
Filesystems

Virtual FileSystems

VFS

Disk filesystems

FAT 12/16/32, VFAT

Ext 2/3/4
LEAN
HPFS
NTFS
HFS

HFS+
MFS

ReiserFS
FFS (Amiga)

FFS (BSD)/UFS
BeFS
BFS
XFS
SFS
ZFS

CD/DVD filesystems

ISO 9660
Joliet
UDF

Network filesystems

NFS
RFS
AFS

Flash filesystems

JFFS2
YAFFS

Ext2

From OSDev Wiki

The Second Extended Filesystem (ext2fs) is a rewrite of the original
Extended Filesystem and as such, is also based around the concept of
"inodes." Ext2 served as the de facto filesystem of Linux for nearly a decade
from the early 1990s to the early 2000s when it was superseded by the
journaling file systems ext3 and ReiserFS. It has native support for UNIX
ownership / access rights, symbolic- and hard-links, and other properties that
are common among UNIX-like operating systems. Organizationally, it
divides disk space up into groups called "block groups." Having these groups
results in distribution of data across the disk which helps to minimize head
movement as well as the impact of fragmentation. Further, some (if not all)
groups are required to contain backups of important data that can be used to
rebuild the file system in the event of disaster.

Note: Most of the information here is based off of work done by Dave
Poirier on the ext2-doc project (see the links section) which is graciously
released under the GNU Free Documentation License
(http://www.fsf.org/licenses/fdl.html) . Be sure to buy him a beer the next
time you see him.

Contents

1 Basic Concepts
1.1 What is a Block?
1.2 What is a Block Group?
1.3 What is an Inode?

2 Superblock

2.1 Locating the Superblock
2.2 Determining the Number of Block Groups

2.3 Base Superblock Fields
2.3.1 File System States

2.3.2 Error Handling Methods

2.3.3 Creator Operating System IDs
2.4 Extended Superblock Fields

2.4.1 Optional Feature Flags
2.4.2 Required Feature Flags

2.4.3 Read-Only Feature Flags

3 Block Group Descriptor Table
3.1 Locating the Block Group Descriptor Table

3.2 Block Group Descriptor
4 Inodes

4.1 Determining which Block Group contains an Inode

4.2 Finding an inode inside of a Block Group
4.3 Reading the contents of an inode

http://wiki.osdev.org/UFS
http://wiki.osdev.org/File_Systems
http://wiki.osdev.org/FAT
http://wiki.osdev.org/SFS
http://wiki.osdev.org/UDF
http://wiki.osdev.org/LEAN
http://wiki.osdev.org/NTFS
http://wiki.osdev.org/FAT32
http://wiki.osdev.org/Ext3
http://wiki.osdev.org/VFAT
http://wiki.osdev.org/FAT16
http://wiki.osdev.org/ZFS
http://wiki.osdev.org/FAT12
http://wiki.osdev.org/HFS
http://wiki.osdev.org/FFS_(BSD)
http://wiki.osdev.org/VFS
http://wiki.osdev.org/HPFS
http://wiki.osdev.org/NFS
http://wiki.osdev.org/Ext3
http://wiki.osdev.org/BFS
http://wiki.osdev.org/RFS
http://wiki.osdev.org/ReiserFS
http://wiki.osdev.org/ReiserFS
http://www.fsf.org/licenses/fdl.html
http://wiki.osdev.org/XFS
http://wiki.osdev.org/AFS
http://wiki.osdev.org/JFFS2
http://wiki.osdev.org/MFS
http://wiki.osdev.org/ISO_9660
http://wiki.osdev.org/HFS%2B
http://wiki.osdev.org/YAFFS
http://wiki.osdev.org/Joliet
http://wiki.osdev.org/BeFS
http://wiki.osdev.org/Category:Network_Filesystems
http://wiki.osdev.org/Ext4
http://wiki.osdev.org/FFS_(Amiga)

4.4 Inode Data Structure
4.4.1 Inode Type and Permissions

4.4.2 Inode Flags

4.4.3 OS Specific Value 1
4.4.4 OS Specific Value 2

4.5 Directories
4.6 Directory Entry

4.6.1 Directory Entry Type Indicators

5 Quick Summaries
5.1 How To Read An Inode

5.2 How To Read the Root Directory
6 See Also

6.1 External Links

Basic Concepts

Important Note: All values are little-endian unless otherwise specified

What is a Block?

The Ext2 file system divides up disk space into logical blocks of contiguous space. The size of blocks need not
be the same size as the sector size of the disk the file system resides on. The size of blocks can be determined by
reading the field starting at byte 24 in the Superblock.

What is a Block Group?

Blocks, along with inodes, are divvied up into "block groups." These are nothing more than contiguous groups of
blocks.

Each block group reserves a few of its blocks for special purposes such as:

A bitmap of free/allocated blocks within the group

A bitmap of allocated inodes within the group
A table of inode structures that belong to the group

Depending upon the revision of Ext2 used, some or all block groups may also contain a backup copy of

the Superblock and the Block Group Descriptor Table.

What is an Inode?

An inode is a structure on the disk that represents a file, directory, symbolic link, etc. Inodes do not contain the
data of the file / directory / etc. that they represent. Instead, they link to the blocks that actually contain the data.
This lets the inodes themselves have a well-defined size which lets them be placed in easily indexed arrays. Each
block group has an array of inodes it is responsible for, and conversely every inode within a file system belongs
to one of such tables (and one of such block groups).

Superblock

The first step in implementing an Ext2 driver is to find, extract, and parse the superblock. The Superblock
contains all information about the layout of the file system and possibly contains other important information like
what optional features were used to create the file system. Once you have finished with the Superblock, the next
step is to look at the Block Group Descriptor Table

Locating the Superblock

The Superblock is always located at byte 1024 from the beginning of the volume and is exactly 1024 bytes in
length. For example, if the disk uses 512 byte sectors, the Superblock will begin at LBA 2 and will occupy all of
sector 2 and 3.

Determining the Number of Block Groups

From the Superblock, extract the size of each block, the total number of inodes, the total number of blocks, the
number of blocks per block group, and the number of inodes in each block group. From this information we can
infer the number of block groups there are by:

Rounding up the total number of blocks divided by the number of blocks per block group
Rounding up the total number of inodes divided by the number of inodes per block group

Both (and check them against each other)

Base Superblock Fields

These fields are present in all versions of Ext2

Starting

Byte

Ending

Byte

Size

in
Bytes

Field Description

0 3 4 Total number of inodes in file system

4 7 4 Total number of blocks in file system

8 11 4 Number of blocks reserved for superuser (see offset 80)

12 15 4 Total number of unallocated blocks

16 19 4 Total number of unallocated inodes

20 23 4 Block number of the block containing the superblock

24 27 4
log2 (block size) - 10. (In other words, the number to shift 1,024 to the left by to

obtain the block size)

28 31 4
log2 (fragment size) - 10. (In other words, the number to shift 1,024 to the left by to

obtain the fragment size)

32 35 4 Number of blocks in each block group

36 39 4 Number of fragments in each block group

40 43 4 Number of inodes in each block group

44 47 4 Last mount time (in POSIX time (http://en.wikipedia.org/wiki/Unix_time))

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

48 51 4 Last written time (in POSIX time (http://en.wikipedia.org/wiki/Unix_time))

52 53 2
Number of times the volume has been mounted since its last consistency check

(fsck (http://en.wikipedia.org/wiki/Fsck))

54 55 2
Number of mounts allowed before a consistency check (fsck

(http://en.wikipedia.org/wiki/Fsck)) must be done

56 57 2 Ext2 signature (0xef53), used to help confirm the presence of Ext2 on a volume

58 59 2 File system state (see below)

60 61 2 What to do when an error is detected (see below)

62 63 2
Minor portion of version (combine with Major portion below to construct full
version field)

64 67 4
POSIX time (http://en.wikipedia.org/wiki/Unix_time) of last consistency check

(fsck (http://en.wikipedia.org/wiki/Fsck))

68 71 4
Interval (in POSIX time (http://en.wikipedia.org/wiki/Unix_time)) between forced
consistency checks (fsck (http://en.wikipedia.org/wiki/Fsck))

72 75 4
Operating system ID from which the filesystem on this volume was created (see
below)

76 79 4
Major portion of version (combine with Minor portion above to construct full

version field)

80 81 2 User ID that can use reserved blocks

82 83 2 Group ID that can use reserved blocks

File System States

Value State Description

1 File system is clean

2 File system has errors

Error Handling Methods

Value Action to Take

1 Ignore the error (continue on)

2 Remount file system as read-only

3 Kernel panic

Creator Operating System IDs

Value Operating System

0 Linux (http://kernel.org/)

http://en.wikipedia.org/wiki/Fsck
http://en.wikipedia.org/wiki/Fsck
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time
http://kernel.org/
http://www.gnu.org/software/hurd/hurd.html
http://en.wikipedia.org/wiki/Fsck
http://en.wikipedia.org/wiki/Fsck
http://en.wikipedia.org/wiki/Unix_time

1 GNU HURD (http://www.gnu.org/software/hurd/hurd.html)

2 MASIX (an operating system developed by Rémy Card, one of the developers of ext2)

3 FreeBSD (http://www.freebsd.org/)

4
Other "Lites" (BSD4.4-Lite derivatives such as NetBSD (http://www.netbsd.org/) , OpenBSD

(http://www.openbsd.org/) , XNU/Darwin (http://www.opensource.apple.com/source/xnu/) , etc.)

Extended Superblock Fields

These fields are only present if Major version (specified in the base superblock fields), is greater than or equal to
1.

Starting

Byte

Ending

Byte

Size

in
Bytes

Field Description

84 87 4 First non-reserved inode in file system. (In versions < 1.0, this is fixed as 11)

88 89 2 Size of each inode structure in bytes. (In versions < 1.0, this is fixed as 128)

90 91 2 Block group that this superblock is part of (if backup copy)

92 95 4
Optional features present (features that are not required to read or write, but usually

result in a performance increase. see below)

96 99 4
Required features present (features that are required to be supported to read or
write. see below)

100 103 4 Features that if not supported, the volume must be mounted read-only see below)

104 119 16 File system ID (what is output by blkid)

120 135 16 Volume name (C-style string: characters terminated by a 0 byte)

136 199 64 Path volume was last mounted to (C-style string: characters terminated by a 0 byte)

200 203 4 Compression algorithms used (see Required features above)

204 204 1 Number of blocks to preallocate for files

205 205 1 Number of blocks to preallocate for directories

206 207 2 (Unused)

208 223 16 Journal ID (same style as the File system ID above)

224 227 4 Journal inode

228 231 4 Journal device

232 235 4 Head of orphan inode list

236 1023 X (Unused)

Optional Feature Flags

http://www.freebsd.org/
http://www.gnu.org/software/hurd/hurd.html
http://www.opensource.apple.com/source/xnu/
http://www.netbsd.org/
http://www.openbsd.org/

These are optional features for an implementation to support, but offer performance or reliability gains to
implementations that do support them.

Flag

Value
Description

0x0001
Preallocate some number of (contiguous?) blocks (see byte 205 in the superblock) to a directory
when creating a new one (to reduce fragmentation?)

0x0002 AFS server inodes exist

0x0004 File system has a journal (Ext3)

0x0008 Inodes have extended attributes

0x0010 File system can resize itself for larger partitions

0x0020 Directories use hash index

Required Feature Flags

These features if present on a file system are required to be supported by an implementation in order to correctly
read from or write to the file system.

Flag Value Description

0x0001 Compression is used

0x0002 Directory entries contain a type field

0x0004 File system needs to replay its journal

0x0008 File system uses a journal device

Read-Only Feature Flags

These features, if present on a file system, are required in order for an implementation to write to the file system,
but are not required to read from the file system.

Flag

Value
Description

0x0001 Sparse superblocks and group descriptor tables

0x0002 File system uses a 64-bit file size

0x0004
Directory contents are stored in the form of a Binary Tree

(http://en.wikipedia.org/wiki/Binary_tree)

Block Group Descriptor Table

The Block Group Descriptor Table contains a descriptor for each block group within the file system. The number
of block groups within the file system, and correspondingly, the number of entries in the Block Group Descriptor
Table, is described above. Each descriptor contains information regarding where important data structures for
that group are located.

http://en.wikipedia.org/wiki/Binary_tree

Locating the Block Group Descriptor Table

The table is located in the block immediately following the Superblock. So if the block size (determined from a
field in the superblock) is 1024 bytes per block, the Block Group Descriptor Table will begin at block 2. For
any other block size, it will begin at block 1. Remember that blocks are numbered starting at 0, and that block
numbers don't usually correspond to physical block addresses.

Block Group Descriptor

A Block Group Descriptor contains information regarding where important data structures for that block group
are located.

Starting

Byte

Ending

Byte

Size

in Bytes
Field Description

0 3 4 Block address of block usage bitmap

4 7 4 Block address of inode usage bitmap

8 11 4 Starting block address of inode table

12 13 2 Number of unallocated blocks in group

14 15 2 Number of unallocated inodes in group

16 17 2 Number of directories in group

18 31 X (Unused)

Inodes

Like blocks, each inode has a numerical address. It is extremely important to note that unlike block addresses,
inode addresses start at 1.

With Ext2 versions prior to Major version 1, inodes 1 to 10 are reserved and should be in an allocated state.
Starting with version 1, the first non-reserved inode is indicated via a field in the Superblock. Of the reserved
inodes, number 2 subjectively has the most significance as it is used for the root directory.

Inodes have a fixed size of either 128 for version 0 Ext2 file systems, or as dictated by the field in the Superblock
for version 1 file systems. All inodes reside in inode tables that belong to block groups. Therefore, looking up an
inode is simply a matter of determining which block group it belongs to and indexing that block group's inode
table.

Determining which Block Group contains an Inode

From an inode address (remember that they start at 1), we can determine which group the inode is in, by using
the formula:

 block group = (inode – 1) / INODES_PER_GROUP

where INODES_PER_GROUP is a field in the Superblock

Finding an inode inside of a Block Group

Once we know which group an inode resides in, we can look up the actual inode by first retrieving that block
group's inode table's starting address (see Block Group Descriptor above). The index of our inode in this block
group's inode table can be determined by using the formula:

 index = (inode – 1) % INODES_PER_GROUP

where % denotes the Modulo operation (http://en.wikipedia.org/wiki/Modulo_operation) and
INODES_PER_GROUP is a field in the Superblock (the same field which was used to determine which block
group the inode belongs to).

Next, we have to determine which block contains our inode. This is achieved from:

 containing block = (index * INODE_SIZE) / BLOCK_SIZE

where INODE_SIZE is either fixed at 128 if VERSION < 1 or defined by a field in the Superblock if
VERSION >= 1.0, and BLOCK_SIZE is defined by a field in the Superblock.

Finally, mask and shift as necessary to extract only the inode data from the containing block.

Reading the contents of an inode

Each inode contains 12 direct pointers, one singly indirect pointer, one doubly indirect block pointer, and one
triply indirect pointer. The direct space "overflows" into the singly indirect space, which overflows into the doubly
indirect space, which overflows into the triply indirect space.

Direct Block Pointers: There are 12 direct block pointers. If valid, the value is non-zero. Each pointer is the
block address of a block containing data for this inode.

Singly Indirect Block Pointer: If a file needs more than 12 blocks, a separate block is allocated to store the
block addresses of the remaining data blocks needed to store its contents. This separate block is called an
indirect block because it adds an extra step (a level of indirection) between an inode and its data. The block
addresses stored in the block are all 32-bit, and the capacity of stored addresses in this block is a function of the
block size. The address of this indirect block is stored in the inode in the "Singly Indirect Block Pointer" field.

Doubly Indirect Block Pointer: If a file has more blocks than can fit in the 12 direct pointers and the indirect
block, a double indirect block is used. A double indirect block is an extension of the indirect block described
above only now we have two intermediate blocks between the inode and data blocks. The inode structure has a
"Doubly Indirect Block Pointer" field that points to this block if necessary.

Triply Indirect Block Pointer: Lastly, if a file needs still more space, it can use a triple indirect block. Again,
this is an extension of the double indirect block. So, a triple indirect block contains addresses of double indirect
blocks, which contain addresses of single indirect blocks, which contain address of data blocks. The inode
structure has a "Triply Indirect Block Pointer" field that points to this block if present.

This image from Wikipedia (http://en.wikipedia.org/wiki/File:Ext2-inode.gif) illustrates what is described above
pretty well

Inode Data Structure

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/File:Ext2-inode.gif

Starting

Byte

Ending

Byte

Size

in
Bytes

Field Description

0 1 2 Type and Permissions (see below)

2 3 2 User ID

4 7 4 Lower 32 bits of size in bytes

8 11 4 Last Access Time (in POSIX time (http://en.wikipedia.org/wiki/Unix_time))

12 15 4 Creation Time (in POSIX time (http://en.wikipedia.org/wiki/Unix_time))

16 19 4 Last Modification time (in POSIX time (http://en.wikipedia.org/wiki/Unix_time))

20 23 4 Deletion time (in POSIX time (http://en.wikipedia.org/wiki/Unix_time))

24 25 2 Group ID

26 27 2
Count of hard links (directory entries) to this inode. When this reaches 0, the data
blocks are marked as unallocated.

28 31 4
Count of disk sectors (not Ext2 blocks) in use by this inode, not counting the actual
inode structure nor directory entries linking to the inode.

32 35 4 Flags (see below)

36 39 4 Operating System Specific value #1

40 43 4 Direct Block Pointer 0

44 47 4 Direct Block Pointer 1

48 51 4 Direct Block Pointer 2

52 55 4 Direct Block Pointer 3

56 59 4 Direct Block Pointer 4

60 63 4 Direct Block Pointer 5

64 67 4 Direct Block Pointer 6

68 71 4 Direct Block Pointer 7

72 75 4 Direct Block Pointer 8

76 79 4 Direct Block Pointer 9

80 83 4 Direct Block Pointer 10

84 87 4 Direct Block Pointer 11

88 91 4
Singly Indirect Block Pointer (Points to a block that is a list of block pointers to
data)

92 95 4
Doubly Indirect Block Pointer (Points to a block that is a list of block pointers to
Singly Indirect Blocks)

96 99 4
Triply Indirect Block Pointer (Points to a block that is a list of block pointers to
Doubly Indirect Blocks)

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

100 103 4 Generation number (Primarily used for NFS)

104 107 4
In Ext2 version 0, this field is reserved. In version >= 1, Extended attribute block
(File ACL).

108 111 4
In Ext2 version 0, this field is reserved. In version >= 1, Upper 32 bits of file size (if
feature bit set) if it's a file, Directory ACL if it's a directory

112 115 4 Block address of fragment

116 127 12 Operating System Specific Value #2

Inode Type and Permissions

The type indicator occupies the

top hex digit (bits 15 to 12) of this
16-bit field

Type value

in hex
Type Description

0x1000 FIFO

0x2000 Character device

0x4000 Directory

0x6000 Block device

0x8000 Regular file

0xA000 Symbolic link

0xC000 Unix socket

Permissions occupy the bottom 12 bits of this 16-bit field

Permission

value in
hex

Permission

value in
octal

Permission Description

0x001 00001
Other—execute permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x002 00002
Other—write permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x004 00004
Other—read permission

(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x008 00010
Group—execute permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x010 00020
Group—write permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions

0x020 00040 Group—read permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x040 00100
User—execute permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x080 00200
User—write permission
(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x100 00400
User—read permission

(http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions)

0x200 01000 Sticky Bit (http://en.wikipedia.org/wiki/Sticky_bit)

0x400 02000 Set group ID

0x800 04000 Set user ID

Inode Flags

Flag Value Description

0x00000001 Secure deletion (not used)

0x00000002 Keep a copy of data when deleted (not used)

0x00000004 File compression (not used)

0x00000008 Synchronous updates—new data is written immediately to disk

0x00000010 Immutable file (content cannot be changed)

0x00000020 Append only

0x00000040 File is not included in 'dump' command

0x00000080 Last accessed time should not updated

... (Reserved)

0x00010000 Hash indexed directory

0x00020000 AFS directory

0x00040000 Journal file data

OS Specific Value 1

Operating

System
How they use this field

Linux (reserved)

HURD "translator"?

MASIX (reserved)

http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Sticky_bit
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions
http://en.wikipedia.org/wiki/Filesystem_permissions#Traditional_Unix_permissions

OS Specific Value 2

Operating

System
How they use this field

Linux

Starting

Byte

Ending

Byte

Size

in Bytes
Field Description

116 116 1 Fragment number

117 117 1 Fragment size

118 119 2 (reserved)

120 121 2 High 16 bits of 32-bit User ID

122 123 2 High 16 bits of 32-bit Group ID

124 127 4 (reserved)

HURD

Starting

Byte

Ending

Byte

Size

in
Bytes

Field Description

116 116 1 Fragment number

117 117 1 Fragment size

118 119 2 High 16 bits of 32-bit "Type and Permissions" field

120 121 2 High 16 bits of 32-bit User ID

122 123 2 High 16 bits of 32-bit Group ID

124 127 4
User ID of author (if == 0xFFFFFFFF, the normal User ID will be

used)

MASIX

Starting

Byte

Ending

Byte

Size

in Bytes
Field Description

116 116 1 Fragment number

117 117 1 Fragment size

118 127 X (reserved)

Directories

Directories are inodes which contain some number of "entries" as their contents. These entries are nothing more
than a name/inode pair. For instance the inode corresponding to the root directory might have an entry with the
name of "etc" and an inode value of 50. A directory inode stores these entries in a linked-list fashion in its
contents blocks.

The root directory is Inode 2.

Directory Entry

Starting

Byte

Ending

Byte

Size

in
Bytes

Field Description

0 3 4 Inode

4 5 2 Total size of this entry (Including all subfields)

6 6 1 Name Length least-significant 8 bits

7 7 1
Type indicator (only if the feature bit for "directory entries have file type byte" is set,

else this is the most-significant 8 bits of the Name Length)

8 8+N-1 N Name characters

Directory Entry Type Indicators

Value Type Description

0 Unknown type

1 Regular file

2 Directory

3 Character device

4 Block device

5 FIFO

6 Socket

7 Symbolic link (soft link)

Quick Summaries

How To Read An Inode

1. Read the Superblock to find the size of each block, the number of blocks per group, number Inodes per
group, and the starting block of the first group (Block Group Descriptor Table).

2. Determine which block group the inode belongs to.
3. Read the Block Group Descriptor corresponding to the Block Group which contains the inode to be

looked up.

4. From the Block Group Descriptor, extract the location of the block group's inode table.
5. Determine the index of the inode in the inode table.

6. Index the inode table (taking into account non-standard inode size).

Directory entry information and file contents are located within the data blocks that the Inode points to.

How To Read the Root Directory

The root directory's inode is defined to always be 2. Read/parse the contents of inode 2.

See Also

External Links

ext2-doc project: Second Extended File System (http://www.nongnu.org/ext2-doc/) - implementation-

oriented documentation, describes internal structure in human language.

Design and Implementation of the Second Extended Filesystem
(http://web.mit.edu/tytso/www/linux/ext2intro.html) (overview)

State of the Art: Where we are with the Ext3 filesystem (http://ext2.sourceforge.net/2005-ols/paper-html/)
- Paper by Mingming Cao, Theodore Y. Ts'o, Badari Pulavarty, and Suparna Bhattacharya describing

extended features for ext2

Retrieved from "http://wiki.osdev.org/index.php?title=Ext2&oldid=16264"
Category: Filesystems

This page was last modified on 24 April 2014, at 00:28.
This page has been accessed 76,000 times.

http://wiki.osdev.org/Category:Filesystems
http://www.nongnu.org/ext2-doc/
http://wiki.osdev.org/Special:Categories
http://ext2.sourceforge.net/2005-ols/paper-html/
http://web.mit.edu/tytso/www/linux/ext2intro.html
http://wiki.osdev.org/index.php?title=Ext2&oldid=16264

