to	the	process
using	the	IDTR	registry.

Here	is	a	table	of	common	interrupts	(Maskable	hardware	interrupt	are	called	IRQ):

IDT	and	interrupts
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IRQ Description

0 Programmable	Interrupt	Timer	Interrupt

1 Keyboard	Interrupt

2 Cascade	(used	internally	by	the	two	PICs.	never	raised)

3 COM2	(if	enabled)

4 COM1	(if	enabled)

5 LPT2	(if	enabled)

6 Floppy	Disk

7 LPT1

8 CMOS	real-time	clock	(if	enabled)

9 Free	for	peripherals	/	legacy	SCSI	/	NIC

10 Free	for	peripherals	/	SCSI	/	NIC

11 Free	for	peripherals	/	SCSI	/	NIC

12 PS2	Mouse

13 FPU	/	Coprocessor	/	Inter-processor

14 Primary	ATA	Hard	Disk

15 Secondary	ATA	Hard	Disk

How	to	initialize	the	interrupts?

This	is	a	simple	method	to	define	an	IDT	segment

void	init_idt_desc(u16	select,	u32	offset,	u16	type,	struct	idtdesc	*desc)

{

				desc->offset0_15	=	(offset	&	0xffff);

				desc->select	=	select;

				desc->type	=	type;

				desc->offset16_31	=	(offset	&	0xffff0000)	>>	16;

				return;

}

And	we	can	now	initialize	the	interupts:

#define	IDTBASE				0x00000000

#define	IDTSIZE	0xFF

idtr	kidtr;

IDT	and	interrupts
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void	init_idt(void)

{

				/*	Init	irq	*/

				int	i;

				for	(i	=	0;	i	<	IDTSIZE;	i++)

								init_idt_desc(0x08,	(u32)_asm_schedule,	INTGATE,	&kidt[i]);	//

				/*	Vectors		0	->	31	are	for	exceptions	*/

				init_idt_desc(0x08,	(u32)	_asm_exc_GP,	INTGATE,	&kidt[13]);								/*	#GP	*/

				init_idt_desc(0x08,	(u32)	_asm_exc_PF,	INTGATE,	&kidt[14]);					/*	#PF	*/

				init_idt_desc(0x08,	(u32)	_asm_schedule,	INTGATE,	&kidt[32]);

				init_idt_desc(0x08,	(u32)	_asm_int_1,	INTGATE,	&kidt[33]);

				init_idt_desc(0x08,	(u32)	_asm_syscalls,	TRAPGATE,	&kidt[48]);

				init_idt_desc(0x08,	(u32)	_asm_syscalls,	TRAPGATE,	&kidt[128]);	//48

				kidtr.limite	=	IDTSIZE	*	8;

				kidtr.base	=	IDTBASE;

				/*	Copy	the	IDT	to	the	memory	*/

				memcpy((char	*)	kidtr.base,	(char	*)	kidt,	kidtr.limite);

				/*	Load	the	IDTR	registry	*/

				asm("lidtl	(kidtr)");

}

After	intialization	of	our	IDT,	we	need	to	activate	interrupts	by	configuring	the	PIC.	The
following	function	will	configure	the	two	PICs	by	writting	in	their	internal	registries	using	the
output	ports	of	the	processor		io.outb	.	We	configure	the	PICs	using	the	ports:

Master	PIC:	0x20	and	0x21
Slave	PIC:	0xA0	and	0xA1

For	a	PIC,	there	are	2	types	of	registries:

ICW	(Initialization	Command	Word):	reinit	the	controller
OCW	(Operation	Control	Word):	configure	the	controller	once	initialized	(used	to
mask/unmask	the	interrupts)

IDT	and	interrupts
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void	init_pic(void)

{

				/*	Initialization	of	ICW1	*/

				io.outb(0x20,	0x11);

				io.outb(0xA0,	0x11);

				/*	Initialization	of	ICW2	*/

				io.outb(0x21,	0x20);				/*	start	vector	=	32	*/

				io.outb(0xA1,	0x70);				/*	start	vector	=	96	*/

				/*	Initialization	of	ICW3	*/

				io.outb(0x21,	0x04);

				io.outb(0xA1,	0x02);

				/*	Initialization	of	ICW4	*/

				io.outb(0x21,	0x01);

				io.outb(0xA1,	0x01);

				/*	mask	interrupts	*/

				io.outb(0x21,	0x0);

				io.outb(0xA1,	0x0);

}

PIC	ICW	configurations	details

The	registries	have	to	be	configured	in	order.

ICW1	(port	0x20	/	port	0xA0)

|0|0|0|1|x|0|x|x|

									|			|	+---	with	ICW4	(1)	or	without	(0)

									|			+-----	one	controller	(1),	or	cascade	(0)

									+---------	triggering	by	level	(level)	(1)	or	by	edge	(edge)	(0)

ICW2	(port	0x21	/	port	0xA1)

|x|x|x|x|x|0|0|0|

	|	|	|	|	|

	+-----------------	base	address	for	interrupts	vectors

ICW2	(port	0x21	/	port	0xA1)

For	the	master:
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|x|x|x|x|x|x|x|x|

	|	|	|	|	|	|	|	|

	+------------------	slave	controller	connected	to	the	port	yes	(1),	or	no	(0)

For	the	slave:

|0|0|0|0|0|x|x|x|		pour	l'esclave

											|	|	|

											+--------	Slave	ID	which	is	equal	to	the	master	port

ICW4	(port	0x21	/	port	0xA1)

It	is	used	to	define	in	which	mode	the	controller	should	work.

|0|0|0|x|x|x|x|1|

							|	|	|	+------	mode	"automatic	end	of	interrupt"	AEOI	(1)

							|	|	+--------	mode	buffered	slave	(0)	or	master	(1)

							|	+----------	mode	buffered	(1)

							+------------	mode	"fully	nested"	(1)

Why	do	idt	segments	offset	our	ASM	functions?

You	should	have	noticed	that	when	I'm	initializing	our	IDT	segments,	I'm	using	offsets	to
segment	the	code	in	Assembly.	The	different	functions	are	defined	in	x86int.asm	and	are	of
the	following	scheme:

IDT	and	interrupts
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%macro				SAVE_REGS	0

				pushad

				push	ds

				push	es

				push	fs

				push	gs

				push	ebx

				mov	bx,0x10

				mov	ds,bx

				pop	ebx

%endmacro

%macro				RESTORE_REGS	0

				pop	gs

				pop	fs

				pop	es

				pop	ds

				popad

%endmacro

%macro				INTERRUPT	1

global	_asm_int_%1

_asm_int_%1:

				SAVE_REGS

				push	%1

				call	isr_default_int

				pop	eax				;;a	enlever	sinon

				mov	al,0x20

				out	0x20,al

				RESTORE_REGS

				iret

%endmacro

These	macros	will	be	used	to	define	the	interrupt	segment	that	will	prevent	corruption	of	the
different	registries,	it	will	be	very	useful	for	multitasking.
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Chapter	8:	Theory:	physical	and	virtual
memory
In	the	chapter	related	to	the	GDT,	we	saw	that	using	segmentation	a	physical	memory
address	is	calculated	using	a	segment	selector	and	an	offset.

In	this	chapter,	we	are	going	to	implement	paging,	paging	will	translate	a	linear	address	from
segmentation	into	a	physical	address.

Why	do	we	need	paging?

Paging	will	allow	our	kernel	to:

use	the	hard-drive	as	a	memory	and	not	be	limited	by	the	machine	ram	memory	limit
to	have	a	unique	memory	space	for	each	process
to	allow	and	unallow	memory	space	in	a	dynamic	way

In	a	paged	system,	each	process	may	execute	in	its	own	4gb	area	of	memory,	without	any
chance	of	effecting	any	other	process's	memory,	or	the	kernel's.	It	simplifies	multitasking.

How	does	it	work?

The	translation	of	a	linear	address	to	a	physical	address	is	done	in	multiple	steps:

1.	 The	processor	use	the	registry		CR3		to	know	the	physical	address	of	the	pages
directory.

2.	 The	first	10	bits	of	the	linear	address	represent	an	offset	(between	0	and	1023),	pointing
to	an	entry	in	the	pages	directory.	This	entry	contains	the	physical	address	of	a	pages
table.

3.	 the	next	10	bits	of	the	linear	address	represent	an	offset,	pointing	to	an	entry	in	the
pages	table.	This	entry	is	pointing	to	a	4ko	page.

4.	 The	last	12	bits	of	the	linear	address	represent	an	offset	(between	0	and	4095),	which
indicates	the	position	in	the	4ko	page.
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Format	for	pages	table	and	directory

The	two	types	of	entries	(table	and	directory)	look	like	the	same.	Only	the	field	in	gray	will	be
used	in	our	OS.

	P	:	indicate	if	the	page	or	table	is	in	physical	memory
	R/W	:	indicate	if	the	page	or	table	is	accessible	in	writting	(equals	1)
	U/S	:	equals	1	to	allow	access	to	non-preferred	tasks
	A	:	indicate	if	the	page	or	table	was	accessed
	D	:	(only	for	pages	table)	indicate	if	the	page	was	written
	PS		(only	for	pages	directory)	indicate	the	size	of	pages:

0	=	4kb
1	=	4mb

Note:	Physical	addresses	in	the	pages	diretcory	or	pages	table	are	written	using	20	bits
because	these	addresses	are	aligned	on	4kb,	so	the	last	12bits	should	be	equal	to	0.

A	pages	directory	or	pages	table	used	1024*4	=	4096	bytes	=	4k
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A	pages	table	can	address	1024	*	4k	=	4	Mb
A	pages	directory	can	address	1024	(1024	4k)	=	4	Gb

How	to	enable	pagination?

To	enable	pagination,	we	just	need	to	set	bit	31	of	the		CR0	registry	to	1:

asm("		mov	%%cr0,	%%eax;	\

							or	%1,	%%eax;					\

							mov	%%eax,	%%cr0"	\

							::	"i"(0x80000000));

But	before,	we	need	to	initialize	our	pages	directory	with	at	least	one	pages	table.

Identity	Mapping

With	the	identity	mapping	model,	the	page	will	apply	only	to	the	kernel	as	the	first	4	MB	of
virtual	memory	coincide	with	the	first	4	MB	of	physical	memory:

This	model	is	simple:	the	first	virtual	memory	page	coincide	to	the	first	page	in	physical
memory,	the	second	page	coincide	to	the	second	page	on	physical	memory	and	so	on	...
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Memory	management:	physical	and	virtual
The	kernel	knows	the	size	of	the	physical	memory	available	thanks	to	GRUB.

In	our	implementation,	the	first	8	megabytes	of	physical	memory	will	be	reserved	for	use	by
the	kernel	and	will	contain:

The	kernel
GDT,	IDT	et	TSS
Kernel	Stack
Some	space	reserved	to	hardware	(video	memory,	...)
Page	directory	and	pages	table	for	the	kernel

The	rest	of	the	physical	memory	is	freely	available	to	the	kernel	and	applications.

Virtual	Memory	Mapping

The	address	space	between	the	beginning	of	memory	and		0x40000000		address	is	the	kernel
space,	while	the	space	between	the	address		0x40000000		and	the	end	of	the	memory
corresponds	to	user	space:
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The	kernel	space	in	virtual	memory,	which	is	using	1Gb	of	virtual	memory,	is	common	to	all
tasks	(kernel	and	user).

This	is	implemented	by	pointing	the	first	256	entries	of	the	task	page	directory	to	the	kernel
page	directory	(In	vmm.cc):

/*	

	*	Kernel	Space.	v_addr	<	USER_OFFSET	are	addressed	by	the	kernel	pages	table

	*/

for	(i=0;	i<256;	i++)	

				pdir[i]	=	pd0[i];
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https://github.com/SamyPesse/How-to-Make-a-Computer-Operating-System/blob/master/src/kernel/arch/x86/vmm.cc#L204
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