
Difficulty level

Beginner

GCC Cross-Compiler

From OSDev Wiki

In this tutorial we will create a GCC cross-compiler for your own operating system. This
compiler is specially made to target exactly your operating system and is what allows you to
leave the current operating system behind. You need a cross-compiler for operating
systems development, unless you are developing on your own operating system.

Contents

1 Introduction
1.1 Why do I need a Cross Compiler?

1.2 Which compiler version do I want?
1.3 Which binutils version do I want?

1.4 Deciding on the target platform
2 Preparing for the build

2.1 Downloading the Source Code

2.2 Linux Users

2.3 Mac OS X Users

2.4 Windows Users
3 The Build

3.1 Preparation

3.2 Binutils

3.3 GCC

4 Using the new Compiler
5 Troubleshooting

5.1 ld: cannot find -lgcc

5.2 Binutils 2.9

6 See Also

6.1 Articles

6.2 External Links

6.3 Prebuilt Toolchains

Introduction

Generally speaking, a cross-compiler is a compiler that runs on platform A (the host), but generates executables
for platform B (the target). These two platforms may (but do not need to) differ in CPU, operating system,
and/or executable format. In our case, the host platform is your current operating system, and the target platform
is the operating system you are about to make. It is important to realize that these two platforms are not the
same; your operating system is always going to be different from your current operating system. This is why we
need to build a cross-compiler first, you will most certainly run into trouble otherwise.

Why do I need a Cross Compiler?

http://wiki.osdev.org/File:Difficulty_1.png
http://wiki.osdev.org/Category:Executable_Formats

Main article: Why do I need a Cross Compiler?

You need to use a cross-compiler unless you are developing on your own operating system. The compiler must
know the correct target platform (CPU, operating system), otherwise you will run into trouble. If you use the
compiler that comes with your system, then the compiler won't know it is compiling something else entirely.
Some tutorials suggest using your system compiler and passing a lot of problematic options to the compiler. This
will certainly give you a lot of problems in the future and the solution is build a cross-compiler. If you have
already attempted to make an operating system without using a cross-compiler, please read the article Why do I
need a Cross Compiler?.

Which compiler version do I want?

Main article: Building GCC

The newest GCC is recommended as it is the latest and greatest release. However, it is recommended that you
use the same major compiler version to build your cross-compiler. For instance, you may run into trouble if you
use gcc 4.6.3 to build a gcc 4.8.0 cross-compiler. If you are not using the latest major GCC release for your
system compiler, we recommend that you build the newest GCC as your system compiler.

You can also use older releases as they are usually reasonably good. If your local system compiler isn't too
terribly old (at least gcc 4.6.0), you may wish to save yourself the trouble and just pick the latest minor release
(such as 4.6.3 if your system compiler is 4.6.1) for your cross-compiler.

You can view your current compiler version by invoking:

gcc --version

You may be able to use an older major GCC release to build a cross-compiler of a newer major GCC releaser.
For instance, gcc 4.7.3 may be able to build a gcc 4.8.0 cross-compiler. However, if you want to use the latest
and greatest gcc version for your cross-compiler, we recommend that you bootstrap the newest gcc as your
system compiler first. Individuals using Mac OS X 10.7 or earlier might want to invest in either building a system
GCC (that outputs native Mach-O), or upgrading the local llvm/clang installation. Users with 10.8 and above
should install the Command Line Tools from Apple's developer website and use clang to cross-compile gcc.

Which binutils version do I want?

Main article: Cross-Compiler Successful Builds

We recommend that you use the latest and greatest binutils release. Note, however, that not all combinations of
GCC and binutils work. If you run into trouble, use a binutils that was released at roughly the same time as your
desired compiler version. You probably need at least binutils 2.22, or preferably the latest 2.23.2 release. It
doesn't matter what binutils version you have installed on your current operating system.

Deciding on the target platform

Main article: Target Triplet

You should already know this. If you are following the Bare Bones tutorial, you wish to build a cross-compiler
for i686-elf.

http://wiki.osdev.org/Building_GCC
http://wiki.osdev.org/GCC
http://wiki.osdev.org/Target_Triplet
http://wiki.osdev.org/index.php?title=Binutils&action=edit&redlink=1
http://wiki.osdev.org/Bare_Bones
http://wiki.osdev.org/Building_GCC
http://wiki.osdev.org/Cross-Compiler_Successful_Builds
http://wiki.osdev.org/Why_do_I_need_a_Cross_Compiler%3F
http://wiki.osdev.org/Building_GCC
http://wiki.osdev.org/Why_do_I_need_a_Cross_Compiler%3F

Preparing for the build

The GNU Compiler Collection is an advanced piece of software with dependencies. You need to install certain
dependencies in order to build gcc. You need to install GNU make, GNU bison, flex, and of course an existing
system compiler you wish to replace. In addition, you also need the packages GNU GMP, GNU MPFR, and
MPC that are used by GCC for floating point support.

You need a host system with a working GCC installation, and enough memory as well as hard drive space.
How much qualifies as "enough" is depending on the versions of the software involved, but GCC is a big piece
of software, so don't be surprised when 128 or 256 MByte are not sufficient.

In short you need the following that you can install manually or through package management:

An Unix-like environment (Windows users)

GCC (existing release you wish to replace)
G++ (if building a version of GCC >= 4.8.0)

GNU Make
GNU Bison

Flex
GNU GMP
GNU MPFR

GNU MPC
Texinfo

ISL (optional)
CLooG (optional)

Downloading the Source Code

You can download the desired binutils release by visiting the binutils website (https://gnu.org/software/binutils/)
or directly accessing the GNU main ftp mirror (ftp://ftp.gnu.org/gnu/binutils/) .

You can download the desired gcc release by visiting the GCC website (https://gnu.org/software/gcc/) or
directly accessing the GNU main ftp mirror (ftp://ftp.gnu.org/gnu/gcc/) .

In addition, to build GCC you need to have installed GNU GMP, GNU MPFR, GNU MPC and the ISL
library. You may already have these libraries and the development files installed, but this tutorial builds them as
part of GCC. If you don't need this, simply don't build them as part of GCC. Note that not all GMP, MPFR
and MPC combinations are compatible with a given GCC release. You also need texinfo to build binutils.

You can download GNU GMP from its website (http://gmplib.org/) . (libgmp3-dev on apt-based systems, dev-
libs/gmp on Gentoo, gmp-devel on Fedora, libgmp-devel on Cygwin)

You can download GNU MPFR from its website (http://mpfr.org/) . (libmpfr-dev on apt-based systems, dev-
libs/mpfr on Gentoo, mpfr-devel on Fedora, libmpfr-devel on Cygwin)

You can download ISL from its website (http://isl.gforge.inria.fr/) (optional). (libisl-dev on apt-based systems,
libisl-devel on Cygwin)

You can download ClooG from its website (http://www.cloog.org/) (optional). (libcloog-isl-dev on apt-based
systems, libcloog-isl-devel on Cygwin)

ftp://ftp.gnu.org/gnu/binutils/
https://gnu.org/software/binutils/
http://www.cloog.org/
ftp://ftp.gnu.org/gnu/gcc/
http://gmplib.org/
http://mpfr.org/
https://gnu.org/software/gcc/
http://isl.gforge.inria.fr/

You can download GNU MPC from its website (http://multiprecision.org/) . (libmpc-dev on apt-based systems,
dev-libs/mpc on Gentoo, libmpc-devel on Fedora, libmpc-devel on Cygwin)

You can download GNU Texinfo from its website (https://www.gnu.org/software/texinfo/) . (texinfo on apt-
based systems, texinfo on Arch Linux, sys-apps/texinfo on Gentoo, texinfo on Cygwin)

Download the needed source code into a suitable directory such as $HOME/src.

Note: The versioning scheme used is that each fullstop separates a full number, i.e. binutils 2.20.0 is newer than
2.9.0. This may be confusing, if you have not encountered this (quite common) versioning scheme yet, when
looking at an alphanumerically sorted list of tarballs: The file at the bottom of the list is not the latest version! An
easy way of getting the latest version is to sort by the last modified date and scrolling to the bottom.

Note: Version 5.x (or later) of texinfo is known to be incompatible with the current binutils 2.23.2 release (and
older). You can check your current version using makeinfo --version. If your version is too new and you

encounter problems during the build, you will need to either use binutils 2.24 release (or newer) or install an
older version of texinfo - perhaps through building from source - and add it to your PATH prior and during the

binutils build.

Note: Version 0.13 (or later) of ISL is incompatible with the current CLooG 0.18.1 release (and older). Use
version 0.12.2 of ISL or the build will fail.

Linux Users

Your distribution may ship its own patched GCC and Binutils that is customized to work on your particular
Linux distribution. You may not be able to build a functional system compiler using the upstream sources you
downloaded above. In that case, try a newer GCC release or get the patched source code. For instance, some
GCC releases are known to not understand the new Debian multiarch directory structure. However, if the
compiler we are about to build is a cross-compiler targetting another operating system (such as your new one),
then this is much less a worry.

Note for all Gentoo users: Gentoo, being a source-based distribution, makes it almost ridiculously easy to set
up a cross-development toolchain:

 emerge -av crossdev

 crossdev --help

 crossdev --stage1 --binutils <binutils-version> --gcc <gcc-version> --target <target>

This will install a GCC cross-compiler into a "slot", i.e. alongside already-existing compiler versions. You can
install several cross-compilers that way, simply by changing target designations. An unfortunate downside is that
it will also pull in gentoo patches and pass additional configure options that differ from the official GCC Cross-
Compiler setup, and they might behave differently.

After the compilation ran, you can now use your cross-compiler by calling <target>-gcc. You can also use gcc-
config to toggle between compiler versions should you need to do so. Don't replace your system compiler with a
cross-compiler however. The package manager will also suggest updates as soon as they become available.

You can uninstall the cross-compiler by calling crossdev --clean <target>. Read the cross-development
(http://www.gentoo.org/proj/en/base/embedded/cross-development.xml) document for additional information.

http://www.gentoo.org/proj/en/base/embedded/cross-development.xml
https://www.gnu.org/software/texinfo/
http://multiprecision.org/

Note that the version numbers to binutils and gcc are Gentoo package versions, i.e. there might be a suffix to the
"official" (GNU) version that addresses additional patchsets supplied by the Gentoo maintainers. (For example,
--binutils 2.24-r3 --gcc 4.8.3 is the latest stable package pair at the time of this writing.) You can omit the
version numbers to use the latest package available.

Mac OS X Users

Additionally, Mac OS X users need a replacement libiconv because the system libiconv is seriously out of date.
Mac OS X users can download the latest libiconv release by visiting the libiconv website
(https://gnu.org/software/libiconv/) or directly accessing the GNU main ftp mirror (ftp://ftp.gnu.org/gnu/libiconv/)
.

When compiling GCC 4.3 or higher on OS X 10.4 and 10.5, you may get unresolved symbol errors related to
libiconv. This is because the version shipped with OS X is seriously out of date. Install a new version (compile it
yourself or use macports) and add --with-libiconv-prefix=/opt/local (or /usr/local if you

compiled it yourself) to GCC's ./configure line. Alternatively you may place the libiconv source as gcc-

x.y.z/libiconv and it will be compiled as part of the GCC compilation process. (This trick also works for mpfr,
gmp, and mpc).

The makefiles of binutils and GCC use the $(CC) variable to invoke the compiler. On OS X, this resolves to
gcc by default, which is actually not the "real thing", but clang. Note that since at least OS X 10.8, Xcode's
Command Line Tools package comes with clang, and this version of clang does indeed work to compile a
working version of GCC, unlike what these instructions previously reflected.

Note that users running OS X 10.7 may need to find and install gcc, either from homebrew (http://brew.sh) , or
from somewhere on Apple's website. Thus, the instructions below are really only relevant for these users, but
your mileage may vary.

This is only necessary for OS X users running 10.7 or below.
export CC=/usr/bin/gcc-4.2

export CXX=/usr/bin/g++-4.2
export CPP=/usr/bin/cpp-4.2

export LD=/usr/bin/gcc-4.2

You might want to unset these exports once you compiled and installed the cross compiler, as it might confuse
other builds. Do not make these permanent!

Note for Lion users: If you're on Lion (or above) chances are that you don't have the "real" gcc since Apple
removed it from the Xcode package, but you can still install it. You can do it via Homebrew or by compiling
from source, both are perfectly described on a StackExchange answer
(http://apple.stackexchange.com/a/38247) .

Note for Maverick users: You can build binutil-2.24 and gcc-4.8.3 (possible other version) with xcode
5.1.1. Note that building gcc with llvm is not officially supported and may cause interesting bugs, if you are
willing to take this risk and save time building host-gcc just to compile a cross-gcc, follow this. Install GMP,
MPFR, MPC with macport (http://http://www.macports.org/) .

sudo port install gmp mpfr libmpc

http://http//www.macports.org/
ftp://ftp.gnu.org/gnu/libiconv/
https://gnu.org/software/libiconv/
http://brew.sh/
http://apple.stackexchange.com/a/38247

../binutils-2.24/configure --prefix=$PREFIX \

--target=$TARGET \

--enable-interwork --enable-multilib \

--disable-nls --disable-werror

../gcc-4.8.3/configure --prefix=$PREFIX \

--target=$TARGET \

--disable-nls \

--enable-languages=c,c++ --without-headers \

--enable-interwork --enable-multilib \

--with-gmp=/usr --with-mpc=/opt/local --with-mpfr=/opt/local

Note that there is issue with port's gmp, we use the version from mac os x from /usr instead.

Windows Users

Windows users need to set up a Unix-like enviroment such as MinGW or Cygwin. It may well be worth looking
into systems such as Linux and see if they fit your needs, as you commonly use a lot of Unix-like tools in
operating systems development and this is much easier from a Unix-like operating system. If you have just
installed the basic Cygwin package, you have to run the setup.exe again and install the following
packages: GCC, G++, Make, Flex, Bison, Diffutils, libintl-devel, libgmp-devel, libmpfr-devel, libmpc-devel,
texinfo

MinGW + MSYS is an option, and as it addresses the native Windows API instead of a POSIX emulation
layer, results in a slightly faster toolchain. Some software packages will not build properly under MSYS as they
were not designed for use with Windows. As far as this tutorial is concerned, everything that applies to Cygwin
also applies to MSYS unless otherwise specified. Make sure you install the C and C++ compilers, and the
MSYS Basic System.

Cygwin note: Cygwin includes your Windows %PATH% in its bash $PATH. If you were using DJGPP before,

this could result in confusion as e.g. calling gcc on the Cygwin bash command line would still call the DJGPP

compiler. After uninstalling DJGPP, you should delete the DJGPP environment variable and clear the C:\djgpp

entry (or wherever you installed it) from your %PATH%. Likewise, it might be a bad idea to mix build

environments in your system PATH variable.

MinGW note: Some MinGW-specific information on building a cross-toolchain can be found on the hosted
cross-compiler how-to page (http://www.mingw.org/wiki/HostedCrossCompilerHOWTO) on the MinGW
homepage.

The Build

We build a toolset running on your host that can turn source code into object files for your target system.

You need to decide where to install your new compiler. It is dangerous and a very bad idea to install it into
system directories. You also need to decide whether the new compiler should be installed globally or just for
you. If you want to install it just for you (recommended), installing into $HOME/opt/cross is normally a good

idea. If you want to install it globally, installing it into /usr/local/cross is normally a good idea.

Please note that we build everything out of the source directory tree, as is considered good practice. Some
packages only support building outside, some only inside and some both (but may not offer extensive checking
with make). Building GCC inside the source directory tree fails miserably, at least for older versions.

http://wiki.osdev.org/Cygwin
http://www.mingw.org/wiki/HostedCrossCompilerHOWTO
http://wiki.osdev.org/MinGW
http://wiki.osdev.org/Cygwin

Preparation

export PREFIX="$HOME/opt/cross"
export TARGET=i686-elf

export PATH="$PREFIX/bin:$PATH"

We add the installation prefix to the PATH of the current shell session. This ensures that the compiler build is able

to detect our new binutils once we have built them.

The prefix will configure the build process so that all the files of your cross-compiler environment end up in
$HOME/opt/cross. You can change that prefix to whatever you like (e.g., /opt/cross or $HOME/cross would
be options). If you have administrator access and wish to make the cross-compiler toolchain available to all
users, you can install it into the /usr/local prefix - or perhaps a /usr/local/cross prefix if you are willing to change
the system configuration such that this directory is in the search paths for all users. Technically, you could even
install directly to /usr, so that your cross-compiler would reside alongside your system compiler, but that is not
recommended for several reasons (like risking to overwrite your system compiler if you get TARGET wrong, or
getting into conflict with your system's package management).

Binutils

cd $HOME/src

If you wish to build these packages as part of binutils:
mv isl-x.y.z binutils-x.y.z/isl
mv cloog-x.y.z binutils-x.y.z/cloog

But reconsider: You should just get the development packages from your OS.

mkdir build-binutils
cd build-binutils

../binutils-x.y.z/configure --target=$TARGET --prefix="$PREFIX"

make

make install

This compiles the binutils (assembler, disassembler, and various other useful stuff), runnable on your system but
handling code in the format specified by $TARGET.

--disable-nls tells binutils not to include native language support. This is basically optional, but reduces
dependencies and compile time. It will also result in English-language diagnostics, which the people on the
Forum (http://forum.osdev.org/) understand when you ask your questions. ;-)

--with-sysroot tells binutils to enable sysroot support in the cross-compiler by pointing it to a default empty
directory. By default the linker refuses to use sysroots for no good technical reason, while gcc is able to handle
both cases at runtime. This will be useful later on.

GCC

http://forum.osdev.org/

See also the offical instructions for configuring gcc (http://gcc.gnu.org/install/configure.html) .

Now, you can build GCC.

cd $HOME/src

If you wish to build these packages as part of gcc:
mv libiconv-x.y.z gcc-x.y.z/libiconv # Mac OS X users

mv gmp-x.y.z gcc-x.y.z/gmp

mv mpfr-x.y.z gcc-x.y.z/mpfr

mv mpc-x.y.z gcc-x.y.z/mpc
mv isl-x.y.z gcc-x.y.z/isl

mv cloog-x.y.z gcc-x.y.z/cloog

But reconsider: You should just get the development packages from your OS.

The $PREFIX/bin dir _must_ be in the PATH. We did that above.
which -- $TARGET-as || echo $TARGET-as is not in the PATH

mkdir build-gcc
cd build-gcc

../gcc-x.y.z/configure --target=$TARGET --prefix="$PREFIX" --disable-nls

make all-gcc

make all-target-libgcc

make install-gcc

make install-target-libgcc

We build libgcc, a low-level support library that the compiler expects available at compile time. Linking against
libgcc provides integer, floating point, decimal, stack unwinding (useful for exception handling) and other support
functions. Note how we are not simply running make && make install as that would build way too much,

not all components of gcc are ready to target your unfinished operating system.

--disable-nls is the same as for binutils above.

--without-headers tells GCC not to rely on any C library (standard or runtime) being present for the target.

--enable-languages tells GCC not to compile all the other language frontends it supports, but only C (and
optionally C++).

It will take a while to build your cross-compiler.

Using the new Compiler

Now you have a "naked" cross-compiler. It does not have access to a C library or C runtime yet, so you cannot
use any of the standard includes or create runnable binaries. But it is quite sufficient to compile the kernel you
will be making shortly. Your toolset resides in $HOME/opt/cross (or what you set $PREFIX to). For example,

you have a gcc executable installed as $HOME/opt/cross/bin/$TARGET-gcc, which creates programs for

your TARGET.

http://wiki.osdev.org/Libgcc
http://wiki.osdev.org/GCC
http://wiki.osdev.org/GCC
http://gcc.gnu.org/install/configure.html
http://wiki.osdev.org/GCC
http://wiki.osdev.org/Libgcc

You can now run your new compiler by invoking something like:

$HOME/opt/cross/bin/$TARGET-gcc --version

Note how this compiler is not able to compile normal C programs. The cross-compiler will spit errors whenever
you want to #include any of the standard headers (except for a select few that actually are platform-
independent, and generated by the compiler itself). This is quite correct - you don't have a standard library for
the target system yet!

The C standard defines two different kinds of executing environments - "freestanding" and "hosted". While the
definition might be rather fuzzy for the average application programmer, it is pretty clear-cut when you're doing
OS development: A kernel is "freestanding", everything you do in user space is "hosted". A "freestanding"
environment needs to provide only a subset of the C library: float.h, iso646.h, limits.h, stdalign.h, stdarg.h,
stdbool.h, stddef.h, stdint.h and stdnoreturn.h (as of C11). All of these consist of typedef s and #define s "only",
so you can implement them without a single .c file in sight.

To use your new compiler simply by invoking $TARGET-gcc, add $HOME/opt/cross/bin to your $PATH by

typing:

export PATH="$HOME/opt/cross/bin:$PATH"

This command will add your new compiler to your PATH for this shell session. If you wish to use it
permanently, add the PATH command to your ~/.profile configuration shell script or similar. Consult your

shell documentation for more information.

You can now move on to complete the Bare Bones tutorial variant that lead you here and complete it using your
new cross-compiler. If you built a new GCC version as your system compiler and used it to build the cross-
compiler, you can now safely uninstall it unless you wish to continue using it.

Troubleshooting

In general, verify that you read the instructions carefully and typed the commands precisely. Don't skip
instructions. You will have to set your PATH variable again if you use a new shell instance, if you don't make it
permanent by adding it to your shell profile. If a compilation seems to have gotten really messed up, type make

distclean, and then start the make process over again. Ensure your un-archiever doesn't change newline

characters.

ld: cannot find -lgcc

You specified that you want to link the GCC low-level runtime library into your executable through the -lgcc'

switch, but forgot to build and properly install the library.

Binutils 2.9

What's alphabetically on the top or bottom is not necessarily the latest version. After 2.9 comes 2.10, 2.11,
2.12 and then there are fifteen more releases that are all newer and progressively more likely to build or support
your choice of GCC version.

http://wiki.osdev.org/Bare_Bones

See Also

Articles

Cross-Compiler Successful Builds - combinations of GCC and Binutils which have been shown to work

with this tutorial by OSDev.org members.

Target Triplet - on target triplets and their use

OS Specific Toolchain - going a step further and adding your own target.
LLVM Cross-Compiler - some compilers make things much easier.

Canadian Cross - making things yet more complicated.

External Links

http://kegel.com/crosstool has a popular example of a script that automatically downloads, patches, and

builds binutils, gcc, and glibc for known platforms.
http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html - Summary of the support functions you get when you

link with libgcc.

http://forums.gentoo.org/viewtopic.php?t=66125 - Compiling Windows applications under Linux

http://www.libsdl.org/extras/win32/cross/README.txt - dito

https://github.com/travisg/toolchains - Another script for building simple cross compilers

https://www.youtube.com/watch?v=aESwsmnA7Ec - A walkthrough of how to build a cross-compiler

using Cygwin on Windows.

Prebuilt Toolchains

These were built by people in the OSdev community for their own building needs and shared at will, without
guaranteeing any support or that it will even work on your setup. YMMV.

For Linux x86_64 host

i386-elf 4.9.1 target (http://newos.org/toolchains/i386-elf-4.9.1-Linux-x86_64.tar.xz)

i686-elf 4.9.1 target (http://newos.org/toolchains/i686-elf-4.9.1-Linux-x86_64.tar.xz)

i686-elf 4.9.2 target (https://drive.google.com/file/d/0B4BmyleNZAQqRERPSFdENVAxaWM/view?

usp=sharing)
x86_64-elf 4.9.1 target (http://newos.org/toolchains/x86_64-elf-4.9.1-Linux-x86_64.tar.xz)

aarch64-elf 4.9.1 target (http://newos.org/toolchains/aarch64-elf-4.9.1-Linux-x86_64.tar.xz)

arm-eabi 4.9.1 target (http://newos.org/toolchains/arm-eabi-4.9.1-Linux-x86_64.tar.xz)

m68k-elf 4.9.1 target (http://newos.org/toolchains/m68k-elf-4.9.1-Linux-x86_64.tar.xz)

powerpc-elf 4.9.1 target (http://newos.org/toolchains/powerpc-elf-4.9.1-Linux-x86_64.tar.xz)

sparc-elf 4.9.1 target (http://newos.org/toolchains/sparc-elf-4.9.1-Linux-x86_64.tar.xz)

sh-elf 4.9.1 target (http://newos.org/toolchains/sh-elf-4.9.1-Linux-x86_64.tar.xz)

For Linux i686 host

arm-eabi-binutils 2.24 (http://phillid.tk/r/i686/arm-eabi-binutils-2.24-1-i686.pkg.tar.xz)

arm-eabi-gcc 4.9.2 (http://phillid.tk/r/i686/arm-eabi-gcc-4.9.2-1-i686.pkg.tar.xz)

i386-elf-binutils 2.24 (http://phillid.tk/r/i686/i386-elf-binutils-2.24-1-i686.pkg.tar.xz)
i386-elf-gcc 4.9.2 (http://phillid.tk/r/i686/i386-elf-gcc-4.9.2-1-i686.pkg.tar.xz)

i686-elf-binutils 2.24 (http://phillid.tk/r/i686/i686-elf-binutils-2.24-4-i686.pkg.tar.xz)

http://www.libsdl.org/extras/win32/cross/README.txt
http://wiki.osdev.org/OS_Specific_Toolchain
https://github.com/travisg/toolchains
http://wiki.osdev.org/LLVM_Cross-Compiler
http://newos.org/toolchains/arm-eabi-4.9.1-Linux-x86_64.tar.xz
https://www.youtube.com/watch?v=aESwsmnA7Ec
https://drive.google.com/file/d/0B4BmyleNZAQqRERPSFdENVAxaWM/view?usp=sharing
http://forums.gentoo.org/viewtopic.php?t=66125
http://wiki.osdev.org/Canadian_Cross
http://newos.org/toolchains/sparc-elf-4.9.1-Linux-x86_64.tar.xz
http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html
http://phillid.tk/r/i686/i386-elf-binutils-2.24-1-i686.pkg.tar.xz
http://phillid.tk/r/i686/i686-elf-binutils-2.24-4-i686.pkg.tar.xz
http://phillid.tk/r/i686/i386-elf-gcc-4.9.2-1-i686.pkg.tar.xz
http://newos.org/toolchains/powerpc-elf-4.9.1-Linux-x86_64.tar.xz
http://newos.org/toolchains/m68k-elf-4.9.1-Linux-x86_64.tar.xz
http://wiki.osdev.org/Target_Triplet
http://newos.org/toolchains/aarch64-elf-4.9.1-Linux-x86_64.tar.xz
http://phillid.tk/r/i686/arm-eabi-gcc-4.9.2-1-i686.pkg.tar.xz
http://newos.org/toolchains/x86_64-elf-4.9.1-Linux-x86_64.tar.xz
http://newos.org/toolchains/i686-elf-4.9.1-Linux-x86_64.tar.xz
http://newos.org/toolchains/sh-elf-4.9.1-Linux-x86_64.tar.xz
http://newos.org/toolchains/i386-elf-4.9.1-Linux-x86_64.tar.xz
http://kegel.com/crosstool
http://wiki.osdev.org/Cross-Compiler_Successful_Builds
http://phillid.tk/r/i686/arm-eabi-binutils-2.24-1-i686.pkg.tar.xz

i686-elf-gcc 4.9.2 (http://phillid.tk/r/i686/i686-elf-gcc-4.9.2-1-i686.pkg.tar.xz)

powerpc-elf-binutils 2.24 (http://phillid.tk/r/i686/powerpc-elf-binutils-2.24-1-i686.pkg.tar.xz)
powerpc-elf-gcc 4.9.2 (http://phillid.tk/r/i686/powerpc-elf-gcc-4.9.2-1-i686.pkg.tar.xz)

sparc-elf-binutils 2.24 (http://phillid.tk/r/i686/sparc-elf-binutils-2.24-1-i686.pkg.tar.xz)

sparc-elf-gcc 4.9.2 (http://phillid.tk/r/i686/sparc-elf-gcc-4.9.2-1-i686.pkg.tar.xz)

The packages from phillid.tk below have been shrunk to about 10 MiB for each pair of packages (GCC &
Binutils). Please note that this has been achieved by enabling only the C front-end for GCC. If you're going to
write your OS in any language but C or assembly, these packages aren't for you. These are actually Pacman
packages, but untarring them to / and rm-ing /.MTREE and other clutter dotfiles contained in the package will
work the same.

For Windows host

i686-elf 4.8.2 target (https://drive.google.com/file/d/0B85K_c7mx3QjUnZuaFRPWlBIcXM/edit?

usp=sharing)

x86_64-elf 5.1.0 target (https://mega.co.nz/#F!bBxA3SKJ!TDL4i1NjaZKd4YMo9p2U7g)

For OSX host

i686-pc-elf 4.6.1 target with clang for x86_64 OSX host (http://downloads.exquance.com/toolchain-

x86_64-darwin.tar.bz2)

x86_64-pc-elf Cross Compiler setup with GCC and Binutils for x86_64 OSX

(https://docs.google.com/file/d/0BxDNp6DGU6SZcmlHVWpNblRnWWs/edit?usp=sharing)

Retrieved from "http://wiki.osdev.org/index.php?title=GCC_Cross-Compiler&oldid=18250"

Categories: Level 1 Tutorials Compilers Tutorials

This page was last modified on 24 July 2015, at 16:49.

This page has been accessed 430,202 times.

http://downloads.exquance.com/toolchain-x86_64-darwin.tar.bz2
http://phillid.tk/r/i686/sparc-elf-gcc-4.9.2-1-i686.pkg.tar.xz
https://drive.google.com/file/d/0B85K_c7mx3QjUnZuaFRPWlBIcXM/edit?usp=sharing
http://phillid.tk/r/i686/sparc-elf-binutils-2.24-1-i686.pkg.tar.xz
http://phillid.tk/r/i686/powerpc-elf-binutils-2.24-1-i686.pkg.tar.xz
http://phillid.tk/r/i686/powerpc-elf-gcc-4.9.2-1-i686.pkg.tar.xz
http://wiki.osdev.org/index.php?title=GCC_Cross-Compiler&oldid=18250
https://mega.co.nz/#F!bBxA3SKJ!TDL4i1NjaZKd4YMo9p2U7g
http://phillid.tk/r/i686/i686-elf-gcc-4.9.2-1-i686.pkg.tar.xz
https://docs.google.com/file/d/0BxDNp6DGU6SZcmlHVWpNblRnWWs/edit?usp=sharing
http://wiki.osdev.org/Category:Level_1_Tutorials
http://wiki.osdev.org/Category:Compilers
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:Tutorials

