
Stream Editor

i

Stream Editor

i

About the Tutorial

This tutorial takes you through all about Stream EDitor (SED), one of the most

prominent text-processing utilities on GNU/Linux. Similar to many other

GNU/Linux utilities, it is stream-oriented and uses simple programming

language. It is capable of solving complex text processing tasks with few lines of

code. This easy, yet powerful utility makes GNU/Linux more interesting.

Audience

If you are a software developer, system administrator, or a GNU/Linux loving

person, then this tutorial is for you.

Prerequisites

You must have basic understanding of GNU/Linux operating system and shell

scripting.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Stream Editor

ii

Table of Contents

About the Tutorial ..i

Audience ..i

Prerequisites ..i

Copyright & Disclaimer ..i

Table of Contents ... ii

1. OVERVIEW .. 1

Typical Uses of SED ..1

2. ENVIRONMENT ... 2

Installation Using Package Manager ...2

Installation from Source Code ..3

3. WORKFLOW ... 5

Points to Note .. 5

Examples .. 6

4. BASIC SYNTAX ... 8

Standard Options ...9

GNU Specific Options .. 10

5. LOOPS .. 12

6. BRANCHES .. 14

7. PATTERN BUFFER ... 16

8. PATTERN RANGE .. 20

9. BASIC COMMANDS ... 22

Delete Command ... 22

Write Command ... 23

Stream Editor

iii

Append Command ... 26

Change Command .. 27

Insert Command ... 29

Translate Command .. 30

l command ... 31

Quit Command .. 33

Read Command .. 34

Execute Command ... 35

Miscellaneous Commands ... 37

10. SPECIAL CHARACTERS ... 41

= Command .. 41

& Command ... 43

11. STRINGS.. 45

Substitute Command .. 45

Creating a Substring .. 49

String Replacement Flags (GNU SED only) ... 50

12. MANAGING PATTERNS ... 52

13. REGULAR EXPRESSIONS .. 58

Standard Regular Expressions ... 58

Start of line (^) ... 58

End of Line ($) .. 58

Single Character (.) .. 58

Match Character Set ([]) .. 59

Exclusive Set ([^]) .. 59

Character Range ([-]) ... 59

Zero on One Occurrence (\?)... 60

One or More Occurrence (\+) .. 60

Zero or More Occurrence (*) .. 60

Stream Editor

iv

Exactly N Occurrences {n} ... 61

At least n Occurrences {n,} .. 61

M to N Occurrence {m, n}.. 62

Pipe (|) ... 62

Escaping Characters... 62

POSIX Classes of Regular Expressions ... 64

[:alnum:] .. 64

[:alpha:] ... 64

[:blank:] .. 64

[:digit:] ... 65

[:lower:] ... 65

[:upper:] ... 65

[:punct:] ... 65

[:space:] ... 66

Metacharacters ... 66

Word Boundary(\b) ... 66

Non-Word Boundary (\B) .. 66

Single Whitespace (\s) ... 66

Single Non-Whitespace (\S)... 67

Single Word Character (\w) ... 67

Single Non-Word Character (\W) .. 67

Beginning of Pattern Space(\`) .. 68

14. USEFUL RECIPES ... 69

Cat Command .. 69

Removing Empty Lines .. 69

Removing Commented Lines from a C++ Program .. 70

Adding Comments Before Certain Lines ... 71

Wc -l command ... 71

Head Command .. 71

Tail -1 Command .. 72

Dos2unix Command .. 72

Unix2dos command ... 73

Cat -E command.. 74

Stream Editor

v

Cat -ET Command ... 74

nl Command .. 75

cp Command .. 75

Expand Command .. 75

Tee Command ... 76

cat -s Command .. 76

grep Command ... 77

grep -v Command ... 77

tr Command ... 78

Stream Editor

1

The acronym SED stands for Stream EDitor. It is a simple yet powerful utility

that parses the text and transforms it seamlessly. SED was developed during

1973–74 by Lee E. McMahon of Bell Labs. Today, it runs on all major operating

systems.

McMahon wrote a general-purpose line-oriented editor, which eventually became

SED. SED borrowed syntax and many useful features from ed editor. Since its

beginning, it has support for regular expressions. SED accepts inputs from files

as well as pipes. Additionally, it can also accept inputs from standard input

streams.

SED is written and maintained by the Free Software Foundation (FSF) and it is

distributed by GNU/Linux. Hence it is often referred to as GNU SED. To a novice

user, the syntax of SED may look cryptic. However, once you get familiar with

its syntax, you can solve many complex tasks with a few lines of SED script. This

is the beauty of SED.

Typical Uses of SED

SED can be used in many different ways, such as:

 Text substitution,

 Selective printing of text files,

 In-a-place editing of text files,

 Non-interactive editing of text files, and many more.

1. OVERVIEW

Stream Editor

2

This chapter describes how to set up the SED environment on your GNU/Linux

system.

Installation Using Package Manager

Generally, SED is available by default on most GNU/Linux distributions.

Use which command to identify whether it is present on your system or not. If

not, then install SED on Debian based GNU/Linux using apt package manager as

follows:

[jerry]$ sudo apt-get install sed

After installation, ensure that SED is accessible via command line.

[jerry]$ sed --version

On executing the above code, you get the following result:

sed (GNU sed) 4.2.2

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Written by Jay Fenlason, Tom Lord, Ken Pizzini,

and Paolo Bonzini.

GNU sed home page: <http://www.gnu.org/software/sed/>.

General help using GNU software: <http://www.gnu.org/gethelp/>.

E-mail bug reports to: <bug-sed@gnu.org>.

Be sure to include the word "sed" somewhere in the "Subject:" field.

Similarly, to install SED on RPM based GNU/Linux, use yum package manager as

follows:

[root]# yum -y install sed

2. ENVIRONMENT

Stream Editor

3

After installation, ensure that SED is accessible via command line.

[root]# sed --version

On executing the above code, you get the following result:

GNU sed version 4.2.1

Copyright (C) 2009 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE,

to the extent permitted by law.

GNU sed home page: <http://www.gnu.org/software/sed/>.

General help using GNU software: <http://www.gnu.org/gethelp/>.

E-mail bug reports to: <bug-gnu-utils@gnu.org>.

Be sure to include the word "sed" somewhere in the "Subject:" field.

Installation from Source Code

As GNU SED is a part of the GNU project, its source code is available for free

download. We have already seen how to install SED using package manager. Let

us now understand how to install SED from its source code.

The following installation is applicable to any GNU/Linux software, and for most

other freely-available programs as well. Here are the installation steps:

 Download the source code from an authentic place. The command-line

utilitywget serves this purpose.

[jerry]$ wget ftp://ftp.gnu.org/gnu/sed/sed-4.2.2.tar.bz2

 Decompress and extract the downloaded source code.

[jerry]$ tar xvf sed-4.2.2.tar.bz2

 Change into the directory and run configure.

[jerry]$./configure

 Upon successful completion, the configure generates Makefile. To compile

the source code, issue a make command.

[jerry]$ make

Stream Editor

4

 You can run the test suite to ensure the build is clean. This is an optional

step.

[jerry]$ make check

 Finally, install the SED utility. Make sure you have superuser privileges.

[jerry]$ sudo make install

That is it! You have successfully compiled and installed SED. Verify it by

executing the sedcommand as follows:

[jerry]$ sed --version

On executing the above code, you get the following result:

sed (GNU sed) 4.2.2

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Written by Jay Fenlason, Tom Lord, Ken Pizzini,

and Paolo Bonzini.

GNU sed home page: <http://www.gnu.org/software/sed/>.

General help using GNU software: <http://www.gnu.org/gethelp/>.

E-mail bug reports to: <bug-sed@gnu.org>.

Be sure to include the word "sed" somewhere in the "Subject:" field.

Stream Editor

5

In this chapter, we will explore how SED exactly works. To become an expert

SED user, one needs to know its internals. SED follows a simple workflow: Read,

Execute, and Display. The following diagram depicts the workflow.

 Read: SED reads a line from the input stream (file, pipe, or stdin) and

stores it in its internal buffer called pattern buffer.

 Execute: All SED commands are applied sequentially on the pattern

buffer. By default, SED commands are applied on all lines (globally)

unless line addressing is specified.

 Display: Send the (modified) contents to the output stream. After

sending the data, the pattern buffer will be empty.

 The above process repeats until the file is exhausted.

Points to Note

 Pattern buffer is a private, in-memory, volatile storage area used by the

SED.

 By default, all SED commands are applied on the pattern buffer, hence

the input file remains unchanged. GNU SED provides a way to modify the

input file in-a-place. We will explore about it in later sections.

3. WORKFLOW

Stream Editor

6

 There is another memory area called hold buffer which is also private, in-

memory, volatile storage area. Data can be stored in a hold buffer for

later retrieval. At the end of each cycle, SED removes the contents of the

pattern buffer but the contents of the hold buffer remains persistent

between SED cycles. However SED commands cannot be directly executed

on hold buffer, hence SED allows data movement between the hold buffer

and the pattern buffer.

 Initially both pattern and hold buffers are empty.

 If no input files are provided, then SED accepts input from the standard

input stream (stdin).

 If address range is not provided by default, then SED operates on each

line.

Examples

Let us create a text file quote.txt to contain a quote of the famous author Paulo

Coelho.

[jerry]$ vi quote.txt

There is only one thing that makes a dream impossible to achieve: the fear of failure.

 - Paulo Coelho, The Alchemist

To understand the workflow of SED, let us display the contents of the file

quote.txt using SED. This example simulates the cat command.

[jerry]$ sed '' quote.txt

When the above code is executed, it will produce the following result.

There is only one thing that makes a dream impossible to achieve: the fear of failure.

In the above example, quote.txt is the input file name and before that there is a

pair of single quote that implies the SED command. Let us demystify this

operation.

First SED reads a line from the input file quote.txt and stores it in its pattern

buffer. Then it applies SED commands on the pattern buffer. In our case, no SED

commands are there, hence no operation is performed on the pattern buffer.

Finally it deletes and prints the contents of the pattern buffer on the standard

output. Isn't it simple?

In the following example, SED accepts input from the standard input stream.

[jerry]$ sed '' <press enter>

Stream Editor

7

When the above code is executed, it will produce the following result.

There is only one thing that makes a dream impossible to achieve: the fear of failure.

There is only one thing that makes a dream impossible to achieve: the fear of failure.

Here, the first line is entered through keyboard and the second is the output

generated by SED. To exit from the SED session, press ctrl-D (^D).

Stream Editor

8

This chapter introduces the basic commands that SED supports and their

command-line syntax. SED can be invoked in the following two forms:

sed [-n] [-e] 'command(s)' files

sed [-n] -f scriptfile files

The first form allows to specify the commands in-line and they are enclosed

within single quotes. The later allows to specify a script file that contains SED

commands. However, we can use both forms together multiple times. SED

provides various command-line options to control its behavior.

Let us see how we can specify multiple SED commands. SED provides

the delete command to delete certain lines. Let us delete the 1st, 2nd, and 5th

lines. For the time being, ignore all the details of the delete command. We will

discuss more about the delete command later.

First, display the file contents using the cat command.

[jerry]$ cat books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Now instruct SED to remove only certain lines. Here, to delete three lines, we

have specified three separate commands with -e option.

[jerry]$ sed -e '1d' -e '2d' -e '5d' books.txt

On executing the above code, you get the following result:

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

6) A Game of Thrones, George R. R. Martin, 864

4. BASIC SYNTAX

Stream Editor

9

Additionally, we can write multiple SED commands in a text file and provide the

text file as an argument to SED. SED can apply each command on the pattern

buffer. The following example illustrates the second form of SED.

First, create a text file containing SED commands. For easy understanding, let us

use the same SED commands.

[jerry]$ echo -e "1d\n2d\n5d" > commands.txt

[jerry]$ cat commands.txt

On executing the above code, you get the following result:

1d

2d

5d

Now instruct the SED to read commands from the text file. Here, we achieve the

same result as shown in the above example.

[jerry]$ sed -f commands.txt books.txt

On executing the above code, you get the following result:

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

6) A Game of Thrones,George R. R. Martin, 864

Standard Options

SED supports the following standard options:

 -n: Default printing of pattern buffer. For example, the following SED

command does not show any output:

[jerry]$ sed -n '' quote.txt

 -e <cmd> : Next argument is an editing command. Here, angular

brackets imply mandatory parameter. By using this option, we can specify

multiple commands. Let us print each line twice:

[jerry]$ sed -e '' -e 'p' quote.txt

On executing the above code, you get the following result:

Stream Editor

10

There is only one thing that makes a dream impossible to achieve: the fear of

failure.

There is only one thing that makes a dream impossible to achieve: the fear of

failure.

 - Paulo Coelho, The Alchemist

 - Paulo Coelho, The Alchemist

 -f <filename> : Next argument is a file containing editing commands. The

angular brackets imply mandatory parameter. In the following example,

we specify print command through file:

[jerry]$ echo "p" > commands

[jerry]$ sed -n -f commands quote.txt

On executing the above code, you get the following result:

There is only one thing that makes a dream impossible to achieve: the fear of

failure.

 - Paulo Coelho, The Alchemist

GNU Specific Options

Let us quickly go through the GNU specific SED options. Note that these options

are GNU specific; and may not be supported by other variants of the SED. In

later sections, we will discuss these options in more details.

 -n, --quiet, --silent: Same as standard -n option.

 -e script, --expression=script: Same as standard -e option.

 -f script-file, --file=script-file: Same as standard -f option.

 --follow-symlinks: If this option is provided, the SED follows symbolic

links while editing files in place.

 -i[SUFFIX], --in-place[=SUFFIX]: This option is used to edit file in place. If

suffix is provided, it takes a backup of the original file, otherwise it

overwrites the original file.

 -l N, --line-lenght=N: This option sets the line length for l command to N

characters.

 --posix: This option disables all GNU extensions.

 -r, --regexp-extended: This option allows to use extended regular

expressions rather than basic regular expressions.

Stream Editor

11

 -u, --unbuffered: When this option is provided, the SED loads minimal

amount of data from the input files and flushes the output buffers more

often. It is useful for editing the output of "tail -f" when you do not want

to wait for the output.

 -z, --null-data: By default, the SED separates each line by a new-line

character. If NULL-data option is provided, it separates the lines by NULL

characters.

Stream Editor

12

Like other programming languages, SED too provides a looping and branching

facility to control the flow of execution. In this chapter, we are going to explore

more about how to use loops and branches in SED.

A loop in SED works similar to a goto statement. SED can jump to the line

marked by the label and continue executing the remaining commands. In SED,

we can define a label as follows:

:label

:start

:end

:up

In the above example, a name after colon(:) implies the label name.

To jump to a specific label, we can use the b command followed by the label

name. If the label name is omitted, then the SED jumps to the end of the SED

file.

Let us write a simple SED script to understand the loops and branches. In our

books.txt file, there are several entries of book titles and their authors. The

following example combines a book title and its author name in one line

separated by a comma. Then it searches for the pattern "Paulo". If the pattern

matches, it prints a hyphen(-) in front of the line, otherwise it jumps to

the Print label which prints the line.

[jerry]$ sed -n '

h;n;H;x

s/\n/, /

/Paulo/!b Print

s/^/- /

:Print

p' books.txt

On executing the above code, you get the following result:

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

- The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

- The Pilgrimage, Paulo Coelho

5. LOOPS

Stream Editor

13

A Game of Thrones, George R. R. Martin

At first glance, the above script may look cryptic. Let us demystify this.

 The first two commands are self-explanatory h;n;H;x and s/\n/,

/ combine the book title and its author separated by a comma(,).

 The third command jumps to the label Print only when the pattern does

not match, otherwise substitution is performed by the fourth command.

 :Print is just a label name and as you already know, p is the print

command.

To improve readability, each SED command is placed on a separate line.

However, one can choose to place all the commands in one line as follows:

[jerry]$ sed -n 'h;n;H;x;s/\n/, /;/Paulo/!b Print; s/^/- /; :Print;p' books.txt

On executing the above code, you get the following result:

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

- The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

- The Pilgrimage, Paulo Coelho

A Game of Thrones, George R. R. Martin

Stream Editor

14

Branches can be created using the t command. The t command jumps to the

label only if the previous substitute command was successful. Let us take the

same example as in the previous chapter, but instead of printing a single

hyphen(-), now we print four hyphens. The following example illustrates the

usage of the t command.

[jerry]$ sed -n '

h;n;H;x

s/\n/, /

:Loop

/Paulo/s/^/-/

/----/!t Loop

p' books.txt

When the above code is executed, it will produce the following result.

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

----The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

----The Pilgrimage, Paulo Coelho

A Game of Thrones, George R. R. Martin

In the above example, the first two commands are self-explanatory. The third

command defines a label Loop. The fourth command prepends hyphen(-) if the

line contains the string "Paulo" and the t command repeats the procedure until

there are four hyphens at the beginning of the line.

To improve readability, each SED command is written on a separate line.

Otherwise, we can write a one-liner SED as follows:

[jerry]$ sed -n 'h;n;H;x; s/\n/, /; :Loop;/Paulo/s/^/-/; /----/!t Loop; p' books.txt

6. BRANCHES

Stream Editor

15

When the above code is executed, it will produce the following result.

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

----The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

----The Pilgrimage, Paulo Coelho

A Game of Thrones, George R. R. Martin

Stream Editor

16

One of the basic operations we perform on any file is display its contents. For

this purpose, we can use the print command which prints the contents of the

pattern buffer. So let us learn more about the pattern buffer.

First create a file containing the line number, the name of the book, its author,

and the number of pages. In this tutorial, we will be using this file. You can use

any text file according to your convenience. Our text file will look like this:

[jerry]$ vi books.txt

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho,288

6) A Game of Thrones, George R. R. Martin, 864

Now, let us print the file contents.

[jerry]$ sed 'p' books.txt

When the above code is executed, it will produce the following result.

1) A Storm of Swords, George R. R. Martin, 1216

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

6) A Game of Thrones, George R. R. Martin, 864

You might wonder why each line is being displayed twice. Let us find out.

7. PATTERN BUFFER

Stream Editor

17

Do you remember the workflow of SED? By default, SED prints the contents of

the pattern buffer. In addition, we have included a print command explicitly in

our command section. Hence each line is printed twice. But don't worry. SED has

the -n option to suppress the default printing of the pattern buffer. The following

command illustrates that.

[jerry]$ sed -n 'p' books.txt

When the above code is executed, it will produce the following result.

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Congratulations! we got the expected result. By default, SED operates on all

lines. But we can force SED to operate only on certain lines. For instance, in the

example below, SED only operates on the 3rd line. In this example, we have

specified an address range before the SED command.

[jerry]$ sed -n '3p' books.txt

When the above code is executed, it will produce the following result.

3) The Alchemist, Paulo Coelho, 197

Additionally, we can also instruct SED to print only certain lines. For instance,

the following code prints all the lines from 2 to 5. Here we have used the

comma(,) operator to specify the address range.

[jerry]$ sed -n '2,5 p' books.txt

When the above code is executed, it will produce the following result.

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

Stream Editor

18

There is also a special character Dollar($) which represents the last line of the

file. So let us print the last line of the file.

[jerry]$ sed -n '$ p' books.txt

When the above code is executed, it will produce the following result.

6) A Game of Thrones, George R. R. Martin, 864

However we can also use Dollar($) character to specify address range. Below

example prints through line 3 to last line.

[jerry]$ sed -n '3,$ p' books.txt

When the above code is executed, it will produce the following result.

3) The Alchemist, Paulo Coelho, 197 4) The Fellowship of the Ring, J. R. R. Tolkien, 432 5)

The Pilgrimage, Paulo Coelho, 288 6) A Game of Thrones, George R. R. Martin, 864

We learnt how to specify an address range using the comma(,) operator. SED

supports two more operators that can be used to specify address range. First is

the plus(+) operator and it can be used with the comma(,) operator. For

instance M, +n will print the next n lines starting from line number M. Sounds

confusing? Let us check it with a simple example. The following example prints

the next 4 lines starting from line number 2.

[jerry]$ sed -n '2,+4 p' books.txt

When the above code is executed, it will produce the following result.

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Optionally, we can also specify address range using the tilde(~) operator. It

uses M~n form. It indicates that SED should start at line number M and process

every n(th) line. For instance, 50~5 matches line number 50, 55, 60, 65, and

so on. Let us print only odd lines from the file.

Stream Editor

19

[jerry]$ sed -n '1~2 p' books.txt

When the above code is executed, it will produce the following result.

1) A Storm of Swords, George R. R. Martin, 1216

3) The Alchemist, Paulo Coelho, 197

5) The Pilgrimage, Paulo Coelho, 288

The following code prints only even lines from the file.

[jerry]$ sed -n '2~2 p' books.txt

When the above code is executed, it will produce the following result.

2) The Two Towers, J. R. R. Tolkien, 352

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

6) A Game of Thrones, George R. R. Martin, 864

Stream Editor

20

In the previous chapter, we learnt how SED handles an address range. This

chapter covers how SED takes care of a pattern range. A pattern range can be a

simple text or a complex regular expression. Let us take an example. The

following example prints all the books of the author Paulo Coelho.

[jerry]$ sed -n '/Paulo/ p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, Paulo Coelho, 197

5) The Pilgrimage, Paulo Coelho, 288

In the above example, the SED operates on each line and prints only those lines

that match the string Paulo.

We can also combine a pattern range with an address range. The following

example prints lines starting with the first match of Alchemist until the fifth line.

[jerry]$ sed -n '/Alchemist/, 5 p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

We can use the Dollar($) character to print all the lines after finding the first

occurrence of the pattern. The following example finds the first occurrence of the

pattern The and immediately prints the remaining lines from the file.

[jerry]$ sed -n '/The/,$ p' books.txt

On executing the above code, you get the following result:

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

8. PATTERN RANGE

Stream Editor

21

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

We can also specify more than one pattern ranges using the comma(,) operator.

The following example prints all the lines that exist between the

patterns Two and Pilgrimage.

[jerry]$ sed -n '/Two/, /Pilgrimage/ p' books.txt

On executing the above code, you get the following result:

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

Additionally, we can use the plus(+) operator within a pattern range. The

following example finds the first occurrence of the pattern Two and prints the

next 4 lines after that.

[jerry]$ sed -n '/Two/, +4 p' books.txt

On executing the above code, you get the following result:

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

We have supplied here only a few examples to get you acquainted with SED. You

can always get to know more by trying a few examples on your own.

Stream Editor

22

This chapter describes several useful SED commands.

Delete Command

SED provides various commands to manipulate text. Let us first explore about

the deletecommand. Here is how you execute a delete command:

[address1[,address2]]d

address1 and address2 are the starting and the ending addresses respectively,

which can be either line numbers or pattern strings. Both of these addresses are

optional parameters.

As the name suggests, the delete command is used to perform delete operation

and since the SED operates on line, we can say that this command is used to

delete lines. Note that the delete command removes lines only from the pattern

buffer; the line is not sent to the output stream and the original file remains

unchanged. The following example illustrates the point.

[jerry]$ sed 'd' books.txt

But where is the output? If no line address is provided, then the SED operates

on every line by default. Hence, it deletes all the lines from the pattern buffer.

That is why the command does not print anything on the standard output.

Let us instruct the SED to operate only on certain lines. The following example

removes the 4th line only.

[jerry]$ sed '4d' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Additionally, SED also accepts address range using comma(,). We can instruct

the SED to remove N1 to N2 lines. For instance, the following example deletes

all the lines from 2 through 4.

9. BASIC COMMANDS

Stream Editor

23

[jerry]$ sed '2, 4 d' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

Stream Editor

24

Here, address1 and address2 are the starting and the ending address

respectively, which can be either line numbers or pattern strings. Both of these

addresses are optional parameters.

In the above syntax, w refers to the write command and file is the file name in

which you store contents. Be careful with the file parameter. When a file name

is provided, the SED creates a file on the fly if it is not present, and overwrites it

if it is already present.

Let us make an exact copy of the file using SED. Note that there must be exactly

one space between w and file.

[jerry]$ sed -n 'w books.bak' books.txt

We created another file called books.bak. Now verify that both the files have

identical content.

[jerry]$ diff books.txt books.bak

[jerry]$ echo $?

On executing the above code, you get the following result:

0

You may assume that the cp command does exactly the same thing. Yes!

The cp command does the same thing, but SED is a matured utility. It allows

creating a file containing only certain lines from the source file. Let us store only

even lines to another file.

[jerry]$ sed -n '2~2 w junk.txt' books.txt

[jerry]$ cat junk.txt

On executing the above code, you get the following result:

2) The Two Towers, J. R. R. Tolkien, 352

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

6) A Game of Thrones, George R. R. Martin, 864

You can also use comma(,), dollar($), and plus(+) operators with the write

command.

In addition to this, SED also supports pattern matching with the write command.

Suppose you want to store all the books of individual authors into a separate

Stream Editor

25

file. One boring and lengthy way is do it manually, and the smarter way is to use

SED.

[jerry]$ sed -n -e '/Martin/ w Martin.txt' -e '/Paulo/ w Paulo.txt' -e '/Tolkien/ w

Tolkien.txt' books.txt

In the above example, we are matching each line against a pattern and storing

the matched line in a particular file. It is very simple. To specify multiple

commands, we used -e switch of the SED command. Now let use see what each

file contains:

[jerry]$ cat Martin.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

6) A Game of Thrones, George R. R. Martin, 864

Let us display the file contents.

[jerry]$ cat Paulo.txt

On executing the above code, you get the following result:

3) The Alchemist, Paulo Coelho, 197

5) The Pilgrimage, Paulo Coelho, 288

Let us display the file contents.

[jerry]$ cat Tolkien.txt

On executing the above code, you get the following result:

2) The Two Towers, J. R. R. Tolkien, 352

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

Excellent! We got the expected result. SED is really an amazing utility.

Stream Editor

26

Append Command

One of the most useful operations of any text editor is to provide append

functionality. SED supports this operation through its append command. Given

below is the syntax of append:

[address]a\

Append text

Let us append a new book entry after line number 4. The following example

shows how to do it.

[jerry]$ sed '4 a 7) Adultry, Paulo Coelho, 234' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

7) Adultry, Paulo Coelho, 234

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

In the command section, 4 implies the line number, a is the append command,

and the remaining part is the text to be appended.

Let us insert a text line at the end of the file. To do this, use $ as the address.

The following example illustrates this:

[jerry]$ sed '$ a 7) Adultry, Paulo Coelho, 234' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

7) Adultry, Paulo Coelho, 234

Stream Editor

27

Apart from line number, we can also specify an address using textual pattern.

For instance, the following example appends text after matching the string The

Alchemist.

[jerry]$ sed '/The Alchemist/ a 7) Adultry, Paulo Coelho, 234' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

7) Adultry, Paulo Coelho, 234

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Note that if there are multiple patterns matching, then the text is appended

after each match. The following example illustrates this scenario.

[jerry]$ sed '/The/ a 7) Adultry, Paulo Coelho, 234' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

7) Adultry, Paulo Coelho, 234

3) The Alchemist, Paulo Coelho, 197

7) Adultry, Paulo Coelho, 234

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

7) Adultry, Paulo Coelho, 234

5) The Pilgrimage, Paulo Coelho, 288

7) Adultry, Paulo Coelho, 234

6) A Game of Thrones, George R. R. Martin, 864

Change Command

SED provides change or replace command which is represented by c. This

command helps replace an existing line with new text. When line range is

provided, all the lines are replaced as a group by a single text line. Given below

is the syntax of the change command:

Stream Editor

28

[address1[,address2]]c\

Replace text

Let us replace the third line with some other text.

[jerry]$ sed '3 c 3) Adultry, Paulo Coelho, 324' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) Adultry, Paulo Coelho, 324

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

SED also accepts patterns as an address. In the following example, a line is

replaced when the pattern match succeeds.

[jerry]$ sed '/The Alchemist/ c 3) Adultry, Paulo Coelho, 324' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) Adultry, Paulo Coelho, 324

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

SED also allows replacement of multiple lines with a single line. The following

example removes lines from fourth through sixth and replaces them with new

text.

[jerry]$ sed '4, 6 c 4) Adultry, Paulo Coelho, 324' books.txt

On executing the above code, you get the following result:

Stream Editor

29

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) Adultry, Paulo Coelho, 324

Insert Command

The insert command works much in the same way as append does. The only

difference is that it inserts a line before a specific position. Given below is the

syntax of the insert command:

[address]i\

Insert text

Let us understand the insert command with some examples. The following

command inserts a new entry before the fourth line.

[jerry]$ sed '4 i 7) Adultry, Paulo Coelho, 324' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

7) Adultry, Paulo Coelho, 324

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

In the above example, 4 is the location number, i implies the insert command,

and the remaining part is the text to be inserted.

To insert text at the start of a file, provide the line address as 1. The following

command illustrates this:

[jerry]$ sed '1 i 7) Adultry, Paulo Coelho, 324' books.txt

On executing the above code, you get the following result:

7) Adultry, Paulo Coelho, 324

Stream Editor

30

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Additionally, we can insert multiple lines. The following command inserts two

lines before the last line.

[jerry]$ sed '$ i 7) Adultry, Paulo Coelho, 324\

On executing the above code, you get the following result:

8) Eleven Minutes, Paulo Coelho, 304' books.txt

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage,Paulo Coelho, 288

7) Adultry, Paulo Coelho, 324

8) Eleven Minutes, Paulo Coelho, 304

6) A Game of Thrones, George R. R. Martin, 864

Note that the entries to be inserted are entered on separate lines and delimited

by the backslash(\) character.

Translate Command

SED provides a command to translate characters and it is represented as y. It

transforms the characters by position. Given below is the syntax of the translate

command:

[address1[,address2]]y/list-1/list-2/

Note that translation is based on the position of the character from list 1 to the

character in the same position in list 2 and both lists must be explicit character

lists. Regular expressions and character classes are unsupported. Additionally,

the size of list 1 and list 2must be same.

Stream Editor

31

The following example converts Arabic numbers to Roman numbers.

[jerry]$ echo "1 5 15 20" | sed 'y/151520/IVXVXX/'

On executing the above code, you get the following result:

I V IV XX

l command

Can you differentiate between words separated by spaces and words separated

by tab characters only by looking at them? Certainly not. But SED can do this for

you. SED uses thel command to display hidden characters in the text. For

example, tab character with \t and End-Of-Line with $ character. Given below is

the syntax of the l command.

[address1[,address2]]l

[address1[,address2]]l [len]

Let us create a file with tab characters for demonstration. For simplicity, we are

going to use the same file, just by replacing spaces with tabs. Wait! But how to

do that — by opening the file in a text editor and replacing each space with tab?

Certainly not! We can make use of SED commands for that.

[jerry]$ sed 's/ /\t/g' books.txt > junk.txt

Now let us display the hidden characters by using the l command:

[jerry]$ sed -n 'l' junk.txt

On executing the above code, you get the following result:

1)\tA\tStorm\tof\tSwords,George\tR.\tR.\tMartin,1216$

2)\tThe\tTwo\tTowers,J.\tR.\tR.\tTolkien,352$

3)\tThe\tAlchemist,Paulo\tCoelho,197$

4)\tThe\tFellowship\tof\tthe\tRing,J.\tR.\tR.\tTolkien,432$

5)\tThe\tPilgrimage,Paulo\tCoelho,288$

6)\tA\tGame\tof\tThrones,George\tR.\tR.\tMartin\t,864$

Like other SED commands, it also accepts line numbers and patterns as an

address. You can try it yourselves.

Stream Editor

32

Let us take a close look at another interesting feature of SED. We can instruct

the SED to perform line wrapping after a certain number of characters. The

following example wraps lines after 25 characters.

[jerry]$ sed -n 'l 25' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords,Geo\

rge R. R. Martin,1216$

2) The Two Towers,J. R. \

R. Tolkien,352$

3) The Alchemist,Paulo C\

oelho,197$

4) The Fellowship of the\

 Ring,J. R. R. Tolkien,4\

32$

5) The Pilgrimage,Paulo \

Coelho,288$

6) A Game of Thrones,Geo\

rge R. R. Martin ,864$

Note that in the above example, wrap limit is provided after l command. In this

case, it is 25 characters. This option is GNU specific and may not work with

other variants of the SED.

A wrap limit of 0 means never break the line unless there is a new line

character. The following simple command illustrates this.

[jerry]$ sed -n 'l 0' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords,George R. R. Martin,1216$

2) The Two Towers,J. R. R. Tolkien,352$

3) The Alchemist,Paulo Coelho,197$

4) The Fellowship of the Ring,J. R. R. Tolkien,432$

5) The Pilgrimage,Paulo Coelho,288$

6) A Game of Thrones,George R. R. Martin,864$

Stream Editor

33

Quit Command

Quit command instructs the SED to quit the current execution flow. It is

represented by theq command. Given below is the syntax of the quit command:

[address]q

[address]q [value]

Note that the quit command does not accept range of addresses, it only

supports a single address. By default, SED follows read, execute, and repeat

workflow; but when the quit command is encountered, it simply stops the

current execution.

Let us print the first 3 lines from the file.

[jerry]$ sed '3 q' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

In addition to line number, we can also use textual patterns. The following

command quits when pattern match succeeds.

[jerry]$ sed '/The Alchemist/ q' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

In addition to this, SED can also accept a value which can be used as the exit

status. The following command shows its exit status as 100.

[jerry]$ sed '/The Alchemist/ q 100' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

Stream Editor

34

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

Now let us verify the exit status.

[jerry]$ echo $?

On executing the above code, you get the following result:

100

Read Command

We can instruct the SED to read the contents of a file and display them when a

specific condition matches. The command is represented by the alphabet r.

Given below is the syntax of the read command.

[address]r file

Note that there must be exactly one space between the r command and the file

name.

Let us understand it with a simple example. Create a sample file called junk.txt.

[jerry]$ echo "This is junk text." > junk.txt

The following command instructs the SED to read the contents of junk.txt and

insert them after the third line.

[jerry]$ sed '3 r junk.txt' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

This is junk text.

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Stream Editor

35

In the above example, 3 implies the line address, r is the command name,

and junk.txt is the file name the contents of which are to be displayed.

Additionally, the GNU SED also accepts a range of addresses. For instance, the

following command inserts the contents ofjunk.txt after the third, fourth, and

fifth lines.

[jerry]$ sed '3, 5 r junk.txt' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

This is junk text.

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

This is junk text.

5) The Pilgrimage, Paulo Coelho, 288

This is junk text.

6) A Game of Thrones, George R. R. Martin, 864

Like other SED commands, the read command also accepts pattern as an

address. For instance, the following command inserts the contents

of junk.txt when the pattern match succeeds.

[jerry]$ sed '/Paulo/ r junk.txt' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

This is junk text.

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

This is junk text.

6) A Game of Thrones, George R. R. Martin, 864

Execute Command

We can execute external commands from SED using the execute command. It is

represented by e. Given below is the syntax of the execute command.

Stream Editor

36

[address1[,address2]]e [command]

Let us illustrate the execute command with a simple example. The following SED

command executes the UNIX date command before the third line.

[jerry]$ sed '3 e date' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

Sun Sep 7 18:04:49 IST 2014

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Like other commands, it also accepts patterns as an address. For example, the

following example executes date command when a pattern match succeeds.

Note that after each pattern match, first the command is executed and then the

contents of the pattern buffer are displayed.

[jerry]$ sed '/Paulo/ e date' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

Sun Sep 7 18:06:04 IST 2014

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

Sun Sep 7 18:06:04 IST 2014

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

If you observe the syntax of the e command carefully, you will notice

that command is optional. When no command is provided after e, it treats the

contents of the pattern buffer as an external command. To illustrate this, let us

create a commands.txt file with a few simple commands.

[jerry]$ echo -e "date\ncal\nuname" > commands.txt

Stream Editor

37

[jerry]$ cat commands.txt

On executing the above code, you get the following result:

date

cal

uname

Commands from the file are self-explanatory. In the absence

of command after e, SED executes all these commands one by one. The

following simple example illustrates this.

[jerry]$ sed 'e' commands.txt

On executing the above code, you get the following result:

Sun Sep 7 18:14:20 IST 2014

 September 2014

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

Linux

Like other SED commands, the execute command also accepts all valid ranges of

addresses.

Miscellaneous Commands

By default, SED operates on single line, however it can operate on multiple lines

as well. Multi-line commands are denoted by uppercase letters. For example,

unlike the ncommand, the N command does not clear and print the pattern

space. Instead, it adds a newline (\n) at the end of the current pattern space

and appends the next line from the input-file to the current pattern space and

continues with the SED's standard flow by executing the rest of the SED

commands. Given below is the syntax of the N command.

[address1[,address2]]N

Stream Editor

38

Let us print a comma-separated list of book titles and their respective authors.

The following example illustrates this.

[jerry]$ sed 'N; s/\n/, /g' books.txt

On executing the above code, you get the following result:

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

The Pilgrimage, Paulo Coelho

A Game of Thrones, George R. R. Martin

Let us understand how the above example works. The N command reads the

first line, i.e.,A Storm of Swords into the pattern buffer and appends \n followed

by the next line. The pattern space now contains A Storm of Swords\nGeorge R.

R. Martin. In the next step, we are replacing the newline with a comma.

Like p command, we have a P command to print the first part (up to embedded

newline) of the multi-line pattern space created by the N command. Given below

is the syntax of the Pcommand which is similar to the p command.

[address1[,address2]]P

In the previous example, we saw that the N command creates a newline-

separated list of book titles and their authors. Let us print only the first part of

it, i.e., only the titles of the book. The following command illustrates this.

[jerry]$ sed -n 'N;P' books.txt

On executing the above code, you get the following result:

A Storm of Swords

The Two Towers

The Alchemist

The Fellowship of the Ring

The Pilgrimage

A Game of Thrones

Stream Editor

39

Note that in the absence of N, it behaves same as the p command. The following

simple command illustrates this scenario.

[jerry]$ sed -n 'P' books.txt

On executing the above code, you get the following result:

A Storm of Swords

George R. R. Martin

The Two Towers

J. R. R. Tolkien

The Alchemist

Paulo Coelho

The Fellowship of the Ring

J. R. R. Tolkien

The Pilgrimage

Paulo Coelho

A Game of Thrones

George R. R. Martin

In addition to this, SED also provides a v command which checks for version. If

the provided version is greater than the installed SED version, then the

command execution fails. Note that this option is GNU specific and may not work

with other variants of SED. Given below is the syntax of the v command.

[address1[,address2]]v [version]

First, find out the current version of SED.

[jerry]$ sed --version

On executing the above code, you get the following result:

sed (GNU sed) 4.2.2

In the following example, the SED version is greater than version 4.2.2, hence

the SED command aborts its execution.

[jerry]$ sed 'v 4.2.3' books.txt

Stream Editor

40

On executing the above code, you get the following result:

sed: -e expression #1, char 7: expected newer version of sed

But if the provided version is lesser than or equal to version 4.2.2, then the

command works as expected.

[jerry]$ sed 'v 4.2.2' books.txt

On executing the above code, you get the following result:

A Storm of Swords

George R. R. Martin

The Two Towers

J. R. R. Tolkien

The Alchemist

Paulo Coelho

The Fellowship of the Ring

J. R. R. Tolkien

The Pilgrimage

Paulo Coelho

A Game of Thrones

George R. R. Martin

Stream Editor

41

SED provides two special characters which are treated as commands. This

chapter illustrates the usage of these two special characters.

= Command

The "=" command deals with line numbers. Given below is the syntax of the "="

command:

[/pattern/]=

[address1[,address2]]=

The = command writes the line number followed by its contents on the standard

output stream. The following example illustrates this.

[jerry]$ sed '=' books.txt

On executing the above code, you get the following result:

1

1) A Storm of Swords, George R. R. Martin, 1216

2

2) The Two Towers, J. R. R. Tolkien, 352

3

3) The Alchemist, Paulo Coelho, 197

4

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5

5) The Pilgrimage, Paulo Coelho, 288

6

6) A Game of Thrones, George R. R. Martin, 864

Let us print the line numbers and the contents of the first four lines. The

following command prints the first four lines with line numbers and the

remaining without line numbers.

[jerry]$ sed '1, 4=' books.txt

10. SPECIAL CHARACTERS

Stream Editor

42

On executing the above code, you get the following result:

1

1) A Storm of Swords, George R. R. Martin, 1216

2

2) The Two Towers, J. R. R. Tolkien, 352

3

3) The Alchemist, Paulo Coelho, 197

4

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Additionally, we can instruct the SED to print line numbers when a pattern

match succeeds. The following example prints the line number that contains the

pattern "Paulo".

[jerry]$ sed '/Paulo/ =' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

Can you guess what the following SED command does?

[jerry]$ sed -n '$ =' books.txt

On executing the above code, you get the following result:

6

Yes, you are right. It counts the total number of lines present in the file. Let us

demystify the code. In the command section, we used "$ =" which prints the line

number of the last line followed by its contents. But we also provided the -n flag

which suppresses the default printing of the pattern buffer. Hence, only the last

line number is displayed.

Stream Editor

43

& Command

SED supports the special character &. Whenever a pattern match succeeds, this

special character stores the matched pattern. It is often used with the

substitution command. Let us see how we can leverage this efficient feature.

Each line in the book.txt file is numbered. Let us add the words Book

number at the beginning of each line. The following example illustrates this.

[jerry]$ sed 's/[[:digit:]]/Book number &/' books.txt

On executing the above code, you get the following result:

Book number 1) A Storm of Swords, George R. R. Martin, 1216

Book number 2) The Two Towers, J. R. R. Tolkien, 352

Book number 3) The Alchemist, Paulo Coelho, 197

Book number 4) The Fellowship of the Ring, J. R. R. Tolkien, 432

Book number 5) The Pilgrimage, Paulo Coelho, 288

Book number 6) A Game of Thrones, George R. R. Martin, 864

This example is very simple. First, we search for the first occurrence of a digit,

which is the line number (that is why we used [[:digit:]]) and the SED

automatically stores the matched pattern in the special character &. In the

second step, we insert the words Book numberbefore each matched pattern,

i.e., before every line.

Let us take another example. In the book.txt file, the last digit implies the

number of pages of the book. Let us add "Pages =" before that. To do this, find

the last occurrence of the digit and replace it with "Pages = &". Here, & stores

the matched pattern, i.e., the number of pages.

[jerry]$ sed 's/[[:digit:]]*$/Pages = &/' books.txt

On executing the above syntax, you get the following result:

1) A Storm of Swords, George R. R. Martin, Pages = 1216

2) The Two Towers, J. R. R. Tolkien, Pages = 352

3) The Alchemist, Paulo Coelho, Pages = 197

4) The Fellowship of the Ring, J. R. R. Tolkien, Pages = 432

5) The Pilgrimage, Paulo Coelho,Pages = 288

6) A Game of Thrones, George R. R. Martin, Pages = 864

Stream Editor

44

For the time being, just remember that [[:digit:]]*$ finds the last occurrence of

the digit. In the chapter "Regular Expressions, we will explore more about

regular expressions.

Stream Editor

45

Substitute Command

Text substitution operations like "find and replace" are common in any text

editor. In this section, we illustrate how SED performs text substitution. Given

below is the syntax of the substitution command.

[address1[,address2]]s/pattern/replacement/[flags]

Here, address1 and address2 are the starting and ending addresses

respectively, which can be either line numbers or pattern strings. Both these

addresses are optional parameters. The pattern is the text which we want to

replace with the replacement string. Additionally, we can specify

optional flags with the SED.

In the books.txt file, we have used comma(,) to separate each column. Let us

use vertical bar(|) to separate each column. To do this, replace comma(,) with

vertical bar(|).

[jerry]$ sed 's/,/ | /' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords | George R. R. Martin, 1216

2) The Two Towers | J. R. R. Tolkien, 352

3) The Alchemist | Paulo Coelho, 197

4) The Fellowship of the Ring | J. R. R. Tolkien, 432

5) The Pilgrimage | Paulo Coelho, 288

6) A Game of Thrones | George R. R. Martin, 864

If you observe carefully, only the first comma is replaced and the second

remains as it is. Why? As soon as the pattern matches, SED replaces it with the

replacement string and moves to the next line. By default, it replaces only the

first occurrence. To replace all occurrences, use the global flag (g) with SED as

follows:

[jerry]$ sed 's/,/ | /g' books.txt

11. STRINGS

Stream Editor

46

On executing the above code, you get the following result:

1) A Storm of Swords | George R. R. Martin | 1216

2) The Two Towers | J. R. R. Tolkien | 352

3) The Alchemist | Paulo Coelho | 197

4) The Fellowship of the Ring | J. R. R. Tolkien | 432

5) The Pilgrimage | Paulo Coelho | 288

6) A Game of Thrones | George R. R. Martin | 864

Now all occurrences of commas(,) are replaced with vertical bar(|).

We can instruct the SED to perform text substitution only when a pattern match

succeeds. The following example replaces comma(,) with vertical bar(|) only

when a line contains the pattern The Pilgrimage.

[jerry]$ sed '/The Pilgrimage/ s/,/ | /g' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage | Paulo Coelho | 288

6) A Game of Thrones, George R. R. Martin, 864

In addition to this, SED can replace a specific occurrence of the pattern. Let us

replace only the second instance of comma(,) with vertical bar(|).

[jerry]$ sed 's/,/ | /2' books.txt

On executing the above code, you get the following result:

1) A Storm of Swords, George R. R. Martin | 1216

2) The Two Towers, J. R. R. Tolkien | 352

3) The Alchemist, Paulo Coelho | 197

4) The Fellowship of the Ring, J. R. R. Tolkien | 432

5) The Pilgrimage,Paulo Coelho | 288

6) A Game of Thrones, George R. R. Martin | 864

Stream Editor

47

In the above example, the number at the end of the SED command (or at the

place of flag) implies the 2nd occurrence.

SED provides an interesting feature. After performing substitution, SED provides

an option to show only the changed lines. For this purpose, SED uses the p flag

which refers to print. The following example lists only changed lines.

[jerry]$ sed -n 's/Paulo Coelho/PAULO COELHO/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, PAULO COELHO, 197

5) The Pilgrimage, PAULO COELHO, 288

We can store changed lines in another file as well. To achieve this result, use

the w flag. The following example shows how to do it.

[jerry]$ sed -n 's/Paulo Coelho/PAULO COELHO/w junk.txt' books.txt

We used the same SED command. Let us verify the contents of the junk.txt file.

[jerry]$ cat junk.txt

On executing the above code, you get the following result:

3) The Alchemist, PAULO COELHO, 197

5) The Pilgrimage, PAULO COELHO, 288

To perform case-insensitive substitution, use the i flag which implies ignore case.

The following example performs case-insensitive substitution.

[jerry]$ sed -n 's/pAuLo CoElHo/PAULO COELHO/pi' books.txt

On executing the above code, you get the following result:

3) The Alchemist, PAULO COELHO, 197

5) The Pilgrimage, PAULO COELHO, 288

So far, we have used only the foreslash(/) character as a delimiter, but we can

also use vertical bar(|), at sign(@), caret(^), exclamation mark(!) as a

delimiter. The following example shows how to use other characters as a

delimiter.

Stream Editor

48

Let us assume you need to replace the

path /bin/sed with /home/jerry/src/sed/sed-4.2.2/sed. Hence, your SED

command looks like this:

[jerry]$ echo "/bin/sed" | sed 's/\/bin\/sed/\/home\/jerry\/src\/sed\/sed-4.2.2\/sed/'

On executing the above code, you get the following result:

/home/jerry/src/sed/sed-4.2.2/sed

We can make this command more readable and easy to understand. Let us use

vertical bar(|) as delimiter and see the result.

[jerry]$ echo "/bin/sed" | sed 's|/bin/sed|/home/jerry/src/sed/sed-4.2.2/sed|'

On executing the above code, you get the following result:

/home/jerry/src/sed/sed-4.2.2/sed

Indeed! We got the same result and the syntax is more readable. Similarly, we

can use the "at" sign (@) as a delimiter as follows:

[jerry]$ echo "/bin/sed" | sed 's@/bin/sed@/home/jerry/src/sed/sed-4.2.2/sed@'

On executing the above code, you get the following result:

/home/jerry/src/sed/sed-4.2.2/sed

In addition to this, we can use caret(^) as a delimiter.

[jerry]$ echo "/bin/sed" | sed 's^/bin/sed^/home/jerry/src/sed/sed-4.2.2/sed^'

On executing the above code, you get the following result:

/home/jerry/src/sed/sed-4.2.2/sed

We can also use exclamation mark (!) as a delimiter as follows:

[jerry]$ echo "/bin/sed" | sed 's!/bin/sed!/home/jerry/src/sed/sed-4.2.2/sed!'

Stream Editor

49

On executing the above code, you get the following result:

/home/jerry/src/sed/sed-4.2.2/sed

Generally, backslash(/) is used as a delimiter but sometimes it is more

convenient to use other supported delimiters with SED.

Creating a Substring

We learnt the powerful substitute command. Let us see if we can find a substring

from a matched text. Let us understand how to do it with the help of an

example.

Let us consider the following text:

[jerry]$ echo "Three One Two"

Suppose we have to arrange it into a sequence. Means, it should print One first,

then Two, and finally Three. The following one-liner does the needful.

echo "Three One Two" | sed 's|\(\w\+\) \(\w\+\) \(\w\+\)|\2 \3 \1|'

Note that in the above example, vertical bar (|) is used as a delimiter.

In SED, substrings can be specified by using a grouping operator and it must be

prefixed with an escape character, i.e., \(and \).

\w is a regular expression that matches any letter, digit, or underscore and "+"

is used to match more than one characters. In other words, the regular

expression \(\w\+\) matches the single word from the input string.

In the input string, there are three words separated by space, hence there are

three regular expressions separated by space. The first regular expression stores

the first word, i.e.,Three, the second stores the word One, and the third stores

the word Two.

These substrings are referred by \N, where N is the substring number.

Hence, \2 prints the second substring, i.e., One; \3 prints the third substring,

i.e., Two; and \1 prints the first substring, i.e., Three.

Let us separate these words by commas(,) and modify the regular expression

accordingly.

[jerry]$ echo "Three,One,Two" | sed 's|\(\w\+\),\(\w\+\),\(\w\+\)|\2,\3,\1|'

On executing the above code, you get the following result:

One,Two,Three

Stream Editor

50

Note that now there is comma(,) instead of space in the regular expression.

String Replacement Flags (GNU SED only)

In the previous section, we saw some examples of the substitution command.

The GNU SED provides some special escape sequences which can be used in the

replacement string. Note that these string replacement flags are GNU specific

and may not work with other variants of SED. Here we will discuss string

replacement flags.

 \l: When \l is specified in the replacement string, it treats the immediate

character after \l as a lowercase character. The following SED command

replaces Paulo withPAULO.

[jerry]$ sed -n 's/Paulo/PAULO/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, PAULO Coelho, 197

5) The Pilgrimage, PAULO Coelho, 288

Now let us specify \l in the replacement string and observe the result.

[jerry]$ sed -n 's/Paulo/\lPAUL\lO/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, pAULo Coelho, 197

5) The Pilgrimage, pAULo Coelho, 288

In the above example, \l is used before the characters 'P' and 'O'. Hence,

SED treats these characters as lowercase letters.

 \L: When \L is specified in the replacement string, it treats all the

remaining characters of the the word after \L as lowercase characters. For

example, the characters "ULO" are treated as lowercase characters.

[jerry]$ sed -n 's/Paulo/PA\LULO/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, PAulo Coelho, 197

Stream Editor

51

5) The Pilgrimage, PAulo Coelho, 288

 \u: When \u is specified in the replacement string, it treats the immediate

character after \u as an uppercase character. In the following example, \u

is used before the characters 'a' and 'o'. Hence SED treats these

characters as uppercase letters.

[jerry]$ sed -n 's/Paulo/p\uaul\uo/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, pAulO Coelho, 197

5) The Pilgrimage, pAulO Coelho, 288

 \U: When \U is specified in the replacement string, it treats all the

remaining characters of the the word after \U as uppercase characters.

[jerry]$ sed -n 's/Paulo/\Upaulo/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, PAULO Coelho, 197

5) The Pilgrimage, PAULO Coelho, 288

 \E: This flag should be used with \L or \U. It stops the conversion initiated

by the flag \L or \U. In the following example, only the first word is

replaced with uppercase letters.

[jerry]$ sed -n 's/Paulo Coelho/\Upaulo \Ecoelho/p' books.txt

On executing the above code, you get the following result:

3) The Alchemist, PAULO coelho, 197

5) The Pilgrimage, PAULO coelho, 288

Stream Editor

52

We have already discussed the use of pattern and hold buffer. In this chapter,

we are going to explore more about their usage. Let us discuss the n command

which prints the pattern space. It will be used in conjunction with other

commands. Given below is the syntax of then command.

[address1[,address2]]n

Let us take an example.

[jerry]$ sed 'n' books.txt

When the above code is executed, it will produce the following result:

1) A Storm of Swords, George R. R. Martin, 1216

2) The Two Towers, J. R. R. Tolkien, 352

3) The Alchemist, Paulo Coelho, 197

4) The Fellowship of the Ring, J. R. R. Tolkien, 432

5) The Pilgrimage, Paulo Coelho, 288

6) A Game of Thrones, George R. R. Martin, 864

The n command prints the contents of the pattern buffer, clears the pattern

buffer, fetches the next line into the pattern buffer, and applies commands on it.

Let us consider there are three SED commands before n and two SED

commands after n as follows:

Sed command #1

Sed command #2

Sed command #3

n command

Sed command #4

Sed command #5

In this case, SED applies the first three commands on the pattern buffer, clears

the pattern buffer, fetches the next line into the pattern buffer, and thereafter

12. MANAGING PATTERNS

Stream Editor

53

applies the fourth and fifth commands on it. This is a very important concept. Do

not go ahead without having a clear understanding of this.

The hold buffer holds data, but SED commands cannot be applied directly on the

hold buffer. Hence, we need to bring the hold buffer data into the pattern buffer.

SED provides the x command to exchange the contents of pattern and hold

buffers. The following commands illustrate the x command.

Let us slightly modify the books.txt file. Say, the file contains book titles

followed by their author names. After modification, the file should look like this:

[jerry]$ cat books.txt

On executing the above code, you get the following result:

A Storm of Swords

George R. R. Martin

The Two Towers

J. R. R. Tolkien

The Alchemist

Paulo Coelho

The Fellowship of the Ring

J. R. R. Tolkien

The Pilgrimage

Paulo Coelho

A Game of Thrones

George R. R. Martin

Let us exchange the contents of the two buffers. For instance, the following

example prints only the names of authors.

[jerry]$ sed -n 'x;n;p' books.txt

On executing the above code, you get the following result:

George R. R. Martin

J. R. R. Tolkien

Paulo Coelho

J. R. R. Tolkien

Paulo Coelho

George R. R. Martin

Stream Editor

54

Let us understand how this command works.

1. Initially, SED reads the first line, i.e., A Storm of Swords into the pattern

buffer.

2. x command moves this line to the hold buffer.

3. n fetches the next line, i.e., George R. R. Martin into the pattern buffer.

4. The control passes to the command followed by n which prints the

contents of the pattern buffer.

5. The process repeats until the file is exhausted.

Now let us exchange the contents of the buffers before printing. Guess, what

happens? Yes, it prints the titles of books.

[jerry]$ sed -n 'x;n;x;p' books.txt

On executing the above code, you get the following result:

A Storm of Swords

The Two Towers

The Alchemist

The Fellowship of the Ring

The Pilgrimage

A Game of Thrones

The h command deals with the hold buffer. It copies data from the pattern

buffer to the hold buffer. Existing data from the hold buffer gets overwritten.

Note that the h command does not move data, it only copies data. Hence, the

copied data remains as it is in the pattern buffer. Given below is the syntax of

the h command.

[address1[,address2]]h

The following command prints only the titles of the author Paulo Coelho.

[jerry]$ sed -n '/Paulo/!h; /Paulo/{x;p}' books.txt

On executing the above code, you get the following result:

The Alchemist

The Pilgrimage

Stream Editor

55

Let us understand how the above command works. The contents of books.txt

follow a specific format. The first line is the book title followed by the author of

the book. In the above command, "!" is used to reverse the condition, i.e., line is

copied to the hold buffer only when a pattern match does not succeed. And curly

braces {} are used to group multiple SED commands.

In the first pass of the command, SED reads the first line, i.e., A Storm of

Swords into the pattern buffer and checks whether it contains the

pattern Paulo or not. As the pattern match does not succeed, it copies this line

to the hold buffer. Now both the pattern buffer and the hold buffer contain the

same line i.e., A Storm of Swords. In the second step, it checks whether the line

contains the pattern Paulo or not. As the pattern does not match, it does not do

anything.

In second pass, it reads the next line George R. R. Martin into the pattern buffer

and applies the same steps. For the next three lines, it does the same thing. At

the end of the fifth pass, both the buffers contain The Alchemist. At the start of

the sixth pass, it reads the line Paulo Coelho and as the pattern matches, it does

not copy this line into the hold buffer. Hence, the pattern buffer contains Paulo

Coelho, and the hold buffer contains The Alchemist.

Thereafter, it checks whether the pattern buffer contains the pattern Paulo. As

the pattern match succeeds, it exchanges the contents of the pattern buffer with

the hold buffer. Now the pattern buffer contains The Alchemist and the hold

buffer contains Paulo Coelho. Finally, it prints the contents of the pattern buffer.

The same steps are applied to the pattern The Pilgrimage.

The h command destroys the previous contents of the hold buffer. This is not

always acceptable, as sometimes we need to preserve the contents. For this

purpose, SED provides the H command which appends the contents to the hold

buffer by adding a new line at the end. The only difference

between h and H command is, the former overwrites data from the hold buffer,

while the later appends data to the hold buffer. Its syntax is similar to

the hcommand.

[address1[,address2]]H

Let us take another example. This time, instead of printing only book titles, print

the names of their authors too. The following example prints the book titles

followed by their author names.

[jerry]$ sed -n '/Paulo/!h; /Paulo/{H;x;p}' books.txt

On executing the above code, you get the following result:

The Alchemist

Paulo Coelho

The Pilgrimage

Stream Editor

56

Paulo Coelho

We learnt how to copy/append the contents of pattern buffer to hold buffer. Can

we perform the reverse function as well? Yes certainly! For this purpose, SED

provides the gcommand which copies data from the hold buffer to the pattern

buffer. While copying, existing data from the pattern space gets overwritten.

Given below is the syntax of the gcommand.

[address1[,address2]]g

Let us consider the same example - printing book titles and their authors. This

time, we will first print the name of the author and on the next line, the

corresponding book title. The following command prints the name of the

author Paulo Coelho, followed by its book title.

[jerry]$ sed -n '/Paulo/!h; /Paulo/{p;g;p}' books.txt

On executing the above code, you get the following result:

Paulo Coelho

The Alchemist

Paulo Coelho

The Pilgrimage

The first command is kept as it is. At the end of fifth pass, both the buffers

contain The Alchemist. At the start of the sixth pass, it reads the line Paulo

Coelho and as the pattern matches, it does not copy this line into the hold buffer.

Hence, the pattern space containsPaulo Coelho and the hold space contains The

Alchemist.

Thereafter, it checks whether the pattern space contains the pattern Paulo. As

the pattern match succeeds, it first prints the contents of the pattern space,

i.e., Paulo Coelho, then it copies the hold buffer to the pattern buffer. Hence,

both the pattern and hold buffers contain The Alchemist. Finally, it prints the

contents of the pattern buffer. The same steps are applied to the pattern The

Pilgrimage.

Similarly, we can append the contents of the hold buffer to the pattern buffer.

SED provides the G command which appends the contents to the pattern buffer

by adding a new line at the end.

[address1[,address2]]G

Stream Editor

57

Now let us take the previous example which prints the name of author Paulo

Coelhofollowed by its book title. To achieve the same result, execute the

following SED command.

[jerry]$ sed -n '/Paulo/!h; /Paulo/{G;p}' books.txt

On executing the above code, you get the following result:

Paulo Coelho

The Alchemist

Paulo Coelho

The Pilgrimage

Can you modify the above example to display the book titles followed by their

authors? Simple, just exchange the buffer contents before the G command.

[jerry]$ sed -n '/Paulo/!h; /Paulo/{x;G;p}' books.txt

On executing the above code, you get the following result:

The Alchemist

Paulo Coelho

The Pilgrimage

Paulo Coelho

Stream Editor

58

It is the regular expressions that make SED powerful and efficient. A number of

complex tasks can be solved with regular expressions. Any command-line expert

knows the power of regular expressions.

Like many other GNU/Linux utilities, SED too supports regular expressions,

which are often referred to as as regex. This chapter describes regular

expressions in detail. The chapter is divided into three sections: Standard

regular expressions, POSIX classes of regular expressions, and Meta characters.

Standard Regular Expressions

Start of line (̂)

In regular expressions terminology, the caret(^) symbol matches the start of a

line. The following example prints all the lines that start with the pattern "The".

[jerry]$ sed -n '/^The/ p' books.txt

On executing the above code, you get the following result:

The Two Towers, J. R. R. Tolkien

The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

The Pilgrimage, Paulo Coelho

End of Line ($)

End of line is represented by the dollar($) symbol. The following example prints

the lines that end with "Coelho".

[jerry]$ sed -n '/Coelho$/ p' books.txt

On executing the above code, you get the following result:

The Alchemist, Paulo Coelho

The Pilgrimage, Paulo Coelho

Single Character (.)

The Dot(.) matches any single character except the end of line character. The

following example prints all three letter words that end with the character "t".

13. REGULAR EXPRESSIONS

Stream Editor

59

[jerry]$ echo -e "cat\nbat\nrat\nmat\nbatting\nrats\nmats" | sed -n '/^..t$/p'

On executing the above code, you get the following result:

cat

bat

rat

mat

Match Character Set ([])

In regular expression terminology, a character set is represented by square

brackets ([]). It is used to match only one out of several characters. The

following example matches the patterns "Call" and "Tall" but not "Ball".

[jerry]$ echo -e "Call\nTall\nBall" | sed -n '/[CT]all/ p'

On executing the above code, you get the following result:

Call

Tall

Exclusive Set ([̂])

In exclusive set, the caret negates the set of characters in the square brackets.

The following example prints only "Ball".

[jerry]$ echo -e "Call\nTall\nBall" | sed -n '/[^CT]all/ p'

On executing the above code, you get the following result:

Ball

Character Range ([-])

When a character range is provided, the regular expression matches any

character within the range specified in square brackets. The following example

matches "Call" and "Tall" but not "Ball".

[jerry]$ echo -e "Call\nTall\nBall" | sed -n '/[C-Z]all/ p'

On executing the above code, you get the following result:

Call

Tall

Stream Editor

60

Now let us modify the range to "A-P" and observe the result.

[jerry]$ echo -e "Call\nTall\nBall" | sed -n '/[A-P]all/ p'

On executing the above code, you get the following result:

Call

Ball

Zero on One Occurrence (\?)

In SED, the question mark (\?) matches zero or one occurrence of the preceding character. The

following example matches "Behaviour" as well as "Behavior". Here, we made "u" as an optional

character by using "\?".

[jerry]$ echo -e "Behaviour\nBehavior" | sed -n '/Behaviou\?r/ p'

On executing the above code, you get the following result:

Behaviour

Behavior

One or More Occurrence (\+)

In SED, the plus symbol(\+) matches one or more occurrences of the preceding

character. The following example matches one or more occurrences of "2".

[jerry]$ echo -e "111\n22\n123\n234\n456\n222" | sed -n '/2\+/ p'

On executing the above code, you get the following result:

22

123

234

222

Zero or More Occurrence (*)

Asterisks (*) matches the zero or more occurrence of the preceding character.

The following example matches "ca", "cat", "catt", and so on.

[jerry]$ echo -e "ca\ncat" | sed -n '/cat*/ p'

On executing the above code, you get the following result:

ca

Stream Editor

61

cat

Exactly N Occurrences {n}

{n} matches exactly "n" occurrences of the preceding character. The following

example prints only three digit numbers. But before that, you need to create the

following file which contains only numbers.

[jerry]$ cat numbers.txt

On executing the above code, you get the following result:

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

Let us write the SED expression.

[jerry]$ sed -n '/^[0-9]\{3\}$/ p' numbers.txt

On executing the above code, you get the following result:

100

Note that the pair of curly braces is escaped by the "\" character.

At least n Occurrences {n,}

{n,} matches at least "n" occurrences of the preceding character. The following

example prints all the numbers greater than or equal to five digits.

[jerry]$ sed -n '/^[0-9]\{5,\}$/ p' numbers.txt

On executing the above code, you get the following result:

10000

100000

1000000

Stream Editor

62

10000000

100000000

1000000000

M to N Occurrence {m, n}

{m, n} matches at least "m" and at most "n" occurrences of the preceding

character. The following example prints all the numbers having at least five

digits but not more than eight digits.

[jerry]$ sed -n '/^[0-9]\{5,8\}$/ p' numbers.txt

On executing the above code, you get the following result:

10000

100000

1000000

10000000

Pipe (|)

In SED, the pipe character behaves like logical OR operation. It matches items

from either side of the pipe. The following example either matches "str1" or

"str3".

[jerry]$ echo -e "str1\nstr2\nstr3\nstr4" | sed -n '/str\(1\|3\)/ p'

On executing the above code, you get the following result:

str1

str3

Note that the pair of the parenthesis and pipe (|) is escaped by the "\"

character.

Escaping Characters

There are certain special characters. For example, newline is represented by

"\n", carriage return is represented by "\r", and so on. To use these characters

into regular ASCII context, we have to escape them using the backward slash(\)

character. This chapter illustrates escaping of special characters.

Escaping "\"
The following example matches the pattern "\".

[jerry]$ echo 'str1\str2' | sed -n '/\\/ p'

Stream Editor

63

On executing the above code, you get the following result:

str1\str2

Escaping "\n"
The following example matches the new line character.

[jerry]$ echo 'str1\nstr2' | sed -n '/\\n/ p'

On executing the above code, you get the following result:

str1\nstr2

Escaping "\r"
The following example matches the carriage return.

[jerry]$ echo 'str1\rstr2' | sed -n '/\\r/ p'

On executing the above code, you get the following result:

str1\rstr2

Escaping "\dnnn"

This matches a character whose decimal ASCII value is "nnn". The following

example matches only the character "a".

[jerry]$ echo -e "a\nb\nc" | sed -n '/\d97/ p'

On executing the above code, you get the following result:

a

Escaping "\onnn"

This matches a character whose octal ASCII value is "nnn". The following

example matches only the character "b".

[jerry]$ echo -e "a\nb\nc" | sed -n '/\o142/ p'

On executing the above code, you get the following result:

b

Escaping "\xnnn"

Stream Editor

64

This matches a character whose hexadecimal ASCII value is "nnn". The following

example matches only the character "c".

[jerry]$ echo -e "a\nb\nc" | sed -n '/\x63/ p'

On executing the above code, you get the following result:

c

POSIX Classes of Regular Expressions

There are certain reserved words which have special meaning. These reserved

words are referred to as POSIX classes of regular expression. This section

describes the POSIX classes supported by SED.

[:alnum:]

It implies alphabetical and numeric characters. The following example matches

only "One" and "123", but does not match the tab character.

[jerry]$ echo -e "One\n123\n\t" | sed -n '/[[:alnum:]]/ p'

On executing the above code, you get the following result:

One

123

[:alpha:]

It implies alphabetical characters only. The following example matches only the

word "One".

[jerry]$ echo -e "One\n123\n\t" | sed -n '/[[:alpha:]]/ p'

On executing the above code, you get the following result:

One

[:blank:]

It implies blank character which can be either space or tab. The following

example matches only the tab character.

[jerry]$ echo -e "One\n123\n\t" | sed -n '/[[:space:]]/ p' | cat -vte

On executing the above code, you get the following result:

Stream Editor

65

^I$

Note that the command "cat -vte" is used to show tab characters (^I).

[:digit:]

It implies decimal numbers only. The following example matches only digit

"123".

[jerry]$ echo -e "abc\n123\n\t" | sed -n '/[[:digit:]]/ p'

On executing the above code, you get the following result:

123

[:lower:]

It implies lowercase letters only. The following example matches only "one".

[jerry]$ echo -e "one\nTWO\n\t" | sed -n '/[[:lower:]]/ p'

On executing the above code, you get the following result:

one

[:upper:]

It implies uppercase letters only. The following example matches only "TWO".

[jerry]$ echo -e "one\nTWO\n\t" | sed -n '/[[:upper:]]/ p'

On executing the above code, you get the following result:

TWO

[:punct:]

It implies punctuation marks which include non-space or alphanumeric

characters.

[jerry]$ echo -e "One,Two\nThree\nFour" | sed -n '/[[:punct:]]/ p'

On executing the above code, you get the following result:

One,Two

Stream Editor

66

[:space:]

It implies whitespace characters. The following example illustrates this.

[jerry]$ echo -e "One\n123\f\t" | sed -n '/[[:space:]]/ p' | cat -vte

On executing the above code, you get the following result:

123^L^I$

Metacharacters

Like traditional regular expressions, SED also supports metacharacters. These

are Perl style regular expressions. Note that metacharacter support is GNU SED

specific and may not work with other variants of SED. Let us discuss

metacharacters in detail.

Word Boundary(\b)

In regular expression terminology, "\b" matches the word boundary. For

example, "\bthe\b" matches "the" but not "these", "there", "they", "then", and

so on. The following example illustrates this.

[jerry]$ echo -e "these\nthe\nthey\nthen" | sed -n '/\bthe\b/ p'

On executing the above code, you get the following result:

the

Non-Word Boundary (\B)

In regular expression terminology, "\B" matches non-word boundary. For

example, "the\B" matches "these" and "they" but not "the". The following

example illustrates this.

[jerry]$ echo -e "these\nthe\nthey" | sed -n '/the\B/ p'

On executing the above code, you get the following result:

these

they

Single Whitespace (\s)

In SED, "\s" implies single whitespace character. The following example matches

"Line\t1" but does not match "Line1".

Stream Editor

67

[jerry]$ echo -e "Line\t1\nLine2" | sed -n '/Line\s/ p'

On executing the above code, you get the following result:

Line 1

Single Non-Whitespace (\S)

In SED, "\S" implies single whitespace character. The following example matches

"Line2" but does not match "Line\t1".

[jerry]$ echo -e "Line\t1\nLine2" | sed -n '/Line\S/ p'

On executing the above code, you get the following result:

Line2

Single Word Character (\w)

In SED, "\w" implies single word character, i.e., alphabetical characters, digits,

and underscore (_). The following example illustrates this.

[jerry]$ echo -e "One\n123\n1_2\n&;#" | sed -n '/\w/ p'

On executing the above code, you get the following result:

One

123

1_2

Single Non-Word Character (\W)

In SED, "\W" implies single non-word character which is exactly opposite to

"\w". The following example illustrates this.

[jerry]$ echo -e "One\n123\n1_2\n&;#" | sed -n '/\W/ p'

On executing the above code, you get the following result:

&;#

Stream Editor

68

Beginning of Pattern Space(\̀)

In SED, "\`" implies the beginning of the pattern space. The following example

matches only the word "One".

[jerry]$ echo -e "One\nTwo One" | sed -n '/\`One/ p'

On executing the above code, you get the following result:

One

Stream Editor

69

SED is an amazing utility that allows multiple ways to solve a problem. This is

the UNIX way and SED perfectly proves that. GNU/Linux provides many useful

utilities to perform day-to-day tasks. Let us simulate a few utilities using SED.

Sometimes it may appear we are solving an easy problem the hard way, but the

purpose is just to demonstrate the power of SED.

Cat Command

In the following example, each line is printed as a part of the default workflow.

[jerry]$ sed '' books.txt

On executing the above code, you get the following result:

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

The Pilgrimage, Paulo Coelho

A Game of Thrones, George R. R. Martin

The following example uses print command to display the file contents.

[jerry]$ sed -n 'p' books.txt

On executing the above code, you get the following result:

A Storm of Swords, George R. R. Martin

The Two Towers, J. R. R. Tolkien

The Alchemist, Paulo Coelho

The Fellowship of the Ring, J. R. R. Tolkien

The Pilgrimage, Paulo Coelho

A Game of Thrones, George R. R. Martin

Removing Empty Lines

In the following example, "^$" implies empty line, and empty lines are deleted

when a pattern match succeeds.

[jerry]$ echo -e "Line #1\n\n\nLine #2" | sed '/^$/d'

14. USEFUL RECIPES

Stream Editor

70

On executing the above code, you get the following result:

Line #1

Line #2

Similarly, the following example prints the line only when it is non-empty.

[jerry]$ echo -e "Line #1\n\n\nLine #2" | sed -n '/^$/!p'

On executing the above code, you get the following result:

Line #1

Line #2

Removing Commented Lines from a C++ Program

Let us create a sample C++ program.

#include <iostream>

using namespace std;

int main(void)

{

 // Displays message on stdout.

 cout << "Hello, World !!!" << endl;

 return 0; // Return success.

}

Now remove the comments using the following regular expression.

[jerry]$ sed 's|//.*||g' hello.cpp

On executing the above code, you get the following result:

#include <iostream>

using namespace std;

int main(void)

{

 cout << "Hello, World !!!" << endl;

 return 0;

}

Stream Editor

71

Adding Comments Before Certain Lines

The following example adds comments before line numbers 3 to 5.

[jerry]$ sed '3,5 s/^/#/' hello.sh

On executing the above code, you get the following result:

#!/bin/bash

#pwd

#hostname

#uname -a

who

who -r

lsb_release -a

Wc -l command

The "wc -l" command counts the number of lines present in the file. The

following SED expression simulates the same.

[jerry]$ sed -n '$ =' hello.sh

On executing the above code, you get the following result:

8

Head Command

By default, the head command prints the first 10 lines of the file. Let us simulate

the same behavior with SED.

[jerry]$ sed '10 q' books.txt

On executing the above code, you get the following result:

A Storm of Swords

George R. R. Martin

The Two Towers

J. R. R. Tolkien

The Alchemist

Paulo Coelho

The Fellowship of the Ring

J. R. R. Tolkien

The Pilgrimage

Stream Editor

72

Paulo Coelho

Tail -1 Command

The "tail -1" prints the last line of the file. The following syntax shows its

simulation.

[jerry]$ echo -e "Line #1\nLine #2" > test.txt

[jerry]$ cat test.txt

On executing the above code, you get the following result:

Line #1

Line #2

Let us write the SED script.

[jerry]$ sed -n '$p' test.txt

On executing the above code, you get the following result:

Line #2

Dos2unix Command

In DOS environment, a newline is represented by a combination of CR/LF

characters. The following simulation of "dos2unix" command converts a DOS

newline character to UNIX newline character. In GNU/Linux, this character is

often treated as "^M" (Control M) character.

[jerry]$ echo -e "Line #1\r\nLine #2\r" > test.txt

[jerry]$ file test.txt

On executing the above code, you get the following result:

test.txt: ASCII text, with CRLF line terminators

Let us simulate the command using SED.

[jerry]$ sed 's/^M$//' test.txt > new.txt # Press "ctrl+v" followed "ctrl+m" to generate

"^M" character.

[jerry]$ file new.txt

On executing the above code, you get the following result:

Stream Editor

73

new.txt: ASCII text

Now let us display the file contents.

[jerry]$ cat -vte new.txt

On executing the above code, you get the following result:

Line #1$

Line #2$

Unix2dos command

Similar to "dos2unix", there is "unix2dos" command which converts UNIX

newline character to DOS newline character. The following example shows

simulation of the same.

[jerry]$ echo -e "Line #1\nLine #2" > test.txt

[jerry]$ file test.txt

On executing the above code, you get the following result:

test.txt: ASCII text

Let us simulate the command using SED.

[jerry]$ sed 's/$/\r/' test.txt > new.txt

[jerry]$ file new.txt

On executing the above code, you get the following result:

new.txt: ASCII text, with CRLF line terminators

Now let us display the file contents.

[jerry]$ cat -vte new.txt

On executing the above code, you get the following result:

Stream Editor

74

Line #1^M$

Line #2^M$

Cat -E command

The "cat -E" command shows the end of line by Dollar($) character. The

following SED example is simulation of the same.

[jerry]$ echo -e "Line #1\nLine #2" > test.txt

[jerry]$ cat -E test.txt

On executing the above code, you get the following result:

Line #1$

Line #2$

Let us simulate the command using SED.

[jerry]$ sed 's|$|&$|' test.txt

On executing the above code, you get the following result:

Line #1$

Line #2$

Cat -ET Command

The "cat -ET" command shows the Dollar($) symbol at the end of each line and

displays the TAB characters as "^I". The following example shows the simulation

of "cat -ET" command using SED.

[jerry]$ echo -e "Line #1\tLine #2" > test.txt

[jerry]$ cat -ET test.txt

On executing the above code, you get the following result:

Line #1^ILine #2$

Let us simulate the command using SED.

Stream Editor

75

[jerry]$ sed -n 'l' test.txt | sed 'y/\\t/^I/'

On executing the above code, you get the following result:

Line #1^ILine #2$

nl Command

The "nl" command simply numbers the lines of files. The following SED script

simulates this behavior.

[jerry]$ echo -e "Line #1\nLine #2" > test.txt

[jerry]$ sed = test.txt | sed 'N;s/\n/\t/'

On executing the above code, you get the following result:

1 Line #1

2 Line #2

The first SED expression prints line numbers followed by their contents, and the

second SED expression merges these two lines and converts newline characters

to TAB characters.

cp Command

The "cp" command crates another copy of the file. The following SED script

simulates this behavior.

[jerry]$ sed -n 'w dup.txt' data.txt

[jerry]$ diff data.txt dup.txt

[jerry]$ echo $?

On executing the above code, you get the following result:

0

Expand Command

The "expand" command converts TAB characters to whitespaces. The following

code shows its simulation.

Stream Editor

76

[jerry]$ echo -e "One\tTwo\tThree" > test.txt

[jerry]$ expand test.txt > expand.txt

[jerry]$ sed 's/\t/ /g' test.txt > new.txt

[jerry]$ diff new.txt expand.txt

[jerry]$ echo $?

On executing the above code, you get the following result:

0

Tee Command

The "tee" command dumps the data to the standard output stream as well as

file. Given below is the simulation of the "tee" command.

[jerry]$ echo -e "Line #1\nLine #2" | tee test.txt

Line #1

Line #2

Let us simulate the command using SED.

[jerry]$ sed -n 'p; w new.txt' test.txt

On executing the above code, you get the following result:

Line #1

Line #2

cat -s Command

UNIX "cat -s" command suppresses repeated empty output lines. The following

code shows the simulation of "cat -s" command.

[jerry]$ echo -e "Line #1\n\n\n\nLine #2\n\n\nLine #3" > test.txt

[jerry]$ cat -s test.txt

On executing the above code, you get the following result:

Line #1

Line #2

Stream Editor

77

Line #3

Let us simulate the command using SED.

[jerry]$ sed '1s/^$//p;/./,/^$/!d' test.txt

On executing the above code, you get the following result:

Line #1

Line #2

Line #3

grep Command

By default, the "grep" command prints a line when a pattern match succeeds.

The following code shows its simulation.

[jerry]$ echo -e "Line #1\nLine #2\nLine #3" > test.txt

[jerry]$ grep "Line #1" test.txt

On executing the above code, you get the following result:

Line #1

Let us simulate the command using SED.

[jerry]$ sed -n '/Line #1/p' test.txt

On executing the above code, you get the following result:

Line #1

grep -v Command

By default, the "grep -v" command prints a line when a pattern match fails. The

following code shows its simulation.

Stream Editor

78

[jerry]$ echo -e "Line #1\nLine #2\nLine #3" > test.txt

[jerry]$ grep -v "Line #1" test.txt

On executing the above code, you get the following result:

Line #2

Line #3

Let us simulate the command using SED.

[jerry]$ sed -n '/Line #1/!p' test.txt

On executing the above code, you get the following result:

Line #2

Line #3

tr Command

The "tr" command translates characters. Given below is its simulation.

[jerry]$ echo "ABC" | tr "ABC" "abc"

On executing the above code, you get the following result:

abc

Let us simulate the command using SED.

[jerry]$ echo "ABC" | sed 'y/ABC/abc/'

On executing the above code, you get the following result:

abc

Stream Editor

79

