
Makefile

Makefile

 i

About the Tutorial

Makefile is a program building tool which runs on Unix, Linux, and their flavors. It

aids in simplifying building program executables that may need various

modules. To determine how the modules need to be compiled or recompiled

together, make takes the help of user-defined makefiles. This tutorial should

enhance your knowledge about the structure and utility of makefile.

Audience

Makefile guides the make utility while compiling and linking program

modules. Anyone who wants to compile their programs using the make utility

and wants to gain knowledge on makefile should read this tutorial.

Prerequisites

This tutorial expects good understanding of programming language such as C and

C++. The reader is expected to have knowledge of linking, loading concepts, and

how to compile and execute programs in Unix/Linux environment.

Disclaimer & Copyright

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher. We strive to update the contents

of our website and tutorials as timely and as precisely as possible, however, the

contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides

no guarantee regarding the accuracy, timeliness or completeness of our website

or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Makefile

 ii

 Contents

About the Tutorial ... i

Audience ... i

Prerequisites ... i

Disclaimer & Copyright .. i

Contents ... ii

1. WHY MAKEFILE? ... 1

2. MACROS ... 3

Special Macros .. 3

Conventional Macros .. 4

3. DEPENDENCIES ... 7

4. RULES ... 8

Makefile Implicit Rules ... 9

5. SUFFIX RULES ... 10

6. DIRECTIVES ... 11

Conditional Directives .. 11

Syntax of Conditionals Directives ... 11

include Directive ... 13

override Directive ... 13

7. RECOMPILATION .. 14

Avoiding Recompilation .. 14

8. OTHER FEATURES ... 15

Recursive Use of Make ... 15

Communicating Variables to a Sub-make ... 15

The Variable MAKEFILES ... 16

Makefile

 iii

Including Header File from Different Directories .. 16

Appending More Text to Variables ... 16

Continution Line in Makefile... 17

Running Makefile from Command Prompt ... 17

9. EXAMPLE .. 18

Makefile

 1

Compiling the source code files can be tiring, especially when you have to include

several source files and type the compiling command everytime you need to

compile. Makefiles are the solution to simplify this task.

Makefiles are special format files that help build and manage the projects

automatically.
For example, let’s assume we have the following source files.

 main.cpp

 hello.cpp

 factorial.cpp

 functions.h

main.cpp:

#include <iostream.h>

#include "functions.h"

int main(){

 print_hello();

 cout << endl;

 cout << "The factorial of 5 is " << factorial(5) << endl;

 return 0;

}

hello.cpp:

#include <iostream.h>

#include "functions.h"

void print_hello(){

 cout << "Hello World!";

}

1. WHY MAKEFILE?

Makefile

 2

factorial.cpp:

#include "functions.h"

int factorial(int n){

 if(n!=1){

 return(n * factorial(n-1));

 }

 else return 1;

}

functions.h:

void print_hello();

int factorial(int n);

The trivial way to compile the files and obtain an executable is by running the

command:

CC main.cpp hello.cpp factorial.cpp -o hello

This command generates hello binary. In this example, we have only four files and

we know the sequence of the function calls. Hence, it is feasible to type the above

command and prepare a final binary.

However, for a large project where we have thousands of source code files, it

becomes difficult to maintain the binary builds.

The make command allows you to manage large programs or groups of programs.

As you begin to write large programs, you notice that re-compiling large programs

takes longer time than re-compiling short programs. Moreover, you notice that you

usually only work on a small section of the program such as a single function, and

much of the remaining program is unchanged.

In the subsequent section, we see how to prepare a makefile for our project.

Makefile

 3

The make program allows you to use macros, which are similar to variables. Macros

are defined in a Makefile as = pairs. For example,

MACROS= -me

PSROFF= groff -Tps

DITROFF= groff -Tdvi

CFLAGS= -O -systype bsd43

LIBS = "-lncurses -lm -lsdl"

MYFACE = ":*)"

Special Macros

Before issuing any command in a target rule set, there are certain special macros

predefined:

 $@ is the name of the file to be made.

 $? is the names of the changed dependents.

For example, we could use a rule as follows:

hello: main.cpp hello.cpp factorial.cpp

 $(CC) $(CFLAGS) $? $(LDFLAGS) -o $@

alternatively:

hello: main.cpp hello.cpp factorial.cpp

 $(CC) $(CFLAGS) $@.cpp $(LDFLAGS) -o $@

In this example, $@ represents hello and $? or $@.cpp picks up all the changed

source files.

There are two more special macros used in the implicit rules. They are:

 $< the name of the related file that caused the action.

 $* the prefix shared by target and dependent files.

Common implicit rule is for the construction of .o (object) files out of .cpp (source

files).

2. MACROS

Makefile

 4

.o.cpp:

 $(CC) $(CFLAGS) -c $<

alternatively:

.o.cpp:

 $(CC) $(CFLAGS) -c $*.c

Conventional Macros

There are various default macros. You can see them by typing "make -p" to print out

the defaults. Most are pretty obvious from the rules in which they are used.

These predefined variables, i.e., macros used in implicit rules fall into two classes:

1. Macros that are names of programs (such as CC)

2. Macros that contain arguments of the programs (such as CFLAGS).

Here is a table of some of the common variables used as names of programs in built-

in rules of makefiles.

AR Archive-maintaining program; default is 'ar'.

AS Program for compiling assembly files; default is 'as'.

CC Program for compiling C programs; default is 'cc'.

CO Program for checking out files from RCS; default is 'co'.

CXX Program for compiling C++ programs; default is 'g++'.

CPP Program for running the C preprocessor, with results to standard

output; default is '$(CC) -E'.

FC Program for compiling or preprocessing Fortran and Ratfor

programs; default is 'f77'.

GET Program for extracting a file from SCCS; default is 'get'.

LEX Program to use to turn Lex grammars into source code; default is

'lex'.

Makefile

 5

YACC Program to use to turn Yacc grammars into source code; default is

'yacc'.

LINT Program to use to run lint on source code; default is 'lint'.

M2C Program to use to compile Modula-2 source code; default is 'm2c'.

PC Program for compiling Pascal programs; default is 'pc'.

MAKEINFO Program to convert a Texinfo source file into an Info file; default is

'makeinfo'.

TEX Program to make TeX dvi files from TeX source; default is 'tex'.

TEXI2DVI Program to make TeX dvi files from Texinfo source; default is

'texi2dvi'.

WEAVE Program to translate Web into TeX; default is 'weave'.

CWEAVE Program to translate C Web into TeX; default is 'cweave'.

TANGLE Program to translate Web into Pascal; default is 'tangle'.

CTANGLE Program to translate C Web into C; default is 'ctangle'.

RM Command to remove a file; default is 'rm -f'.

Here is a table of variables whose values are additional arguments for the programs

above. The default values for all of these is the empty string, unless otherwise noted.

ARFLAGS Flags to give the archive-maintaining program; default is 'rv'.

ASFLAGS Extra flags to give to the assembler when explicitly invoked on a

'.s' or '.S' file.

CFLAGS Extra flags to give to the C compiler.

CXXFLAGS Extra flags to give to the C compiler.

Makefile

 6

COFLAGS Extra flags to give to the RCS co program.

CPPFLAGS Extra flags to give to the C preprocessor and programs, which use

it (such as C and Fortran compilers).

FFLAGS Extra flags to give to the Fortran compiler.

GFLAGS Extra flags to give to the SCCS get program.

LDFLAGS Extra flags to give to compilers when they are supposed to invoke

the linker, 'ld'.

LFLAGS Extra flags to give to Lex.

YFLAGS Extra flags to give to Yacc.

PFLAGS Extra flags to give to the Pascal compiler.

RFLAGS Extra flags to give to the Fortran compiler for Ratfor programs.

LINTFLAGS Extra flags to give to lint.

NOTE: You can cancel all variables used by implicit rules with the '-R' or '--no-builtin-

variables' option.

You can also define macros at the command line as shown below:

 make CPP = /home/courses/cop4530/spring02

Makefile

 7

It is very common that a final binary will be dependent on various source code and

source header files. Dependencies are important because they let the make know

about the source for any target. Consider the following example:

hello: main.o factorial.o hello.o

 $(CC) main.o factorial.o hello.o -o hello

Here, we tell the make that hello is dependent on main.o, factorial.o, and hello.o

files. Hence, whenever there is a change in any of these object files, make will take

action.

At the same time, we need to tell the make how to prepare .o files. Hence, we need

to define those dependencies also as follows:

main.o: main.cpp functions.h

 $(CC) -c main.cpp

factorial.o: factorial.cpp functions.h

 $(CC) -c factorial.cpp

hello.o: hello.cpp functions.h

 $(CC) -c hello.cpp

3. DEPENDENCIES

Makefile

 8

The general syntax of a Makefile target rule is:

 target [target...] : [dependent]

 [command ...]

Arguments in brackets are optional, ellipsis means one or more. Note the tab to

preface each command is required.

A simple example is given below where you define a rule to make your target hello

from three other files.

hello: main.o factorial.o hello.o

 $(CC) main.o factorial.o hello.o -o hello

NOTE: In this example, you would have to give rules to make all object files from

the source files.

The semantics is pretty simple. When you say "make target", the make finds the

target rule that applies and if any of the dependents are newer than the target, the

make executes the commands one at a time (after macro substitution). If any

dependents have to be made, that happens first (so you have a recursion.

A make will terminate if any command returns a failure status. That's why you see

rules like:

clean:

 -rm *.o *~ core paper

Make ignores the returned status on command lines that begin with a dash. For

example, who cares if there is no core file?

Make echoes the commands, after macro substitution to show you what is happening

as it happens. Sometimes you might want to turn that off. For example:

install:

 @echo You must be root to install

People have come to expect certain targets in Makefiles. You should always browse

first. However, it is reasonable to expect that the targets all (or just make), install,

and clean is found.

 make all – It compiles everything so that you can do local testing before

installing applications.

 make install – It installs applications at right places.

4. RULES

Makefile

 9

 make clean – It cleans applications up, gets rid of the executables, any
temporary files, object files, etc.

Makefile Implicit Rules

The command is one that ought to work in all cases where we build an executable x

out of the source code x.cpp. This can be stated as an implicit rule:

.cpp:

 $(CC) $(CFLAGS) $@.cpp $(LDFLAGS) -o $@

This Implicit rule says how to make x out of x.c -- run cc on x.c and call the output

x. The rule is implicit because no particular target is mentioned. It can be used in all

cases.

Another common implicit rule is for the construction of .o (object) files out of .cpp

(source files).

.o.cpp:

 $(CC) $(CFLAGS) -c $<

Alternatively:

.o.cpp:

 $(CC) $(CFLAGS) -c $*.cpp

Makefile

 10

By itself, make already knows that in order to create a.o file, it must use cc -c on

the corresponding .c file. These rules are built into the make, and you can take their

advantage to shorten your Makefile. If you indicate just the .h files in the dependency

line of the Makefile that the current target is dependent on, make will know that the

corresponding .cfile is already required. You do not even need to include the

command for the compiler.

This reduces the Makefile further, as shown:

OBJECTS = main.o hello.o factorial.o

hello: $(OBJECTS)

 cc $(OBJECTS) -o hello

hellp.o: functions.h

main.o: functions.h

factorial.o: functions.h

Make uses a special target, named .SUFFIXES to allow you to define your own

suffixes. For example, refer the dependency line:

.SUFFIXES: .foo .bar

It informs the make that you will be using these special suffixes to make your own

rules.

Similar to how make already knows how to make a .o file from a .c file, you can

define rules in the following manner:

.foo.bar:

 tr '[A-Z][a-z]' '[N-Z][A-M][n-z][a-m]' < $< > $@

.c.o:

 $(CC) $(CFLAGS) -c $<

The first rule allows you to create a .bar file from a .foo file. It basically scrambles

the file. The second rule is the default rule used by make to create a.o file from

a .c file.

5. SUFFIX RULES

Makefile

 11

There are numerous directives available in various forms. The make program on

your system may not support all the directives. So please check if your make

supports the directives we are explaining here. GNU make supports these directives.

Conditional Directives

The conditional directives are:

 The ifeq directive begins the conditional, and specifies the condition. It
contains two arguments, separated by a comma and surrounded by

parentheses. Variable substitution is performed on both arguments and then
they are compared. The lines of the makefile following the ifeq are obeyed if
the two arguments match; otherwise they are ignored.

 The ifneq directive begins the conditional, and specifies the condition. It
contains two arguments, separated by a comma and surrounded by

parentheses. Variable substitution is performed on both arguments and then
they are compared. The lines of the makefile following the ifneq are obeyed if
the two arguments do not match; otherwise they are ignored.

 The ifdef directive begins the conditional, and specifies the condition. It
contains single argument. If the given argument is true then condition

becomes true.

 The ifndef directive begins the conditional, and specifies the condition. It
contains single argument. If the given argument is false then condition

becomes true.

 The else directive causes the following lines to be obeyed if the previous

conditional failed. In the example above this means, the second alternative
linking command is used whenever the first alternative is not used. It is
optional to have an else in a conditional.

 The endif directive ends the conditional. Every conditional must end with an
endif.

Syntax of Conditionals Directives

The syntax of a simple conditional with no else is as follows:

conditional-directive

text-if-true

endif

The text-if-true may be any lines of text, to be considered as part of the makefile if

the condition is true. If the condition is false, no text is used instead.

6. DIRECTIVES

Makefile

 12

The syntax of a complex conditional is as follows:

conditional-directive

text-if-true

else

text-if-false

endif

If the condition is true, text-if-true is used; otherwise, text-if-false is used. The text-

if-false can be any number of lines of text.

The syntax of the conditional-directive is the same whether the conditional is simple

or complex. There are four different directives that test various conditions. They are

as given:

ifeq (arg1, arg2)

ifeq 'arg1' 'arg2'

ifeq "arg1" "arg2"

ifeq "arg1" 'arg2'

ifeq 'arg1' "arg2"

Opposite directives of the above conditions are are follows:

ifneq (arg1, arg2)

ifneq 'arg1' 'arg2'

ifneq "arg1" "arg2"

ifneq "arg1" 'arg2'

ifneq 'arg1' "arg2"

Example of Conditionals Directives

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

 $(CC) -o foo $(objects) $(libs_for_gcc)

else

 $(CC) -o foo $(objects) $(normal_libs)

endif

Makefile

 13

The include Directive

The include directive tells the make to suspend reading the current makefile and

read one or more other makefiles before continuing. The directive is a line in the

makefile that looks as follows:

include filenames...

The filenames can contain shell file name patterns. Extra spaces are allowed and

ignored at the beginning of the line, but a tab is not allowed. For example, if you

have three '.mk' files namely, 'a.mk', 'b.mk', and 'c.mk', and $(bar), then it expands

to bish bash, and then the following expression.

include foo *.mk $(bar)

is equivalent to

include foo a.mk b.mk c.mk bish bash

When the make processes an include directive, it suspends reading of the containing

makefile and reads from each listed file in turn. When that is finished, make resumes

reading the makefile in which the directive appears.

The override Directive

If a variable has been set with a command argument, then ordinary assignments in

the makefile are ignored. If you want to set the variable in the makefile even though

it was set with a command argument, you can use an override directive, which is a

line that looks as follows:

override variable = value

or

override variable := value

Makefile

 14

The make program is an intelligent utility and works based on the changes you do in

your source files. If you have four files main.cpp, hello.cpp, factorial.cpp, and

functions.h, then all the remaining files are dependent on functions.h, and main.cpp

is dependent on both hello.cpp and factorical.cpp. Hence if you make any changes in

functions.h, then the make recompiles all the source files to generate new object

files. However, if you make any change in main.cpp, as this is not dependent of any

other file, then only main.cpp file is recompiled, and hellp.cpp and factorial.cpp are

not.

While compiling a file, the make checks its object file and compares the time stamps.

If the source file has a newer time stamp than the object file, then it generates new

object file assuming that the source file has been changed.

Avoiding Recompilation

There may be a project consisting of thousands of files. Sometimes you may have

changed a source file but you may not want to recompile all the files that depend on

it. For example, suppose you add a macro or a declaration to a header file, on which

the other files depend. Being conservative, the make assumes that any change in

the header file requires recompilation of all dependent files, but you know that they

do not need recompilation and you would rather not waste your time waiting for them

to compile.

If you anticipate the problem before changing the header file, you can use the `-t'

flag. This flag tells make not to run the commands in the rules, but rather to mark

the target up to date by changing its last-modification date. You need to follow this

procedure:

1. Use the command 'make' to recompile the source files that really need

recompilation.

2. Make the changes in the header files.

3. Use the command 'make -t' to mark all the object files as up to date. The next

time you run make, the changes in the header files do not cause any
recompilation.

If you have already changed the header file at a time when some files do need

recompilation, it is too late to do this. Instead, you can use the '-o file' flag, which

marks a specified file as "old". This means, the file itself will not be remade, and

nothing else will be remade on its account. You need to follow this procedure:

1. Recompile the source files that need compilation for reasons independent of the

particular header file, with 'make -o headerfile'. If several header files are
involved, use a separate '-o' option for each header file.

2. Update all the object files with 'make -t'.

7. RECOMPILATION

Makefile

 15

Recursive Use of Make

Recursive use of make means using make as a command in a makefile. This

technique is useful when you want separate makefiles for various subsystems that

compose a larger system. For example, suppose you have a subdirectory named

'subdir' which has its own makefile, and you would like the containing directory's

makefile to run make on the subdirectory. You can do it by writing this:

subsystem:

 cd subdir && $(MAKE)

or, equivalently

subsystem:

 $(MAKE) -C subdir

You can write recursive make commands just by copying this example, but you need

to know about how they work and why, and about how the sub-make relates to the

top-level make.

Communicating Variables to a Sub-Make

Variable values of the top-level make can be passed to the sub-make through the

environment by explicit request. These variables are defined in the sub-make as

defaults. You cannot override what is specified in the makefile used by the sub-make

makefile unless you use the '-e' switch.

To pass down or export a variable, make adds the variable and its value to the

environment for running each command. The sub-make, in turn, uses the

environment to initialize its table of variable values.

The special variables SHELL and MAKEFLAGS are always exported (unless you

unexport them). MAKEFILES is exported if you set it to anything.

If you want to export specific variables to a sub-make, use the export directive, as

shown:

export variable ...

8. OTHER FEATURES

Makefile

 16

If you want to prevent a variable from being exported, use the unexport directive, as

shown:

unexport variable ...

The Variable MAKEFILES

If the environment variable MAKEFILES is defined, make considers its value as a list

of names (separated by whitespace) of additional makefiles to be read before the

others. This works much like the include directive: various directories are searched

for those files.

The main use of MAKEFILES is in communication between recursive invocations of

the make.

Including Header File from Different Directories

If you have put the header files in different directories and you are running make in

a different directory, then it is required to provide the path of header files. This can

be done using -I option in makefile. Assuming that functions.h file is available in

/home/tutorialspoint/header folder and rest of the files are available in

/home/tutorialspoint/src/ folder, then the makefile would be written as follows.

INCLUDES = -I "/home/tutorialspoint/header"

CC = gcc

LIBS = -lm

CFLAGS = -g -Wall

OBJ = main.o factorial.o hello.o

hello: ${OBJ}

 ${CC} ${CFLAGS} ${INCLUDES} -o $@ ${OBJS} ${LIBS}

.cpp.o:

 ${CC} ${CFLAGS} ${INCLUDES} -c $<

Appending More Text to Variables

Often it is useful to add more text to the value of a variable already defined. You do

this with a line containing `+=', as shown:

objects += another.o

It takes the value of the variable objects, and adds the text 'another.o' to it, preceded

by a single space. Thus:

Makefile

 17

objects = main.o hello.o factorial.o

objects += another.o

sets objects to 'main.o hello.o factorial.o another.o'.

Using '+=' is similar to:

objects = main.o hello.o factorial.o

objects := $(objects) another.o

Continution Line in Makefile

If you do not like too big lines in your Makefile, then you can break your line using a

back-slash "\" as shown below:

OBJ = main.o factorial.o \

 hello.o

is equivalent to

OBJ = main.o factorial.o hello.o

Running Makefile from Command Prompt

If you have prepared the Makefile with name "Makefile", then simply write make at

command prompt and it will run the Makefile file. But if you have given any other

name to the Makefile, then use the following command:

make -f your-makefile-name

Makefile

 18

This is an example of the Makefile for compiling the hello program. This program

consists of three files main.cpp, factorial.cpp, and hello.cpp.

Define required macros here

SHELL = /bin/sh

OBJS = main.o factorial.o hello.o

CFLAG = -Wall -g

CC = gcc

INCLUDE =

LIBS = -lm

hello:${OBJ}

 ${CC} ${CFLAGS} ${INCLUDES} -o $@ ${OBJS} ${LIBS}

clean:

 -rm -f *.o core *.core

.cpp.o:

 ${CC} ${CFLAGS} ${INCLUDES} -c $<

Now you can build the program hello using the make. If you issue a command ’make

clean’ then it removes all the object files and core files present in the current

directory.

9. EXAMPLE

