
Difficulty level

Not rated

Libsupcxx

From OSDev Wiki

 This page is a work in progress and may thus be incomplete. Its content may be changed in the near

future.

The factual accuracy of this article or section is disputed.
Please see the relevant discussion on the talk page.

Libsupc++ is a support library for g++ that contains functions dealing with run-time type
information (RTTI) and exception handling. If you attempt to use either exceptions or RTTI
in a C++ kernel you have compiled with a GCC Cross-Compiler you will also need the
libsupc++ library. In general, you should be able to use the one provided as part of a Linux
distribution. If, however, you run into problems and need to compile your own, you can
follow these steps.

Contents

1 Compiling libsupc++

1.1 Create a working GCC Cross-Compiler.
1.2 Configure gcc

1.3 Edit the libstdc++ configure script
1.4 Configure and make libsupc++

1.5 Usage

1.6 Additional requirements

1.7 Tested on

2 Full C++ Runtime Support Using libgcc And libsupc++

3 Linking a kernel with libsupc++

Compiling libsupc++

Create a working GCC Cross-Compiler.

This tutorial assumes it is entitled 'i686-elf-gcc'

Configure gcc

http://wiki.osdev.org/File:Under_Construction.png
http://wiki.osdev.org/Category:Disputed_Pages
http://wiki.osdev.org/Talk:Libsupcxx
http://wiki.osdev.org/File:Difficulty_0.png
http://wiki.osdev.org/GCC_Cross-Compiler
http://wiki.osdev.org/GCC_Cross-Compiler

Enter the gcc source directory, run

 ./configure --target=i686-elf --prefix=/usr/local/cross --enable-languages=c,c++ \

 --without-headers --disable-nls

 cd libstdc++-v3

Edit the libstdc++ configure script

Now you need to edit the configure file in the libstdc++-v3 directory. Open it up in the editor of your choice
(which preserves unix style line endings) and find a section similar to (it is around line 108,000 in gcc 4.2.1,
searching for 'combination' is probably the easiest way to find it):

 { { echo "$as_me:$LINENO: error: No support for this host/target combination." >&5

 echo "$as_me: error: No support for this host/target combination." >&2;}

 { (exit 1); exit 1; }; }

 ;;

and alter the third line so that it reads:

 { { echo "$as_me:$LINENO: error: No support for this host/target combination." >&5

 echo "$as_me: error: No support for this host/target combination." >&2;}

 }

 ;;

Configure and make libsupc++

 CPP=i686-elf-cpp ./configure --host=i686-elf --prefix=/usr/local/cross --disable-hosted-libstdcxx \

 --disable-nls

 cd include

 make

 make install

 cd ../libsupc++

 make

 make install

Usage

Libsupc++ should now be installed into /usr/local/cross/lib. To use it, you will need to add

 -L/usr/local/cross/lib -lsupc++

to your linker command line.

Additional requirements

Libsupc++ also requires that libgcc.a be included in your link as well. This is usually found (if you followed the
cross compiler directions) in /usr/local/cross/lib/gcc/i686-elf/<gcc version>. Finally, it has a number of
dependencies which your kernel must provide, including (but not limited to) malloc, free, abort and strlen.

http://wiki.osdev.org/Libgcc

Tested on

These steps were tested on g++ 4.2.1 under Cygwin with a cross compiler targeting i686-elf

Full C++ Runtime Support Using libgcc And libsupc++

The following description is valid for i386, GCC 3.2 and libgcc/libsupc++ compiled for Linux/glibc (you can use
the static libgcc/libsupc++ libraries compiled for your Linux for your kernel).

If you want Exceptions, RTTI, new and delete altogether, you also could use libgcc and libsupc++. libgcc
contains the unwinder (for exceptions), while libsupc++ contains the C++ support. These functions look very
complex (gcc_sources/gcc/unwind*, gcc_sources/libstdc++-v3/libsupc++/*), so it might be better to port them
instead of trying to write them yourself.

To get full C++ support, you only have to do the following:

Provide some libc functions (e.g. abort, malloc, free, ...) because libsupc++ needs them. There are even
more functions you could support, like pthread_*, but since these are weak symbols, you don't need to
define them.

There's also a strange function dl_iterate_phdrs. You don't need this so let it simply return -1. It's usually
used to find exception frames for dynamically linked objects. You could also remove calls to this function

from the library.
To make use of exception handling, you also have to tell libsupc++ where the .eh_frame section begins.

Before you throw any exception: <verbatim>__register_frame(address_of_eh_frames); </verbatim>.
Terminate the .eh_frame section with 4 bytes of zeros (somehow). If you forget this, libsupc++ will

never find the end of .eh_frame and generate stupid page faults.

Please note that you still have to call the constructors/destructors by yourself as documented in Calling Global
Constructors.

Linking a kernel with libsupc++

You can use your libsupc++ to get exception handling and RTTI in a C++ kernel (no more passing -fno-
exceptions -fno-rtti to g++!) so you can use things like throw and dynamic_cast<>. Libsupc++ depends upon
libgcc for stack unwinding support. Passing the -nostdlib option to gcc when linking caused libgcc.a and
libsupc++.a to not be included, so you need to specify -lgcc -lsupc++ on the command line (no need to specify
the directories; gcc knows where it installed them to). In addition, you need to include a .eh_frame section in
your linker script and terminate it with 32 bits of zeros (QUAD(0) is a useful linker script command). The
symbol start_eh_frame should point to the start of the eh_frame section, and it should be aligned by 4. In
addition you need to include your constructors and destructors in the link (see C++ for details). You also need
to provide __register_frame() (or call the function provided by libgcc with the start of your .eh_frame section),
void *__dso_handle;, __cxa_atexit() and __cxa_finalize (again see C++). Something along the lines of

 #include <reent.h>

 static struct _reent global_reent;

 struct _reent *_impure_ptr = &global_reent;

somewhere in your kernel will keep libgcc happy, because it expects these bits to be provided by the standard
library (which you aren't linking into your kernel - but you can provide them in your libk). Libgcc expects a
number of (simple) C library functions to be provided by your kernel, including abort, malloc, free, memcpy,

http://wiki.osdev.org/Libgcc
http://wiki.osdev.org/C%2B%2B
http://wiki.osdev.org/Calling_Global_Constructors
http://wiki.osdev.org/C%2B%2B
http://wiki.osdev.org/Libgcc

memset and strlen. Libsupc++ also requires write, fputs, fputc, fwrite, strcpy and strcat for debugging output.

Retrieved from "http://wiki.osdev.org/index.php?title=Libsupcxx&oldid=17502"

Categories: In Progress Disputed Pages Level 0 Tutorials Tutorials

This page was last modified on 28 January 2015, at 07:50.

This page has been accessed 23,383 times.

http://wiki.osdev.org/Category:Level_0_Tutorials
http://wiki.osdev.org/Category:Tutorials
http://wiki.osdev.org/Category:Disputed_Pages
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:In_Progress
http://wiki.osdev.org/index.php?title=Libsupcxx&oldid=17502

