Web crawler - Wikipedia

Web crawler

From Wikipedia, the free encyclopedia

A Web crawler, sometimes called a spider, is
an Internet bot that systematically browses the
World Wide Web, typically for the purpose of
Web indexing (web spidering).

Web search engines and some other sites use
Web crawling or spidering software to update
their web content or indices of others sites' web
content. Web crawlers can copy all the pages
they visit for later processing by a search engine
which indexes the downloaded pages so the Architecture of a Web
users can search much more efficiently. crawler

Crawlers consume resources on the systems

they visit and often visit sites without approval. Issues of schedule, load, and
“politeness" come into play when large collections of pages are accessed.
Mechanisms exist for public sites not wishing to be crawled to make this known
to the crawling agent. For instance, including a robots.txt file can request bots
to index only parts of a website, or nothing at all.

As the number of pages on the internet is extremely large, even the largest
crawlers fall short of making a complete index. For that reason search engines
were bad at giving relevant search results in the early years of the World Wide
Web, before the year 2000. This is improved greatly by modern search engines;
nowadays very good results are given instantly.

Crawlers can validate hyperlinks and HTML code. They can also be used for
web scraping (see also data-driven programming).

Contents

= 1 Nomenclature
s 2 Overview
» 3 Crawling policy
» 3.1 Selection policy
3.1.1 Restricting followed links
1.2 URL normalization
1.3 Path-ascending crawling
1.4 Focused crawling
» 3.1.4.1 Academic-focused crawler
» 3.2 Re-visit policy
= 3.3 Politeness policy
» 3.4 Parallelization policy
= 4 Architectures

3.
3.
3.

1o0f18

Web crawler - Wikipedia

20f18

5 Security
6 Crawler identification
7 Crawling the deep web
= 7.1 Web crawler bias
8 Visual vs programmatic crawlers
9 Examples
= 9.1 Open-source crawlers
10 See also
11 References
12 Further reading

Nomenclature

A Web crawler may also be called a Web spider,!!1 an ant, an automatic
indexer,[?] or (in the FOAF software context) a Web scutter.[3]

Overview

A Web crawler starts with a list of URLs to visit, called the seeds. As the
crawler visits these URLs, it identifies all the hyperlinks in the page and adds
them to the list of URLs to visit, called the crawl frontier. URLs from the
frontier are recursively visited according to a set of policies. If the crawler is
performing archiving of websites it copies and saves the information as it goes.
The archives are usually stored in such a way they can be viewed, read and

navigated as they were on the live web, but are preserved as ‘snapshots'.[4]

The archive is known as the repository and is designed to store and manage the
collection of web pages. The repository only stores HTML pages and these
pages are stored as distinct files. A repository is similar to any other system
that stores data, like a modern day database. The only difference is that a
repository does not need all the functionality offered by a database system. The
repository stores the most recent version of the web page retrieved by the

crawler.[3]

The large volume implies the crawler can only download a limited number of
the Web pages within a given time, so it needs to prioritize its downloads. The
high rate of change can imply the pages might have already been updated or
even deleted.

The number of possible URLs crawled being generated by server-side software
has also made it difficult for web crawlers to avoid retrieving duplicate content.
Endless combinations of HTTP GET (URL-based) parameters exist, of which
only a small selection will actually return unique content. For example, a simple
online photo gallery may offer three options to users, as specified through
HTTP GET parameters in the URL. If there exist four ways to sort images, three
choices of thumbnail size, two file formats, and an option to disable
user-provided content, then the same set of content can be accessed with 48

Web crawler - Wikipedia

30f18

different URLs, all of which may be linked on the site. This mathematical
combination creates a problem for crawlers, as they must sort through endless
combinations of relatively minor scripted changes in order to retrieve unique
content.

As Edwards et al. noted, "Given that the bandwidth for conducting crawls is
neither infinite nor free, it is becoming essential to crawl the Web in not only a
scalable, but efficient way, if some reasonable measure of quality or freshness

is to be maintained."l6] A crawler must carefully choose at each step which
pages to visit next.

Crawling policy

The behavior of a Web crawler is the outcome of a combination of policies:[”]

a selection policy which states the pages to download,

a re-visit policy which states when to check for changes to the pages,
a politeness policy that states how to avoid overloading Web sites, and
a parallelization policy that states how to coordinate distributed web
crawlers.

Selection policy

Given the current size of the Web, even large search engines cover only a
portion of the publicly available part. A 2009 study showed even large-scale

search engines index no more than 40-70% of the indexable Web;[8] a previous
study by Steve Lawrence and Lee Giles showed that no search engine indexed

more than 16% of the Web in 1999.[191 As a crawler always downloads just a
fraction of the Web pages, it is highly desirable for the downloaded fraction to
contain the most relevant pages and not just a random sample of the Web.

This requires a metric of importance for prioritizing Web pages. The
importance of a page is a function of its intrinsic quality, its popularity in terms
of links or visits, and even of its URL (the latter is the case of vertical search
engines restricted to a single top-level domain, or search engines restricted to
a fixed Web site). Designing a good selection policy has an added difficulty: it
must work with partial information, as the complete set of Web pages is not
known during crawling.

Cho et al. made the first study on policies for crawling scheduling. Their data
set was a 180,000-pages crawl from the stanford.edu domain, in which a crawling

simulation was done with different strategies.[10] The ordering metrics tested
were breadth-first, backlink count and partial Pagerank calculations. One of the
conclusions was that if the crawler wants to download pages with high
Pagerank early during the crawling process, then the partial Pagerank strategy
is the better, followed by breadth-first and backlink-count. However, these
results are for just a single domain. Cho also wrote his Ph.D. dissertation at

Stanford on web crawling.!11]

Web crawler - Wikipedia

40f18

Najork and Wiener performed an actual crawl on 328 million pages, using

breadth-first ordering.[12] They found that a breadth-first crawl captures pages
with high Pagerank early in the crawl (but they did not compare this strategy
against other strategies). The explanation given by the authors for this result is
that "the most important pages have many links to them from numerous hosts,
and those links will be found early, regardless of on which host or page the
crawl originates."

Abiteboul designed a crawling strategy based on an algorithm called OPIC

(On-line Page Importance Computation).[13] In OPIC, each page is given an
initial sum of "cash" that is distributed equally among the pages it points to. It
is similar to a Pagerank computation, but it is faster and is only done in one
step. An OPIC-driven crawler downloads first the pages in the crawling frontier
with higher amounts of "cash". Experiments were carried in a 100,000-pages
synthetic graph with a power-law distribution of in-links. However, there was
no comparison with other strategies nor experiments in the real Web.

Boldi et al. used simulation on subsets of the Web of 40 million pages from the
.it domain and 100 million pages from the WebBase crawl, testing breadth-first
against depth-first, random ordering and an omniscient strategy. The
comparison was based on how well PageRank computed on a partial crawl
approximates the true PageRank value. Surprisingly, some visits that
accumulate PageRank very quickly (most notably, breadth-first and the

omniscient visit) provide very poor progressive approximations.[141[15]

Baeza-Yates et al. used simulation on two subsets of the Web of 3 million pages
from the .gr and .cl domain, testing several crawling strategies.!16] They
showed that both the OPIC strategy and a strategy that uses the length of the
per-site queues are better than breadth-first crawling, and that it is also very
effective to use a previous crawl, when it is available, to guide the current one.

Daneshpajouh et al. designed a community based algorithm for discovering

good seeds.!17] Their method crawls web pages with high PageRank from
different communities in less iteration in comparison with crawl starting from
random seeds. One can extract good seed from a previously-crawled-Web graph
using this new method. Using these seeds a new crawl can be very effective.

Restricting followed links

A crawler may only want to seek out HTML pages and avoid all other MIME
types. In order to request only HTML resources, a crawler may make an HTTP
HEAD request to determine a Web resource's MIME type before requesting the
entire resource with a GET request. To avoid making numerous HEAD requests,
a crawler may examine the URL and only request a resource if the URL ends
with certain characters such as .html, .htm, .asp, .aspx, .php, .jsp, .jspx or a
slash. This strategy may cause numerous HTML Web resources to be
unintentionally skipped.

Some crawlers may also avoid requesting any resources that have a "?" in them

Web crawler - Wikipedia

(are dynamically produced) in order to avoid spider traps that may cause the
crawler to download an infinite number of URLs from a Web site. This strategy
is unreliable if the site uses URL rewriting to simplify its URLs.

URL normalization

Crawlers usually perform some type of URL normalization in order to avoid
crawling the same resource more than once. The term URL normalization, also
called URL canonicalization, refers to the process of modifying and
standardizing a URL in a consistent manner. There are several types of
normalization that may be performed including conversion of URLs to
lowercase, removal of "." and ".." segments, and adding trailing slashes to the

non-empty path component.[18]
Path-ascending crawling

Some crawlers intend to download as many resources as possible from a
particular web site. So path-ascending crawler was introduced that would

ascend to every path in each URL that it intends to crawl.[19] For example,
when given a seed URL of http://llama.org/hamster/monkey/page.html, it will
attempt to crawl /hamster/monkey/, /hamster/, and /. Cothey found that a
path-ascending crawler was very effective in finding isolated resources, or
resources for which no inbound link would have been found in regular
crawling.

Focused crawling

The importance of a page for a crawler can also be expressed as a function of
the similarity of a page to a given query. Web crawlers that attempt to
download pages that are similar to each other are called focused crawler or
topical crawlers. The concepts of topical and focused crawling were first

introduced by Filippo Menczer!(201[21] and by Soumen Chakrabarti et al.[22]

The main problem in focused crawling is that in the context of a Web crawler,
we would like to be able to predict the similarity of the text of a given page to
the query before actually downloading the page. A possible predictor is the
anchor text of links; this was the approach taken by Pinkerton!23l in the first
web crawler of the early days of the Web. Diligenti et al.[24] propose using the
complete content of the pages already visited to infer the similarity between
the driving query and the pages that have not been visited yet. The
performance of a focused crawling depends mostly on the richness of links in
the specific topic being searched, and a focused crawling usually relies on a
general Web search engine for providing starting points.

Academic-focused crawler

An example of the focused crawlers are academic crawlers, which crawls
free-access academic related documents, such as the citeseerxbot, which is the

50f18

Web crawler - Wikipedia

6 0of 18

crawler of CiteSeerX search engine. Other academic search engines are Google
Scholar and Microsoft Academic Search etc. Because most academic papers
are published in PDF formats, such kind of crawler is particularly interested in
crawling PDF, PostScript files, Microsoft Word including their zipped formats.
Because of this, general open source crawlers, such as Heritrix, must be
customized to filter out other MIME types, or a middleware is used to extract
these documents out and import them to the focused crawl database and

repository.[25] Identifying whether these documents are academic or not is
challenging and can add a significant overhead to the crawling process, so this
is performed as a post crawling process using machine learning or regular
expression algorithms. These academic documents are usually obtained from
home pages of faculties and students or from publication page of research
institutes. Because academic documents takes only a small fraction in the
entire web pages, a good seed selection are important in boosting the

efficiencies of these web crawlers.[26] Other academic crawlers may download
plain text and HTML files, that contains metadata of academic papers, such as
titles, papers, and abstracts. This increases the overall number of papers, but a
significant fraction may not provide free PDF downloads.

Re-visit policy

The Web has a very dynamic nature, and crawling a fraction of the Web can
take weeks or months. By the time a Web crawler has finished its crawl, many
events could have happened, including creations, updates, and deletions.

From the search engine's point of view, there is a cost associated with not
detecting an event, and thus having an outdated copy of a resource. The

most-used cost functions are freshness and age.[27!

Freshness: This is a binary measure that indicates whether the local copy is
accurate or not. The freshness of a page p in the repository at time t is defined
as:
F(t) = 1 if p is equal to the local copy at time ¢
P 0 otherwise

Age: This is a measure that indicates how outdated the local copy is. The age of
a page p in the repository, at time t is defined as:

Ay (t) = 0 if p is not modified at time ¢
P t — modification time of p otherwise

Coffman et al. worked with a definition of the objective of a Web crawler that is
equivalent to freshness, but use a different wording: they propose that a
crawler must minimize the fraction of time pages remain outdated. They also
noted that the problem of Web crawling can be modeled as a multiple-queue,
single-server polling system, on which the Web crawler is the server and the
Web sites are the queues. Page modifications are the arrival of the customers,

Web cr

7 0f 18

awler - Wikipedia

and switch-over times are the interval between page accesses to a single Web
site. Under this model, mean waiting time for a customer in the polling system

is equivalent to the average age for the Web crawler.[28]

The objective of the crawler is to keep the average freshness of pages in its
collection as high as possible, or to keep the average age of pages as low as
possible. These objectives are not equivalent: in the first case, the crawler is
just concerned with how many pages are out-dated, while in the second case,
the crawler is concerned with how old the local copies of pages are.

Two simple re-visiting policies were studied by e wen e v
Cho and Garcia-Molina:[29] | . :

Freshne
» Uniform policy: This involves re-visiting all e I—
pages in the collection with the same - Times
frequency, regardless of their rates of

change. Age / ,
» Proportional policy: This involves re-visiting A / /

more often the pages that change more | ! = T
frequently. The visiting frequency is directly Evolution of Freshness and
proportional to the (estimated) change Age in a web crawler
frequency.

In both cases, the repeated crawling order of pages can be done either in a
random or a fixed order.

Cho and Garcia-Molina proved the surprising result that, in terms of average
freshness, the uniform policy outperforms the proportional policy in both a
simulated Web and a real Web crawl. Intuitively, the reasoning is that, as web
crawlers have a limit to how many pages they can crawl in a given time frame,
(1) they will allocate too many new crawls to rapidly changing pages at the
expense of less frequently updating pages, and (2) the freshness of rapidly
changing pages lasts for shorter period than that of less frequently changing
pages. In other words, a proportional policy allocates more resources to
crawling frequently updating pages, but experiences less overall freshness time
from them.

To improve freshness, the crawler should penalize the elements that change too

often.[30] The optimal re-visiting policy is neither the uniform policy nor the
proportional policy. The optimal method for keeping average freshness high
includes ignoring the pages that change too often, and the optimal for keeping
average age low is to use access frequencies that monotonically (and
sub-linearly) increase with the rate of change of each page. In both cases, the
optimal is closer to the uniform policy than to the proportional policy: as
Coffman et al. note, "in order to minimize the expected obsolescence time, the
accesses to any particular page should be kept as evenly spaced as

possible".[28] Explicit formulas for the re-visit policy are not attainable in
general, but they are obtained numerically, as they depend on the distribution
of page changes. Cho and Garcia-Molina show that the exponential distribution

is a good fit for describing page changes,[39] while Ipeirotis et al. show how to

Web crawler - Wikipedia

8 0of 18

use statistical tools to discover parameters that affect this distribution.!3!] Note
that the re-visiting policies considered here regard all pages as homogeneous
in terms of quality ("all pages on the Web are worth the same"), something that
is not a realistic scenario, so further information about the Web page quality
should be included to achieve a better crawling policy.

Politeness policy

Crawlers can retrieve data much quicker and in greater depth than human
searchers, so they can have a crippling impact on the performance of a site.
Needless to say, if a single crawler is performing multiple requests per second
and/or downloading large files, a server would have a hard time keeping up
with requests from multiple crawlers.

As noted by Koster, the use of Web crawlers is useful for a number of tasks, but

comes with a price for the general community.[32] The costs of using Web
crawlers include:

» network resources, as crawlers require considerable bandwidth and
operate with a high degree of parallelism during a long period of time;

» server overload, especially if the frequency of accesses to a given server is
too high;

» poorly written crawlers, which can crash servers or routers, or which
download pages they cannot handle; and

» personal crawlers that, if deployed by too many users, can disrupt
networks and Web servers.

A partial solution to these problems is the robots exclusion protocol, also
known as the robots.txt protocol that is a standard for administrators to
indicate which parts of their Web servers should not be accessed by

crawlers.[33] This standard does not include a suggestion for the interval of
visits to the same server, even though this interval is the most effective way of
avoiding server overload. Recently commercial search engines like Google, Ask
Jeeves, MSN and Yahoo! Search are able to use an extra "Crawl-delay:"
parameter in the robots.txt file to indicate the number of seconds to delay
between requests.

The first proposed interval between successive pageloads was 60 seconds.!34]
However, if pages were downloaded at this rate from a website with more than
100,000 pages over a perfect connection with zero latency and infinite
bandwidth, it would take more than 2 months to download only that entire Web
site; also, only a fraction of the resources from that Web server would be used.
This does not seem acceptable.

Cho uses 10 seconds as an interval for accesses,[?91 and the WIRE crawler uses

15 seconds as the default.[3%] The MercatorWeb crawler follows an adaptive
politeness policy: if it took t seconds to download a document from a given

server, the crawler waits for 10t seconds before downloading the next page.!36]
Dill et al. use 1 second.[37]

Web crawler - Wikipedia

90f18

For those using Web crawlers for research purposes, a more detailed
cost-benefit analysis is needed and ethical considerations should be taken into

account when deciding where to crawl and how fast to crawl.[38]

Anecdotal evidence from access logs shows that access intervals from known
crawlers vary between 20 seconds and 3-4 minutes. It is worth noticing that
even when being very polite, and taking all the safeguards to avoid overloading
Web servers, some complaints from Web server administrators are received.
Brin and Page note that: "... running a crawler which connects to more than
half a million servers (...) generates a fair amount of e-mail and phone calls.
Because of the vast number of people coming on line, there are always those
who do not know what a crawler is, because this is the first one they have

seen."[39]

Parallelization policy

A parallel crawler is a crawler that runs multiple processes in parallel. The goal
is to maximize the download rate while minimizing the overhead from
parallelization and to avoid repeated downloads of the same page. To avoid
downloading the same page more than once, the crawling system requires a
policy for assigning the new URLs discovered during the crawling process, as
the same URL can be found by two different crawling processes.

Architectures

A crawler must not only have a good
crawling strategy, as noted in the
previous sections, but it should also
have a highly optimized architecture.
Web pages

Shkapenyuk and Suel noted that:[40] 1
While it is fairly easy to build (awseee
a slow crawler that
downloads a few pages per (e ’ URLs
second for a short period of Storage
time, building a
high-performance system High-level architecture of a standard
that can download hundreds Web crawler

of millions of pages over
several weeks presents a
number of challenges in
system design, I/O and
network efficiency, and
robustness and
manageability.

Web crawler - Wikipedia

Web crawlers are a central part of search engines, and details on their
algorithms and architecture are kept as business secrets. When crawler
designs are published, there is often an important lack of detail that prevents
others from reproducing the work. There are also emerging concerns about
"search engine spamming", which prevent major search engines from
publishing their ranking algorithms.

Security

While most of the website owners are keen to have their pages indexed as
broadly as possible to have strong presence in search engines, web crawling
can also have unintended consequences and lead to a compromise or data
breach if search engine indexes resources that shouldn't be publicly available
or pages revealing potentially vulnerable versions of software.

Apart from standard web application security recommendations website owners
can reduce their exposure to opportunistic hacking by only allowing search
engines to index the public parts of their websites (with robots.txt) and
explicitly blocking them from indexing transactional parts (login pages, private
pages, etc.).

Crawler identification

Web crawlers typically identify themselves to a Web server by using the
User-agent field of an HTTP request. Web site administrators typically examine
their Web servers' log and use the user agent field to determine which crawlers
have visited the web server and how often. The user agent field may include a
URL where the Web site administrator may find out more information about the
crawler. Examining Web server log is tedious task, and therefore some
administrators use tools to identify, track and verify Web crawlers. Spambots
and other malicious Web crawlers are unlikely to place identifying information
in the user agent field, or they may mask their identity as a browser or other
well-known crawler.

It is important for Web crawlers to identify themselves so that Web site
administrators can contact the owner if needed. In some cases, crawlers may
be accidentally trapped in a crawler trap or they may be overloading a Web
server with requests, and the owner needs to stop the crawler. Identification is
also useful for administrators that are interested in knowing when they may
expect their Web pages to be indexed by a particular search engine.

Crawling the deep web

A vast amount of web pages lie in the deep or invisible web.[41] These pages
are typically only accessible by submitting queries to a database, and regular
crawlers are unable to find these pages if there are no links that point to them.

Google's Sitemaps protocol and mod oail42! are intended to allow discovery of

10 of 18

Web crawler - Wikipedia

these deep-Web resources.

Deep web crawling also multiplies the number of web links to be crawled. Some
crawlers only take some of the URLs in form. In some cases, such
as the Googlebot, Web crawling is done on all text contained inside the
hypertext content, tags, or text.

Strategic approaches may be taken to target deep Web content. With a
technique called screen scraping, specialized software may be customized to
automatically and repeatedly query a given Web form with the intention of
aggregating the resulting data. Such software can be used to span multiple
Web forms across multiple Websites. Data extracted from the results of one
Web form submission can be taken and applied as input to another Web form
thus establishing continuity across the Deep Web in a way not possible with

traditional web crawlers.[43]

Pages built on AJAX are among those causing problems to web crawlers. Google
has proposed a format of AJAX calls that their bot can recognize and index.[44]

Web crawler bias

A recent study based on a large scale analysis of robots.txt files showed that
certain web crawlers were preferred over others, with Googlebot being the

most preferred web crawler.[4°]

Visual vs programmatic crawlers

There are a number of "visual web scraper/crawler" products available on the
web which will crawl pages and structure data into columns and rows based on
the users requirements. One of the main difference between a classic and a
visual crawler is the level of programming ability required to set up a crawler.
The latest generation of "visual scrapers" like Diffbot

(https://www.diffbot.com),[46] outwithub,!47] and import.iol48] remove the
majority of the programming skill needed to be able to program and start a
crawl to scrape web data.

The visual scraping/crawling methodology relies on the user "teaching" a piece
of crawler technology, which then follows patterns in semi-structured data
sources. The dominant method for teaching a visual crawler is by highlighting
data in a browser and training columns and rows. While the technology is not
new, for example it was the basis of Needlebase which has been bought by

Google (as part of a larger acquisition of ITA Labs!49]), there is continued
growth and investment in this area by investors and end-users.[20]

Examples

The following is a list of published crawler architectures for general-purpose

11 of 18

Web crawler - Wikipedia

crawlers (excluding focused web crawlers), with a brief description that
includes the names given to the different components and outstanding features:

12 0f 18

» Bingbot is the name of Microsoft's Bing webcrawler. It replaced Msnbot.
= FAST Crawlert51l is a distributed crawler.

= Googlebot!39 is described in some detail, but the reference is only about
an early version of its architecture, which was based in C++ and Python.
The crawler was integrated with the indexing process, because text
parsing was done for full-text indexing and also for URL extraction. There
is a URL server that sends lists of URLs to be fetched by several crawling
processes. During parsing, the URLs found were passed to a URL server
that checked if the URL have been previously seen. If not, the URL was
added to the queue of the URL server.

= GM Crawl is a crawler highly scalable usable in SaaS model52]

= PolyBot!40] is a distributed crawler written in C++ and Python, which is
composed of a "crawl manager", one or more "downloaders" and one or
more "DNS resolvers". Collected URLs are added to a queue on disk, and
processed later to search for seen URLs in batch mode. The politeness
policy considers both third and second level domains (e.g.:
www.example.com and www?2.example.com are third level domains)
because third level domains are usually hosted by the same Web server.

= RBSE!53] was the first published web crawler. It was based on two
programs: the first program, "spider" maintains a queue in a relational
database, and the second program "mite", is a modified ww ASCII browser
that downloads the pages from the Web.

» Swiftbot is Swiftype's web crawler, designed specifically for indexing a
single or small, defined group of web sites to create a highly customized
search engine. It enables unique features such as real-time indexing that

are unavailable to other enterprise search providers.!54]

» WebCrawlerl?3] was used to build the first publicly available full-text index
of a subset of the Web. It was based on lib-WWW to download pages, and
another program to parse and order URLs for breadth-first exploration of
the Web graph. It also included a real-time crawler that followed links
based on the similarity of the anchor text with the provided query.

= WebFountain!®l is a distributed, modular crawler similar to Mercator but
written in C++. It features a "controller" machine that coordinates a
series of "ant" machines. After repeatedly downloading pages, a change
rate is inferred for each page and a non-linear programming method must
be used to solve the equation system for maximizing freshness. The
authors recommend to use this crawling order in the early stages of the
crawl, and then switch to a uniform crawling order, in which all pages are
being visited with the same frequency.

» WebRACE!55] is a crawling and caching module implemented in Java, and
used as a part of a more generic system called eRACE. The system
receives requests from users for downloading web pages, so the crawler
acts in part as a smart proxy server. The system also handles requests for
“subscriptions" to Web pages that must be monitored: when the pages
change, they must be downloaded by the crawler and the subscriber must
be notified. The most outstanding feature of WebRACE is that, while most

Web crawler - Wikipedia

crawlers start with a set of "seed" URLs, WebRACE is continuously
receiving new starting URLs to crawl from.

World Wide Web Worm!56] was a crawler used to build a simple index of
document titles and URLs. The index could be searched by using the grep
Unix command.

Yahoo! Slurp was the name of the Yahoo! Search crawler until Yahoo!
contracted with Microsoft to use Bingbot instead.

In addition to the specific crawler architectures listed above, there are general
crawler architectures published by Chol57] and Chakrabarti.[58]

Open-source crawlers

Frontera is web crawling framework implementing crawl frontier
component and providing scalability primitives for web crawler
applications.

GNU Wget is a command-line-operated crawler written in C and released
under the GPL. It is typically used to mirror Web and FTP sites.

GRUB is an open source distributed search crawler that Wikia Search used
to crawl the web.

Heritrix is the Internet Archive's archival-quality crawler, designed for
archiving periodic snapshots of a large portion of the Web. It was written
in Java.

ht://Dig includes a Web crawler in its indexing engine.

HTTrack uses a Web crawler to create a mirror of a web site for off-line
viewing. It is written in C and released under the GPL.

mnoGoSearch is a crawler, indexer and a search engine written in C and
licensed under the GPL (*NIX machines only)

Apache Nutch is a highly extensible and scalable web crawler written in
Java and released under an Apache License. It is based on Apache Hadoop
and can be used with Apache Solr or Elasticsearch.

Open Search Server is a search engine and web crawler software release
under the GPL.

PHP-Crawler is a simple PHP and MySQL based crawler released under
the BSD License.

Scrapy, an open source webcrawler framework, written in python
(licensed under BSD).

Seeks, a free distributed search engine (licensed under AGPL).

Sphinx (search engine), a free search crawler, written in c++.
StormCrawler, a collection of resources for building low-latency, scalable
web crawlers on Apache Storm (Apache License).

tkWWW Robot, a crawler based on the tkWWW web browser (licensed
under GPL).

Xapian, a search crawler engine, written in c++.

YaCy, a free distributed search engine, built on principles of peer-to-peer
networks (licensed under GPL).

Octoparse, a free client-side Windows web crawler written in .NET.

See also

13 0f18

Web crawler - Wikipedia

» Automatic indexing

» Gnutella crawler

» Web archiving

» Webgraph

» Website mirroring software
» Search Engine Scraping

References

10.

11.

12.

14 of 18

. Spetka, Scott. "The TkKkWWW Robot: Beyond Browsing" (https://web.archive.org

/web/20040903174942/archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents
/spetka/spetka.html). NCSA. Archived from the original
(http://archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents/spetka/spetka.html)
on 3 September 2004. Retrieved 21 November 2010.

. Kobayashi, M. & Takeda, K. (2000). "Information retrieval on the web"

(http://doi.acm.org/10.1145/358923.358934). ACM Computing Surveys. ACM
Press. 32 (2): 144-173. doi:10.1145/358923.358934 (https://doi.org
/10.1145%2F358923.358934).

. See definition of scutter on FOAF Project's wiki (http://wiki.foaf-project.org

/w/Scutter)

. Masanes, Julien (February 15, 2007). Web Archiving (https://nocrus.co.uk/shared-

hosting/). Springer. p. 1. ISBN 978-3-54046332-0. Retrieved April 24, 2014.

. Patil, Yugandhara; Patil, Sonal (2016). "Review of Web Crawlers with

Specification and Working" (http://www.ijarcce.com/upload/2016/january-
16/IJARCCE%?2052.pdf) (PDF). International Journal of Advanced Research
Computer and Communication Engineering. 5 (1): 4.

. Edwards, J., McCurley, K. S., and Tomlin, J. A. (2001). "An adaptive model for

optimizing performance of an incremental web crawler" (http://www10.org/cdrom
/papers/210/index.html). In Proceedings of the Tenth Conference on World Wide
Web. Hong Kong: Elsevier Science: 106-113. d0i:10.1145/371920.371960
(https://doi.org/10.1145%2F371920.371960). ISBN 1581133480.

. Castillo, Carlos (2004). Effective Web Crawling (http://chato.cl/research

/crawling thesis) (Ph.D. thesis). University of Chile. Retrieved 2010-08-03.

. A. Gulli; A. Signorini (2005). "The indexable web is more than 11.5 billion pages"

(http://doi.acm.org/10.1145/1062745.1062789). Special interest tracks and
posters of the 14th international conference on World Wide Web. ACM Press.
pp. 902-903. doi:10.1145/1062745.1062789 (https://doi.org
/10.1145%2F1062745.1062789).

. Steve Lawrence; C. Lee Giles (1999-07-08). "Accessibility of information on the

web". Nature. 400 (6740): 107-9. Bibcode:1999Natur.400..107L
(http://adsabs.harvard.edu/abs/1999Natur.400..107L). doi:10.1038/21987
(https://doi.org/10.1038%2F21987). PMID 10428673
(https://www.ncbi.nlm.nih.gov/pubmed/10428673).

Cho, J.; Garcia-Molina, H.; Page, L. (April 1998). "Efficient Crawling Through URL
Ordering" (http://ilpubs.stanford.edu:8090/347/). Seventh International
World-Wide Web Conference. Brisbane, Australia. Retrieved 2009-03-23.

Cho, Junghoo, "Crawling the Web: Discovery and Maintenance of a Large-Scale
Web Data" (http://oak.cs.ucla.edu/~cho/papers/cho-thesis.pdf), Ph.D. dissertation,
Department of Computer Science, Stanford University, November 2001

Marc Najork and Janet L. Wiener. Breadth-first crawling yields high-quality pages
(http://www10.org/cdrom/papers/pdf/p208.pdf). In Proceedings of the Tenth
Conference on World Wide Web, pages 114-118, Hong Kong, May 2001. Elsevier
Science.

Web crawler - Wikipedia

150f18

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Serge Abiteboul; Mihai Preda; Gregory Cobena (2003). "Adaptive on-line page
importance computation" (http://www2003.org/cdrom/papers/refereed/p007/p7-
abiteboul.html). Proceedings of the 12th international conference on World Wide
Web. Budapest, Hungary: ACM. pp. 280-290. do0i:10.1145/775152.775192
(https://doi.org/10.1145%2F775152.775192). ISBN 1-58113-680-3. Retrieved
2009-03-22.

Paolo Boldi; Bruno Codenotti; Massimo Santini; Sebastiano Vigna (2004).
"UbiCrawler: a scalable fully distributed Web crawler" (http://vigna.dsi.unimi.it
/ftp/papers/UbiCrawler.pdf) (PDF). Software: Practice and Experience. 34 (8):
711-726. doi:10.1002/spe.587 (https://doi.org/10.1002%2Fspe.587). Retrieved
2009-03-23.

Paolo Boldi; Massimo Santini; Sebastiano Vigna (2004). "Do Your Worst to Make
the Best: Paradoxical Effects in PageRank Incremental Computations"
(http://vigna.dsi.unimi.it/ftp/papers/ParadoxicalPageRank.pdf) (PDF). Algorithms
and Models for the Web-Graph (http://springerlink.com/content/g10m122f9hb6).
pp. 168-180. Retrieved 2009-03-23.

Baeza-Yates, R., Castillo, C., Marin, M. and Rodriguez, A. (2005). Crawling a
Country: Better Strategies than Breadth-First for Web Page Ordering
(http://www.dcc.uchile.cl/%7Eccastill/papers

/baeza05 crawling country better breadth first web page ordering.pdf). In
Proceedings of the Industrial and Practical Experience track of the 14th
conference on World Wide Web, pages 864-872, Chiba, Japan. ACM Press.
Shervin Daneshpajouh, Mojtaba Mohammadi Nasiri, Mohammad Ghodsi, A Fast
Community Based Algorithm for Generating Crawler Seeds Set
(http://ce.sharif.edu/~daneshpajouh/publications
[A%20Fast%20Community%20Based%20Algorithm%20for%20Generating%20Cra
wler%20Seeds%20Set.pdf), In proceeding of 4th International Conference on
Web Information Systems and Technologies ((http://www.webist.org/)Webist-
2008), Funchal, Portugal, May 2008.

Pant, Gautam; Srinivasan, Padmini; Menczer, Filippo (2004). "Crawling the Web"
(http://dollar.biz.uiowa.edu/~pant/Papers/crawling.pdf) (PDF). In Levene, Mark;
Poulovassilis, Alexandra. Web Dynamics: Adapting to Change in Content, Size,
Topology and Use. Springer. pp. 153-178. ISBN 978-3-540-40676-1.

Cothey, Viv (2004). "Web-crawling reliability". Journal of the American Society for
Information Science and Technology. 55 (14): 1228-1238. doi:10.1002/asi.20078
(https://doi.org/10.1002%2Fasi.20078).

Menczer, F. (1997). ARACHNID: Adaptive Retrieval Agents Choosing Heuristic
Neighborhoods for Information Discovery (http://informatics.indiana.edu
/fil/Papers/ICML.ps). In D. Fisher, ed., Machine Learning: Proceedings of the 14th
International Conference (ICML97). Morgan Kaufmann

Menczer, F. and Belew, R.K. (1998). Adaptive Information Agents in Distributed
Textual Environments (http://informatics.indiana.edu/fil/Papers/AA98.ps). In K.
Sycara and M. Wooldridge (eds.) Proc. 2nd Intl. Conf. on Autonomous Agents
(Agents '98). ACM Press

Chakrabarti, S., van den Berg, M., and Dom, B. (1999). Focused crawling: a new
approach to topic-specific web resource discovery (https://web.archive.org
/web/20040317210216/http://www.fxpal.com/people/vdberg/pubs/www8
/www1999f.pdf). Computer Networks, 31(11-16):1623-1640.

Pinkerton, B. (1994). Finding what people want: Experiences with the
WebCrawler (https://web.archive.org/web/20010904075500/http:
/larchive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/pinkerton
/WebCrawler.html). In Proceedings of the First World Wide Web Conference,
Geneva, Switzerland.

Web crawler - Wikipedia

16 of 18

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., and Gori, M. (2000). Focused
crawling using context graphs (http://nautilus.dii.unisi.it/pubblicazioni/files
/conference/2000-Diligenti-VLDB.pdf). In Proceedings of 26th International
Conference on Very Large Databases (VLDB), pages 527-534, Cairo, Egypt.

Jian Wu, Pradeep Teregowda, Madian Khabsa, Stephen Carman, Douglas Jordan,
Jose San Pedro Wandelmer, Xin Lu, Prasenjit Mitra, C. Lee Giles, Web crawler
middleware for search engine digital libraries: a case study for citeseerX
(http://dl.acm.org/citation.cfm?id=2389936.2389949&coll=DL&d1=ACM&
CFID=176007707&CFTOKEN=93317127), In proceedings of the twelfth
international workshop on Web information and data management Pages 57-64,
Maui Hawaii, USA, November 2012.

Jian Wu, Pradeep Teregowda, Juan Pablo Fernandez Ramirez, Prasenjit Mitra,
Shuyi Zheng, C. Lee Giles , The evolution of a crawling strategy for an academic
document search engine: whitelists and blacklists (http://dl.acm.org
/citation.cfm?id=2380718.2380762), In proceedings of the 3rd Annual ACM Web
Science Conference Pages 340-343, Evanston, IL, USA, June 2012.

Junghoo Cho; Hector Garcia-Molina (2000). "Synchronizing a database to
improve freshness" (http://www.cs.brown.edu/courses/cs227/2002/cache/Cho.pdf)
(PDF). Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. Dallas, Texas, United States: ACM. pp. 117-128.
doi:10.1145/342009.335391 (https://doi.org/10.1145%2F342009.335391).

ISBN 1-58113-217-4. Retrieved 2009-03-23.

E. G. Coffman Jr; Zhen Liu; Richard R. Weber (1998). "Optimal robot scheduling
for Web search engines". Journal of Scheduling. 1 (1): 15-29.
doi:10.1002/(SICI)1099-1425(199806)1:1<15::AID-JOS3>3.0.CO;2-K
(https://doi.org/10.1002
%2F%28SICI1%291099-1425%28199806%291%3A1%3C15%3A%3AAID-
JOS3%3E3.0.C0%3B2-K).

Cho, J. and Garcia-Molina, H. (2003). Effective page refresh policies for web
crawlers (http://portal.acm.org/citation.cfm?doid=958942.958945). ACM
Transactions on Database Systems, 28(4).

Junghoo Cho; Hector Garcia-Molina (2003). "Estimating frequency of change"
(http://portal.acm.org/citation.cfm?doid=857166.857170). ACM Trans. Internet
Technol. 3 (3): 256-290. d0i:10.1145/857166.857170 (https://doi.org
/10.1145%2F857166.857170). Retrieved 2009-03-22.

Ipeirotis, P, Ntoulas, A., Cho, J., Gravano, L. (2005) Modeling and managing
content changes in text databases (http://pages.stern.nyu.edu/~panos
/publications/icde2005.pdf). In Proceedings of the 21st IEEE International
Conference on Data Engineering, pages 606-617, April 2005, Tokyo.

Koster, M. (1995). Robots in the web: threat or treat? ConneXions, 9(4).

Koster, M. (1996). A standard for robot exclusion (http://www.robotstxt.org
/wc/exclusion.html).

Koster, M. (1993). Guidelines for robots writers (http://www.robotstxt.org
/wc/guidelines.html).

Baeza-Yates, R. and Castillo, C. (2002). Balancing volume, quality and freshness
in Web crawling (http://www.chato.cl/papers/baeza02balancing.pdf). In Soft
Computing Systems - Design, Management and Applications, pages 565-572,
Santiago, Chile. IOS Press Amsterdam.

Heydon, Allan; Najork, Marc (1999-06-26). "Mercator: A Scalable, Extensible Web
Crawler" (https://web.archive.org/web/20060219085958/http:
//[www.cindoc.csic.es/cybermetrics/pdf/68.pdf) (PDF). Archived from the original
(http://www.cindoc.csic.es/cybermetrics/pdf/68.pdf) (PDF) on 19 February 2006.
Retrieved 2009-03-22.

Web crawler - Wikipedia

17 of 18

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Dill, S., Kumar, R., Mccurley, K. S., Rajagopalan, S., Sivakumar, D., and Tomkins,
A. (2002) Self-similarity in the web (http://www.mccurley.org/papers/fractal.pdf).
ACM Trans. Inter. Tech. 2(3):205-223.

M. Thelwall; D. Stuart (2006). "Web crawling ethics revisited: Cost, privacy and
denial of service" (http://www.scit.wlv.ac.uk/%7Ecm1993/papers

/Web Crawling Ethics preprint.doc). Journal of the American Society for
Information Science and Technology. 57 (13): 1771. d0i:10.1002/asi.20388
(https://doi.org/10.1002%2Fasi.20388).

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web
search engine (http://infolab.stanford.edu/~backrub/google.html). Computer
Networks and ISDN Systems, 30(1-7):107-117.

Shkapenyuk, V. and Suel, T. (2002). Design and implementation of a high
performance distributed web crawler (http://cis.poly.edu/tr/tr-cis-2001-03.pdf). In
Proceedings of the 18th International Conference on Data Engineering (ICDE),
pages 357-368, San Jose, California. IEEE CS Press.

Shestakov, Denis (2008). Search Interfaces on the Web: Querying and
Characterizing (https://oa.doria.fi/handle/10024/38506). TUCS Doctoral
Dissertations 104, University of Turku

Michael L Nelson; Herbert Van de Sompel; Xiaoming Liu; Terry L Harrison;
Nathan McFarland (2005-03-24). "mod _oai: An Apache Module for Metadata
Harvesting". arXiv:cs/0503069 (https://arxiv.org/abs/cs/0503069) 3.

Shestakov, Denis; Bhowmick, Sourav S.; Lim, Ee-Peng (2005). "DEQUE: Querying
the Deep Web" (http://www.mendeley.com/download/public/1423991/3893295922
/dc0f7d824fd2a8fbbc84f6fdf9e4f337d343987d/dl.pdf) (PDF). Data & Knowledge
Engineering. 52 (3): 273-311.

"AJAX crawling: Guide for webmasters and developers"
(http://support.google.com/webmasters/bin/answer.py?hl=en&answer=174992).
Google. Retrieved March 17, 2013.

Sun, Yang. "A COMPREHENSIVE STUDY OF THE REGULATION AND BEHAVIOR
OF WEB CRAWLERS" (https://etda.libraries.psu.edu/paper/9230/). Retrieved

11 August 2014.

"Web Crawler" (http://www.diffbot.com/products/crawlbot/). Crawlbot. Retrieved
2016-02-10.

"OutWit Hub - Find, grab and organize all kinds of data and media from online
sources" (https://www.outwit.com/products/hub/). Outwit.com. 2014-01-31.
Retrieved 2014-03-20.

"Create a Crawler - import.io Help Center" (http://support.import.io
/knowledgebase/articles/247570-create-a-crawler). Support.import.io. Retrieved
2014-03-20.

ITA Labs "ITA Labs Acquisition" (http://semanticweb.com/more-semantics-
for-google-ita-software-acquisition-comes-with-needlebase-too b19329) April 20,
2011 1:28 AM

Crunchbase.com March 2014 "Crunch Base profile for import.io"
(http://www.crunchbase.com/company/importio)

Risvik, K. M. and Michelsen, R. (2002). Search Engines and Web Dynamics
(http://citeseer.ist.psu.edu/rd/1549722%2C509701%2C1%2C0.25%2CDownload
/http://citeseer.ist.psu.edu/cache/papers/cs/26004
/http:zSzzSzwww.idi.ntnu.nozSz%7EalgkonzSzgenereltzSzse-dynamicweb1.pdf
/risvikO2search.pdf). Computer Networks, vol. 39, pp. 289-302, June 2002.

GM Crawl : Identifies and collects data from the internet (http://www.aleph-
networks.com/en/bigdata.php?solutionstabs=0) 2014

Eichmann, D. (1994). The RBSE spider: balancing effective search against Web
load (http://mingo.info-science.uiowa.edu/eichmann/www94/Spider.ps). In
Proceedings of the First World Wide Web Conference, Geneva, Switzerland.

Web crawler - Wikipedia

54. "About Swiftbot - Swiftype" (https://swiftype.com/swiftbot). Swiftype.

55. Zeinalipour-Yazti, D. and Dikaiakos, M. D. (2002). Design and implementation of a
distributed crawler and filtering processor (http://www.cs.ucr.edu/~csyiazti
/downloads/papers/ngits02/ngits02.pdf). In Proceedings of the Fifth Next
Generation Information Technologies and Systems (NGITS), volume 2382 of
Lecture Notes in Computer Science, pages 58-74, Caesarea, Israel. Springer.

56. McBryan, O. A. (1994). GENVL and WWWW: Tools for taming the web. In
Proceedings of the First World Wide Web Conference, Geneva, Switzerland.

57. Junghoo Cho; Hector Garcia-Molina (2002). "Parallel crawlers"
(http://portal.acm.org/citation.cfm?id=511464). Proceedings of the 11th
international conference on World Wide Web. Honolulu, Hawaii, USA: ACM.
pp. 124-135. doi:10.1145/511446.511464 (https://doi.org
/10.1145%2F511446.511464). ISBN 1-58113-449-5. Retrieved 2009-03-23.

58. Chakrabarti, S. (2003). Mining the Web (http://www.cs.berkeley.edu/~soumen
/mining-the-web/). Morgan Kaufmann Publishers. ISBN 1-55860-754-4

Further reading

= Cho, Junghoo, "Web Crawling Project" (http://oak.cs.ucla.edu
/~cho/research/crawl.html), UCLA Computer Science Department.

» A History of Search Engines (http://www.wiley.com/legacy/compbooks
/sonnenreich/history.html), from Wiley

» A tutorial (http://emanueleminotto.github.io/blog/how-to-write-a-crawler)
for creating basic crawlers.

» WIVET (http://code.google.com/p/wivet/) is a benchmarking project by
OWASP, which aims to measure if a web crawler can identify all the
hyperlinks in a target website.

» Shestakov, Denis, "Current Challenges in Web Crawling"
(http://www.slideshare.net/denshe/icwel 3-tutorial-webcrawling) and
"Intelligent Web Crawling" (http://www.slideshare.net/denshe/intelligent-
crawling-shestakovwiiat13), slides for tutorials given at ICWE'13 and
WI-TIAT'13.

» Guide: How to Make a Web Crawler in Under 50 Lines of Code (Python) -
Saint (http://saintlad.com/make-a-web-crawler/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Web crawler&
0ldid=777484968"

Categories: Search engine software | Web crawlers
Internet search algorithms

» This page was last edited on 27 April 2017, at 13:08.

» Text is available under the Creative Commons Attribution-ShareAlike
License; additional terms may apply. By using this site, you agree to the
Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of
the Wikimedia Foundation, Inc., a non-profit organization.

18 0of 18

