
Difficulty level

Advanced

Porting Newlib

From OSDev Wiki

Newlib is a C library intended for use on embedded systems available under a free
software license. It is known for being simple to port to new operating systems. Allegedly,
it's coding practices are sometimes questionable. This tutorial follows OS Specific
Toolchain and completes it using newlib rather than using another C Library such as your
own.

Porting newlib is one of the easiest ways to get a simple C library into your operating system without an
excessive amount of effort. As an added bonus, once complete you can port the toolchain (GCC/binutils) to
your OS - and who wouldn't want to do that?

Contents

1 Introduction

2 Preparation

3 System Calls

4 Porting Newlib
4.1 config.sub

4.2 configure.host

4.3 newlib/libc/sys/configure.in

4.4 newlib/libc/sys/myos

4.5 newlib/libc/sys/myos/crt0.c

4.6 newlib/libc/sys/myos/syscalls.c
4.7 newlib/libc/sys/myos/configure.in
4.8 newlib/libc/sys/myos/Makefile.am

4.9 Signal handling
5 Compiling

6 Conclusion

7 See Also

7.1 Articles

Introduction

I decided that after an incredibly difficult week of trying to get newlib ported to my own OS that I would write a
tutorial that outlines the requirements for porting newlib and how to actually do it. I'm assuming you can already
load binaries from somewhere and that these binaries are compiled C code. I also assume you have a syscall
interface setup already. Why wait? Let's get cracking!

Preparation

http://wiki.osdev.org/OS_Specific_Toolchain
http://wiki.osdev.org/File:Difficulty_3.png
http://wiki.osdev.org/Creating_a_C_Library
http://wiki.osdev.org/C_Library

Download newlib source (I'm using 2.2.0-1) from this ftp server
(ftp://sources.redhat.com/pub/newlib/index.html) .

Update: fixed tutorial to work with newer version of newlib.

System Calls

First of all you need to support a set of 17 system calls that act as 'glue' between newlib and your OS. These
calls are the typical "_exit", "open", "read/write", "execve" (et al). See the Red Hat newlib C library
(http://sourceware.org/newlib/libc.html#Syscalls) documentation.

My kernel exposes all the system calls on interrupt 0x80 (128d) so I just had to put a bit of inline assembly into
each stub to do what I needed it to do. It's up to you how to implement them in relation to your kernel.

Porting Newlib

config.sub

Same as for binutils in OS Specific Toolchain.

configure.host

Tell newlib which system-specific directory to use for our particular target. In the section starting 'Get the source
directories to use for the host ... case "${host}" in', add a section:

i[3-7]86-*-myos*)
 sys_dir=myos
 ;;

newlib/libc/sys/configure.in

Tell the newlib build system that it also needs to configure our myos-specific host directory. In the case

${sys_dir} in list, simply add

 myos) AC_CONFIG_SUBDIRS(myos) ;;

Note: After this, you need to run autoconf (precisely version 2.64) in the libc/sys directory.

newlib/libc/sys/myos

This is a directory that we need to create where we put our OS-specific extensions to newlib. We need to
create a minimum of 4 files. You can easily add more files to this directory to define your own os-specific library
functions, if you want them to be included in libc.a (and so linked in to every application by default).

newlib/libc/sys/myos/crt0.c

ftp://sources.redhat.com/pub/newlib/index.html
http://sourceware.org/newlib/libc.html#Syscalls
http://wiki.osdev.org/OS_Specific_Toolchain

This file creates crt0.o, which is included in every application. It should define the symbol _start, and then call
the main() function, possibly after setting up process-space segment selectors and pushing argc and argv onto
the stack. A simple implementation is:

#include <fcntl.h>

extern void exit(int code);
extern int main ();

void _start() {
 int ex = main();
 exit(ex);
}

Note: add in argc and argv support based on how you handle them in your OS

newlib/libc/sys/myos/syscalls.c

This file should contain the implementations for each glue function newlib requires.

/* note these headers are all provided by newlib - you don't need to provide them */
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/fcntl.h>
#include <sys/times.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <stdio.h>

void _exit();
int close(int file);
char **environ; /* pointer to array of char * strings that define the current environment variables */
int execve(char *name, char **argv, char **env);
int fork();
int fstat(int file, struct stat *st);
int getpid();
int isatty(int file);
int kill(int pid, int sig);
int link(char *old, char *new);
int lseek(int file, int ptr, int dir);
int open(const char *name, int flags, ...);
int read(int file, char *ptr, int len);
caddr_t sbrk(int incr);
int stat(const char *file, struct stat *st);
clock_t times(struct tms *buf);
int unlink(char *name);
int wait(int *status);
int write(int file, char *ptr, int len);
int gettimeofday(struct timeval *p, struct timezone *z);

Note: You may split this up into multiple files, just don't forget to link against all of them in Makefile.am.

newlib/libc/sys/myos/configure.in

Configure script for our system directory.

AC_PREREQ(2.59)

AC_INIT([newlib], [NEWLIB_VERSION])

AC_CONFIG_SRCDIR([crt0.c])
AC_CONFIG_AUX_DIR(../../../..)

NEWLIB_CONFIGURE(../../..)

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

newlib/libc/sys/myos/Makefile.am

A Makefile template for this directory:

AUTOMAKE_OPTIONS = cygnus
INCLUDES = $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS)
AM_CCASFLAGS = $(INCLUDES)

noinst_LIBRARIES = lib.a

if MAY_SUPPLY_SYSCALLS
extra_objs = syscalls.o # add more object files here if you split up
else # syscalls.c into multiple files in the previous step

extra_objs =
endif

lib_a_SOURCES =
lib_a_LIBADD = $(extra_objs)
EXTRA_lib_a_SOURCES = syscalls.c crt0.c # add more source files here if you split up
lib_a_DEPENDENCIES = $(extra_objs) # syscalls.c into multiple files
lib_a_CCASFLAGS = $(AM_CCASFLAGS)
lib_a_CFLAGS = $(AM_CFLAGS)

if MAY_SUPPLY_SYSCALLS
all: crt0.o
endif

ACLOCAL_AMFLAGS = -I ../../..
CONFIG_STATUS_DEPENDENCIES = $(newlib_basedir)/configure.host

Note: After this, you need to run autoconf in the newlib/libc/sys/ directory, and autoreconf in the

newlib/libc/sys/myos directory.

Note: autoconf and autoreconf will only run with automake version 1.14 (exact) and autoconf version 2.64

(exactly) (applies to newlib v2.2.0-1 source pulled on March 10, 2015)

Signal handling

Newlib has two different mechanisms for dealing with UNIX signals (see the man pages for signal()/raise()). In
the first, it provides its own emulation, where it maintains a table of signal handlers in a per-process manner. If
you use this method, then you will only be able to respond to signals sent from within the current process. In
order to support it, all you need to do is make sure your crt0 calls '_init_signal' before it calls main, which sets
up the signal handler table.

Alternatively, you can provide your own implementation. To do this, you need to define your own version of
signal() in syscalls.c. A typical implementation would register the handler somewhere in kernel space, so that
issuing a signal from another process causes the corresponding function to be called in the receiving process (this
will also require some nifty stack-playing in the receiving process, as you are basically interrupting the program
flow in the middle). You then need to provide a kill() function in syscalls.c which actually sends signals to
another process. Newlib will still define a raise() function for you, but it is just a stub which calls kill() with the
current process id. To switch newlib to this mode, you need to #define the SIGNAL_PROVIDED macro when
compiling. A simple way to do this is to add the line:

newlib_cflags="${newlib_cflags} -DSIGNAL_PROVIDED"

to your host's entry in configure.host. It would probably also make sense to provide sigaction(), and

provide signal() as a wrapper for it. Note that the Open Group's
(http://pubs.opengroup.org/onlinepubs/9699919799/functions/sigaction.html) definition of sigaction states that 1)
sigaction supersedes signal, and 2) an application designed shouldn't use both to manipulate the same signal.

Compiling

You can build newlib in this manner: Newlib is very pesky about the compiler, and you probably haven't built
your own i686-myos-gcc toolchain yet, meaning that configure will not be happy when you set target to i686-
myos. So use this hack to get it to work (it worked fine for me).

Note: there must be a better way then this.

newlib setup
CURRDIR=$(pwd)

make symlinkds (a bad hack) to make newlib work
cd ~/cross/bin/ # this is where the bootstrapped generic cross compiler toolchain (i686-elf-xxx) is installed in,

 # change this based on your development environment.
ln i686-elf-ar i686-myos-ar

ln i686-elf-as i686-myos-as

ln i686-elf-gcc i686-myos-gcc
ln i686-elf-gcc i686-myos-cc

http://pubs.opengroup.org/onlinepubs/9699919799/functions/sigaction.html

ln i686-elf-ranlib i686-myos-ranlib

return
cd $CURRDIR

Then run the following commands to build newlib

mkdir build-newlib

cd build-newlib
../newlib-x.y.z/configure --prefix=/usr --target=i686-myos

make all

make DESTDIR=${SYSROOT} install

Note: SYSROOT is where all your OS-specific toolchains will be installed in. It will look like a miniature
version of the Linux filesystem, but have your OS-specific toolchains in; I am using ~/myos as my SYSROOT
directory.

For some reason, the newer versions of newlib (at least for me) didn't put the libraries in a location where other
utilities like binutils could find. So here's another hack to fix this:

cp -ar $SYSROOT/usr/i386-myos/* $SYSROOT/usr/

After building all of this, your freshly built libc will be installed in your SYSROOT directory! Now you can
progress to building your own OS Specific Toolchain.

Important Note: I found that for newlib to properly work, you have to link against libc, libg, libm, and libnosys
- hence when porting gcc, in

#define LIB_SPEC ...

in gcc/configure/myos.h,

make sure you put

#define LIB_SPEC "-lc -lg -lm -lnosys"

at the bare minimum.

I highly recommend rebuilding the library with your OS Specific Toolchain after you are done porting one. (don't
forget to remove the symlinks, too.)

Conclusion

http://wiki.osdev.org/OS_Specific_Toolchain
http://wiki.osdev.org/OS_Specific_Toolchain

Well, you've done it. You've ported newlib to your OS! With this you can start creating user mode programs
with ease! You may now also add in new functions to newlib, such as dlopen(), dlclose(), dlsym(), and dlerror()
for dynamic linking support. Your operating system has a bright road ahead! You can now port the toolchain
and run binutils and GCC on your own OS. Almost self-hosting, how do you feel?

Good luck!

Last Updated by 0fb1d8 for compatibility with newer versions of newlib and the OS Specific Toolchain tutorial.

Note: I used a lot of hacks in this article, if you find a better way to do something, please contribute to the page.
Thank you.

See Also

Articles

GCC Cross-Compiler
OS Specific Toolchain

Retrieved from "http://wiki.osdev.org/index.php?title=Porting_Newlib&oldid=18216"

Categories: Level 3 Tutorials Tutorials

This page was last modified on 3 July 2015, at 08:41.

This page has been accessed 64,382 times.

http://wiki.osdev.org/Category:Tutorials
http://wiki.osdev.org/Category:Level_3_Tutorials
http://wiki.osdev.org/OS_Specific_Toolchain
http://wiki.osdev.org/index.php?title=Porting_Newlib&oldid=18216
http://wiki.osdev.org/OS_Specific_Toolchain
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/GCC_Cross-Compiler

