Simple DirectMedia Layer (SDL)

by Kyle Smith

Introduction

R

* SDL - Simple DirectMedia Layer

* From the website: "Simple DirectMedia Layer is a
cross-platform multimedia library designed to provide
low level access to audio, keyboard, mouse, joystick,
3D hardware via OpenGL, and 2D video framebuffer.*

* Acts as a medium between a number of I/O interfaces
and the developer

Introduction 2

-’

* Easy to imagine uses for this
* Games
* Media players
* Multimedia chat

* Open Source
* Originally developed by one person
* Lots of third parties have contributed
* Ports to different operating systems
* Different plugins and libraries

R

* Sam Latinga, Creator
* Employee at Loki Software from 1998-2001
* Ported Popular games from Windows to Linux
* Unreal Tournament
* Civilization
* Heroes Il
* Got theidea to create a cross-platform media interface
* Released first version of SDL in 1998

* Later became Lead Software Engineer for Blizzard
Entertainment

e

* 2001 - Loki Software goes out of business

* Latinga continues work on SDL with growing support
for his project

* 2008, Latinga leaves Blizzard to start his own company,
Galaxy Gameworks

* SDL is still written and maintained largely by one man.

* Many popular apps and games have been written on
the platform

Advantages
——

* Can write code once and compile it on most
platforms!

* SDL is a wrapper

* Hides low-level hardware access from the developer

* Provides an easy-to-use API to access sound, graphics,
keyboard, etc.

* Even officially supports Android and iOS mobile apps!

Advantages 2
——

* Great for small and independent developers
* Free and open source
* Cross-platform support reaches a larger market

* Software distribution technology makes this easier
* Steam
* App Store
* Google Play

* No-cost, low-overhead software development platform

Advantages 3
——

* Doesn't require installing runtime libraries like Java or
Adobe AIR

* Easier for the end user
* Less bloated can potentially mean better performance

* But provides enough abstraction to make it easy on the
developer

* Again, and most importantly: Free!

Disadvantages
—

* Not designed for enterprise software
* Open source means no guarantees

* Developed and maintained largely by one man
* Runinto a bug? Reportit and hope it gets fixed.

* No cutting-edge technology
* No DirectX 11.1 if you want cross-platform!
* OpenGL shader support is limited

Disadvantages 2
.’

* Hides the hardware level
* Generally a good thing to reduce complexity

* But you have to trust SDL on low-level optimizations
and tweaks

* If the behavior is not what you want, nothing you can
do.

* Can also be slower «(

SDL Layers of Abstraction

framebuffer Xlib

Linux etc.

—_

* Provides an API to access multiple different kinds of
hardware

* Keyboard/Mouse

* Joystick

* Audio

* 3D graphics through OpenGL
* 2D video framebuffer

.’
* Supports extensions!

* Several things are out of the scope of SDL, but can be
plugged into it

* Networking
* Image libraries (PNG, JPG, etc.)

* Sound libraries (MP3, OGG, etc.)
* Lots of GUIs

SDL Hides the Hardware Layer

Keyboard/Mouse Audio/Video Card

Example Program
—

* This is a program | created to demonstrate the
capabilities of SDL.

* Utilizes keyboard and mouse input and produces 3D
graphics via OpenGL.

* Some code samples taken from various tutorials on
OpenGL and SDL.

* (demo)

What’s Going On?
—

* There’s a lot going on in the program, but SDL makes
the implementation a lot simpler.

* Some SDL-specific initialization is required

(setup sdi())
* Keyboard and mouse inputs are handled in

main_loop()
* Then, lots of OpenGL graphics code.

*

¥ ¥ K X X X X X ¥ X X ¥ X ¥ ¥ X ¥ ¥ *

SDL Graphics Handling
—

const SDL_Videolnfo* video; Te”S SDL that we want to
use its graphics engine

if (SDL_Init(SDL_INIT VIDEO)<o0){
fprintf(stderr, "Couldn't initialize SDL: %s\n", SDL_GetError());
exit(1);
}
atexit(SDL_Quit);
video = SDL_GetVideolnfo(); Obtains info about our
if(video == NULL) { .
fprintf(stderr, "Couldn't get video information: s\n", SDL_GetError()); gra P hics hardware
exit(1);
}
SDL_GL_SetAttribute(SDL_GL RED_SIZE,5);
SDL_GL_SetAttribute(SDL_GL _GREEN_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1); to power our graph|c5!

if(SDL_SetVideoMode(WIDTH, HEIGHT, video->vfmt->BitsPerPixel, SDL_OPENGL)==0){
fprintf(stderr, "Couldn't set video mode: %s\n", SDL_GetError());
exit(1);

3}

SDL Graphics Handling 2
—

* That’s all we need to do to set up OpenGL for use in
SDL!

* Now, we have full access to the video card to do all
the standard OpenGL commands.

* Shaders require more work (unfortunately)

* Now, how about input handling?

SDL Input Handling

Loop forever, and chec! ¥or user

while (1) {
keystate = SDL_GetKeyState(NULL); v input.
[* process pending events */
while(SDL_PollEvent(&event)) {

switch(event.type) { ¢==x If we receive an event (user input),

case SDL_KEYDOWN: check what it was.
switch (event.key.keysym.sym) {
case SDLK_ESCAPE:
exit(0);
break; Switch/case based on key input. SDL has

default: break; built-in constants for each possible key
case SDLK g:

land->garaud = !land->garaud; (eg SDLK g =the ‘g’ key).
break;

case SDLK m:
movelLight = !movelight;

}

break;

case SDL_QUIT: h Closing the window is also

f,),f:as); considered an ‘event’ by SDL.

3} Exit the program if this happens.

SDL_Event event; Uint8 *keystate;

X X X X X X X X X X K K X K K K K X ¥ X ¥ X% ¥

SDL Input Handling 2
—

if (distance < 0)
distance = 0;
camAngleH = camAngleH % 360;
camAngleV = camAngleV % 36Q:
if (movelLight)
lightAngle += 5
repaint(); SDL also provides time functions, so we can create hardware-

SDL_Delay(50); €= 5 japandent timing. This is good so we don’t wear out our
CPU running the main loop unnecessarily fast.

Tell OpenGL to redraw the image.

* if (keystate[SDLK_RIGHT])

* camAngleH +=4; These keys are outside the event

% if (keystate[SDLK_LEFT]) ’h dler. Why?

* camAngleH -= 4; andier. y:

* if (keystate[SDLK_UP])

* camAngleV += 4; . .

% if (keystate[SDLK_DOWN]) They are not switch/case, which
* fC(akmAngle\[/S:;ﬁ;(QUALS) means key presses are not

* if (keystate _EQUAL . .

+ distance = 0.3, mutually echL{swe. This allows

% if (keystate[SDLK_MINUS]) simultaneous input from any or
L dstancer=03; all of these keys.

*

*

sk

*

*

*

*

SDL Input Handling 3
B

* SDL provides its own syntax for accessing keyboard
commands.

* Can either access input through the event handler or the
SDL_GetKeyState.
* Even)t handler is good for boolean switches (e.g. moving the
light).
* SDL_GetKeyState is good for continuous changes and/or
handling simultaneous key changes (e.g. moving the camera).

* The latter would be more commonly used for games and
anything that requires real-time interaction.

* SDL_Delay is very useful for hardware-independent timing.

More about Graphics
——

* So what do we do now that we’ve initialized our
graphics in SDL? What do we have to do to actually
start drawing things?

* SDL hides the hardware layer from us, so any
interaction with the graphics card must go through it.

x* % X X X X %X *

* % X % X *

More About Graphics 2
R

Generate an OpenGL display list for quick
land = glGenLists(1); &= access later. These are stored on the

INewList(land,GL COMPILE); . .
g,CO|or3f(g_55f 0.27£,0.09f);) graphics card and can be drawn very quickly

for (i=0;i<SIZE;i++) when called.
for (j=0;j<SIZE;j++)

glBegin(GL_QUADS);
gINormal3f(landarray[i][j]-andarray[i+1][j],landarray[i][j]landarray[i][j+1],1.f); Set a bunch of
[j

glVertex3f((GLfloat)i-SIZE/2,(GLfloat)j-SIZE/2,landarray[i][j]); vertices and normal
glVertex3f((GLfloat)i-SIZE/2+1,(GLfloat)j-SIZE/2,landarray[i+1][] ———
glVertex3f((GLfloat)i-SIZE/2+1,(GLfloat)j-SIZE/2+1, landarray[|+1][1+1]), vectors to generate

glVertex3f((GLfloat)i-SIZE/2,(GLfloat)j-SIZE/2+1,landarray[i][j+1]); a terrain.
glEnd();

glEndList();
Note: there is a lot of graphics code
in this program, so thisis just a
small sample. Most of the code
looks similar to this.

More About Graphics 3
——

* So what?

* There are no calls to SDL functions in that code!

* Can plug that code into GLUT, Qt, or any other interface
that supports OpenGL and it will compile.

* Once OpenGL is initialized, SDL steps out of the way and
lets you take over.

* Fortunately, most graphics interfaces behave similarly.

SDL on Other Platforms
——

* SDL was designed with the goal of cross-platform
programming in mind.
* However, that doesn’t mean “favoritism” hasn’t emerged.
* SDL supports DirectX (sort of)
* Great for Windows users!
* But using DirectX completely kills all cross-platform capability.

* Even though mobile platforms are officially supported, the
usability is rather limited.

* SDL 1.3 (yet to be released) is hoped to improve mobile
support

SDL on Other Platforms 2
—

* Cross-platform programming is a great goal, but it comes at a
cost.

* Functionality on more platforms = lower possible complexity in
applications.

* More advanced applications = fewer platforms can support it.
* Truly cross-platform applications:

* Calculator? Solitaire? Emacs?
* Partially cross-platform applications:

* OpenGL games

* OpenOffice

* Android and iOS support OpenGL, but can they run games
designed for desktop computers?

SDL on Other Platforms 3
——

* Very few applications need to be run on literally any
platform.

* Every application has its niche.
* We don’t need OpenOffice on our phones.
* And we don’t need SMS on our desktops.

* The beauty of platforms like SDL is not the ability to
publish an app on every platform.

* Someone can learn SDL and publish an app anywhere with
very small learning curve for each platform.

* Publish a OSX/Linux app today...
* Publish a iOS/Android app tomorrow.

What About Extensions?
——

* SDL maintains a database of extension libraries on its website.

* Some of them provide access to hardware not natively
supported by SDL

* Microphone
* Webcam
* Network card
* Some provide more abstraction
* Game development engines
* Collision detection
* “How to program’” tutorials
* Font libraries, GUls, sound engines, etc.

R

* Even though SDL is a relatively small project, has a lot
of potential power.

* A clever developer could build a career using only
SDL.

* Given the variety of platforms and the number of
extensions, an application could be written for almost
any purpose.

* Not designed for “beginner” programmers, but
designed with simplicity and ease of use in mind.

World of Goo

Neverwinter Nights

Dwarf Fortress

All made with SDL!

