
Difficulty level

Medium

Executable Formats

Microsoft

16 bit:
COM
MZ
NE

32/64 bit:
PE

Mixed (16/32 bit):
LE

*nix

A.out
ELF

ELF Tutorial

From OSDev Wiki

 This page is a work in progress and may thus be incomplete. Its content may be changed in the near

future.

This tutorial describes the steps to loading ELF files targeting the i386 (32-bit architecture,
little-endian byte order). All code in the tutorial is in the form of C compatible C++ and
strives to teach by example, by using simplified (and sometimes naive), neat, and functional
snippets of code. It may later be expanded to cover other types of ELF files, or formats
targeting other architectures or machine types.

Contents

1 ELF Data Types
2 The ELF Header

2.1 Checking the ELF Header

2.1.1 Loading the ELF File

3 The ELF Section Header

3.1 Accessing Section Headers
3.2 Section Names

4 ELF Sections

4.1 The Symbol Table

4.1.1 Accessing the Value of a Symbol

4.2 The String Table

4.3 The BSS and SHT_NOBITS

4.4 Relocation Sections

4.4.1 Relocation Example
4.4.2 Relocating a Symbol

5 The ELF Program Header

6 See Also

6.1 Articles

6.2 External Links

ELF Data Types

include <stdint.h>

http://wiki.osdev.org/NE
http://wiki.osdev.org/COM
http://wiki.osdev.org/ELF
http://wiki.osdev.org/File:Difficulty_2.png
http://wiki.osdev.org/A.out
http://wiki.osdev.org/LE
http://wiki.osdev.org/File:Under_Construction.png
http://wiki.osdev.org/MZ
http://wiki.osdev.org/PE
http://wiki.osdev.org/Executable_Formats

typedef uint16_t Elf32_Half; // Unsigned half int
typedef uint32_t Elf32_Off; // Unsigned offset
typedef uint32_t Elf32_Addr; // Unsigned address
typedef uint32_t Elf32_Word; // Unsigned int
typedef int32_t Elf32_Sword; // Signed int

The ELF file format is made to function on a number of different architectures, many of which support different
data widths. For support across multiple machine types, the ELF format provides a set of guidelines for fixed
width types that make up the layout of the section and data represented within object files. You may choose to
name your types differently or use types defined in stdint.h directly, but they should conform to those shown
above.

The ELF Header

The ELF file format has only one header with fixed placement: the ELF header, present at the beginning of every
file. The format itself is extremely flexible as the positioning, size, and purpose of every header (save the ELF
header) is described by another header in the file.

define ELF_NIDENT 16

typedef struct {
 uint8_t e_ident[ELF_NIDENT];
 Elf32_Half e_type;
 Elf32_Half e_machine;
 Elf32_Word e_version;
 Elf32_Addr e_entry;
 Elf32_Off e_phoff;
 Elf32_Off e_shoff;
 Elf32_Word e_flags;
 Elf32_Half e_ehsize;
 Elf32_Half e_phentsize;
 Elf32_Half e_phnum;
 Elf32_Half e_shentsize;
 Elf32_Half e_shnum;
 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

The ELF header is the first header in an ELF file and it provides important information about the file (such as the
machine type, architecture and byte order, etc.) as well as a means of identifying and checking whether the file is
valid. The ELF header also provides information about other sections in the file, since the can be appear in any
order, vary in size, or may be absent from the file altogether. Universal to all ELF files are the first 4 bytes (the
magic number) which are used identify the file. When working with the file through the Elf32_Ehdr type defined
above, these 4 bytes are accessible from indexes 0 - 3 of the field e_ident.

enum Elf_Ident {
 EI_MAG0 = 0, // 0x7F
 EI_MAG1 = 1, // 'E'
 EI_MAG2 = 2, // 'L'

 EI_MAG3 = 3, // 'F'
 EI_CLASS = 4, // Architecture (32/64)
 EI_DATA = 5, // Byte Order
 EI_VERSION = 6, // ELF Version
 EI_OSABI = 7, // OS Specific
 EI_ABIVERSION = 8, // OS Specific
 EI_PAD = 9 // Padding
};

define ELFMAG0 0x7F // e_ident[EI_MAG0]
define ELFMAG1 'E' // e_ident[EI_MAG1]
define ELFMAG2 'L' // e_ident[EI_MAG2]
define ELFMAG3 'F' // e_ident[EI_MAG3]

define ELFDATA2LSB (1) // Little Endian
define ELFCLASS32 (1) // 32-bit Architecture

The first field in the header consists of 16 bytes, many of which provide important information about the ELF file
such as the intended architecture, byte order, and ABI information. Since this tutorial focuses on implementing a
x86 compatible loader, only relevant value definitions have been included.

enum Elf_Type {
 ET_NONE = 0, // Unkown Type
 ET_REL = 1, // Relocatable File
 ET_EXEC = 2 // Executable File
};

define EM_386 (3) // x86 Machine Type
define EV_CURRENT (1) // ELF Current Version

The file header also provides information about the machine type and file type. Once again, only the relevant
definitions have been included above.

Checking the ELF Header

Before an ELF file can be loaded, linked, relocated or otherwise processed, it's important to ensure that the
machine trying to perform the aforementioned is able to do. This entails that the file is a valid ELF file targeting
the local machine's architecture, byte order and CPU type, and that any operating system spefic semantics are
satisfied.

bool elf_check_file(Elf32_Ehdr *hdr) {
 if(!hdr) return false;
 if(hdr->e_ident[EI_MAG0] != ELFMAG0) {
 ERROR("ELF Header EI_MAG0 incorrect.\n");

 return false;
 }
 if(hdr->e_ident[EI_MAG1] != ELFMAG1) {
 ERROR("ELF Header EI_MAG1 incorrect.\n");

 return false;
 }
 if(hdr->e_ident[EI_MAG2] != ELFMAG2) {
 ERROR("ELF Header EI_MAG2 incorrect.\n");

 return false;
 }
 if(hdr->e_ident[EI_MAG3] != ELFMAG3) {
 ERROR("ELF Header EI_MAG3 incorrect.\n");

 return false;
 }
 return true;
}

Assuming that an ELF file has already been loaded into memory (either by the bootloader or otherwise), the first
step to loading an ELF file is checking the ELF header for the magic number that should be present at the
begining of the file. A minimal implementation of this could simply treat the image of file in memory as a string
and do a comparision against a predefined string. In the example above, the comparision is done byte by byte
through the ELF header type, and provides detailed feedback when the method encounters an error.

bool elf_check_supported(Elf32_Ehdr *hdr) {
 if(!elf_check_file(hdr)) {
 ERROR("Invalid ELF File.\n");

 return false;
 }
 if(hdr->e_ident[EI_CLASS] != ELFCLASS32) {
 ERROR("Unsupported ELF File Class.\n");
 return false;
 }
 if(hdr->e_ident[EI_DATA] != ELFDATA2LSB) {
 ERROR("Unsupported ELF File byte order.\n");

 return false;
 }
 if(hdr->e_machine != EM_386) {
 ERROR("Unsupported ELF File target.\n");
 return false;
 }
 if(hdr->e_ident[EI_VERSION] != EV_CURRENT) {
 ERROR("Unsupported ELF File version.\n");

 return false;
 }
 if(hdr->e_type != ET_REL && hdr->e_type != ET_EXEC) {
 ERROR("Unsupported ELF File type.\n");

 return false;
 }
 return true;
}

The next step to loading an ELF object is to check that the file in question is intended to run on the machine that
has loaded it. Again, the ELF header provides the necessary information about the file's indended target. The
code above assumes that you have implemented a function called elf_check_file() (or used the one provided
above), and that the local machine is i386, little-endian and 32-bit. It also only allows for executable and
relocatable files to be loaded, although this can be changed as necessary.

Loading the ELF File

static inline void *elf_load_rel(Elf32_Ehdr *hdr) {
 int result;
 result = elf_load_stage1(hdr);
 if(result == ELF_RELOC_ERR) {
 ERROR("Unable to load ELF file.\n");

 return NULL;
 }
 result = elf_load_stage2(hdr);
 if(result == ELF_RELOC_ERR) {
 ERROR("Unable to load ELF file.\n");

 return NULL;
 }
 // TODO : Parse the program header (if present)
 return (void *)hdr->e_entry;
}

void *elf_load_file(void *file) {
 Elf32_Ehdr *hdr = (Elf32_Ehdr *)file;
 if(!elf_check_supported(hdr)) {
 ERROR("ELF File cannot be loaded.\n");

 return;
 }
 switch(hdr->e_type) {
 case ET_EXEC:
 // TODO : Implement
 return NULL;
 case ET_REL:
 return elf_load_rel(hdr);
 }
 return NULL;
}

The ELF Section Header

The ELF format defines a lot of different types of section and their relevant headers, not all of which are present
in every file, and there's no guarantee on which order they are appear in. Thus, in order to parse and process
these sections the format also defines section headers, which contains information such as section names, sizes,
locations and other relevant information. The list of all the section headers in an ELF image is refered to as the
section header table.

typedef struct {
 Elf32_Word sh_name;
 Elf32_Word sh_type;
 Elf32_Word sh_flags;
 Elf32_Addr sh_addr;
 Elf32_Off sh_offset;
 Elf32_Word sh_size;
 Elf32_Word sh_link;
 Elf32_Word sh_info;
 Elf32_Word sh_addralign;
 Elf32_Word sh_entsize;
} Elf32_Shdr;

The section header table contains a number of important fields, some of which have different meanings for
different sections. Another point of interest is that the sh_name field does not point directly to a string, instead it
gives the offset of a string in the section name string table (the index of the table itself is defined in the ELF
header by the field e_shstrndx). Each header also defines the position of the actual section in the file image in
the field sh_offset, as an offset from the begining of the file.

define SHN_UNDEF (0x00) // Undefined/Not present

enum ShT_Types {
 SHT_NULL = 0, // Null section
 SHT_PROGBITS = 1, // Program information
 SHT_SYMTAB = 2, // Symbol table
 SHT_STRTAB = 3, // String table
 SHT_RELA = 4, // Relocation (w/ addend)
 SHT_NOBITS = 8, // Not present in file
 SHT_REL = 9, // Relocation (no addend)
};

enum ShT_Attributes {
 SHF_WRITE = 0x01, // Writable section
 SHF_ALLOC = 0x02 // Exists in memory
};

Above are a number of constants that are relevant to the tutorial (a good deal more exist). The enumeration
ShT_Types defines a number of different types of sections, which correspond to values stored in the field
sh_type in the section header. Similarly, ShT_Attributes corresponds to the field sh_flags, but are bit flags
rather than stand-alone values.

Accessing Section Headers

Getting access to the section header itself isn't very difficult: It's position in the file image is defined by e_shoff in
the ELF header and the number of section headers is in turn defined by e_shnum. Notably, the first entry in the
section header is a NULL entry; that is to say, fields in the header are 0. The section headers are continuous, so
given a pointer to the first entry, subsequent entries can accessed with simple pointer arithmatic or array
operations.

static inline Elf32_Shdr *elf_sheader(Elf32_Ehdr *hdr) {
 return (Elf32_Shdr *)((int)hdr + hdr->e_shoff);
}

static inline Elf32_Shdr *elf_section(Elf32_Ehdr *hdr, int idx)
 return &elf_sheader(hdr)[idx];
}

The two methods above provide convinient access to section headers on a by-index basis using the principals
noted above, and they will be used fruquently in the example code that follows.

Section Names

One notable procedure is accessing section names (since, as mentioned before, they header only provides an
offset into the section name string table), which is also fairly simple. The whole operation can be broken down
into a simple series of steps:

1. Get the section header index for the string table from the ELF header (stored in e_shstrndx). Make sure

to check the index against SHN_UNDEF, as the table may not be present.
2. Access the section header at the given index and find the table offset (stored in sh_offset).

3. Calculate the position of the string table in memory using the offset.

4. Create a pointer to the name's offset into the string table.

An example of the process is shown in the two convinience methods below.

static inline char *elf_str_table(Elf32_Ehdr *hdr) {
 if(hdr->e_shstrndx == SHN_UNDEF) return NULL;
 return (char *)hdr + elf_section(hdr, hdr->e_shstrndx)->
}

static inline char *elf_lookup_string(Elf32_Ehdr *hdr, int offset
 char *strtab = elf_str_table(hdr);
 if(strtab == NULL) return NULL;
 return strtab + offset;
}

Note that before you attempt to access the name of a section, you should first check that the section has a name
(The offset given by sh_name is not equal to SHN_UNDEF).

ELF Sections

ELF object files can have a very large number of sections, however, it is important to note that only some
sections need to be processed during program loading, and not all of them may exist within the object file itself
(ie. the BSS). This segment will describe a number of sections that should be processed during program loading
(given they are present).

The Symbol Table

The symbol table is a section (or a number of sections) that exist within the ELF file and define the location,
type, visibility and other traits of various symbols declared in the original source, created during compilation or
linking, or otherwise present in the file. Since an ELF object can have multiple symbol tables, it is necessary to
either iterate over the file's section headers, or to follow a reference from another section in order to access one.

typedef struct {
 Elf32_Word st_name;
 Elf32_Addr st_value;
 Elf32_Word st_size;
 uint8_t st_info;
 uint8_t st_other;
 Elf32_Half st_shndx;
} Elf32_Sym;

Each symbol table entry contains a number of notable bits of information such as the symbol name (st_name,
may be STN_UNDEF), the symbol's value (st_value, may be absolute or relative address of value), and the
field st_info which conatins both the symbol type and binding. As an aside, the first entry in each symbol table is
a NULL entry, so all of it's fields are 0.

define ELF32_ST_BIND(INFO) ((INFO) >> 4)
define ELF32_ST_TYPE(INFO) ((INFO) & 0x0F)

enum StT_Bindings {
 STB_LOCAL = 0, // Local scope
 STB_GLOBAL = 1, // Global scope
 STB_WEAK = 2 // Weak, (ie. __attribute__((weak)))
};

enum StT_Types {
 STT_NOTYPE = 0, // No type
 STT_OBJECT = 1, // Variables, arrays, etc.
 STT_FUNC = 2 // Methods or functions
};

As mentioned above, st_info contains both the symbol type and biding, so the 2 macros above provide access
to the individual values. The enumeration StT_Types provides a number of possible symbol types, and
StB_Bindings provides possible symbol bindings.

Accessing the Value of a Symbol

Some operation such as linking and relocation require the value of a symbol (or rather, the address thereof).
Although the symbol table entries do define a field st_value, it may only contain a relative address. Below is an
example of how to compute the absolute address of the value of the symbol. The code has been broken up into
multple smaller section so that it is easier to understand.

static int elf_get_symval(Elf32_Ehdr *hdr, int table, uint idx)
 if(table == SHN_UNDEF || idx == SHN_UNDEF) return 0;
 Elf32_Shdr *symtab = elf_section(hdr, table);

 uint32_t symtab_entries = symtab->sh_size / symtab->sh_entsize
 if(idx >= symtab_entries) {
 ERROR("Symbol Index out of Range (%d:%u).\n", table, idx

 return ELF_RELOC_ERR;
 }

 int symaddr = (int)hdr + symtab->sh_offset;
 Elf32_Sym *symbol = &((Elf32_Sym *)symaddr)[idx];

The above performs a check against both the symbol table index and the symbol index; if either is undefined, 0
is returned. Otherwise the section header entry for the symbol table at the given index is accessed. It then
checks that the symbol table index is not outside the bounds of the symbol table. If the check fails an error
message is displayed and an error code is returned, otherwise the symbol table entry at the given index is is
retreived.

 if(symbol->st_shndx == SHN_UNDEF) {
 // External symbol, lookup value
 Elf32_Shdr *strtab = elf_section(hdr, symtab->sh_link
 const char *name = (const char *)hdr + strtab->sh_offset

 extern void *elf_lookup_symbol(const char *name)
 void *target = elf_lookup_symbol(name);

 if(target == NULL) {
 // Extern symbol not found
 if(ELF32_ST_BIND(symbol->st_info) & STB_WEAK
 // Weak symbol initialized as 0
 return 0;
 } else {
 ERROR("Undefined External Symbol : %s.

 return ELF_RELOC_ERR;
 }
 } else {
 return (int)target;
 }

If the section to which the symbol is relative (given by st_shndx) is equal to SHN_UNDEF, the symbol is
external and must be linked to its definition. The string table is retreived for the current symbol table (the string
table for a given symbol table is available in the table's section header in sh_link), and the symbol's name is
found in the string table. Next the function elf_lookup_symbol() is used to find a symbol defintion by name (this

function is not provided, a minimal implementation always return NULL). If the symbol definition is found, it is
returned. If the symbol has the STB_WEAK flag (is a weak symbol) 0 is returned, otherwise an error message
is displayed and an error code returned.

 } else if(symbol->st_shndx == SHN_ABS) {
 // Absolute symbol
 return symbol->st_value;
 } else {
 // Internally defined symbol
 Elf32_Shdr *target = elf_section(hdr, symbol->st_shndx
 return (int)hdr + symbol->st_value + target->sh_offset
 }
}

If the the value of sh_ndx is equal to SHN_ABS, the symbol's value is absolute and is reurned immidiately. If
sh_ndx doesn't contain a special value, that means the symbol is defined in the local ELF object. Since the value
given by sh_value is relative to a section defined sh_ndx, the relevant section header entry is accessed, and the
symbol's address is computed by adding the address of the file in memory to the symbol's value with its section
offset.

The String Table

The string table conceptually is quite simple: it's just a number of consecutive zero-terminated strings. String
literals used in the program are stored in one of the tables. There are a number of different string tables that may
be present in an ELF object such as .strtab (the default string table), .shstrtab (the section string table) and
.dynstr (string table for dynamic linking). Anytime the loading process needs access to a string, it uses an offset
into one of the string tables. The offset may point to the beginning of a zero-terminated string or somewhere in
the middle or even to the zero terminator itself, depending on usage and scenario. The size of the string table
itself is specified by sh_size in the corresponding section header entry.

The simplest program loader may copy all string tables into memory, but a more complete solution would omit
any that are not necessary during runtime such, notably those not flagged with SHF_ALLOC in their respective
section header (such as .shstrtab, since section names aren't used in program runtime).

The BSS and SHT_NOBITS

The BSS (the section named ".bss") is in the simplest way of describing it: A block of memory which has been
zeroed. The BSS is the area in memory where variables with global lifetime that haven't been initialized (or have
been initialized to 0 or NULL) are stored. The section header for the BSS defines its sh_type as
SHT_NOBITS, which means that it isn't present in the file image, and must be allocated during runtime. A
simple and naive way of allocating a BSS is to malloc some memory and zero it out with a memset. Failing to
zero the BSS can cause unexpected behavious from any loaded programs. Another thing to note is that the BSS
should be allocated before performing any operation that relies on relative addressing (such as relocation), as
failing to do so can cause code to reference garbage memory or fault.

While the BSS is one specific example, any section that is of type SHT_NOBITS and has the attribute
SHF_ALLOC should be allocated early on during program loading. Since this tutorial is intended to be general
and unspecific, the example below will follow the trend and use the simplest example for allocating sections.

static int elf_load_stage1(Elf32_Ehdr *hdr) {
 Elf32_Shdr *shdr = elf_sheader(hdr);

 unsigned int i;
 // Iterate over section headers
 for(i = 0; i < hdr->e_shnum; i++) {
 Elf32_Shdr *section = &shdr[i];

 // If the section isn't present in the file
 if(section->sh_type == SHT_NOBITS) {
 // Skip if it the section is empty
 if(!section->sh_size) continue;
 // If the section should appear in memory
 if(section->sh_flags & SHF_ALLOC) {
 // Allocate and zero some memory
 void *mem = malloc(section->sh_size
 memset(mem, 0, section->sh_size)

 // Assign the memory offset to the section offset
 section->sh_offset = (int)mem -
 DEBUG("Allocated memory for a section (%ld).

 }
 }
 }
 return 0;
}

The example above allocates as much memory as necessary for the section, described by the sh_size field of
the section's header. Although the function in the example only seeks out sections that needs to be allocated, it
can be modified to perform other operation that should be performed early on into the loading process.

Relocation Sections

Relocatable ELF files have many uses in kernel programming, especially as modules and drivers that can be
loaded at startup, and are especially useful because they are position independant, thus can easily be placed
after the kernel or starting at some convinient address, and don't require their own address space to function.
The process of relocation itself is conceptually simple, but may get more difficult with the introduction of
complex relocation types.

Relocation starts with a table of relocation entries, which can be located using the relevant section header. There
are actually two different kinds of relocation structures; one with an explicit added (section type SHT_RELA),
one without (section type SHT_REL). Relocation entires in the table are continuous and the number of entries
in a given table can be found by dividing the size of the table (given by sh_size in the section header) by the size
of each entry (given by sh_entsize). Each relocation table is specific to a single section, so a single file may have
multiple relocation tables (but all entries within a given table will be the same relocation structure type).

typedef struct {
 Elf32_Addr r_offset;

 Elf32_Word r_info;
} Elf32_Rel;

typedef struct {
 Elf32_Addr r_offset;
 Elf32_Word r_info;
 Elf32_Sword r_addend;
} Elf32_Rela;

The above are the defintions for the different structure types for relocations. Of note if the value stored in r_info,
as the upper byte designates the entry in the symbol table to which the relocation applies, whereas the lower
byte stores the type of relocation that should be applied. Note that an ELF file may have multiple symbol tables,
thus the index of the section header table that refers to the symbol table to which these relocation apply can be
found in the sh_link field on this relocation table's section header. The value in r_offset gives the relative
position of the symbol that is being relocated, within its section.

define ELF32_R_SYM(INFO) ((INFO) >> 8)
define ELF32_R_TYPE(INFO) ((uint8_t)(INFO))

enum RtT_Types {
 R_386_NONE = 0, // No relocation
 R_386_32 = 1, // Symbol + Offset
 R_386_PC32 = 2 // Symbol + Offset - Section Offset
};

As previously mentioned, the r_info field in Elf32_Rel(a) refers to 2 seperate values, thus the set of macro
functions above can be used to attain the individual values; ELF32_R_SYM() provides access to the symbol
index and ELF32_R_TYPE() provides access to the relocation type. The enumeration RtT_Types defines the
relocation typs this tutorial will encompass.

Relocation Example

Loading a relocatable ELF file entails processing all relocation entries present in the file (Remember to alloc
allocate all SHT_NOBITS sections first!). This process starts with finding all the relocation tables in the file,
which is done in the example code below.

define ELF_RELOC_ERR -1

static int elf_load_stage2(Elf32_Ehdr *hdr) {
 Elf32_Shdr *shdr = elf_sheader(hdr);

 unsigned int i, idx;
 // Iterate over section headers
 for(i = 0; i < hdr->e_shnum; i++) {
 Elf32_Shdr *section = &shdr[i];

 // If this is a relocation section

 if(section->sh_type == SHT_REL) {
 // Process each entry in the table
 for(idx = 0; idx < section->sh_size / section
 Elf32_Rel *reltab = &((Elf32_Rel
 int result = elf_do_reloc(hdr, reltab, section
 // On error, display a message and return
 if(result == ELF_RELOC_ERR) {
 ERROR("Failed to relocate symbol.
 return ELF_RELOC_ERR;
 }
 }
 }
 }
 return 0;
}

Note that the code above only processes Elf32_Rel entries, but it can be modified to process entries with
explicit addends as well. The code also relies on a function called elf_do_reloc which will be shown in the next
example. This example function stops, displays an error message, and returns an error code if it's unable to
process a relocation.

Relocating a Symbol

As the following function is fairly complex, it's been broken up into smaller managable chumks and explained in
detail. Note that the code shown below assumes that the file being relocated is a relocatable ELF file (ELF
executables and shared objects may also contain relocation entries, but are processed somewhat differently).
Also note that sh_info for section headers of type SHT_REL and SHT_RELA stores the section header to
which the relocation applies.

define DO_386_32(S, A) ((S) + (A))
define DO_386_PC32(S, A, P) ((S) + (A) - (P))

static int elf_do_reloc(Elf32_Ehdr *hdr, Elf32_Rel *rel, Elf32_Shdr
 Elf32_Shdr *target = elf_section(hdr, reltab->sh_info);

 int addr = (int)hdr + target->sh_offset;
 int *ref = (int *)(addr + rel->r_offset);

The above code defines the macro functions that are used to complete relocation calculations. It also retreives
the section header for the section wherein the symbol exists and computes a reference to the symbol. The
variable addr denotes the start of the symbol's section, and ref is created by adding the offset to the symbol
from the relocation entry.

 // Symbol value
 int symval = 0;
 if(ELF32_R_SYM(rel->r_info) != SHN_UNDEF) {

 symval = elf_get_symval(hdr, reltab->sh_link, ELF32_R_SYM
 if(symval == ELF_RELOC_ERR) return ELF_RELOC_ERR
 }

Next the value of the symbol being relocated is accessed. If the symbol table index stored in r_info is undefined,
then the value defaults to 0. The code also references a function called elf_get_symval(), which was
implemented previously. If the value returned by the function is equal to ELF_RELOC_ERR, relocation is
stoped and said error code is returned.

 // Relocate based on type
 switch(ELF32_R_TYPE(rel->r_info)) {
 case R_386_NONE:
 // No relocation
 break;
 case R_386_32:
 // Symbol + Offset
 *ref = DO_386_32(symval, *ref);
 break;
 case R_386_PC32:
 // Symbol + Offset - Section Offset
 *ref = DO_386_PC32(symval, *ref, (int)ref
 break;
 default:
 // Relocation type not supported, display error and return
 ERROR("Unsupported Relocation Type (%d).
 return ELF_RELOC_ERR;
 }
 return symval;
}

Finally, this segment of code details the actual relocation process, performing the necessary calculating the
relocated symbol and returning it's value on success. If the relocation type is unsupported an error message is
displayed, relocation is stoped and the function returns an error code. Assuming no errors have occured,
relocation is now complete.

The ELF Program Header

The program header is a structure that defines information about how the ELF program behaves once it's been
loaded, as well as runtime linking information. ELF program headers (much like section headers) are all grouped
together to make up the program header table.

typedef struct {
 Elf32_Word p_type;
 Elf32_Off p_offset;
 Elf32_Addr p_vaddr;
 Elf32_Addr p_paddr;

 Elf32_Word p_filesz;
 Elf32_Word p_memsz;
 Elf32_Word p_flags;
 Elf32_Word p_align;
} Elf32_Phdr;

The program header table contains a continuous set of program headers (thus they can be accessed as if they
were an array). The table itself can be accessed using the e_phoff field defined in the ELF header, assuming that
it is present. The header itself defines a number of useful fields like p_type which distinguishes between headers,
p_offset which stores the offset to the segment the header refers to, and p_vaddr which defines the address at
which position-dependent code should exist.

TODO : Expand and Detail.

See Also

Articles

ELF
Modular Kernel
System V ABI

External Links

ELF Format Specifications (http://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-

46512.html#scrolltoc) Detailed and up-to-date ELF information (including SPARC in depth) by Oracle.
System V ABI (http://www.sco.com/developers/gabi/latest/contents.html) about ELF
LSB specifications (http://www.linuxfoundation.org/en/Specifications)

See (generic or platform-specific) 'Core' specifications for additional ELF information.

Retrieved from "http://wiki.osdev.org/index.php?title=ELF_Tutorial&oldid=18079"

Categories: In Progress Level 2 Tutorials

This page was last modified on 16 May 2015, at 08:26.

This page has been accessed 11,243 times.

http://wiki.osdev.org/Category:In_Progress
http://www.linuxfoundation.org/en/Specifications
http://wiki.osdev.org/System_V_ABI
http://wiki.osdev.org/ELF
http://wiki.osdev.org/Special:Categories
http://www.sco.com/developers/gabi/latest/contents.html
http://wiki.osdev.org/index.php?title=ELF_Tutorial&oldid=18079
http://wiki.osdev.org/Modular_Kernel
http://wiki.osdev.org/Category:Level_2_Tutorials
http://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-46512.html#scrolltoc

