
Difficulty level

Beginner

Real mode assembly I

From OSDev Wiki

In this tutorial we will assemble a small 16-bit assembly language kernel with NASM and
boot it.

Contents

1 Overview

2 So what's it going to look like?

2.1 But I want a GUI and sound effects and all the Windows games to
work on my OS...

3 So where's the code?
4 What next?

Overview

EDIT #2: I've put a little "series box" at the bottom of each page to allow quick access to the
previous and next tutorial in the series.

You're probably going to sigh and dismiss yet another tutorial on writing operating systems in x86 assembly
language, especially since this one uses real mode. But there's a catch to this one; it actually does more than
printing "Hello World" to the screen and halting.

For this, you'll need:

the latest version of NASM (2.05.01 as of November 28th, 2008)

PARTCOPY on Windows or dd on Linux

an emulator like QEMU, Bochs, or Microsoft Virtual PC

So what's it going to look like?

Well, there will be a single source file, the kernel. What about a bootloader? This is such a small kernel, we're
not going to use a filesystem at all, we're just going to put the kernel into the first few sectors of the floppy!

The system will have a string printing call (of course), keyboard input, and a strcmp call similar to that of C, all
packaged into less than a sector.

But I want a GUI and sound effects and all the Windows games to work on my
OS...

Beginner Mistakes

http://wiki.osdev.org/Microsoft_Virtual_PC
http://wiki.osdev.org/NASM
http://wiki.osdev.org/Bootloader
http://wiki.osdev.org/Beginner_Mistakes
http://wiki.osdev.org/QEMU
http://wiki.osdev.org/X86
http://wiki.osdev.org/Bochs
http://wiki.osdev.org/File:Difficulty_1.png
http://wiki.osdev.org/Assembly

So where's the code?

Here you go, go wild.

 org 0x7C00 ; add 0x7C00 to label addresses

 bits 16 ; tell the assembler we want 16 bit code

 mov ax, 0 ; set up segments

 mov ds, ax

 mov es, ax

 mov ss, ax ; setup stack

 mov sp, 0x7C00 ; stack grows downwards from 0x7C00

 mov si, welcome

 call print_string

 mainloop:
 mov si, prompt

 call print_string

 mov di, buffer
 call get_string

 mov si, buffer
 cmp byte [si], 0 ; blank line?

 je mainloop ; yes, ignore it

 mov si, buffer
 mov di, cmd_hi ; "hi" command

 call strcmp
 jc .helloworld

 mov si, buffer
 mov di, cmd_help ; "help" command

 call strcmp
 jc .help

 mov si,badcommand

 call print_string
 jmp mainloop

 .helloworld:
 mov si, msg_helloworld
 call print_string

 jmp mainloop

 .help:

 mov si, msg_help

 call print_string

 jmp mainloop

 welcome db 'Welcome to My OS!', 0x0D, 0x0A, 0

 msg_helloworld db 'Hello OSDev World!', 0x0D, 0x0A, 0
 badcommand db 'Bad command entered.', 0x0D, 0x0A, 0

 prompt db '>', 0
 cmd_hi db 'hi', 0

 cmd_help db 'help', 0
 msg_help db 'My OS: Commands: hi, help', 0x0D, 0x0A, 0

 buffer times 64 db 0

 ; ================
 ; calls start here
 ; ================

 print_string:
 lodsb ; grab a byte from SI

 or al, al ; logical or AL by itself
 jz .done ; if the result is zero, get out

 mov ah, 0x0E

 int 0x10 ; otherwise, print out the character!

 jmp print_string

 .done:
 ret

 get_string:
 xor cl, cl

 .loop:

 mov ah, 0

 int 0x16 ; wait for keypress

 cmp al, 0x08 ; backspace pressed?
 je .backspace ; yes, handle it

 cmp al, 0x0D ; enter pressed?

 je .done ; yes, we're done

 cmp cl, 0x3F ; 63 chars inputted?

 je .loop ; yes, only let in backspace and enter

 mov ah, 0x0E
 int 0x10 ; print out character

 stosb ; put character in buffer

 inc cl
 jmp .loop

 .backspace:
 cmp cl, 0 ; beginning of string?
 je .loop ; yes, ignore the key

 dec di

 mov byte [di], 0 ; delete character

 dec cl ; decrement counter as well

 mov ah, 0x0E
 mov al, 0x08

 int 10h ; backspace on the screen

 mov al, ' '

 int 10h ; blank character out

 mov al, 0x08

 int 10h ; backspace again

 jmp .loop ; go to the main loop

 .done:
 mov al, 0 ; null terminator
 stosb

 mov ah, 0x0E

 mov al, 0x0D

 int 0x10

 mov al, 0x0A
 int 0x10 ; newline

 ret

 strcmp:
 .loop:
 mov al, [si] ; grab a byte from SI

 mov bl, [di] ; grab a byte from DI

 cmp al, bl ; are they equal?
 jne .notequal ; nope, we're done.

 cmp al, 0 ; are both bytes (they were equal before) null?

 je .done ; yes, we're done.

 inc di ; increment DI

 inc si ; increment SI

 jmp .loop ; loop!

 .notequal:
 clc ; not equal, clear the carry flag

 ret

 .done:
 stc ; equal, set the carry flag

 ret

 times 510-($-$$) db 0
 dw 0AA55h ; some BIOSes require this signature

To assemble on Windows:

nasm kernel.asm -f bin -o kernel.bin
partcopy kernel.bin 0 200 -f0

Or on Linux:

nasm kernel.asm -f bin -o kernel.bin
dd if=kernel.bin of=/dev/fd0

Those commands assemble your kernel binary and write them to the first floppy disk. Go ahead and test out
your operating system now!

What next?

Why, that's up to you of course! You could add more commands, expand your OS to another sector and learn
to use the BIOS floppy functions, add a stack and improve the calls, etc.

Have fun with your OS, however you decide to write it!

EDIT on December 12 2008: I've written a second part to this tutorial at Real mode assembly II.
This and future parts will have less code to copy and paste and more theory!

<- none | Real mode assembly II ->

Retrieved from "http://wiki.osdev.org/index.php?title=Real_mode_assembly_I&oldid=18037"
Categories: Level 1 Tutorials Real mode assembly

This page was last modified on 4 May 2015, at 12:16.
This page has been accessed 58,512 times.

http://wiki.osdev.org/Real_mode_assembly_II
http://wiki.osdev.org/Category:Level_1_Tutorials
http://wiki.osdev.org/Real_mode_assembly_II
http://wiki.osdev.org/index.php?title=Real_mode_assembly_I&oldid=18037
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:Real_mode_assembly

