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What is learning?
• Learning => improving with experience
• Learning Agent = Performance Element

+ Learning Element
• Performance element decides what actions 

to take
• e.g., identify this image
• e.g., choose a move in this game

• Learning element modifies performance 
element so that it makes better decisions
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Learning agent design
• Which components of the performance 

element are to be learned?
• What feedback is available to learn these 

components?
• What representation is to be used for the 

components?
• How is performance to be measured (i.e., 

what is meant by better decisions?)
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Wide range of possible goals
• Given a set of data, find potentially 

predictive patterns in it
• data mining
• scientific discovery

• As a result of acquiring new data, gain 
knowledge allowing an agent to exploit its 
environment
• robot navigation
• acquisition of new knowledge may be passive or 

active (e.g., exploration or queries)
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• Given experience in some problem domain, 
improve performance in it
• game-playing
• robotics

• Rote learning qualifies, but more interesting 
and challenging aspect is to be able to 
generalize successfully beyond actual 
experiences
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Learning vs. programming
• Learning is essential for unknown 

environments, i.e., when designer lacks 
omniscience

• Learning is essential in changing 
environments

• Learning is useful as a system construction 
method
• expose the agent to reality rather than trying to 

write it down
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Application examples
• Robot control
• Playing a game
• Recognizing handwritten digits
• Various bioinformatics applications
• Filtering email (e.g., spam detection)
• Intelligent user interfaces
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Relevant Disciplines
• Artificial intelligence
• Probability & statistics
• Control theory
• Computational complexity
• Philosophy
• Psychology
• Neurobiology
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3 categories of learning problem
• Supervised learning
• Unsupervised learning
• Reinforcement learning

Not an exhaustive list

Not necessarily mutually exclusive
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Supervised Learning
• Also called inductive inference
• Given training data {(xi,yi)}, where yi = f(xi) 

for some unknown function f : X -> Y, find 
an approximation h to f
• called a classification problem if Y is a small 

discrete set (e.g., {+, -})
• called a regression problem if Y is a continuous 

set (e.g., a subset of R)

• More realistic, but harder: each observed yi
is a noise-corrupted approximation to f(xi)
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• X called the instance space
• Construct/adjust h to agree with f on 

training set
• h is consistent if it agrees with f on all 

training examples
• inappropriate if noise assumed present 

• If Y = {+, -}, define {x ε X | f(x)=+}, the 
set of all positive instances, to be a concept

• Thus 2-class classification problems may 
also be called concept learning problems
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Classification (supervised)
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Regression (supervised)
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Regression
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Regression
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Regression
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Regression
Which curve is “best”?
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Unsupervised Learning
• Have an instance space X
• Possible objectives

• clustering
• characterize distribution
• principal component analysis

• One possible use: novelty detection
“This newly observed instance is different”

• Also includes such things as association 
rules in data mining
“People who buy diapers tend to also buy beer”
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Unsupervised

Instance Space X = R2

Unlabeled Data
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But also ...

Instance Space X = R2

Target Space Y = {+, -}
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Overfitting
• Especially applicable in supervised learning, 

but may also appear in other types of 
learning problems

• Often manifests itself by having the learner 
perform worse on test data even as it gets 
better at fitting the training data

• There are practical techniques as well as 
theoretical approaches for trying to avoid 
this problem
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Performance measurement for 
supervised learning

• How do we know that h ≈ f? (Hume's 
Problem of Induction)
• use theorems of computational/statistical 

learning theory, or
• try h on a new test set of examples (using same 

distribution over instance space as training set)

• Learning curve = % correct on test set as a 
function of training set size
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• Learning curve depends on
• realizable (can express target function) vs.

non-realizable
• non-realizability can be due to missing attributes or 

restricted hypothesis class that excludes true 
hypothesis (called selection bias)

• redundant expressiveness (e.g., many irrelevant 
attributes)

• size of hypothesis space
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• Occam's razor: maximize a combination of 
consistency and simplicity
• in this form, just an informal principle
• involves a trade-off

• Attempts to formalize this
• penalize “more complex” hypotheses
• Minimum Description Length
• Kolmogorov complexity

• Alternative: Bayesian approach
• start with a priori distribution over hypotheses
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Reinforcement Learning
• Applies to choosing sequences of actions to 

obtain a good long-term outcome
• game-playing
• controlling dynamical systems

• Key feature is that system not told directly 
how to behave, only given a performance 
score
“That was good/bad”
“That was worth a 9.5”
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Issues for a learning system designer
• How to represent performance element inputs and 

outputs
• symbolic
• logical expressions
• numerical
• attribute vectors

• How to represent the input/output mapping
• artificial neural network
• decision tree
• Bayes network
• general computer program

• What kind of prior knowledge to use and how to 
represent it and/or take advantage of it during 
learning
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• Contrasting representations of X (and Y and 
h, if applicable)
• symbolic, with logical rules (e.g., X = shapes 

with size and color specified)
• e.g., instances: 

(Shape=circle)^(Size=large)^(Color=red)
• e.g., rules:

IF (shape=circle)^(size=large) THEN 
(interesting=yes)
IF (shape=square)^(color=green) THEN
(interesting = no)

• numeric
• e.g., points in Euclidean space Rn
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Learning as search through a 
hypothesis space H

• Inductive bias
• Selection bias: only hypotheses h ε H are 

allowed
• Preference bias: H includes all possible 

hypotheses, but if more than one fits the data, 
choose the “best” among these (e.g., Occam’s 
razor: simpler hypotheses are better)

• Selection bias leads to less of an overfitting
problem, but runs the risk of eliminating the 
true hypothesis (i.e., true hypothesis is 
unrealizable in H)
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Selection bias example
• H = pure conjunctive concepts in some 

attribute/value description language
• (Shape=square)^(Size=large)
• (Shape=circle)^(Size=small)^(Color=red)
• Boolean: A^~B (equivalent to 

(A=true)^(B=false)

• Description of all positive instances 
restricted to have this form
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Another selection bias example
• H = space of all linear separators in the 

plane

+

-
Separating line can be 

anywhere, and 
either side can be 
the + side

Such a separator can be specified by 3 real numbers
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Hypothesis space size
How many distinct Boolean functions of n Boolean attributes?
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Hypothesis space size
How many distinct Boolean functions of n Boolean attributes?
= number of distinct truth tables with 2n rows = 22n
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Hypothesis space size
How many distinct Boolean functions of n Boolean attributes?
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 different possible Boolean 
hypotheses
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Hypothesis space size
How many distinct Boolean functions of n Boolean attributes?
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 different possible Boolean 
hypotheses

How many purely conjunctive concepts over n Boolean
attributes?
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Hypothesis space size
How many distinct Boolean functions of n Boolean attributes?
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 different possible Boolean 
hypotheses

How many purely conjunctive concepts over n Boolean
attributes?

Each attribute can be required to be true, required to be false,
or ignored, so 3n distinct purely conjunctive hypotheses
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Hypothesis space size
How many distinct Boolean functions of n Boolean attributes?
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 different possible Boolean 
hypotheses

How many purely conjunctive concepts over n Boolean
attributes?

Each attribute can be required to be true, required to be false,
or ignored, so 3n distinct purely conjunctive hypotheses

More expressive hypothesis space
• increases chance that target function can be expressed
• increases number of hypotheses consistent w/ training set   

so may get worse predictions
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Hypothesis space size (cont.)
How many distinct linear separators in n-dimensional

Euclidean space?



21

Introduction: Slide 41CSG220: Machine Learning

Hypothesis space size (cont.)
How many distinct linear separators in n-dimensional

Euclidean space?
Infinitely many
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Hypothesis space size (cont.)
How many distinct linear separators in n-dimensional

Euclidean space?
Infinitely many
How many distinct quadratic separators in n-dimensional

Euclidean space (e.g., with quadratic curves as separators 
in R2)?
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Hypothesis space size (cont.)
How many distinct linear separators in n-dimensional

Euclidean space?
Infinitely many
How many distinct quadratic separators in n-dimensional

Euclidean space (e.g., with quadratic curves as separators 
in R2)?

Infinitely many
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Hypothesis space size (cont.)
How many distinct linear separators in n-dimensional

Euclidean space?
Infinitely many
How many distinct quadratic separators in n-dimensional

Euclidean space (e.g., with quadratic curves as separators 
in R2)?

Infinitely many
It’s clear that allowing more complex separators gives rise to 

a more expressive hypothesis space, but a simple count of 
hypotheses doesn’t measure it
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Hypothesis space size (cont.)
How many distinct linear separators in n-dimensional

Euclidean space?
Infinitely many
How many distinct quadratic separators in n-dimensional

Euclidean space (e.g., with quadratic curves as separators 
in R2)?

Infinitely many
It’s clear that allowing more complex separators gives rise to 

a more expressive hypothesis space, but a simple count of 
hypotheses doesn’t measure it

But there is a measure of hypothesis space size that applies 
even to these infinite hypothesis spaces: 
Vapnik-Chervonenkis (VC) dimension

Preview of coming 
attractions


