
Babystep5

Tutorial

Previous Next

Babystep4 Babystep6

Babystep5

From OSDev Wiki

This code is meant to show how the
hardware interrupt generated when you
press a key can be handled by replacing
the seg:offset specified in the IVT
(interrupt vector table). This normally
points to a BIOS routine. To find the
entry in the IVT, multiply the interrupt
number by 4 (which is the size of each
entry).

This key handler just displays the scan
code without conversion to ASCII, buffering, or handling extended keys. The reason for doing this is to not
muddle up the basic idea, which is to provide input, as well as output, in its most simple form.

I will not go into the hows and whys of reading the ports involved in a key press. Suffice it to say that you are
communicating with actual chips (or parts of chips), not some software intermediary. I personally feel it is good
to remember that, no matter what level of abstraction you work at, you are ultimately telling hardware what to
do.

I will point out the turning the keyboard on/off through port 0x61 is given in its complete form, some of which
might not be needed, depending on the system.

;==
; nasmw boot.asm -f bin -o boot.bin
; partcopy boot.bin 0 200 -f0

[ORG 0x7c00] ; add to offsets

 jmp start

 %include "print.inc"

start: xor ax, ax ; make it zero

 mov ds, ax ; DS=0

 mov ss, ax ; stack starts at 0

 mov sp, 0x9c00 ; 200h past code start

 mov ax, 0xb800 ; text video memory

 mov es, ax

 cli ;no interruptions

 mov bx, 0x09 ;hardware interrupt #

 shl bx, 2 ;multiply by 4

http://wiki.osdev.org/BIOS
http://wiki.osdev.org/Babystep4
http://wiki.osdev.org/Category:Tutorials
http://wiki.osdev.org/ASCII
http://wiki.osdev.org/Interrupt_Vector_Table
http://wiki.osdev.org/Babystep6
http://wiki.osdev.org/Interrupts

 xor ax, ax

 mov gs, ax ;start of memory

 mov [gs:bx], word keyhandler

 mov [gs:bx+2], ds ; segment

 sti

 jmp $; loop forever

keyhandler:
 in al, 0x60 ; get key data

 mov bl, al ; save it

 mov byte [port60], al

 in al, 0x61 ; keybrd control

 mov ah, al

 or al, 0x80 ; disable bit 7
 out 0x61, al ; send it back

 xchg ah, al ; get original
 out 0x61, al ; send that back

 mov al, 0x20 ; End of Interrupt

 out 0x20, al ;

 and bl, 0x80 ; key released
 jnz done ; don't repeat

 mov ax, [port60]
 mov word [reg16], ax

 call printreg16

done:
 iret

port60 dw 0

 times 510-($-$$) db 0 ; fill sector w/ 0's

 dw 0xAA55 ; req'd by some BIOSes
;==

See Also

External Links

hardware fun http://chip.ms.mff.cuni.cz/pcguts/
Intel's Summer Reading List http://developer.intel.com/vtune/cbts/refman.htm

John Fine links to hardware programming
http://www.geocities.com/SiliconValley/Peaks/8600/device.html

http://chip.ms.mff.cuni.cz/pcguts/
http://developer.intel.com/vtune/cbts/refman.htm
http://www.geocities.com/SiliconValley/Peaks/8600/device.html

Retrieved from "http://wiki.osdev.org/index.php?title=Babystep5&oldid=7947"
Category: Babystep

This page was last modified on 13 May 2009, at 08:28.
This page has been accessed 38,261 times.

http://wiki.osdev.org/Category:Babystep
http://wiki.osdev.org/index.php?title=Babystep5&oldid=7947
http://wiki.osdev.org/Special:Categories

