
Difficulty level

Beginner

Setting Up Paging

From OSDev Wiki

 This page is a work in progress and may thus be incomplete. Its content may be

changed in the near future.

This is a guide to setting up paging. It will teach you the basic concepts behind paging and how it can help you
with your OS. This example will concentrate on Legacy Non-PSE Non-PAE paging (See also Setting Up
Paging With PAE).

Paging is a term that refers to the management of the computer's virtual memory. If you have not yet created a
physical memory manager, please read and follow Page Frame Allocation before continuing with this article.

Contents

1 Basic Paging

1.1 Creating a Blank Page Directory
1.2 Creating Your First Page Table

1.3 Put the Page Table in the Page Directory

1.4 Enable Paging

2 More Advanced Paging Example

Basic Paging

Paging allows you to have more than one virtual address space mapped into the physical address space. The
MMU uses what is called a Page Directory to map virtual addresses to physical addresses.

Page Directory - A table in memory which the MMU uses to find the page tables.

Each index in the Page Directory is a pointer to a Page table.

Page Table - A table in memory that describes how the MMU should translate a certain range of addresses.

Each index in a Page Table contains the physical memory address to which a certain page should be mapped.

Creating a Blank Page Directory

http://wiki.osdev.org/Page_Frame_Allocation
http://wiki.osdev.org/File:Under_Construction.png
http://wiki.osdev.org/MMU
http://wiki.osdev.org/Setting_Up_Paging_With_PAE
http://wiki.osdev.org/File:Difficulty_1.png

The first step is to create a blank page directory. The page directory is blank because we have not yet created
any page tables where the entries in the page directory can point.

Note that all of your paging structures need to be at page-aligned addresses (i.e. being a multiple of 4096). If
you have already written a page frame allocator then you can use it to allocate the first free page after your
kernel for the page directory. If you have not created a proper page allocator, simply finding the first free page-
aligned address after the kernel will be fine, but you should write the page frame allocator as soon as possible.
Another temporary solution (used in this tutorial) is to simply declare global objects with
__attribute__((align(4096))). Note that this is a GCC extension. It allows you to declare data aligned with some
mark, such as 4KiB here. We can use this because we are only using one page directory and one page table.
Please note that on the real world, dynamic allocation is too basic to be missing, and paging structures are
constantly being added, deleted, and modified. For now, just use static objects;

uint32_t page_directory[1024] __attribute__((aligned(4096)));

Now that we have a page directory, we need to blank it. The page directory should have exactly 1024 entries.
We will set each entry to not present so that if the MMU looks for that page table, it will see that it is not there
(...yet. We will add the first page table in a moment).

//set each entry to not present
int i;
for(i = 0; i < 1024; i++)
{
 // This sets the following flags to the pages:
 // Supervisor: Only kernel-mode can access them
 // Write Enabled: It can be both read from and written to
 // Not Present: The page table is not present
 page_directory[i] = 0x00000002;
}

A page is "not present" is one which is not (intented to be) used. If the MMU finds one, it will Page Fault. Non-
present pages are useful for technics such as Lazy Loading. It's also used when a page has been swapped to
disk, so the Page Fault is not interpreted as an error by the OS. To the OS, it means someone needs a page it
swapped to disk, so it is restored. A page fault over a page that was never swapped is a error by which the OS
has a reason to kill the process.

Creating Your First Page Table

The second step is to create a basic page table. In this example we choose to fill up the whole first page table
with addresses for the MMU. Because each page is 4 kilobytes large, and because each page table has exactly
1024 entries, filling up the whole table causes us to map 4 megabytes of memory. Also, the page directory is
1024 entries long, so everything can map up to 4GiB, the full 32-bit address space. Remembered the non-
present page trick? Without it, we would use 16MiB per each paging structure. A single page directory needs
4KiB, but it can map some tables as non-present, effectively removing their space needs.

Now, its time to create a new page table.

uint32_t first_page_table[1024] __attribute__((aligned(4096)));

We now need to fill each index in the table with an address to which the MMU will map that page. Index 0
(zero) holds the address from where the first page will be mapped. Likewise, index 1 (one) holds the address
for the second page and index 1023 holds the address of the 1024th page. That's for the first table. So, to get
the page at which a certain index is mapped is as simple as (PageDirIndexOfTable * 1024) +
PageTabIndexOfPage. If you multiply that by 4, you'll get the address (in KiB) at which the page will be loaded.
For example, page index 123 in table index 456 will be mapped to (456 * 1024) + 123 = 467067. 467067 * 4
= 1868268 KiB = 1824.48046875 MiB = 1.781719207763671875 GiB. It's easy, right?

// holds the physical address where we want to start mapping these pages to.
// in this case, we want to map these pages to the very beginning of memory.
unsigned int i;

//we will fill all 1024 entries in the table, mapping 4 megabytes
for(i = 0; i < 1024; i++)
{
 // As the address is page aligned, it will always leave 12 bits zeroed.
 // Those bits are used by the attributes ;)
 first_page_table[i] = (i * 0x1000) | 3; // attributes: supervisor level, read/write, present.
}

Put the Page Table in the Page Directory

The third step is to put the newly created page table into our blank page directory. We do this by setting the first
entry in the page directory to the address of our page table.

// attributes: supervisor level, read/write, present
page_directory[0] = ((unsigned int)first_page_table) | 3;

Enable Paging

The final step is to actually enable paging. First we tell the processor where to find our page directory by putting
it's address into the CR3 register. Because C code cannot directly access the computer's registers, we will need
to use assembly code to access CR3. The following assembly is written for GAS. If you use a different
assembler then you will need to translate between this assembly format and the format supported by your
assembler.

.text

.globl loadPageDirectory
loadPageDirectory:
push %ebp
mov %esp, %ebp

mov 8(%esp), %eax

mov %eax, %cr3
mov %ebp, %esp

pop %ebp

ret

This small assembly function takes one parameter: the address of the page directory. It then loads the address
onto the CR3 register, where the MMU will find it. But wait! Paging is not still enabled. That's what we will do
next. We must set the 32th bit in the CR0 register, the paging bit. This operation also requires assembly code.
Once done, paging will be enabled.

.text

.globl enablePaging
enablePaging:
push %ebp

mov %esp, %ebp
mov %cr0, %eax

or $0x80000000, %eax

mov %eax, %cr0
mov %ebp, %esp

pop %ebp

ret

Now lets call the functions!

// This should go outside any function..
extern void loadPageDirectory(unsigned int*);

extern void enablePaging();

// And this inside a function
loadPageDirectory(page_directory);
enablePaging();

Paging should now be enabled. Try printing something to screen like "Hello, paging world!". If all goes well,
congratulations! You've just learned the basics of paging. But there are lots of other things to do with it. You
won't be able to almost all of them for now. Just remember that you have a little friend in the CR3 register that
will help you one day.

More Advanced Paging Example

Add sections on how to dynamically get and free pages...

Retrieved from "http://wiki.osdev.org/index.php?title=Setting_Up_Paging&oldid=17521"
Categories: Level 1 Tutorials In Progress X86 CPU Tutorials

This page was last modified on 5 February 2015, at 21:05.
This page has been accessed 46,386 times.

http://wiki.osdev.org/Category:X86_CPU
http://wiki.osdev.org/Special:Categories
http://wiki.osdev.org/Category:In_Progress
http://wiki.osdev.org/Category:Level_1_Tutorials
http://wiki.osdev.org/Category:Tutorials
http://wiki.osdev.org/index.php?title=Setting_Up_Paging&oldid=17521

