CMake Build System

From OSDev Wiki
CMake is a cross-platform, multi-environment build system which can remove some of the Difficulty level
headache from building your operating system. The aim of this page is to help the reader set
up his or her build environment to use CMake. F|
Beginner

Contents

1 About CMake
= 1.1 Who uses CMake?
2 Getting Started
= 2.1 Design Considerations
= 2.2 A Simple CMakeLists.txt
= 2.3 Sub-Project Isolation
3 Applying CMake to your Operating System
= 3.1 Building Assembly Code
= 3.2 Setting Appropriate Build Options
= 3.3 Build Profile Detection
4 See Also
= 4.1 Articles
= 4.2 External Links

About CMake

CMake is makefile generator that allows you to provide a description of your build environment, therefore
affording the creation of toolchain-specific build files. It is an open-source project that is largely maintained by
KitWare, Inc.

Who uses CMake?

Because CMake was developed by KitWare, it is closely associated with their software. However, momentum
for CMake has steadily been increasing, and some fairly high-profile projects have switched over to it, including:

The K Desktop Environment
Second Life

Apache QPid

ReactOS

Getting Started

Design Considerations

http://wiki.osdev.org/File:Difficulty_1.png

There are a variety of options at your disposal when you design your CMake project. It is possible to have
CMake cater to some of your personal build preferences, and as a result, you should probably ask yourself a
few questions:

= Will my build be performed in-source or out-of-source?

= How granular is the project? Will there be a bunch of small components I plan to link together?
= What prerequisites am I considering for my build?

= Wil I be generating any code from templates?

The first question is largely one of preference. An n-source build means that the build output will be placed in
the same directory as the project. This might be the root directory ofthe project or (assuming a heirarchical
organization) subdirectories associated with the unit being compiled. However, the generated files mingling with
sources can be an annoyance, especially when using version-control systems (CMake does not have a cmake
clean command). Some people prefer to send the build output to a separate folder, perhaps named "build", or
even multiple directories for debug and release builds. This sort of design is called an out-of-source build, and
can make building for multiple targets easier and more flexible for all but the simplest projects.

Project directory structure is also worth strong consideration. In a quick academic exercise, a flat single-
directory layout may be desirable. However, if you plan to go beyond this stage, it may be a good idea to
consider leveraging the filesystem to your advantage. Consider the following layout, for instance:

E+————+ kernel

| \

| +----+ 1386

| \ \

| \ +---- pcC

| \

| +----+ arm

| \

H +---- rasberrypi
I| +---- beagle
i

t+----+ libc

The above might be the natural way of organizing your source code and we can leverage a directory structure
like this to our advantage. Consider the following advantages for this directory tree:

= Sub-projects are neatly isolated from one another. Kernel and libc are definitely related, but we might
prefer to think of them as separate projects.

= [SA-dependent code can be isolated from common code or other ISA-dependent code.

= Platform-dependent code (which may add further restrictions to ISA-dependent code) is separated from
other platforms sharing the same ISA.

The chances are that if you're building an operating system, you won't have many library dependencies. Most of
your dependencies will be related to the toolchain required to build the code. For instance, you will probably
want a C compiler, and almost certainly an assembler to go with it. You may write your own tools to simplify the
process of creating your operating system, and in that case, you may want to ensure support for other
programming environments like Python or Perl. Fortunately, this part can be fairly forgiving: adding
dependencies such as these is not terribly difficult, and if you change your mind, the change is easy to implement.

A Simple CMakeLists.txt

One of'the nice things about CMake is that it affords you several programming concepts that you are already
familiar with. As one would expect, CMake lets you perform build configuration through variables, which are
typically defined in user-provided files named CMakeLists.txt. The resulting values of these variables, after
cmake processing, can conveniently be found i a file called CMakeCache.txt. CMakeCache.txt is generated
when you first run CMake on a CMakelLists.txt file and can be tweaked to provide various special build options
for your script. However, the preferred method is to use the sET () macro (and other macros) in a

CMakeLists.txt file, which defines a variable name with its first argument and the variable's value using the rest
of the argument(s).

Of course, variables aren't really enough, so CMake provides two kinds of procedures: macros and functions.
Functions and macros are very subtly different: functions create their own environment so the variables defined
in a function are limited to the scope of the callee and below by default. Macros, on the other hand, will place
any variables defined within the macro in the parent's environment. The bulk of CMake is implemented using
functions and macros; this permits code reuse that is far superior to the targets provided by make. Note that
some of these builtin commands will automatically SET variables on our behalf. This is particularly useful when
we want to deal with dependency resolution.

A useable CMakelLists.txt can have as little as two lines as code. One of the most important families of macros
include ADD EXECUTABLE () or ADD LIBRARY (). Each of these macros take several parameters: the target

name as the first parameter and the source file(s) on which the target depends on as the remaining parameter(s).

The cMake MINIMUM REQUIRED () function, which takes the version of CMake necessary to parse the

CMakelList.txt file is also required, because that is how CMake can tell whether or not it meets the requirements
to parse your script.

However, such a script has a key disadvantage: every time we add a new source file, we need to edit
CMakelLists.txt to add it. Fortunately, CMake comes with a built in file manipulation interface. In this case, we
could use the GLOB operator for the F1LE () command, which lets us specify a file globbing pattern to collect

all of our source files or file paths into one variable. The addition of this extra line of code can make CMake
much more useful.

If you have dependencies you need to resolve, CMake can handle that too. The FIND PACKAGE () command
can handle a variety of different types of dependencies, including libraries (like Boost). FIND PACKAGE () will
also attempt to locate a script by the name of Find<1st param>.cmake and handle it appropriately. In
instances where FIND PACKAGE () is unable to resolve the package, it sets a special variable called <1st
param> NOTFOUND, which you might use to detect optional dependencies. However, if a dependency is
absolutely required, then you can simply supply REQUIRED as the second parameter. Failing to find the package
will cause CMake to bail out.

You can emit messages back to the console using the MESSAGE () command. Note that this is only run at
CMake time. You can use this command for debugging your CMake project. Alternately, if you supply sTaTus
as the first parameter to this command, it will print out a specialized status message for you.

So CMake can tell whether or not it can process this file
CMAKE MINIMUM REQUIRED (VERSION 2.8.0)

Require Perl (for whatever reason)
FIND PACKAGE (PERL REQUIRED)

MESSAGE (STATUS "Hi!™)

Grab all of the C files in src; store in C_SRCS
FILE (GLOB C_SRCS src/*.c)

Note how we obtain this variable's value!
ADD EXECUTABLE (foo ${C_SRCS})

This is enough for a small project to generate an executable. Creating the associated Makefile and starting the
build is simple:

$ cd project/
'$ mkdir build
$ cd build/

S cmake ../

$ make

...

Note that if you chance CMakeLists.txt, you will need to run CMake again. In cases like these, CMake may
need to update CMakeCache.txt, for instance. Particularly in the case where you use file globbing find your
source files, it is imperative that you do this when you add or delete source files; otherwise, CMake will not pick
up the changes, and havoc will break loose.

Sub-Project Isolation

The previous section discussed a sort of "Hello World" implementation of CMakeLists.txt. Unfortunately,
operating system development is rarely in the same class as "Hello World", and the chances are that you have
advanced beyond intro computer science. If you're reading this, you more than likely have an idea of how you
want to structure your project, and that probably means breaking it into manageable pieces. If you followed the
advice from Design Considerations, then it is very likely that you have thought about this a great deal. The real
question is how to put this into practice.

A common approach involves generating custom build scripts for each sub-project you create. Thus, we have a
separate CMakeLists.txt for each sub-project we create, and we link them together in the CMakeLists.txt in the
project root. If we adhere to our filesystem layout from above, for instance, we'd have 3 CMakeLists.txt files:
one in/, one in /src/kernel, and one in /src/libc. We can link them together with the following;

ADD SUBDIRECTORY (src/kernel)
ADD SUBDIRECTORY (src/libc)

Using the ADD_SUBDIRECTORY () command is analagous to recursively calling make, and in many cases, this is
precisely what happens. Other generators may interpret this command differently: for nstance, the MSVC
generator might decide to turn these directories into multiple projects within a solution. In either case, the child
CMakeLists.txt nherits the environment of the parent so variables are propagated. You can use this to your
advantage by doing dependency resolution and setting up critical shared variables in the root CMakeLists. txt
file.

Alternately, you can leverage the InCLUDE () command to directly insert CMake code nto your

CMakelLists.txt file at its point of mvocation, which can be useful for important small snippets of code into your
project. Note that there are some subtle differences between 1NCLUDE () and ADD SUBDIRECTORY () :

= Youcanuse INCLUDE () to include any file as CMake code. ADD SUBDIRECTORY () expects a
CMakelLists.txt file in the directory you point it at.

= INCLUDE () operates from the current working directory. AbD SUBDIRECTORY () Will change the current
working directory to the supplied path before evaluating.

Applying CMake to your Operating System
Building Assembly Code

Unless you intend to use somebody else's kernel and write your operating system completely from portable
code, it is very likely that you will need an assembler. For the kinds of projects that CMake was designed for,
this rarely comes up; as an operating system designer, such support is probably critical to your project.
Fortunately, some work has been done to address this issue and in most cases you can get away with not only
detecting an assembler, but even specifying the syntax it uses. By using the ENABLE LANGUAGE () command it is

possible to turn on support for assembly:

We want an AT&T Syntax Assembler
ENABLE LANGUAGE (ASM-ATT)

ADD EXECUTABLE (foo bar.s baz.s)

Setting Appropriate Build Options

Depending on your project the stock compiler options may be insufficient for your needs. You may need to
supply switches to your toolchain that affect linking or object assembly. CMake provides a number of ways of
doing this:

= For C programs, you can use CMAKE C FLAGS in the same way you would use $CFLAGS in the context
of make. ADD DEFINITIONS () canalso be used, but it is probably madvisable to do so since a C flag
variable exists by default.

= For other languages, (including assembly) use CMAKE <lang> COMPILE OBJECT. For instance, if ASM-
ATT is enabled, one would modify CMAKE ASM-ATT COMPILE OJBECT.

= Link-time options can be set using SET TARGET FLAGS (target PROPERTIES LINK FLAGS
"flags").

Build Profile Detection

Remember how we made the claim that the directory structure could be leveraged in order to help make our
lives easier? You might have gotten some idea from the directory structure of how this might be accomplished,
at least on a conceptual level. Consider the example provided by src/kernel. Here, we have a well-defined
hierarchy which allows us to narrow down on varying scopes of the actual kernel implementation. We can split
our code mto three directories, such that:

® /src/kernel/ contains the code for the kernel (platform-indepdendent code might go mto this

directory).
® /src/kernel/isa/ contains code specifically for the nstruction set architecture isa (e.g., 1386).
® /src/kernel/isa/platform/ contains code for the platform which is implemented with isa.

Let's consider the ARM branch of our code. While the 1386 may see limited usage outside of IBM-compatible
PCs, the ARM conversely is found in a number of environments. Many of those environments have their own
quirks, such as how the memory bus is physically mapped. Will the kernel binary for a BeagleBone run on a
Raspberry Pi? It is possible, but unlikely. Even if it did, what if these two platforms are fundamentally
incompatible at some level? We need to take that into consideration. What we need is a macro that does all of
the dirty work for us.

We can take two approaches to this problem: we can either make the assumption platforms (and ISAs for that
matter) share some things in common, or make the assumption that they don't. In the former approach, we might
assume that the following is true of platforms:

= Each platform provides a memory layout via a linker script.
= Each platform provides a CMake file describing its own build flags.
= Each platform provides a number of C or Assembly sources.

And likewise, we might say that each ISA provides:

= A CMake file describing its own build flags.
= A number of C or Assembly sources.

So far, so good. We can approach this by writing a function in order to handle loading the right profile. When
you write a function, you delimit the function body between the FuncTTON () and ENDFUNCTION () commands.
The first parameter to runcTION () shall be the name of the function you are definng, and those remaining are
formal parameters to the function.

However, there is a slight problem: we need a way to report our findings to the caller. Remember that variables
defined in functions go out of scope as soon as the function ends. We could use a macro here at the risk of
polluting the namespace but it would be much better if we could export variables to the parent scope.
Fortunately, the sET () command accepts PARENT SCOPE as an optional parameter. When this is used, it means
that the variable being set should become part of the parent's environment. Let's write a small build profile
function now:

FUNCTION(LOAD_PROFILE ISA PLATFORM)
Obtain sources for the ISA
FILE (GLOB ISA SRCS "S{ISA}/*.c" "S{ISA}/*.s")
FILE (GLOB PLATFORM_ SRCS "S{ISA}/S{PLATFORM}/*.c" "S{ISA}/S{PLA

Load flags associated with ISA and Profile
INCLUDE ("${ISA}/flags.cmake")
INCLUDE ("$S{ISA}/S$S{PLATFORM}/flags.cmake")

Now export our output variables

SET (ISA SRCS S{ISA SRCS} PARENT SCOPE)

SET (PLATFORM_SRCS ${PLATFORM75RCS} PARENT SCOPE)

SET (PLATFORM LAYOUT "S{ISA}/S{PLATFORM}/layout.ld" PARENT SCOP

And specific flags

| SET (ISA_C_FLAGS ${ISA C FLAGS} PARENT SCOPE) E
| SET (ISA_ASM FLAGS ${ISA ASM FLAGS} PARENT SCOPE) ;
l # ... !

ENDFUNCTION (LOAD PROFILE)

Now, all we have to do is call Loap prOFILE () with the provided parameters, and we should be able to set
up our build environment in a sane manner:

FILE (GLOB GENERIC SRCS "*.c")

We could also use CMakeCache variables here!
LOAD PROFILE ("arm" "raspberrypi")

Now set up our environment
ADD EXECUTABLE (kernel ${PLATFORM SRCS} S${ISA SRCS} ${GENERIC SRC

SET (CMAKE ASM-ATT COMPILE OBJECT

"<CMAKE ASM-ATT COMPILER> ${ISA ASM FLAGS} ${PLATFORM ASM FLAG
i SET (CMAKE C_FLAGS "${ISA C FLAGS} ${PLATFORM C FLAGS}") |
| SET TARGET PROPERTIES (kernel PROPERTIES LINK_FLAGS §
; "-T ${PLATFORM LAYOUT} -N ${ISA LINKER FLAGS} ${PLATFORM LINKE |

Here, we make a reasonable attempt to control the build order, but the truth is, we don't really know exactly
what that order should be; it might be dependent on the platform. For instance, for 386/pc, we might want a
multboot header, which must come within the first 8K of the kernel image. In that case, we must somehow
control the ordering. We could have a place FIrRsT Srcs () variable present in the platform flags, then use the

following loop to extract it from the list:

FOREACH (I ${FIRST75RCS})

Assume path is relative to src/kernel

LIST (APPEND TMP FIRST SRCS "${CMAKEiCURRENTiLISTiDIR}/${I}"
ENDFOREACH (I)

Now remove any trace of these files from the other lists
LIST (REMOVE ITEM ISA SRCS ${TMP FIRST SRCS})
LIST (REMOVE ITEM PLATFORM SRCS ${TMP_ FIRST SRCS})

During exports:
SET (FIRST_SRCS ${TMP FIRST SRCS})

Now, all we have to do is put s {FIRST srcs} at the head of the list, and we can control the order in which our
code is linked.

See Also

Articles
= Makefile - One potential target for CMake. The tried and true method of build management.
External Links

= (CMake Offical Page (http//www.cmake.org) - Contains useful links, including how to download and
documentation.

= (CMake Useful Variables (http//www.cmake.org/Wik/CMake Useful Variables) - Gives names and
descriptions of common and useful variables used in CMake.

= (CMake Official Documentation (http//www.cmake.org/cmake/help/v3.2) - Official documentation all
about CMake.

= (CMake Examples (http//www.cmake.org/WikvCMake/Examples) - Examples showing how to perform
many common CMake procedures.

Retrieved from "http//wiki.osdev.org/index.php?titlt=CMake Build System&oldid=18264"
Categories: Level 1 Tutorials | Tools

= This page was last modified on 28 July 2015, at 00:38.
= This page has been accessed 9,863 times.

http://wiki.osdev.org/Category:Level_1_Tutorials
http://www.cmake.org/Wiki/CMake_Useful_Variables
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/index.php?title=CMake_Build_System&oldid=18264
http://www.cmake.org/Wiki/CMake/Examples
http://www.cmake.org/
http://www.cmake.org/cmake/help/v3.2
http://wiki.osdev.org/Makefile
http://wiki.osdev.org/Category:Tools

