
Difficulty level

Beginner

Setting Up Paging With PAE

From OSDev Wiki

 This page is a work in progress and may thus be incomplete. Its content may be

changed in the near future.

This is a guide to setting up paging with PAE enabled. You should read Setting Up Paging first.

Contents

1 Differences between PAE-Paging and Legacy-Paging

2 Setting Up The Data Structures

3 Making it run
4 Mapping the PD to itself

Differences between PAE-Paging and Legacy-Paging

PAE allows you to access more physical memory, which is usually 64GiB (in fact, this is implementation

specific).
A new data structure is added, the so called 'Page-Directory-Pointer-Table'
An entry is now 8-byte-wide (Legacy: 4-byte), so the number of entries is halved to 512 (Legacy: 1024)

If the CPU supports it you can use the NoExecute-bit

Setting Up The Data Structures

As mentioned above the 'Page-Directory-Pointer-Table' is added, which contains 4 Page-Directory-Entries

uint64_t page_dir_ptr_tab[4] __attribute__((aligned(0x20))); // must be aligned to (at least)0x20, ...
 // ... turning out that you can put more of them into one page, saving memory

Keep in mind that the size of the CR3 register remains at 4byte, meaning that a PDPT must be located below
4GiB in physical memory.

Now we need our Page-Directory/-Table

// 512 entries
uint64_t page_dir[512] __attribute__((aligned(0x1000))); // must be aligned to page boundary

http://wiki.osdev.org/File:Difficulty_1.png
http://wiki.osdev.org/Setting_Up_Paging
http://wiki.osdev.org/PAE
http://wiki.osdev.org/File:Under_Construction.png

uint64_t page_tab[512] __attribute__((aligned(0x1000)));

Making it run

Ok, now we have our structures. Now we have to make it run.

page_dir_ptr_tab[0] = (uint64_t)&page_dir | 1; // set the page directory into the PDPT and mark it present
page_dir[0] = (uint64_t)&p_tab | 3; //set the page table into the PD and mark it present/writable

Ok, let's map the first 2MiB.

unsigned int i, address = 0;
for(i = 0; i < 512; i++)
{
 page_tab[i] = address | 3; // map address and mark it present/writable
 address = address + 0x1000;
}

Ok, pages are mapped. Now we have to set the PAE-bit and load the PDPT into CR3

asm volatile ("movl %cr4, %eax; bts $5, %eax; movl %eax, %cr4");
asm volatile ("movl %%eax, %%cr3" :: "a" (&page_dir_ptr_tab)); // load PDPT into CR3

The last thing we need to do is activating paging. Simply done:

asm volatile ("movl %cr0, %eax; orl $0x80000000, %eax; movl %eax, %cr0;"

PAE-Paging should now be enabled.

Mapping the PD to itself

In Legacy-Paging this is quite easy. Just map the PD to the last entry of itself.

In PAE-Paging we have 4 entries and the PDPT, so how does it work? Depending on where you want to set it
you just map all 4 directories into one of those! Example (PD's at end of virtual memory)

uint64_t * page_dir = (uint64_t*)page_dir_ptr_tab[3]; // get the page directory (you should 'and' the flags away)
page_dir[511] = (uint64_t)page_dir; // map pd to itself
page_dir[510] = page_dir_ptr_tab[2]; // map pd3 to it

page_dir[509] = page_dir_ptr_tab[1]; // map pd2 to it
page_dir[508] = page_dir_ptr_tab[0]; // map pd1 to it
page_dir[507] = (uint64_t)&page_dir_ptr_tab; /* map the PDPT to the directory

Now you can access all structures in virtual memory. Mapping the PDPT into the directory wastes quite much
virtual memory as only 32 bytes are used, but if you allocate most/all PDPT's into one page then you can access
ALL of them, which can be quite useful.

You can also statically allocate the PDPT at boot time, put the 4 page directory addresses in your process
struct, and then just write the same PDPT address to CR3 on a context switch after you've patched the PDPT.

Retrieved from "http://wiki.osdev.org/index.php?title=Setting_Up_Paging_With_PAE&oldid=17162"
Categories: Level 1 Tutorials In Progress X86 CPU Tutorials

This page was last modified on 1 December 2014, at 09:28.
This page has been accessed 22,518 times.

http://wiki.osdev.org/Category:Level_1_Tutorials
http://wiki.osdev.org/index.php?title=Setting_Up_Paging_With_PAE&oldid=17162
http://wiki.osdev.org/Category:Tutorials
http://wiki.osdev.org/Category:X86_CPU
http://wiki.osdev.org/Category:In_Progress
http://wiki.osdev.org/Special:Categories

