
Difficulty level

Medium

Kernel Designs

Models

Monolithic Kernel
Microkernel

Hybrid Kernel
Exokernel

Nano/Picokernel
Cache Kernel

Virtualizing Kernel
Megalithic Kernel

Other Concepts

Modular Kernel
Higher Half Kernel

64-bit Kernel

Creating a 64-bit kernel

From OSDev Wiki

 This page is a work in progress and may thus be incomplete. Its

content may be changed in the near future.

The factual accuracy of this article or section is disputed.
Please see the relevant discussion on the talk page.

Contents

1 Prerequisites
2 The Main Kernel

2.1 kernel.c

3 Compiling

4 Linking

4.1 link.ld
5 Loading

5.1 With your own boot loader

5.2 With a separate loader

5.3 With a 32-bit bootstrap in your kernel

5.3.1 bootstrap.S

5.3.2 link.ld

6 Possible Problems

6.1 My kernel is way too big!

7 Kernel Virtual Memory
8 See Also

8.1 Articles

8.2 Forum Threads

Prerequisites

Make sure that you have the following done before proceeding:

http://wiki.osdev.org/Talk:Creating_a_64-bit_kernel#Disputed
http://wiki.osdev.org/Nanokernel
http://wiki.osdev.org/Modular_Kernel
http://wiki.osdev.org/Kernels
http://wiki.osdev.org/File:Difficulty_2.png
http://wiki.osdev.org/Microkernel
http://wiki.osdev.org/File:Under_Construction.png
http://wiki.osdev.org/Megalithic_Kernel
http://wiki.osdev.org/Exokernel#Virtualizing_Kernel
http://wiki.osdev.org/Exokernel
http://wiki.osdev.org/Higher_Half_Kernel
http://wiki.osdev.org/Category:Disputed_Pages
http://wiki.osdev.org/Exokernel#Cache_Kernel
http://wiki.osdev.org/Hybrid_Kernel
http://wiki.osdev.org/Monolithic_Kernel

Have completed Bare Bones to make a 32-bit operating system. This article currently has trouble and will
cause newcomers grief, Bare Bones gives you a well-tested 32-bit environment, you can switch to 64-bit

when you get more experiences. The fact that paging is always enabled on 64-bit systems will certainly

make this hard for the unexperienced.

Have built a cross-compiler for the x86_64-elf target.

Read up on long mode and how to initialize/use it.

Decide now on how to load your kernel - your own bootloader, GRUB (with separate loader

executable), or GRUB2 (elf64 + 32-bit bootstrap code).

The Main Kernel

The kernel should run in a uniform environment. Let's make this simple for now...

kernel.c

void kernel_main(void)
{
 /* What goes here is up to you */
}

Compiling

Compile each source file like any piece of C code, just remember to use the cross-compiler and the proper
options. Linking will be done later...

x86_64-elf-gcc -ffreestanding -mcmodel=large -mno-red-zone -mno-mmx

The -mcmodel=large argument enables us to run the kernel at any 64-bit virtual memory address we want. In
fact, using the 'large' code model is discouraged due to its inefficiency, but it can be fine as a start. Check the
SysV AMD64 ABI document for extra details.

You will need to instruct GCC not to use the the AMD64 ABI 128-byte 'red zone', which resides below the
stack pointer, or your kernel will be interrupt unsafe. Check this thread (http://forum.osdev.org/viewtopic.php?
t=21720) on the forums for extra context.

We disable SSE floating point ops. They need special %cr0 and %cr4 setup that we're not ready for.
Otherwise, several #UD and #NM exceptions will be triggered.

Linking

The kernel will be linked as an x86_64 executable, to run at a virtual higher-half address. We use a linker script:

link.ld

ENTRY(_start)

http://wiki.osdev.org/Bare_Bones
http://wiki.osdev.org/SSE
http://wiki.osdev.org/X86-64
http://wiki.osdev.org/Paging
http://wiki.osdev.org/Bare_Bones
http://wiki.osdev.org/GRUB
http://forum.osdev.org/viewtopic.php?t=21720
http://wiki.osdev.org/GCC_Cross-Compiler
http://wiki.osdev.org/System_V_ABI

SECTIONS

{

 . = KERNEL_VMA;

 .text : AT(ADDR(.text) - KERNEL_VMA)

 {

 _code = .;

 *(.text)

 (.rodata)

 . = ALIGN(4096);

 }

 .data : AT(ADDR(.data) - KERNEL_VMA)

 {

 _data = .;

 *(.data)

 . = ALIGN(4096);

 }

 .eh_frame : AT(ADDR(.eh_frame) - KERNEL_VMA)

 {

 _ehframe = .;

 *(.eh_frame)

 . = ALIGN(4096);

 }

 .bss : AT(ADDR(.bss) - KERNEL_VMA)

 {

 _bss = .;

 *(.bss)

 /*

 * You usually need to include generated COMMON symbols

 * under kernel BSS section or use gcc's -fno-common

 */

 *(COMMON)

 . = ALIGN(4096);

 }

 _end = .;

 /DISCARD/ :

 {

 *(.comment)

 }

}

Feel free to edit this linker script to suit your needs. Set ENTRY(...) to your entry function, and
KERNEL_VMA to your base virtual address.

You can link the kernel like this:

x86_64-elf-gcc -ffreestanding <other options> -T <linker script>

Note: Obviously there is no bootstrap assembly yet, which is the hard part of starting out, and you can't link
without it.

Loading

Before you can actually use your kernel, you need to deal with the hard job of loading it. Here are your three
options:

With your own boot loader

This method is the simplest (since you write all the code), though it requires the most work.

I won't give any code, but the basic outline is:

Set up a stable environment

Do Protected Mode readying stuff (GDT, IDT, A20 gate, etc.)
Enter Protected Mode (or skip this step and enter long mode directly)

Parse kernel ELF headers (if kernel is separate from executable)

Set up Long Mode readying stuff (PAE, PML4, etc.) - Remember to set up the higher-half addressing!
Enter Long Mode by far jump to the kernel entry point in (virtual) memory

With a separate loader

Note: The advise in this section is bit questionable in its current form.

This requires the use of GRUB or another multiboot1-compliant loader. This may be the most error free of the
three.

A quick rundown:

Set up a stable environment

Read the multiboot information struct to see where GRUB loaded your kernel (look at the module

section)
Parse kernel ELF headers

Set up Long Mode readying stuff (PAE, PML4, etc.) - Remember to set up the higher-half addressing!

Enter Long Mode by far jump to the kernel entry point

Note that this code has to be stored in a elf32 format and must contain the multiboot1-header.

Also remember to set the text section to start at 0x100000 (-Ttext 0x100000) when linking your loader.

Set up GRUB to boot your loader as a kernel in its own right, and your actual kernel as a module. Something
like this in menu.lst:

title My Kernel

kernel --type=multiboot <loader executable>

module <kernel executable>

With a 32-bit bootstrap in your kernel

Note: The advise in this section is bit questionable in its current form.

This requires the use of any ELF64-compatible loader that loads into protected-mode (GRUB2, or patched
GRUB Legacy). This may be the simplest in the long run, but is hell to set up (well, it was for me - but I saved
you some work ;).

http://wiki.osdev.org/ELF
http://wiki.osdev.org/Entering_Long_Mode_Directly
http://wiki.osdev.org/GRUB
http://wiki.osdev.org/ELF

Note that GRUB2, which implements Multiboot 2 (http://download.savannah.gnu.org/releases-
noredirect/grub/phcoder/multiboot.pdf) , does not support switching into long mode.

First, create an assembly file like the following, which will set up virtual addressing and long mode:

bootstrap.S

.section .text

.code32

multiboot_header:

 (only needed if you're using multiboot)

bootstrap:

 (32-bit to 64-bit code goes here)

 (jump to 64-bit code)

Then, add the following to your original linker file:

link.ld

...

ENTRY(bootstrap)

...

SECTIONS

{

 . = KERNEL_LMA;

 .bootstrap :

 {

 <path of bootstrap object> (.text)

 }

 . += KERNEL_VMA;

 .text : AT(ADDR(.text) - KERNEL_VMA)

 {

 _code = .;

 (EXCLUDE_FILE(<path of bootstrap object>) .text)

 (.rodata)

 . = ALIGN(4096);

 }

...

The above edits allow the linker to link the bootstrap code with physical addressing, as virtual addressing is set
up by the bootstrap. Note that in this case, KERNEL_VMA will be equivalent to 0x0, meaning that text would
have a virtual address at KERNEL_LMA + KERNEL_VMA instead of just at KERNEL_VMA. Change '+='
to '=' and your bootstrap code if you do not want this behaviour.

Compile and link as usual, just remember to compile the bootstrap code as well!

Set up GRUB2 to boot your kernel (depends on your bootloader) with grub.cfg:

menuentry "My Kernel" {

 multiboot <kernel executable>

}

http://download.savannah.gnu.org/releases-noredirect/grub/phcoder/multiboot.pdf

Possible Problems

You may experience some problems. Fix them immediately or risk spending a lot of time debugging later...

My kernel is way too big!

Try each of the following, in order:

Try linking your kernel with the option "-z max-page-size=0x1000" to force the linker to use 4kb pages.
Make sure you're compiling with the -nostdlib option (equivalent to passing the both -nodefaultlibs and -

nostartfiles options).

You can try changing the OUTPUT_FORMAT to elf64-little.

Try cross-compiling the latest version of binutils and gcc.

Kernel Virtual Memory

(This section is based on notes by Travis Geiselbrecht (geist) at the osdev IRC channel)

Long mode provides essentially an infinite amount of address space. An interesting design decision is how to
map and use the kernel address space. Linux approaches the problem by permanently mapping the -2GB virtual
region 0xffffffff80000000 -> 0xffffffffffffffff to physical address 0x0 upwards. Kernel data structures, which are
usually allocated by kmalloc() and the slab allocator, reside above the 0xffffffff80000000 virtual base and are
allocate from the physical 0 -> 2GB zone. This necessitates the ability of 'zoning' the page allocator, asking the
page allocator to returning a page frame from a specific region, and only from that region. If a physical address
above 2GB needs to accessed, the kernel temporarily map it to its space in a temporary mapping space below
the virtual addresses base. The Linux approach provides the advantage of not having to modify the page tables
much which means less TLB shootdowns on an SMP system.

Another approach is to treat the kernel address space as any other address space and dynamically map its
regions. This provides the advantage of simplifying the page allocator by avoiding the need of physical memory
'zones': all physical RAM is available for any part of the kernel. An example of this approach is mapping the
kernel to 0xfffffff800000000 as usual. Below that virtual address you put a large mapping for the entire physical
address space, and use the virtual 0xfffffff800000000 -> 0xffffffffffffffff region above kernel memory area as a
temporary mappings space.

See Also

Articles

X86-64

Forum Threads

Creating a 64-bit Kernel Tutorial (http://forum.osdev.org/viewtopic.php?f=8&t=16779) about this article
Linker-script writers beware: COMMON Symbols (http://forum.osdev.org/viewtopic.php?p=170634)

on the obscure 'COMMON' symbols and their effect on BSS

Long-mode Kernels and the AMD64 ABI 'Red Zone' (http://forum.osdev.org/viewtopic.php?t=21720)

on the 'red zone' and its major effect on interrupt handling

Leaving long mode (http://forum.osdev.org/viewtopic.php?f=1&p=136701) to protected mode

http://forum.osdev.org/viewtopic.php?f=8&t=16779
http://forum.osdev.org/viewtopic.php?p=170634
http://forum.osdev.org/viewtopic.php?t=21720
http://forum.osdev.org/viewtopic.php?f=1&p=136701
http://wiki.osdev.org/X86-64

Switching from long mode to compatibility mode (http://forum.osdev.org/viewtopic.php?f=1&t=17213)

Retrieved from "http://wiki.osdev.org/index.php?title=Creating_a_64-bit_kernel&oldid=17392"

Categories: Level 2 Tutorials In Progress Disputed Pages Tutorials X86-64

This page was last modified on 28 December 2014, at 15:36.

This page has been accessed 109,579 times.

http://wiki.osdev.org/index.php?title=Creating_a_64-bit_kernel&oldid=17392
http://wiki.osdev.org/Category:X86-64
http://wiki.osdev.org/Category:Level_2_Tutorials
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:Disputed_Pages
http://wiki.osdev.org/Category:In_Progress
http://forum.osdev.org/viewtopic.php?f=1&t=17213
http://wiki.osdev.org/Category:Tutorials

