
Babystep2: Writing a message using the BIOS

Tutorial

Previous Next

Babystep1 Babystep3

Babystep2

From OSDev Wiki

Writing a message using the
BIOS

Quick review:

1. Boot sector loaded by BIOS is

512 bytes

2. The code in the boot sector of

the disk is loaded by the BIOS at

0000:7c00

3. Machine starts in Real Mode

(http://www.osdev.org/wiki/Real_Mode)
4. Be aware that the CPU is being interrupted unless you issue the CLI assembly command

Many (but not all) BIOS interrupts expect DS to be filled with a Real Mode segment value. This is why many
BIOS interrupts won't work in protected mode. So if you want to use int 10h/ah=0eh to print to the screen, then
you need to make sure that your seg:offset for the characters to print is correct.

In real mode, addresses are calculated as segment * 16 + offset. Since offset can be much larger than 16, there
are many pairs of segment and offset that point to the same address. For instance, some say that the bootloader
is is loaded at 0000:7C00, while others say 07C0:0000. This is in fact the same address: 16 * 0x0000 +
0x7C00 = 16 * 0x07C0 + 0x0000 = 0x7C00.

It doesn't matter if you use 0000:7c00 or 07c0:0000, but if you use ORG you need to be aware of what's
happening. By default, the start of a raw binary is at offset 0, but if you need it you can change the offset to
something different and make it work. For instance the following snippet accesses the variable msg with segment
0x7C0.

Asm Example:

; boot.asm
   mov ax, 0x07c0

   mov ds, ax

 
   mov si, msg

ch_loop:lodsb
   or al, al ; zero=end or str

   jz hang   ; get out

   mov ah, 0x0E

   int 0x10

   jmp ch_loop

 

http://wiki.osdev.org/CLI
http://wiki.osdev.org/Babystep1
http://wiki.osdev.org/Babystep3
http://wiki.osdev.org/Category:Tutorials
http://www.osdev.org/wiki/Real_Mode


hang:
   jmp hang

 
msg   db 'Hello World', 13, 10, 0

   times 510-($-$$) db 0

   db 0x55

   db 0xAA

Here is the ORG version. This time, msg is accessed with segment 0. Note that you still need to tell DS what to
be as it can hold any value.

[ORG 0x7c00]

 
   xor ax, ax ; make it zero

   mov ds, ax
 
   mov si, msg
ch_loop:lodsb
   or al, al  ; zero=end of string

   jz hang    ; get out
   mov ah, 0x0E

   int 0x10
   jmp ch_loop

 
hang:
   jmp hang
 
msg   db 'Hello World', 13, 10, 0
 
   times 510-($-$$) db 0
   db 0x55
   db 0xAA

Procedures

To save on writing space, the typical 'procedures' are often separated from the code using CALL/RET like the
following:

[ORG 0x7c00]
   xor ax, ax  ;make it zero

   mov ds, ax
 
   mov si, msg
   call bios_print

 
hang:



   jmp hang

 
msg   db 'Hello World', 13, 10, 0

 
bios_print:
   lodsb
   or al, al  ;zero=end of str

   jz done    ;get out
   mov ah, 0x0E

   int 0x10
   jmp bios_print

done:
   ret

 
   times 510-($-$$) db 0

   db 0x55
   db 0xAA

For some inexplicable reason, loading SI then jumping to the procedure always bugged me. Fortunately for
psychos like me NASM's macros let you pretend that you are passing a parameter (macro definitions has to go
before it's being called).

%macro BiosPrint 1
                mov si, word %1
ch_loop:lodsb

   or al, al
   jz done

   mov ah, 0x0E
   int 0x10

   jmp ch_loop

done:
%endmacro
 
[ORG 0x7c00]

   xor ax, ax

   mov ds, ax
 
   BiosPrint msg
 
hang:
   jmp hang

 
msg   db 'Hello World', 13, 10, 0

 
   times 510-($-$$) db 0

   db 0x55

   db 0xAA



And in case your code is becoming long and unreadable, you can break it up into different files, then include the
files at the beginning of you main code. Like so:

jmp main

 
%include "othercode.inc"

 
main:
   ; ... rest of code here

Don't forget the jmp main at the start - otherwise some random other procedure will get called.

Retrieved from "http://wiki.osdev.org/index.php?title=Babystep2&oldid=15862"

Category: Babystep

This page was last modified on 7 April 2014, at 08:43.

This page has been accessed 62,895 times.

http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:Babystep
http://wiki.osdev.org/index.php?title=Babystep2&oldid=15862

