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Preface

... synthetic universes defined by simple rules...

Tommaso Toffoli & Norman Margolus — Cellular Automata Machines

The history of cellular automata is only quite recent, coming to life at the
hands of two fathers, John von Neumann and Stanislaw Ulam in the early
1950s, although it was re-invented several more times, as for example in the
work of Konrad Zuse. Subsequent work in the early 1960s included that of
Ulam and his coworkers at Los Alamos and by John Holland at the Uni-
versity of Michigan whose work on adapation continued for several decades.
Early theoretical research was conducted by Hedlund (another example of
re-invention), Moore, and Myhill, among many others, not always under the
name of cellular automata, since the concept was still in its formative stages.
A big boost to the popularization of the subject came from John Conway’s
highly addictive Game of Life presented in Martin Gardner’s October 1970
column in Scientific American. Still the study of cellular automata lacked
much depth, analysis, and applicability and could not really be called a
scientific discipline.

All that changed in the early 1980s when physicist Stephen Wolfram
in a seminal paper, “Statistical mechanics of cellular automata”, initiated
the first serious study of cellular automata. In this work and in a series of
subsequent ones Wolfram began producing some of the images that have
now become iconic in the field. Conferences were organized and people from
various disciplines were being drawn into the field. It is now very much
an established scientific discipline with applications found in a great many
areas of science. Wolfram has counted more than 10,000 papers referencing
his original works on the subject and the field of cellular automata has taken
on a life of its own.

The cellular automaton paradigm is very appealing and its inherent sim-
plicity belies its potential complexity. Simple local rules govern an array of
cells that update the state they are in at each tick of a clock. It has been
found that this is an excellent way to analyze a great many natural phenom-
ena, the reason being that most physical processes are themselves local in
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nature — molecules interact locally with their neighbors, bacteria with their
neighbors, ants with theirs and people likewise. Although natural phenom-
ena are also continuous, examining the system at discrete time steps does
not really diminish the power of the analysis. So in the artificial cellular
automaton world we have an unfolding microcosm of the real world.

One of the things self-evident to everyone is the order that is found in
Nature. From an ameoba to plants to animals to the universe itself, we find
incredible order everywhere. This begs the obvious questions: Where did
this order come from — how could it have originated? One of the fundamental
lessons of cellular automata is that they are capable of self-organization.
From simple local rules that say nothing whatsoever about global behavior,
we find that global order is nonetheless preordained and manifest in so many
of the systems that we will consider. In the words of theoretical biologist,
Stuart Kauffman, it is, “order for free”. It is this order for free that allows
us to emulate the order we find in Nature.

Related to the creation of order is the notion of complexity. How can a
finite collection of chemicals make up a sentient human being? Clearly the
whole is greater than the sum of its parts. How can termites build complex
structures when no individual termite who starts a nest even lives to see its
completion? The whole field of complexity has exploded over recent years
and here too cellular automata play their part. One of the most endearing
creatures that we shall encounter is Langton’s Ant in Chapter 6, and this
little creature will teach us a lot about complexity.

Of course it is no longer possible in a single text to cover every aspect
of the subject. The field, as Wolfram’s manuscript count shows, has simply
grown too large. So this monograph is merely an introduction into the
brave new world of cellular automata, hitting the highlights as the author
sees them. A more advanced and mathematical account can be found in the
excellent book by Ilachinski [2002].

One caveat concerning the applications of cellular automata. We are
not making any claims that CA models are necessarily superior to other
kinds of models or that they are even justified in every case. We are merely
presenting them as one way of looking at the world which in some instances
can be beneficial to the understanding of natural phenomena. At the very
least, I think you will find them interesting. Even if the entire universe
is not one monolithic cellular automaton, as at least one scientist believes,
the journey to understanding that point of view is well worth the price of
admission.

Finally, I wish to thank Auckland University students Michael Brough,
Peter Lane, and Malcolm Walsh who produced many of the figures in the
text from their cellular automata models and Samuel Dillon who produced
the Rule 30 data encryption figures. Their assistance has been invaluable
as their programming skills far exceed that of my own. I also wish to
thank my daughter-in-law Yuka Schiff for many of the fine graphics and
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my friend Michael Parish for introducing me to the facinating world of
bees and Maeterlinck’s classic monograph. A large debt of gratitude is
owed to those who read the manuscript and provided many helpful sug-
gestions: students Michael Brough and Dror Speiser, as well as profes-
sors Cristian Calude, David Griffeath, G. Bard Ermentrout, and Birgitt
Schönfisch. Several of the CA images were produced with the special-
ized software of Stephen Wolfram’s New Kind of Science Explorer which
can be purchased from the website: http://www.wolframscience.com/, and
Mirek Wojtowicz’s MCell program which can be downloaded at his website:
http://www.mirekw.com/ca/.
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Chapter 1

Preliminaries

1.1 Self-Replicating Machines

The origins of cellular automata can be traced back to mathematician John
von Neumann’s attempt to create a self-replicating machine. In 1948, von
Neumann read a paper at the Hixon Symposium in Pasadena, California
(‘The General and Logical Theory of Automata’), in which he outlined,
among other things, a plan for a self-replicating machine (von Neumann
actually refers to such a machine as an automaton). The question von
Neumann addresses is this: “Can one build an aggregate out of such elements
in such a manner that if it is put into a reservoir, in which float all these
elements, each of which will at the end turn out to be another automaton
exactly like the original one?” He then proceeds to outline the following
argument to show that this is entirely feasible in principle.

One starts with a machine (universal constructor), A that has the ability
to construct any other machine once it is furnished with a set of instructions
denoted by I. Machine A is envisaged to float in the reservoir of liquid
with all the necessary component parts that it requires for any particular
construction. We now attach to our machine A, another component called
B, that can make a copy of any instruction that is supplied to it. A final
component, labeled C, von Neumann called the “control mechanism” which
has the functions of initiating A to construct a machine as described by the
instructions I, and then cause B to make a copy of the instructions I and
supply the copy of the instructions to the machine newly formed by A. Then
the entire apparatus can be denoted by M = A+B + C.

To get things rolling, we furnish a machine M with a set of instruc-
tions for constructing itself, IM , and call the resulting system M 0. It is this
machine, M 0, that is capable of replicating itself. For, C initiates the con-
struction of M by A, it then has B make a copy of the instructions IM and
these are furnished to M to form the system M 0 once again. And so on.

1



2 CHAPTER 1. PRELIMINARIES

It is the multiple use of the instruction set IM that is crucial here. Firstly,
the instructions must be followed by A, secondly they must be copied by B,
and lastly the copy must be attached to the machine constructed by A.

Overall, the copying mechanism is similar to the replication of living
cells whereby the DNA (instructions) are first copied by cells preceding cell
division. Interestingly, Christopher Langton [1986] comments: “Since he
[von Neumann] was able to demonstrate that such a machine can exist,
it becomes plausible that many, perhaps all, of the processes upon which
life is based are algorithmically describable and that, therefore, life itself is
achievable by machines”. The study and implementation of these processes
has become the domain of the newly emerging subject of artificial life and
we shall encounter many instances of it throughout this book.

Von Neumann had now shown that a self-replicating machine was estab-
lished in principle, but at the time of his lecture, did not suggest how one
could be implemented. The technology of the day simply was not capable
of such an implementation.

According to received wisdom, it was the Polish-American mathemati-
cian Stanislaw Ulam who suggested to von Neumann that he should try
constructing his self-replicating automaton using the conceptual framework
of what are now known as cellular automata. The resulting system outlined
in the early 1950s and later completed after von Neumann’s death by Arthur
Burks was a universal Turing machine embedded in a 2-dimensional cellular
lattice that had 29 states for each cell and a 5-cell neighborhood (now known
as a von Neumann neighborhood) that required ∼200,000 cells. However, it
was never actually implemented.

A simpler 8-state self-replicating cellular automaton was created by Codd
[1968] with some computer assistance. Then in 1984, Christopher Langton
demonstrated self-reproduction in an 86 cell looped pathway using 8 states
with a 5-cell neighborhood, which did not exhibit the feature of universal
construction as did the von Neumann and Codd machines, but simply re-
produced itself. Langton’s loop has a construction arm attached to it and
consists of an outer sheath of cells that remain in a fixed state and an in-
ner sequence of ‘DNA’ cells in various states that circulate around the loop
(Figure 1.1). At the junction of the loop and arm, the ‘DNA’ cells are repli-
cated: one copy goes back around the loop and the other copy travels down
the construction arm where it is translated at the tip of the arm spawning
new growth..

Once a side of the offspring loop is fully generated, the growth pattern
makes a left turn and propagates another side and so on until the offspring
loop is complete. Then the connection between parent and offspring is sev-
ered (cutting the umbilical cord so to speak) and both parent and offspring
propagate separate construction arms to begin the process anew (Figure
1.2).

Construction continues in this fashion with each new loop generating at
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Figure 1.1: The Langton looped pathway in its initial configuration. The
different colors represent the different cell states.

Figure 1.2: The parent (left) and offspring loops each propagating new con-
struction arms after their connection has been severed.

least one new offspring. When a loop tries to extend an arm into a region
already occupied, it will retract the arm and the ‘DNA’ of that loop is erased
and the loop becomes inert. The Langton loops will continue this replication
process indefinitely expanding outward with time and filling the plane.

Although each loop contains the same ‘DNA’ sequence, the number of
times it can replicate itself will depend on the space available in its imme-
diate environment.

A somewhat simpler self-replicating loop that dispenses with the outer
sheath but also having 8 states was constructed by Reggia et al. [1993].
A simple and brief proof of the existence of a self-replicating CA machine
capable of universal computation was given by A.R. Smith [1991]. Another
approach was taken by Morita and Imai [1997] who devised cellular configu-
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Figure 1.3: The replication continues indefinitely filling up the plane with
loops.

rations that were able to reproduce by self-inspection rather than from any
stored self-description.

In the realm of actual self-reproducing machines, a primitive form was
demonstrated by Roger Penrose (the well-known physicist) and his father
Lionel back in 1957 using a set of flat shaped wooden blocks that produced
copies of a particular coupling when the blocks were shaken in a box en-
closure. In 2001, Greg Chirikjian of Johns Hopkins University developed a
LEGO robot that drove around a track and assembled modules to make a
copy of itself. Recently, Hod Lipson and colleagues [Zykov et al. 2005] at
Cornell University have created a self-replicating robot consisting of a tower
of cubes that can swivel around and pick up other cubes and stack them to
create another tower identical to itself. According to Lipson, this opens up
the possibility of using robotic systems in future space travel that can repair
themselves.

An overview of fifty years of research on self-replication can be found in
the article by M. Sipper [1998] who also created an interactive self-replicator
(Stauffer and Sipper [2002]). Certainly the notion of self-replication has
proved enormously popular with the creators of computer viruses.

1.2 Grand Turing Machines
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In his seminal 1936 paper on computable numbers (‘On computable num-
bers, with an application to the Entscheidungsproblem’), English genius
Alan Turing discussed a very general type of computer that has become
know as a Turing machine. This machine is theoretical in nature and to-
day still finds applications in computer science. In the words of computer
scientist Edward Fredkin, “It was a way to formalize all the things that a
mathematician could do with a pencil and paper”. It can be thought of as
a mechanical ‘head’ that has an infinite strip of tape in both directions that
lies beneath it. The head can both read and write onto the tape. The head
is allowed to exist in a finite number of internal states, say k. The state of
the head changes by interacting with the input from the tape beneath it.
The tape is divided into an endless succession of square cells in which either
a number ‘1’ is written or the cell is blank which we interpret as being the
number ‘0’. While the tape is infinite in length, there can only be a finite
number of cells containing the number ‘1’. The remaining cells must all
be blank. The head reads just one such cell at a time — the one directly
beneath it. Upon the head reading the value ‘0’ or ‘1’ of this cell, it either
replaces this value with a ‘1’ or ‘0’ or with the same symbol. The head then
moves either one square to the right or to the left (or not at all) and goes
into one of its other allowable states. It then repeats the above sequence
for each cycle of the machine. The new state of the head, the value the
head gives to a particular cell, and the movement of the head left or right
are all governed by some underlying set of instructions — the state transition
function. There are also special starting and halting states. The output is
written on a portion of the tape that can be read by an observer after a halt
state has been reached.

As an example, let us assume that the head has just two allowable states
1 and 2, with a state transition function given by the format:

(Head State, Cell State) −→ (Head State, Cell State, Move)

specifically, say:

(1, 1) −→ (2, 0, 1); (1, 0) −→ (2, 1, 1); (2, 1) −→ (1, 0,−1); (2, 0) −→ (1, 1,−1).

These rules could also be depicted in graphical form of Figure 1.5, where
the Head State 1 = H and Head State 2 = N.

So, this would mean that if the HS = 1 and is on a cell with CS = 1,
then the HS becomes 2, the CS is changed to 0 and the head moves 1 cell
to the right along the tape, and so forth. We can represent the evolution of
this Turing machine by letting each step be depicted in a vertical downward
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Figure 1.4: An idealized version of a Turing machine with the head reading
the input of the tape below. The entire mechinism can move either one
square to the right or left.

direction with moves of +1 being to the right and −1 being to the left.
Thus the above Turing machine would evolve as in Figure 1.6 from an
initial condition HS = 1, CS = 0.

Via the preceding rules, (1, 0) −→ (2, 1, 1), so that the HS is changed
to 2, the initial cell state is changed to CS = 1, and the head moves one
cell to the right. This state of affairs is denoted on the second line down,
where we have the initial cell in state 1 (black), and the head (in HS = 2)
has moved over one cell to the right, over a cell in state 0 (white). Next we
find that: (2, 0) −→ (1, 1,−1), meaning in that the HS now becomes = 1,
the CS becomes 1, and the head moves one cell to the left, directly over the
initial cell (which was black from before). Now the HS = 1 and CS = 1, so
we use: (1, 1) −→ (2, 0, 1), which alters the head to HS = 2, the cell state
changes to CS = 0, and the head moves one cell to the right again (which
also was black from before). And merrily on the head goes, in this simple
case never moving beyond the first two cells, and continually repeating its
actions in a four step cycle.

One question that one may ask about any particular Turing machine
is, given a particular input, will the machine stop? This general question
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Figure 1.5: Graphical form of the Turing machine state transition function
given in the text.

is known as the ‘halting problem’ and it was shown by Turing himself that
there is no way in principle to decide whether any particular Turing machine
will stop or not. It may be noted that this result has ramifications to the
whole field of mathematics itself.

Many mathematical questions can be posed in the language of whether
or not a specific Turing machine will halt or not. For example, Opperman’s
conjecture states that for any n > 1, between the numbers n2 and (n+ 1)2

one can always find a prime number. For example, between 32 = 9 and
42 = 16, lies a prime, in fact two in this case, 11 and 13. As the integers
n start to get larger and larger, the number of primes starts to thin out
so there is always a possibility that there will not be sufficient numbers of
primes to fit between every n2 and (n + 1)2. Fortunately, n2 and (n + 1)2

spread out too. In spite of the elementary nature of this conjecture, no one
has been able to prove or disprove it.

We could set up a Turing machine that would check to see if there was
indeed a prime between every pair of numbers n2 and (n + 1)2, and we
could instruct the machine to stop if for some pair a prime was not found.
If the Turing machine does stop, then we have produced a counterexample
to the Opperman conjecture and it is false. If somehow we knew that this
Turing machine never stopped, then we would know that the Opperman
conjecture was indeed true. But being able to solve the halting problem
for this particular Turing machine is equivalent to determining the truth or
falsity of the Opperman conjecture.

This means that there can be no general algorithm for deciding the truth
or falsity of mathematical problems, which was the ‘Entscheidungsproblem’
in the title of Turing’s paper. This problem was first enunciated by the
famous German mathematician, David Hilbert, at the 1900 International
Congress of Mathematicians and was included in a list of 23 mathematical
problems to be considered over the ensuing new century. This problem
asked whether or not there was some general mechanical procedure that
would be able to determine the truth or falsity of a large body of well-
defined mathematical problems such as the Opperman conjecture. And as
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Figure 1.6: The evolution of the Turing machine example in the text starting
with an initial condition HS = 1, CS = 0.

we have just seen, Turing showed this was not possible.
Turing machines with different sets of instructions are capable of do-

ing different tasks, while there are some that are capable of emulating the
performance of any other Turing machine. These are universal Turing ma-
chines and are said to be capable of performing universal computation. They
can in fact do any calculation that is computable. Actually, the ubiquitous
personal computer is effectively a universal Turing machine. Although a per-
sonal computer does not have an infinite storage capacity, it is essentially
large enough to be considered so. Until recently, the simplest universal Tur-
ing machine was due to Marvin Minsky who in 1962 produced a universal
Turing machine with 7 head states and 4 cell states. Based on the universal-
ity of Rule 110 (Section 3.5), Wolfram [2002] reduced this to just two head
states and 5 cell states.

1.3 Register Machines

Computers basically perform operations on numbers that are stored in what
are called registers. A (Minsky) register machine is just an idealization of
the basic manipulations that are performed on the numbers contained within
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the registers of a real computer. In order for the computer to perform a
simple calculation such as the addition of two numbers, it must take the
numbers stored in one of the registers and combine it with the number
stored in another register. A register machine has three types of instructions
INC(rement), DEC(rement) and HALT. The INC instruction increments by
1 the number stored in a particular register and then the machine proceeds
to process the next instruction. The DEC instruction has two components:
it decrements by 1 the number stored in a particular register and then it
will ‘jump’ to another specifically designated instruction. But there is one
caveat here. The number in a register cannot be less than zero, so if the value
of zero is stored in a register and that register is to be decremented, then
the instruction is ignored and the machine proceeds to the next instruction.
Finally, the HALT instruction does simply that — it halts the operation of
the register machine.

Figure 1.7: An example of a simple register machine with two registers and
five instructions. Light gray indicates register 1 and dark gray register 2.
An increment instruction is denoted by I and a decrement by J together
with the path of the jump. The output after each step is at the right with
the 1st column displaying the contents of register 1 and the 2nd column the
contents of register 2.

Marvin Minsky [1967] showed that all one needs is just two registers to
emulate a universal Turing machine.

1.4 Logic Gates

Logical statements are of the form: “April comes before May”, “3 is less
than 2”, “All men are mortal” and are always considered to be either true
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or false, and as such, are given a truth value T (true) or F (false). This is a
somewhat different philosophy from that normally assumed for statements
in everyday conversation, but it is nevertheless the one adopted when dis-
cussing statements in a formal logical framework. We will denote declarative
statements by capital letters such as:

P : All men are mortal.
Q: Socrates was a man.
Logical statements can be combined using connectives to form compound

statements. The conjunction of statements P and Q is denoted by P ∧Q .
Consequently, if P and Q are as above, then P ∧ Q is the statement: “All
men are mortal and Socrates was a man”. The disjunction of P and Q is
denoted by P ∨Q and for the above P and Q, then P ∨Q represents: “All
men are mortal or Socrates was a man”, allowing for the possibility of both
statements being true. The negation of a given statement P is denoted by
¬P . Thus if P represents the statement: “All men are mortal”, then ¬P
represents the statement: “It is not the case that all men are mortal”.

The truth value of the Boolean relations ¬P , P ∧ Q , and P ∨ Q is
determined by the following principles and depends on the truth value of
the statements P,Q according to the following Truth Table:

P Q ¬P P ∧Q P ∨Q
T T F T T
T F F F T
F T T F T
F F T F F

Thus if the statement P : “All men are mortal” is true, then the statement
¬P : “It is not the case that all men are mortal” is false. Note that the
conjunction P ∧ Q is true only when both P and Q are true, whereas the
disjunction P ∨Q is true when either P or Q is true (or both are true).

At the heart of any computer system is the construction of the ‘logic
gates’ NOT, AND, OR that are simply implementations of the input and
output of the preceding Truth Table. These gates regulate the flow of a
current through the system where T symbolizes the state 1 or ‘current on’
and F symbolizes 0 or ‘current off’ as below (actually, ‘high’ voltage and
‘low’ voltage, but that is of no consequence.

P Q ¬P P ∧Q P ∨Q
1 1 0 1 1

1 0 0 0 1

0 1 1 0 1

0 0 1 0 0
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Figure 1.8: Line segment with two self-similar smaller segments and scale
r = 1

2 .

1.5 Dimension

Most people probably realize that we live in a 3-dimensional space and that
a plane is 2-dimensional, a line 1-dimensional and a point 0-dimensional.
These are the Euclidean dimensions of our everyday world. Various other
dimensions have arisen in mathematics and in the sequel we will discuss
several of them. Of special relevance are the types of dimension that have
non-integer values used to study fractals and chaotic attractors.

Let us consider a line segment of fixed length and divide it in half. Then
each half is a replica of the original except they have been scaled down by
a factor of r = 1

2 . We call r the scale and observe that the number of self-
similar segments N , which is 2 in this case satisfies the relation NrD = 1,
where D = 1 is the dimension of the line.

In dimension two, if we take a square and divide it up into N = 4 self-
similar smaller sized squares, the scale r of a side of a square is again 1

2 and
we find again that 4(1

2)
2 = 1, that is, NrD = 1, where here the dimension

D equals 2.

Figure 1.9: Square with four self-similar smaller sized squares and scale
r = 1

2 .

Likewise for D = 3, a cube can be divided up into N = 8 self-similar but
smaller sized cubes (Figure 1.10) with the scaling factor r = 1

2 and again
8(1

2)
3 = 1, so that NrD = 1 holds in all three cases. Since N = r−D, we say
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that N obeys a power law.

Figure 1.10: Cube with 8 self-similar smaller sized cubes with scale r = 1
2 .

Using the relation NrD = 1 and solving for D we find that

D =
logN

log (1/r)
. (1.1)

This is taken to be the definition of the similarity dimension and it
agrees with the Euclidean dimension of a line, square, and cube.

An example of a curve that does not have a proper integer dimension
is the so-called Koch curve. It was given by Helge von Koch in 1904 as
an example of a continuous curve that had no tangent at any point. It is
constructed as follows. Starting with a line segment say of some unit length,
replace the middle third of the line segment with a two-sided triangle having
sides of length 1/3 as indicated in Figure 1.11.

We treat each resulting straight-line segment as above, replacing it with
a two-sided triangle and continuing with this process ad infinitum. The limit
of this process is the Koch curve that has no straight-line segments at all
and no tangent at any point. Since the length of the curve grows by a factor
of 4/3 at each step, the limiting length is infinite. Moreover, since each line
segment is replaced by N = 4 self-similar segments and the scale for these
segments is r = 1/3, the similarity dimension is D = log 4/ log 3 ' 1.262.
This dimension being greater than one gives some indication that the curve
in some sense takes up more space than an ordinary line. Any figure that
has a non-integer dimension, is called a fractal, and the similarity dimension
is also referred to as the fractal dimension.
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Figure 1.11: Starting from a straight line segment, here are the first four
steps leading to the production of the Koch curve. Image courtesy G.W.
Flake, The Computational Beauty of Nature.

Fractals have details at arbitrarily small scales and when that detail is in
the repeated form of the whole, they are self-similar. This notion has been
very useful in the computer generation of many artificial life forms (cf. eg.
Mandelbrot [1982], Oppenheimer [1989]) as in the fern leaf (Figure 1.12)

Another mathematical construction that is rather fascinating and also
has a non-integer similarity dimension is the famous Cantor set, due to
the German mathematician Georg Cantor. We start with a line segment of
length 1 and remove the middle third of it, (1/3, 2/3), leaving the two closed
intervals, [0, 1/3]and [2/3, 1].

Next, remove the middle third of these two intervals, that is remove
(1/9, 2/9) and (7/9, 8/9). This leaves four closed intervals similar to the
original, and we again remove the middle third of each, and continue on
indefinitely as indicated in the figure above. The limiting set, which consists
of nothing but the endpoints of intervals, but no interval itself, is the Cantor
set. Interestingly, if we total up the lengths of the line segments that were
removed, we obtain:

1
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2

9
+
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27
+ ... =
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1

3

¶Ã
1 +
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3
+
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2

3

¶2

+ ...

!

=
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1

3

¶Ã
1

1− 2
3

!
= 1,

since the infinite sum is a geometric series. Thus we have removed from the
unit interval an amount totaling 1 in length, but have in fact left behind
an uncountable number of points in the process! As for the dimension of
Cantor’s barely noticable set of points, note that r = 1/3 and N = 2, so
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Figure 1.12: A fractal leaf form created using self-similarity. Courtesy Peter
Oppenheimer, The Artificial Menagerie.

that the similarity dimension is D = log 2/ log 3 ' 0.631. Even though the
Cantor set has the same number of points as a solid line, its dimension is
less than 1 because in some sense we have removed so much. On the other
hand, a finite set of points, or even a countable set of points has similarity
dimension zero. You can see why mathematicians just love the Cantor set.

Our final example will be encountered again when we talk about one-
dimensional cellular automata and is the so-called Sierpiński triangle. We
start with an equilateral triangle and remove an inverted version of a similar
triangle having scale r = 1

2 as in Figure 1.14. This results in N = 3 similar
triangles from which we again remove an inverted version of a similar triangle
having scale r = 1

2 . Continuing in this way results in the Sierpiński triangle
having similarity dimension D = log 3/ log 2 ' 1.585.

1.5.1 Capacity Dimension

In a similar vein to determining the length of a coastline, let us consider the
capacity dimension of a fractal-like object given by
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Figure 1.13: The construction of the Cantor set whereby the middle third of
each remaining line segment is removed. Image courtesy G.W. Flake, The
Computational Beauty of Nature.

DC = lim
h→0

logN(h)

log (1/h)
. (1.2)

Here, h can be taken to be arbitrarily small and N(h) is the number of
steps of length h; to measure the capacity dimension one has to extrapolate
the data. For fractal-like objects we should have a power law relation be-
tween N(h) and h, say, N(h) = ah−DC so that logN(h) = −DC log h+log a,
and this relationship holds for all arbitrarily small h. Then solving for DC
yields

DC =
logN(h)

log (1/h)
+

log a

log (1/h)
,

and letting h −→ 0 kills off the last term in the preceding expression (since
a is constant) and yields the desired equation. What this tells us is that
the formulation in Equation 1.2 is just a means to get our hands on the
exponential part of any power law relation between N(h) and h. In this
instance we will get the same value for DC as we did for the similarity
dimension of Equation 1.1

1.5.2 Kolmogorov Dimension

This is also known as the box-counting dimension and consists of a grid of
boxes that covers the figure to be measured. The log of the number of boxes,
N(β), required to cover the figure, is plotted against the log of the length
of the side of a box, β, for various box sizes. Again, a power law relation
would yield a straight line representing the data points and the line’s slope
would give the more sophisticated sounding Kolmogorov dimension, DK , of
the figure.

Just as for the capacity dimension we define DK in the analogous form,

DK = lim
β→0

logN (β)

log (1/β)
, (1.3)
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Figure 1.14: The Sierpiński triangle is the limiting case of the above figure.

where in this case N(β) is the number of boxes intersected by the figure in
question and β is the length of the side of each box.

If we consider the Cantor set and cover it with 3 bins, say [0,1/3],
[1/3,2/3] and [2/3,1], then we see that only two of these contain points of the
Cantor set since the ‘middle third’ is void by definition and we can count the
endpoints 1/3 and 2/3 as belonging to the first and third bins with the other
points of the set. As β = 1/3, we see that logN(β)/ log (1/β) = log 2/ log 3,
and in general, taking the number of bins to be 3n, we find that exactly 2n

boxes contain points of the Cantor set, so that

logN(β)

log (1/β)
=
log 2n

log 3n
=
log 2

log 3
' 0.631,

which is just the similarity dimension that was determined previously.

1.6 Information and Entropy

There is some kind of mystique about entropy.

Jean Bricmont
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Figure 1.15: This is a plot of the log of the number of boxes needed to cover
the Sierpiński triangle vs. the log of the box size in mm. The slope of the
straight line gives the Kolmogorov dimension of 1.7706, in reasonably close
agreement with the similarity dimension of 1.585 determined previously.

The mathematical treatment of information began with the work of
Claude Shannon (1949) and is based on certain probabilities. If an event is
unlikely to occur (i.e. has low probability) then the amount of information
obtained about its occurrence is relatively high, whereas if the event has a
high probability of occurring, then the amount of information regarding its
occurrence is relatively low. If the probability of the event in question is
denoted by P , then the information it conveyed by its occurrence is defined
to be

I = log2 (1/P ) .

Although we have taken base 2 here, it can vary depending on the con-
text, but for our purposes we will use base 2. For example, information in a
computer is stored as sequences of 0’s and 1’s, offering two possibilities for
each digit. Each digit, which has a 1 in 2 chance of appearing thus holds
log2(2) = 1 bit (binary digit) of information. Likewise, if you toss a coin
and a heads turns up, then 1 bit of information is conveyed. Or, if you
roll a six-sided die with each side having a probability of 1/6 of turning up
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and you roll a 5, then the information conveyed equals log2 (6) = 2.59 bits
(binary digits) of information. In fact, when any face turns up upon rolling
the die, 2.59 bits of information are conveyed.

When we are dealing with events that have unequal probabilities, then
the total amount of information is a weighted sum with the weight given
to each contribution determined by the probability of its occurrence. For
instance if P1, P2,..., PN are the probabilities of N individual outcomes,
subject to:

Pn
i=1 Pi = 1, then the information I of the entire system is

given by

I =
NX
i=1

Pi log2 (1/Pi) . (1.4)

I is in general positive but can be zero if all but one of the probabilities
are zero and the remaining one equals 1. I becomes a maximum when all
the probabilities Pi are equal to 1/N and the maximum value of I is then
the sum of N quantities of 1

N logN , giving Imax = logN .
This expression for information is formally related to another concept of

entropy that originated from the work of Rudolf Clausius in 1865 as a mea-
sure of the amount of irreversible heat loss of a system and who formulated
the Second Law of Thermodynamics as the notion that the thermodynamic
entropy of a closed system increases to a maximum. This has led to the
belief in the eventual so-called ‘heat-death’ of the universe, whereby the
universe itself will reach a state of maximum entropy where all matter is
cold and disordered. The second law was formalized by Bolzmann in 1872
who described entropy (H) by the mathematical formulation

H = −K
NX
i=1

Pi loge Pi.

Boltzmann was interested in describing the dynamics of a gas and here
the Pi represent the probabilities of gas molecules being in one of N partic-
ular states and K is the Boltzmann constant. With K = 1 we formally have
the information I (except for a change of base) formulated by Shannon, and
in fact, I is also referred to as entropy or information entropy. The con-
cept of entropy has also been associated with ‘disorder’ and ‘randomness’
whereby high entropy is equivalent to a high degree of disorder (randomness)
and low entropy is equivalent to a low level of disorder (non-randomness). In
the sequel we will invoke the notion of entropy in this sense. It is sometimes
claimed that biological systems violate the Second Law of Thermodynamics
because they are ordered systems that arose from less ordered ones, but this
is incorrect as biological systems are open to the environment and there-
fore cannot be considered closed. The Second Law describes irreversible
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processes (see Section 3.7) that increase in entropy along an arrow of time.
Entropy is embraced by many other scientific disciplines, and has had a col-
orful and controversial history which continues to this day. According to
Denbigh and Denbigh (1985), “A number of scientists and information the-
orists have maintained that entropy is a subjective concept and is a measure
of human ignorance. Such a view, if it is valid, would create some profound
philosophical problems and would tend to undermine the objectivity of the
scientific enterprise as a whole.” However, the authors conclude that, “...
thermodynamic entropy is fully objective... and the same must apply to any
other ‘entropy’ which is used as a surrogate.”

There is also an information dimension associated with the informa-
tion I. Let us consider the two dimensional case in which the figure to be
measured is overlayed with a grid of n same-sized cells or bins as in the
Kolomogorov dimension. To compute the information I, each probability
Pi represents the number of figure elements in the ith box, divided by the
total number of figure elements, say N . This is just the relative frequency
of figure elements occuring in the ith box. Then I is computed according to
equation

I =
NX
i=1

Pi log2(1/Pi).

If a particular box has no figure elements in it then corresponding probability
Pi is zero and there is no contribution to the information I in this case.
Evidence suggests that I increases linearly as a function of log(1/β), where
β is the length of the side of each bin over a suitable range of values. Of
course if the bin size becomes too large and the entire figure fits into one
bin, then P = N/N = 1 and hence I = P log2 (1/P ) = 0. On the other
hand, if the bin size becomes too small, then at most one figure element lies
in any given box and each nonzero Pi equals 1/N . If we just take our sum
over the bins that are non-empty, we see that there are now N of these and
I is equal to N × 1

N log2N giving Imax = log2N , the maximum value for I.
Any further decrease in bin size gives no further increase in information but
only the same value for I.

The information dimension is given mathematically by

DI = lim
β−→0

I

log2 (1/β)
. (1.5)

To actually compute DI , one can use the usual trick of graphing I against
log2 (1/β) and the slope of the resulting straight line gives the required
dimension (See Figure 1.16).
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Figure 1.16: Here we have experimentally computed the information dimen-
sion for the Sierpiński triangle by the method explained in the text. The
value of 1.5538 is in close agreement with the mathematically determined
value of 1.585.

Note that that in the event when all the probabilities are equal, namely
each Pi = 1/N , then we found that the information became a maximum
and had the value I = logN. Substituting this into DI above gives

DI = lim
β−→0

log2N

log2 (1/β)
,

which already looks familiar and is of course the capacity dimension, DC .

1.7 Randomness

In a general sense, we say that something is random if it has no regular
pattern or that it is unpredictable. In a more technical sense, an infinitely
long sequence is random if its Shannon information I is infinite. But for
finite sequences which exist in the real world, many tests have had been
developed that verify whether or not the sequence in question shares certain
statistical properties with a hypothetical random sequence.

Some randomness like that displayed in coin-tossing, or dice throwing,
are due to an exquisite sensitivity to the initial conditions that produced
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the outcome. Moreover, it has been known since the early 20th century
that physics at the atomic level is governed by a degree of randomness such
as in the radioactive decay of the atoms of some element. Using the ran-
dom nature of quantum physics, a commercial quantum random number
generator has been recently developed (called Quantis) that fires photons
(light particles) at a semi-transparent mirror in which 50% are either re-
flected or transmitted with two detectors picking up the respective signals
to generate a random sequence of 0’s and 1’s. To many scientists, the pre-
ceding examples are considered the only true form of randomness, because
the outcome for any given event is not predictable or even repeatable. On
the other hand, some ‘deterministic’ randomness like the values of the dig-
its of π = 3.141592653... or e = 2.718281828... or

√
2 = 1.414213562 and

some of the one-dimensional cellular automata of Chapter 3, is computable
from a simple algorithm. Or as we note in the next chapter, the random
behavior in the evolution of the logistic equation when a = 3 is predictable
on short time scales, but appears to be random in the long term. However,
this sort of deterministic randomness is considered only pseudorandom by
many because the output is always computable. Even the random numbers
generated by computers are only pseudo-random since a computer is a de-
terministic system. According to my colleague, computer scientist Cristian
Calude, given a sufficient amount of time and money, he would gladly com-
pute the Nth digit of any of the above three numbers for any value of N.
True random number generators like the Quantis are useful in cryptography
and the scientific modelling of certain complex systems. However, for our
purposes it will not be necessary to make any distinction between a truly
random sequence and a pseudorandom one.

One topic that is intimately connected with cellular automata and shares
many of its features is that of dynamical systems, which we take up in the
next chapter.
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Chapter 2

Dynamical Systems

... it may happen that small differences in the initial conditions produce very
great ones in the final phenomena.

Henri Poincaré

One of the exciting new fields to arise out of 20th century mathematics is
that of dynamical systems. Topics like ‘chaos’ and ‘strange attractors’ have
become nearly household words even if most people do not know their precise
meaning. Dynamical systems arise in the study of fluid flow, population
genetics, ecology, and many other diverse fields where one seeks to model
the change in behavior of a system over time. Several of the global features
of dynamical systems such as attractors and periodicity over discrete time
intervals, also occur in cellular automata, and thus it is worthwhile to have a
working knowledge of the former. Indeed, cellular automata are dynamical
systems in which space and time are discrete entities. We present here a brief
summary of the salient features of dynamical systems and for the interested
reader there are many fine texts on the subject (eg. Devaney [1989], Elaydi
[2000], Sandefur [1990], Williams [1997]).

Let us suppose that we are interested in the size of some particular sea-
sonally breeding insect population whose generations do not overlap. Denote
the initial population size by x0, and after the first year by x1, after the sec-
ond year by x2 and so on with the population after the nth year denoted by
xn. Since the population size in any given year determines what it will be in
the following year, we can write this deterministic feature of the population
size in the form of a dynamical system:

xn+1 = f (xn) , n = 0, 1, 2, 3, ...

where f signifies some mathematical function. The set of all the iterations
xn, n = 0, 1, 2, 3, ... is known as the orbit or trajectory of the dynamical
system. So for example, if the population size happens to triple from one
generation to the next, we would have the relation

23
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xn+1 = 3xn, n = 0, 1, 2, 3, ...

to describe the changing population size from one generation to the next.
More generally, a linear growth model would be

xn+1 = axn, n = 0, 1, 2, 3, ...

where if a = 1 the population remains static, and if a > 1 or a < 1 the
population at each generation either grows or declines at a constant rate
respectively.

More realistic equations taken from the biological literature are:

xn+1 = (1 + a)xn − bx2
n, n = 0, 1, 2, 3, ... (2.1)

and

xn+1 = xne
[c(1−xn)],

where the parameters a, b and c are constants which have values restricted
to a certain range that allow one to ‘tune’ the behavior of the dynamical
system by varying these values appropriately. These parameters in some
sense reflect the environmental conditions that the dynamical system is op-
erating in. Equation 2.1 is referred to as the logistic equation and is used
to model population growth, with the term b functioning as a “damping
factor” because the term −bx2

n inhibits the growth of the population. These
equations are nonlinear in the sense that the output is not proportional to
the input as in the preceding system. We will consider a simplified form of
the logistic equation for which b = a, namely:

xn+1 = (1 + a)xn − ax2
n, n = 0, 1, 2, 3, ...

where a is a parameter in the range 0 < a < 3. Analogous behavior arises
in the parameter space −3 < a < 0. This dynamical system will serve to
model all the characteristic features that we wish to exhibit.

First however, I cannot resist presenting an example of this model that
features in James T. Sandefur’s book [1990]. Suppose that xn represents
the fraction of those people on Earth who believe in alien beings at time
period n, so that the quantity (1 − xn) is the fraction of non-believers.
Furthermore, assume that in each time period the believers are able to win
over a proportion of non-believers (or vice-versa) and that the proportion
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depends on the interaction (i.e. product) of the two groups: xn(1 − xn).
This now can be represented as the dynamical system

xn+1 = xn + axn(1− xn),

which is just the logistic equation above. The parameter a can be positive,
indicating that the belief in aliens is increasing, whereas a < 0 indicates
belief is ebbing.

In order to get this system underway, let us take the value a = 1 and
some initial value, say x0 = 0.25 and compute the subsequent iterations xn.
So for example,

x1 = 2x0 − x2
0 = 2(0.25)− (0.25)2 = 0.4375,

and furthermore: x2 = 0.6836, x3 = 0.8999, x4 = 0.9900, x5 = 0.9999, x6 =
1.0000, x7 = 1.0000, x8 = 1.0000, ... with all subsequent iterations having the
value xn = 1.0000. These values represent the orbit of the dynamical system
and in this instance we refer to the value 1 as being an attractor. Taking some
other initial value, say x0 = 0.5, we find that the iterations: x1 = 0.7500,
x2 = 0.9375, x3 = 0.9961, x4 = 1.0000, x5 = 1.0000, x6 = 1.0000... are once
again attracted to the value 1. In fact, over the entire permitted range of
initial values where our dynamical system operates, the iterations will be
attracted to the value 1. What’s more, by allowing the parameter a to vary
over the range 0 < a < 2, we find that the value x = 1 is still an attractor
for any sequence of iterations. The set of points that evolve to an attractor
are said to lie in its basin of attraction.

To examine the nature of the attractor further, let us write our dynamical
system as an ordinary function, namely

f(x) = (1 + a)x− ax2,

so that

f(xn) = (1 + a)xn − ax2
n = xn+1.

With a = 1 the preceding attractor x = 1 has the property that f(1) = 1.
Any value x that has the property f(x) = x is called a fixed point of the
function f. Are there any other fixed points of our function? Setting

f(x) = (1 + a)x− ax2 = x,
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Figure 2.1: Here we have taken a = 1.9 and initial value x0 = 0.35. The
iterations are seen to converge to the value 1, the attractive fixed point.

and solving for x, we find that x = 0, 1 are the only fixed points. But these
two fixed points are qualitatively different. While x = 1 is a fixed point
attractor (also called a stable fixed point), the point x = 0 is a fixed point
repeller (or unstable fixed point). This means that the iterates will always
be repulsed from the vicinity of x = 0, no matter how close to it they may
start (Figure 2.2).

There is a derivative test we can perform on the function f which can tell
us a priori what type of fixed point we have. In particular, if |f 0(x)| < 1 at
a fixed point x, then it is an attractor and if |f 0(x)| > 1, the fixed point is a
repeller. Note that we have f 0(x) = 1+a−2ax, so that whenever 0 < a < 2,
|f 0(0)| = 1+ a > 1, indicating a repeller at x = 0, and |f 0(1)| = |1− a| < 1,
indicating an attractor at x = 1.

For the region 2 < a < 2.449, we obtain an attractor of period two, or
2-cycle with the dynamical system oscillating between two fixed values as
in Figure 2.3 .

In order to analyze the phenomenon of the 2-cycle, let us look at the
function

f2(x) = f(f(x)),

in other words,
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Figure 2.2: Here we have taken an initial value to be x0 = 0.001 showing
the repulsive nature of the value x = 0 and the attractive nature of x = 1
whenever 0 < a < 2.

xn+2 = f
2(xn).

Let the two values that the function f oscillates between be x∗1 and x
∗
2, so

that f(x∗1) = x
∗
2 and f(x

∗
2) = x

∗
1. Then

f(f(x∗1) = f(x
∗
2) = x

∗
1,

and likewise

f(f(x∗2) = f(x
∗
1) = x

∗
2,

which says that x∗1 and x
∗
2 are fixed points of the function f

2. In order to
check the derivative condition at x∗1 and x

∗
2 we use a mathematical technique

known as the chain-rule, which results in

d

dx
f2(x∗1) = f

0(x∗1)f
0(x∗2) =

d

dx
f2(x∗2).

Checking the derivative condition on the example of the preceding two-cycle
with x∗1 = 0.7462..., x

∗
2 = 1.1628...., and a = 2.2 we find that



28 CHAPTER 2. DYNAMICAL SYSTEMS

Figure 2.3: A 2-cycle for the parameter value a = 2.2 with the dynamical
system oscillating between two fixed values, 0.7462... and 1.1628....

¯̄̄̄
d

dx
f2(x∗1)

¯̄̄̄
=
¯̄
f 0(x∗1)f

0(x∗2)
¯̄
=

¯̄̄̄
d

dx
f2(x∗2)

¯̄̄̄
= 0.159... < 1.

Basically what this means is that if the initial point x0 starts out near the
fixed point x∗1 than the even indexed iterates of the orbit will converge to
x∗1 and the odd indexed iterates will converge to the other fixed point, x

∗
2.

Clearly if x0 starts out near x
∗
2 then the reverse happens. Periodic behavior

is also found in certain cellular automata as will be pointed out in the sequel,
although it is not such a significant feature as it is in dynamical systems.

Gradually increasing the parameter a, the 2-cycle is followed by a 4-
cycle, 8-cycle, etc. Each of these cycles originate for a in some increasingly
narrow band of values.

We can illustrate the behavior of our dynamical system by plotting the
parameter value along one axis and plotting the values of the attractor
along the other. At certain critical values of the parameter a, the dynamical
system undergoes a bifurcation in the values generated and this produces a
bifurcation diagram as depicted in Figure 2.5. One such value was a = 2,
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Figure 2.4: Here we have an attractor of period four or 4-cycle with a = 2.5
showing how the system oscillates between four distinct values.

whereby the dynamical system went from having a stable attractor (at x =
1) when 0 < a < 2 to a 2-cycle for values of a slightly larger than 2.

When 2.57 < a ≤ 3, the period doubling behavior of our dynamical sys-
tem breaks down and we enter the chaotic regime. Here there are infinitely
many initial values x0 that yield aperiodic orbits, that is, the iterates xn
wander erratically over a fixed interval. Of course, these can be difficult
to distinguish from cycles with very long periods. For example, there is an
odd period 3-cycle at a = 2.8284, which happens to exhibit its own period
doubling (a 6-cycle at a = 2.845 and a 12-cycle at a = 2.848 were found).
Even period cycles also turn up in this region, eg. at a = 2.9605 we have a
return to a 4-cycle. All of these periodic cycles and infinitely more others
exist within narrow windows of the parameter space.

At the end of our parameter interval when a = 3 (and at other values
as well), our dynamical system effectively becomes a deterministic random
number generator. At this point, we have what is commonly called chaos.
One main feature of chaos is what is called sensitivity to initial conditions,
that is, if we start off with two different initial values, say x0 and y0, no
matter how close together, the resulting iterations xn and yn will eventu-
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Figure 2.5: This diagram demonstrates how the values of the attractor of
the dynamical system change as the parameter value a is varied and illus-
trates the common phenomenon of bifurcation and period doubling whereby
a heirachy of 2n-cycles are generated. The range of values of a over which
the 2n-cycle remains an attractor (i.e. stable), gradually diminishes.

ally diverge away from each other. This feature makes long term predic-
tions about the dynamical system impossible, but does allow for short term
predictions since initial values of the respective trajectories, x1, x2, ... and
y1, y2, ... will remain close. This sensitivity is nicely illustrated with the fol-
lowing experiment, where the initial values x0 and y0 only differ in the 12th
decimal place by one digit (one part in a trillion)! Yet within 40 iterations,
the respective iterations xn and yn are already widely divergent.

x0 = 0.123456789012 x0 = 0.123456789011
x1 = 0.448102419788 x1 = 0.448102419785
x2 = 1.190022343293 x2 = 1.190022343288
. .
. .
. .

x40 = 0.508890113704 x40 = 1.006900670500.
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Figure 2.6: In the chaotic regime we can find even and odd period cycles
amongst the aperiodic orbits. Here is a stable 5-cycle at a = 2.7385.

The corresponding iterations remain close at first, but gradually start to
diverge, so that by the 40th iteration they are widely divergent and continue
so thereafter. This extreme sensitivity to initial conditions is typical of a
dynamical system in a chaotic state. An analagous situation arises in Class
III cellular automata (see Section 3.8). It should be noted that when a
dynamical system is not in a chaotic mode, say for a positive value of a that
is less than 3 in the above system, then small differences in the input only
result in small differences in the output.

A chaotic dynamical system has the feature that in practice long term
predictions are impossible since one can never measure initial conditions
with infinite precision. Therefore, as in the example above, the long term
future of the iterations is in the hands of the Gods. However, it is still
possible to make short term predictions since the values of a few iterations
with slightly differing initial conditions will remain reasonably close in the
short term. Most people experience this phenomenon daily when they watch
the weather forecast on TV which is the forecaster’s attempt to predict the
behavior of a chaotic dynamical system for the next few days.

By taking two points initially very close together in this fashion, it is
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possible to measure the rate of convergence or divergence of the ensuing
trajectories. As it turns out, the rate of convergence or divergence increases
in an exponential fashion, and this rate has a value equal to aebn, where a > 0
and b are constants, and n is the number of the iteration. If b is negative,
the trajectories of two neighboring points are converging at an exponential
rate and if b is positive the values are diverging at an exponential rate. This
divergence was illustrated in the preceding example, and an example of the
case where the trajectories are converging exponentially is given by taking
a = 2.51, and initial values x0 = 0.2, y0 = 0.3. Then after 100 iterations of
each trajectory, we find that both are yielding the same cycle of four values
to 12 decimal places:

0.528209070336
1.153711733697
0.708590766456
1.226880395750.
This is simply the period four attractor we saw above in Example 2.4

Note however, that by taking yet more decimal places there will be slight
differences in the values of the iterates of the two trajectories but these
will gradually diminish as we take more and more iterations and the two
trajectories converge.

The value b is called a local Lyapunov exponent and when b < 0 neigh-
boring trajectories converge as in the preceding case, and when b > 0 tra-
jectories diverge as in the case of the chaotic attractor.

Although a glance at the data shows that the trajectory values of the
chaos example initially are steadily growing apart, there will be times further
on in the iterations when values will become closer, move apart, come closer
again, etc. So what is needed is an average taken over the entire attractor
and that is given by the Lyapunov exponent. It can be calculated by the
formula

λ = lim
N→∞

1

N

NX
n=1

log2 |dxn+1/dxn| ,

where λ will be approximated by taking N reasonably large, so that in the
case of our dynamical system we have

λ ≈ 1

N

NX
n=1

log2 |1 + a− 2axn| ,
¡
xn+1 = (1 + a)xn − ax2

n

¢
.

This gives an average global measure of the convergent or divergent
nature of the dynamical system. A nice account of the mathematical de-
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Figure 2.7: A graph of the value of the Lyapunov exponent λ for the range
of parameter values 0 < a < 3. When λ < 0 the dynamical system is stable,
and for λ > 0 the system is chaotic. Note that there are intervals of stability
in the chaotic regime beyond a = 2.5699.

velopment leading up to the formulation of this equation can be found in
Williams [2001].

λ < 0 : The iterations of the system approach a stable fixed point or a
stable periodic orbit.

λ = 0 : This occurs in our system when a = 2 at a bifurcation point.

λ > 0 : The dynamical system is unstable and chaotic as we saw was
the case in various regions of the parameter space after 2.5699 and when we
took a = 3.

One important thing to note about chaos is that it is the result of a de-
terministic system. If you start with precisely the same initial value x0 then
the resulting orbit, even though it lacks periodicity, will be precisely the
same. However, any slight deviation, no matter how small, will eventually
lead to different values appearing in the orbit.

Another interesting phenomenon occurs at the starting point of the
chaotic regime when a = 2.5699... Here we obtain what is commonly known
as a strange attractor in that the values of the orbit of the attractor form
a Cantor set. Strangely enough, this attractor does not exhibit sensitiv-
ity to initial conditions and so would not be considered chaotic although
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Figure 2.8: The strange attractor when the parameter value is set at a =
2.5699. The values of the orbit form a Cantor set.

some authors use the terms ‘strange’ and ‘chaotic’ synonymously (Williams
[1997]).

Magnifying the scale depicted in Figure 2.8 a hundred-fold (and taking
more iterations accordingly), we would see some of the ‘arms’ of the attractor
resolving into more sets of ‘arms’, and even further magnification would
resolve some the the resulting arms into yet further ones, and so forth. This
type of infinite regression is typical of the Cantor set encountered in Section
1.5.

We are now ready to enter the remarkable world of cellular automata.



Chapter 3

One-Dimensional Cellular
Automata

Cellular automata may be viewed as computers, in which data represented
by initial configurations is processed by time evolution.

Stephen Wolfram

3.1 The Cellular Automaton

We will consider a lattice network of cells that are most commonly square
in shape, but the cells can be hexagonal and other shapes as well. Each
cell can exist in k different states, where k is a finite number equal to or
greater than 2. One of these states has a special status and will be known
as the ‘quiescent state’. The simplest case where each cell can exist in two
possible states (not simultaneously), can be denoted by the symbols 0 and 1
and graphically by white and black, respectively. In more anthropomorphic
terms, we can think of cells in the 0 (white/quiescent) state as ‘dead’ and
those in the 1 (black) state as ‘alive’.

The lattice of cells can be n(≥ 1) dimensional, but most of the work
on cellular automata has been for one and two dimensions, particularly the
former. In the sequel, we shall generally consider square cells as the basic
unit of our automata. In the one-dimensional case, these form a row of
adjacent boxes. In principle, the number of boxes in any array is infinite, but
for practical purposes it will simply be taken sufficiently large to illustrate
the behavior in question, often with certain conditions imposed on the cells
along the boundaries. In some cases, intentional restrictions will be made
on the size of the lattice as well.

In order for the cells of our lattice to evolve we need time to change,
and this is done in an unusual manner by considering changes to the states

35
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of cells in the lattice only at discrete moments in time, that is, at time
steps t = 0, 1, 2, 3.... as in the ticking of a clock. The time t = 0 usually
denotes the initial time period before any change of the cells’ states has
taken place. One further ingredient that is needed for our cellular lattice
to evolve with discrete time steps is a local rule or local transition function
governing how each cell alters its state from the present instant of time to
the next based on a set of rules that take into account the cell’s current state
and the current state of its neighbors. Of course, which cells are considered
to be neighbors, needs to be precisely defined. This alteration of cell states
takes place synchronously for all cells in the lattice. The transition function
can be deterministic or probabilistic, but in most cases (some exceptions are
models discussed in the chapter on Applications) we will consider only the
former. The lattice of cells, the set of allowable states, together with the
transition function is called a cellular automaton. Any assignment of state
values to the entire lattice of cells by the transition function results in a
configuration at a any particular time step.

Figure 3.1: A two-dimensional configuration with each cell taking one of
two state values, black or white according to a particular local transition
function. The first printed reference to a system such as the above, even
using the word ‘automata’, is to be found in the paper by Ulam [1950].

Therefore the three fundamental features of a cellular automaton are:
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Figure 3.2: In this setting the neighbors of each cell change due to the
differential rotation of the rings of the polar grid that is used to emulate
galaxy formation. The black circle is an active region of star formation
which induces star formation in its neighbors with a certain probability at
the next time step. At right is a typical galaxy simulation.

• homogeneity: all cell states are updated by the same set of rules;
• parallelism: all cell states are updated simultaneously;
• locality: the rules are local in nature.

There has been some recent work on the asynchronous updating of
cell states (cf. eg. Bersini and Detour [1994], Ingerson and Buvel [1984],
Schönfisch & de Roos [1999]). This can be achieved in a number of different
ways and is discussed in Section 4.4.

Other liberties with the rules of a cellular automaton can be taken. In
one interesting example, galaxy formation has been simulated by Shulman
& Seiden [1986] using a CA approach on a polar grid whose rings rotate at
different rates (see Figure 3.2). Theirs was a simple percolation model and
achieves the basic structure of a spiral galaxy without a detailed analysis of
the astrophysical dynamics involved.

In another digression from the conventional CA definition, Moshe Sipper
[1994] considered different rules for different cells as well as the evolution
of rules over time. There will be other instances in the sequel when we
will stray slightly from strict adherence to the classical cellular automaton
definition.

A fundamental precept of cellular automata is that the local transition
function determining the state of each individual cell at a particular time
step should be based upon the state of those cells in its immediate neighbor-
hood at the previous time step or even previous time steps. Thus the rules
are strictly local in nature and each cell becomes an information processing
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unit integrating the state of the cells around it and altering its own state
in unison with all the others at the next time step in accordance with the
stipulated rule. Thus, any global patterns of the system are an emergent
feature of the effect of the locally defined transition function. That is, global
features emerge from the strictly local interaction of individual cells each of
which is only aware of its immediate environment. This emergent behav-
ior will be discussed more comprehensively in Chapter 5, but it is a salient
feature that one should always be aware of in our development of cellular
automata theory.

3.2 Transition functions

Most of the dynamical features of cellular automata can be found in the
study of the one-dimensional case. Here we define a neighborhood of a cell
c having radius (range) r as the r cells to the left of c and the same number
of cells to the right of c. Counting c itself, this neighborhood contains 2r+1
cells. In the simplest case r = 1 and k = 2 for the allowable states. In this
instance, a three-cell neighborhood with two different states 0 and 1 for each
cell can be expressed in 23 = 8 different ways. All eight neighborhood-states
with r = 1 and k = 2 are illustrated below (Figure 3.3), and in general there
are k2r+1 one-dimensional neighborhood-states..

Figure 3.3: The eight possible neighborhood-states with r = 1 and k = 2.

Let us adopt this notation: ci(t) denotes the state of the ith cell at time
t (Figure 3.4).

At the next time step, t+1, the cell state will be ci(t+1).Mathematically
we can express the dependence of a cell’s state at time step t+1 on the state
of its left-hand and right-hand nearest neighbors ci−1(t) and ci+1(t) at time
step t, by the relation:

Figure 3.4: The cell states of the central cell ciand its two nearest neighbors
ci−1 and ci+1 at the time step t.
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ci(t+ 1) = ϕ [ci−1(t), ci(t), ci+1(t)] ,

where ϕ is the local transition function. For example, consider the simple
transition rule

ci(t+ 1) = ci−1(t) + ci(t) + ci+1(t) mod 2, (3.1)

where mod 2 means taking the remainder after division of the indicated sum
by 2, resulting in either 0 or 1. We can put this rule into a (transition)
table format by adding ci−1(t) + ci(t) + ci+1(t) mod 2 for the eight possible
different input values:

ci−1(t) ci(t) ci+1(t) ci(t+ 1)

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

(3.2a)

A very convenient way to illustrate the allowable rules for one-dimensional
cellular automata with r = 1 and k = 2 is to indicate the state (color) of
the middle cell at the next time step, given the state (color) of itself and its
two nearest neighbors:

(3.3)

Here the middle cell at time t (in the top row) has its state altered according
to the state of its two nearest neighbors and its own state to yield the cell’s
new state at time t + 1 (bottom row). This also represents the preceding
rule 3.1 above. Observe that in four of the eight cases a black cell appears.
One consequence of this is that if we took a disordered array of an infinite
number of cell sites, then the average fraction (or density) of black cell sites
that evolve after one iteration will be 0.5.

The cellular automaton defined by this rule has the graphical represen-
tation depicted in Figure 3.5 starting with a single black cell with each
subsequent generation of the automaton appearing on the next line down.

So how many possible rules are there for r = 1 and k = 2? Since there
are 8 possible neighborhood-states of 3 cells and each of these results in
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Figure 3.5: The evolution of the rule in the text starting with a single black
cell. Each new line downward represents the evolution of the automaton at
the next time step.

two possible state outcomes for the middle cell, there are 28 = 256 possible
transition rules by which this can be achieved. Wolfram described these as
elementary cellular automata. By considering a white cell as being in state
0 and a black cell in state 1 we can identify the rule given in the form of
3.2a or 3.3 by its 8 output states (or rulestring): 10010110, which in base 2
happens to be the number 150. So this rule is referred to as Rule 150 and
is the rule above depicted in four different formats.

In a similar fashion, all 256 elementary cellular automata can be num-
bered starting from:

= Rule 0

= Rule 1

.

.
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.

= Rule 254

= Rule 255

A complete illustration of all 256 elementary cellular automata starting
with a standard initial condition of one black cell is given in the Appendix.
Many of the salient features found in cellular automata theory can be ob-
served in these elementary ones and we shall refer to them often. These
elementary cellular automata are examples of first order automata in the
sense that the state of a cell at time step t+ 1 only depends on the state of
its neighbors at the previous time step t. Whereas in a second order automa-
ton a cell’s state at time step t+ 1 is rather more demanding and depends
on the state of its neighbors at time steps t as well as t − 1. Unless other-
wise specified, we will mainly be considering first order automata although
second order automata will come into play in our discussion of reversibility.

Perhaps you are thinking that this is not so much to work with, so if
we merely increase the radius to r = 2 then there are 25 = 32 possible
neighborhood-states and 232 = 4, 294, 967, 296 possible rules. On the other
hand, if we keep r = 1 and merely increase the allowable states per cell to
3, then there are 33 = 27 possible neighborhood-states and an astronomical
327 = 7, 625, 597, 484, 987 possible rules! That should be plenty.

3.3 Totalistic rules

This class of rules is defined by taking the local transition function as some
function of the sum of the values of the neighborhood cell sites. So for
example, if r = 1, k = 2, we have

ci(t+ 1) = ϕ [ci−1(t) + ci(t) + ci+1(t)] .

An example is the Rule 150 above given by

ci(t+ 1) = ci−1(t) + ci(t) + ci+1(t) mod 2.
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So how many such totalistic rules are there with r = 1, k = 2 ? With the
two states 0 and 1 for each of the three cells, there are just the four possible
totals of the cell states: 0, 1, 2, and 3. For example, our Rule 150 can also
be depicted by the following transition table:

sum (t) 3 2 1 0

ci(t+ 1) 1 0 1 0
.

So we can see that in general each of the four sums accruing at time step
t can yield at the next time step either a 0 or 1, thus giving 24 = 16 possible
totalistic rules, of which the preceding Rule 150 is one.

Breaking away from the elementary cellular automata and allowing three
states per cell (k = 3) but maintaining nearest neighbors (r = 1), let us take
cell states: 0 = white, 1 = gray, and 2 = black. Thus there are seven
possible sums: 0, 1, 2, 3, 4, 5, and 6, each of which can yield a 0, 1 or 2 at the
next time step. An example is:

sum (t) 6 5 4 3 2 1 0

ci(t+ 1) 1 1 0 1 2 1 0

and in fact, there are 37 = 2187 such totalistic rules. In order to systemat-
ically enumerate them, the cellular automaton number is the base 3 value
of ci(t+ 1) in the second row as in the preceding table. The number given
above, 1101210, is the value 1020 in base 3 and so this automaton is labeled
Code 1020 and has the appearance in Figure 3.6 starting with a single gray
cell.

3.4 Boundary conditions

There is the small matter of what should be the neighborhood of the cells
at the extreme left and right of the lattice. In many cases we will take the
lattice to be sufficiently large in extent so that these cells do not come into
our considerations and the lattice can be considered to be effectively infinite.
However, in some cases the lattice will be finite in extent and there are three
main types of boundary conditions:

(i) Periodic (also known as ‘wrap’): Here we consider the two cells at
the extreme left and right ends to be neighbors of each other, thus making
the lattice into a continuous loop in the one-dimensional case. As well, it
is also possible to prescribe the array in the vertical direction (in the two-
dimensional case) so that the top and bottom cells are also neighbors, thus
making the cellular array into the shape of a torus, or donut. Periodic
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Figure 3.6: Totalistic Code 1020 = 1101210 in base 3, generated from a
single gray cell (cell state = 1) with 3 states per cell and nearest neighbors.

af b c d e f a
Figure 3.7: For the finite 1-dimensional array of cells labeled: a, b, c, d, e, f ,
periodic boundary conditions ensure that cell a has the left-hand neighbor
f and cell f has the right-hand neighbor a as if the array were joined into a
loop.

boundary conditions are the best at simulating an infinite array since no
boundary is apparent to any cell.

(ii) Reflective: In this case the cells states at the extremities are repeated
in order to provide neighboring cell values for them.

(iii) Fixed: In some instances, we want the boundary values to take
on some fixed value such as when modelling a problem in heat conduction
(see Section 5.5.5). Thus the values along the boundary remain constant
throughout the simulation.

3.5 Some Elementary Cellular Automata

In the sequel we will consider various elementary cellular automata that
have an initial condition of a single black (i.e. state 1) cell, all the others
being white (state 0). Of course we will not discuss all 256 cases and nor is
this necessary, as for example, Rule 0 only produces cells that are in state 0
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a a b c d e ff
Figure 3.8: With reflective boundary conditions, the same array of cells will
have the first and last cells repeated in order to provide neighbors for them.

and is therefore of zero interest.
Rule 1 has the distinguishing feature (noted above) that a neighborhood

of cells entirely in state 0 (quiescent) spawns a live cell at the next time
step. In some theoretical considerations (see Section 4.1.6) this condition
will not be permitted. This yields the following automaton starting from a
single black cell:

Figure 3.9: Rule 1 starting with a single black cell illustrating its repetitive
nature.

In principle, this array must be infinite in extent to the left and right of
the starting cell.

Let us skip now to look at Rule 30:

ci(t+ 1) = [ci−1(t) + ci(t) + ci+1(t) + ci(t)ci+1(t)] mod 2

where we are immediately struck by its quite random appearance (Figure
3.10).

Considering the central column of cells, which have states: 1101110011...,
Wolfram [1986] applied various statistical tests and found the sequence of 1’s
and 0’s to be completely random. Of course this is the intrinsic randomness
as discussed earlier and every time Rule 30 is executed it will produce the
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Figure 3.10: Rule 30 depicting a rather random appearance containing tri-
angles of various sizes.

same sequence of digits along the central column. Nevertheless, no pattern
whatsoever can be discerned in these digits in the sense mentioned, and so
they are considered random.

To consider the randomness of the central column of (in this example
taking a sample of 960) cells a bit further, if it is truly random, then one
would expect that the number of 0’s and 1’s in any long sequence to be
roughly equal, so that each digit occurs roughly half the time. Likewise,
we should find approximately equal numbers of the four pairs of digits: 00,
01, 10, 11, (among the 480 possible pairs of digits) so that the frequency
of occurance (called the block frequency) of each pair is 1/4, and for the
eight triples of digits: 000, 001, ... 111, (among the 320 triples) each should
have a block frequency approximately of 1/8, and similarly for the sixteen
quadruples: 0000, 0001, ... 1111, (among the 240 quadruples) each should
have a block frequency of 1/16. To test this, a sequence of 960 cells in length
from the central column was sampled and the block frequency of each block
length up to length four was calculated. Here is a table of the counts for
each block size:

Block size Observed count

1 498 462

2 134 116 114 116

3 55 38 34 41 41 38 28 45

4 22 16 16 19 9 16 16 15

19 11 11 13 17 19

The expected counts Ei for each block size respectively are based on
their probability of occurance pi, with Ei = piN , and N = 960:
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Block size Expected count

1 E1 = E2 = 1/2× 960 = 480;
2 E1 = E2 = E3 = E4 = 1/4× 480 = 120;
3 E1 = E2 = ... = E8 = 1/8× 320 = 40;
4 E1 = E2 = ... = E16 = 1/16× 240 = 15.

In order to compare the observed counts for each particular block size
with the expected counts in each case, we use a statistical tool known as the
chi-squared test. This is just a general measure of how much the observed
values deviate from the expected ones determined by their probabilities, and
is given by:

χ2 =
kX
i=1

(Oi −Ei)2

Ei
,

where Oi represents the observed counts for a particular block size, Ei are
the expected counts and k is the number of different blocks considered in
each case. The formula gives the value denoted by χ2, called chi-squared.
So for example, if we consider blocks of size 3, then k = 8 and each Ei equals
40. Based on the data above we find:

Block size 1: χ2 = 1.35

Block size 2: χ2 = 2.2

Block size 3: χ2 = 11

Block size 4: χ2 = 16

Next we need to interpret these numbers to see if they mean that our
data is actually random. In order to do this, there are standard tables for
comparing your chi-squared values with truly random ones. So for example,
if we look up the value of χ2 = 1.35 for our block size = 1, we find that
between 20 - 30% of the time a truly random sequence will have an even
larger chi-squared value. Since the χ2 value is a measure of the deviation
from the theoretical expected values, this is indeed a good indication of
randomness for Rule 30. Taking say, block size 4 and our value of χ2 = 16,
we find from the tables that between 30 - 50% of the time a random sequence
will have a larger chi-squared value, again a strong indication of randomness
for Rule 30. The other χ2 values give similar results and we may confidently
conclude that the pattern of black and white cells along the central column
of Rule 30 is indeed random.

Various other tests for randomness are discussed in the book by Donald
Knuth [1981], and again Rule 30 passes all of these tests as well (Wolfram
[1986]).

Rule 30 has also been proposed by Wolfram in 1986 as the basis for an
encryption system. To implement such a system the first step is to transcribe
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all of the plaintext message into 8 bit ASCII characters. So for example, the
letter ‘a’ is denoted by 01100001 (=97), ‘b’ is 01100010 (=98) and ‘space’
is 00100000 (=32) and so forth. For ease of handling purposes we put this
into an 8 × n array where n is the length of the message (including spaces
and punctuation). Thus the plaintext message:

Once upon a time...

is put into an array where each row represents a letter with white = 0, black
= 1; see Figure 3.11.

Figure 3.11: The plaintext message, “Once upon a time...” transcribed into
8-bit ASCII with 0 = white and 1 = black.

So the first letter ‘O’ is 79 = 01001111 appears on the first row and on
the fifth row we have a ‘space’ which is 32 = 00100000 and so forth. Let
us denote an abitrary member of this array by ai. To encrypt this message
we take some specific set of random initial values and evolve Rule 30 from
them. Now take the cell values of 1’s and 0’s of the central (or any other)
column and denote these values by bi. (Actually taking every other value
from a particular column provides a higher level of security). In Figure 3.12
are the values bi of Rule 30 derived from the initial condition 1772712395
expressed as a 31-digit binary number taking every second cell value of the
16th column that we will use to encrypt our message.

Then we simply apply the ‘EXCLUSIVE OR’ (XOR) operation

ai ∨∗ bi = ci
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Figure 3.12: The values given by Rule 30 derived from the initial condition
1772712395 expressed as a binary digit number and taking every second
number of the 16 column.

taking elements from the plaintext array and Rule 30 array consecutively,
with 1 = True, 0 = False. This results in the ciphertext ci, which we also
put into an array format (Figure 3.13).

For example, starting with the top row and taking consecutively the
elements of the message and Rule 30, forming ai ∨∗ bi = ci we have, 0 ∨∗ 0
= 0, 1∨∗ 1 = 0, 0∨∗ 1 = 1, etc. The ‘exclusive or’ is slightly more restrictive
than the usual ∨ operation and differs from it only in so far as if P and Q
both true, then P ∨∗Q is now false. If either just one of P or Q is true, then
as for the usual disjunction, P ∨∗ Q is likewise true.

The ciphertext message can now be transmitted. In order to decode
the message, one simply has to run Rule 30 taking the same set of random
initial conditions and applying the ‘exclusive or’ operation consecutively to
the ciphertext and the same elements bi of Rule 30 that were used for the
encryption:

ci ∨∗ bi = ai.

The result of this second application of the ‘exclusive or’ operation returns
the original values ai which is this case translates into: Once upon a time...

The reason this works is that two consecutive applications of the ‘exclu-
sive or’ operation returns the original value. For example, for a value of 1 in
the text and a value of 1 from Rule 30, we have 1 ∨∗ 1 = 0 and taking this
result again with 1 from Rule 30, we have: 0 ∨∗ 1 = 1, which is the original
text value. The other three possibilities are verified similarly.
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Figure 3.13: The ciphertext of the original message encoded using Rule 30
according to the algorithm explained in the text.

One disadvantage to this method of encipherment is that the random
initial conditions for Rule 30 must be communicated to the message recipi-
ent in advance. This has been a weakness of secret codes over the centuries
that have relied on the ‘key’ having to be known to both parties to enci-
pher and decipher a message. There is always the danger that the key will
be discovered by those for whom the message is not intended. Sometimes
this key would change daily and so-called one time pads would be used for
this purpose. New developments in quantum cryptography are making the
distribution of the key absolutely secure (see Bennett, Brassard and Ekert
[1992]). Individual photons are sent by fiber optic cable between the two
parties and any attempt to eavesdrop on these photons will perturb them
in such a way that can be detected by the intended recipients.

Another form of encryption, public key encryption, based on the ex-
treme difficulty of factoring the product of two large prime numbers into
its constituent parts, is considered uncrackable at the present time. This
method was discovered by Clifford Cocks of the British Government Com-
munication Headquarters in 1973 and independently in 1977 by Ron Rivest,
Adi Shamir, and Leonard Adleman of MIT and has become known as
RSA. In the quaint jargon of cryptography, Alice creates a public encryp-
tion key which is just the product of two prime numbers, say N = p ×
q = 10151 × 14533 = 147524483, but keeping the values of p and q secret.
This allows anyone who knows the key to send Alice a message. For example,
if Bob wants to send Alice a message he simply uses a particular mathemat-
ical algorithm (called a ‘one-way function’ — also publically known) that
invokes Alice’s key N = 147524483 to encrypt the plaintext and send it to
her. To decipher the message requires knowing the values of p and q so that
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Alice is the only one who can do this. The ciphertext message is secure
because in practice, the prime numbers that Alice has chosen, p and q, are
very large (say 100 digits long!) and once multiplied together, the number
N cannot be factored into its constituent parts by even the most powerful
computers. It is conceivable that someday there will be found some mathe-
matical algorithm for achieving the factorization of extremely large numbers
in a reasonable period of time, but until then the RSA encryption method is
totally secure although encrypting large amounts of data with it is cumber-
some. It is the de-facto standard for secure transactions on the Internet. A
CA scheme for the authentication of digital messages and images has been
developed by Mukherjee et al. [2002]. A fascinating account of the history
of cryptography is Simon Singh’s, The Code Book [1999].

Several elementary cellular automata (Rules 18, 22, 26,82,146,154, 210,
and 218 among others — see Appendix) have the nested triangle appearance
of Rule 90 which is given by the formula: ci(t+1) = ci−1(t)+ci+1(t) mod 2.

Figure 3.14: Rule 90 after 66 steps of its evolution.

In the limiting case, this automaton depicts the Sierpiński triangle and
has fractal dimension 1.585. It has been shown by D.A. Lind [1984] that
starting from any initial configuration, the limiting frequency of 1’s and 0’s
is always 1/2 for each. This is an exceptional result because in general it
is impossible to say much of anything about the long term evolution of a
particular cellular automaton.

Rule 90 also has a connection with Pascal’s triangle, a familiar object
in elementary mathematics. A consequence of the well-known Binomial
Theorem is the expansion:
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(1 + x)n = 1 + nx+
n(n− 1)
1 · 2 x2 +

n(n− 1)(n− 2)
1 · 2 · 3 x3 + ...+ nxn−1 + xn,

for positive integer values of n. So for example:

(1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5.

Pascal’s triangle derives the coefficients of the expansion by starting with a
1 at the apex of the triangle, then the first binomial expansion of (1+x)1 has
coefficients (1, 1) which form the next row of the triangle, and the coefficients
of (1 + x)2 which are (1, 2, 1) are on next row, where the 2 is the sum of
the previous two 1’s. The next row will have a 1 at either end and between
them we add the first 1 and 2 from the previous row to get 3 as the next
digit, then add the 2 and 1 from the previous row to get another 3 so that
the 3rd row is: (1, 3, 3, 1). In general, we always start and finish a row with
a 1 and the digits in between are obtained by adding the consecutive digits
of the previous row. This generates a triangle of digits known as Pascal’s
triangle that gives the binomial coefficients of (1 + x)n. If we overlay this
triangle of digits with a grid of square cells and color the cells black that
have odd numbers in them, then we obtain the pattern of Rule 90.

Rule 110 is quite unremarkable in appearance starting from a single black
cell (Figure 3.15).

Its rule structure: gives nothing away re-
garding its sophisticated potential, which Wolfram suspected would be noth-
ing less than universal computation. And indeed, during the 1990s his re-
search assistant, Matthew Cook, demonstrated that Rule 110 was capable
of universal computation! This was demonstrated by showing that Rule 110
could in fact emulate any of what are called cyclic tag systems. Since some
of these can emulate any Turing machine and since some Turing machines
are capable of universal computation, it logically follows that Rule 110 is
likewise capable of universal computation.

Rule 150 has been introduced in Section 3.2 and starting from a single
black cell has the appearance depicted in Figure 3.5. Remarkably, in the
same way that Rule 90 is related to the coefficients of the binomial expan-
sion, with odd numbered cell entries being black, Rule 150 is related to the
coefficients of the trinomial expansion

(1 + x+ x2)n.

So for example, taking n = 8 gives the coefficients: 1, 8, 36, 112, 266, 504,
784, 1016, 1107, 1016, 784, 504, 266, 112, 36, 8, 1 with the first, middle
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Figure 3.15: The evolution of Rule 110 starting with one black cell.

and last coefficients being the only odd ones. These determine which cells
are black in the 9th row of Rule 150 and all other black cells are obtained
in a similar fashion.

3.6 Additivity

Some rules like Rule 90 or Rule 150 have a special property of being what is
called ‘additive’. Taking another look at Rule 90: ci(t+1) = ci−1(t)+ci+1(t)
mod 2, we find that the value of the central cell at the next time step depends
on a sum of the neighboring cells’ states. We can extend the sum notion
slightly to what mathematicians call a ‘linear combination’ which for k = 2
and r = 1 is a sum of integer multiples of the neighborhood states:

ci(t+ 1) = αci−1(t) + βci(t) + γci+1(t) mod 2,

and the α,β, γ are integer constants 0 or 1. In general, for k states per
cell there are 0 to k − 1 values for the constants and all the arithmetic
is taken mod k. For k states and range r there are k2r+1 additive rules
or 22·1+1 = 8 additive rules among the 256 elementary cellular automata.
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These are found by taking all possible choices of 0 and 1 for α, β, γ giving:
Rule 0 (α = β = γ = 0), Rule 60 (ci−1+ ci), Rule 90 (ci−1+ ci+1), Rule 102
(ci + ci+1), Rule 150 (ci−1 + ci + ci+1), Rule 170 (ci+1), Rule 204 (ci), Rule
240 (ci−1).

The above notion of additivity can easily be seen by taking Rule 150 for
example and looking at its transition function (Figure 3.16) :

Figure 3.16:

It is clear from the rule that the right-hand neighbor, central cell, and
left-hand neighbor state values can be added (mod 2) to give the state value
of the central cell at the next time step.

The additive CA also have the advantage that an algebraic analysis can
be used to determine certain of their global properties (Martin, Odlyzko &
Wolfram [1984]).

3.7 Reversibility

It is thought that the laws of physics are time-reversible, in other words,
if the state of a system is known at a given instant of time, it is possible
to completely describe not only the future evolution of the system, but its
past as well. This is due to the fact that in the equations describing these
systems, the time variable t can be replaced by −t and the equations still re-
main valid. According to Einstein, “... the distinction between past, present,
and future is only an illusion, however persistent” (excerpt from a letter to
the widow of his friend Michele Besso). This is seemingly at odds with the
Second Law of Thermodynamics which describes irreversible processes that
proceed with increasing entropy along an arrow of time. This dichotomy —
the microscopic laws of physics are reversible, yet the macroscopic world is
filled with irreversible phenomena, has exercised the minds of physicists and
philosophers at least since the 1860s amid much controversy and confusion.
To demonstrate the flavor of the controversy, let me just quote Jean Bric-
mont [1997], professor of theoretical physics at the University of Louvain,
Belgium: “It is perfectly possible to give a natural account of irreversible
phenomena on the basis of reversible fundamental laws, and of suitable as-
sumptions about initial conditions. This was essentially done a century ago
by Boltzmann, and despite numerous misunderstandings and misguided ob-
jections (some of them coming from famous scientists, such as Zermelo or
Poincaré), his explanation still holds today. Yet [Ilya] Prigogine writes...
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‘He (Boltzmann) was forced to conclude that the irreversibility postulated
by thermodynamics was incompatible with the reversible laws of dynam-
ics’. This is in rather sharp contrast with Boltzmann’s own words: ‘From
the fact that the differential equations of mechanics are left unchanged by
reversing the sign of time without anything else, Herr Ostwald concludes
that the mechanical view of the world cannot explain why natural processes
run preferentially in a definite direction. But such a view appears to me
to overlook that mechanical events are determined not only by differential
equations, but also by initial conditions...’

As Bricmont further elaborates, “...irreversibility does not lead to a con-
tradiction with the basic physical laws. Indeed, the laws of physics are
always of the form given some initial conditions, here is the result after
some time. But they never tell us how the world is or evolves. In or-
der to account for that, one always needs to assume something about the
initial conditions.” (Incidently, Jean Bricmont is also co-author of Intellec-
tual Impostures (published in the USA as Fashionable Nonsense), an exposé
of pseudo-intellectual, pseudo-scientific discourse that passes for profound
philosophical thought).

In fact, there are some reversible cellular automata that do proceed from
a disordered state to an ordered one, i.e. from a state of high entropy to a
state of low entropy. And of course the key here is to precisely know the
correct initial conditions. In Figure 3.17, the automaton proceeds in the first
column from a state of randomness to a highly ordered state. How was this
highly unusual state of affairs achieved? Namely, by running the inverse
of the automaton (starting at the top of column 5) until a final state is
reached and capturing the values of this final state for the initial conditions
we started with in column 1.

Thus in order to attain reversibility, it all depends on knowledge of the
initial conditions of the system. But therein lies the rub when it comes to
actual physical systems. As Stephen Wolfram states [2002], “... no reason-
able experiment can ever involve setting up the kind of initial conditions
that will lead to decreases in randomness, and that therefore all practical
experiments will tend to show only increases in randomness.... It is this
basic argument that I believe explains the observed validity of the Second
Law of Thermodynamics.”

By way of contrast, irreversible cellular automata may exhibit a decrease
in the number of possible configurations over time (“compression of states”)
and hence a decrease in entropy. This means that the number of reachable
configurations diminishes over time and the system tends towards a more
ordered state.

For example, let us consider a finite cellular automaton with N cells and
two possible states per cell, so that there are 2N possible configurations. If
we consider our automaton to be initially completely disordered then any
configuration is equally likely, having a probability of occurence of 1/2N .
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Figure 3.17: This reversible automaton proceeds from a completely disor-
dered state to a highly ordered one, contrary to the Second Law of Thermo-
dynamics. This was achievable by knowing precisely the initial conditions to
start with. So the trick is to run the inverse of the rule until the automaton
becomes completely disordered and the final state of the system is used for
the initial state of the original rule.
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Thus the automation is in a state of maximum entropy. Now at the first time
step let each one of the 2N possible initial configurations evolve according to
the transition rule and let us record each of the configurations thusly reached.
Some of these configurations may now be the same, say one configuration
appears m times among these 2N configurations. Then its probability of
occurence at this time step becomes m/2N . At each subsequent time step,
we will compute the probability of occurrence in this fashion for each of
the descendent configurations generated by the time evolution of the initial
ensemble of configurations. Whenever some configurations appear multiple
times, others will not appear at all and the probability of occurence of these
latter will be zero. We have illustrated a simplified version of this situation
in the table below with the label of all the possible initial configurations of
an automaton along the top row and time being vertical. So ‘a’ is just the
name for a configuration of black and white cells, likewise ‘b’ etc. If our
automaton was just 10 cells wide, there would indeed be 210 = 1024 such
configurations, but the eight listed here will suffice to illustrate our point.
Now the local transition function will give rise to the transformation of one
configuration into another, say: a −→ b, b −→ c, c −→ d, d −→ e, e −→ f,
f −→ g, g −→ h, h −→ g. This automaton is irreversible as configuration g
has two predecessors, namely f and h.

a b c d e f g h

1 b c d e f g h g

2 c d e f g h g h

3 d e f g h g h g

4 e f g h g h g h

5 f g h g h g h g

6 g h g h g h g h

All the possible initial configurations of a cellular automaton are on the top
row and their subsequent evolution after 6 time steps runs vertically. Note
that the number of configurations diminishes so that only g and h are final
states. At the 1st time step, the probability of occurence of configuration g
is 1/4 and that of h is 1/8, whereas at the 6th time step, the probability of
occurence of configurations g and h is 1/2.

In this simplified example, we find that as the system evolves a, b, c, d, e,
and f , are unreachable configurations. A configuration that is unreachable
by any initial configuration of a particular cellular automaton is called a
Garden of Eden configuration and this topic will be pursued more rigorously
in Section 4.1.6

Taking a real example that nicely illustrates this compression of states
as the automaton evolves is the graph of the evolution of Rule 126 (Figure
3.18). Considering all the 210 = 1024 initial configurations that are 10 cells
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Figure 3.18: The time evolution of Rule 126 for each of the 1024 initial con-
figurations of 10 cells wide. A dot indicates the final configuration and the
various plateaus show the favored final states. The graph is also symmetric
about the centerline owing to the fact that it has a symmetric rulestring:
126 = 01111110.

wide and letting each evolve until it reaches a final configuration, we find
various final states (indicated by a dot) are reached multiple times.

In order to compute the entropy of a finite automaton as above, we use

the formulation: S =
P2N

i=1 Pi log2 (1/Pi) , where Pi is the probability of oc-
curence of the ith configuration at a given time step as described above. If
we compute S at each of various time steps, we typically obtain the result
illustrated in Figure 3.19) showing a decrease over time from maximum en-
tropy that is indicative of the increasing self-organization of the automaton.

If we apply the same procedure in computing the entropy for Rule 30,
which in Section 3.5 indicated complete randomness along its central col-
umn, we find something rather interesting. Starting from a random initial
configuration, the entropy over time still decreases somewhat, although to
a lesser extent than for Rule 126, indicating some degree of overall self-
organization (Figure 3.20). This is in spite of the fact that the black and
white pattern in any individual column is completely random!

On the other hand, reversibility in cellular automata is very uncommon
but is prevalent in a few elementary cellular automata, namely Rules 15, 51,



58 CHAPTER 3. ONE-DIMENSIONAL CELLULAR AUTOMATA

Figure 3.19: Graph showing the entropy as a function of time for the en-
semble of 215 initial configurations (cell width = 15) evolving according to
(irreversible) Rule 94. The entropy decreases from a maximum at its initial
state to a minimum after 14 time steps indicative of irreversibility.

85, 170, 204 and 240. As in the case with Rule 15 with random initial condi-

tions (Figure 3.21)whose transition rule is given by: ,
one can start on any line and go backwards in time steps using the rule

rotated by 180 degrees, that is: , which turns
out to be Rule 85 (and hence also reversible). Next, considering Rule

204: , its rotated rule:
is actually itself and the same is true for Rule 51. That just leaves Rule 170
whose inverse is Rule 240.

A mathematical framework for the notion of reversibility is considered
later in the sequel concerning the Garden of Eden.

We found that in irreversible automata, the number of configurations
could diminish with time (“compression of states”), however, it is a theorem
of the great French mathematician, Joseph Liouville, that the total number
of configurations in a reversible system remains constant.

There is an interesting way in which to create reversible rules due to
Edward Fredkin.What one does is to consider the transition function for the
particular rule, say it is given by ϕ [ci−1(t), ci(t), ci+1(t)], and then add the
state of the central cell at the previous time step: ci (t− 1) . This gives the
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Figure 3.20: Computing the entropy of Rule 30 as it evolves with time we
find that it decreases somewhat, indicating a certain degree of overall self-
organization even though any individual column is random.

new rule

ci(t+ 1) = ϕ [ci−1(t), ci(t), ci+1(t)] + ci (t− 1) mod 2,

which has a unique inverse given by

ci(t− 1) = ϕ [ci−1(t), ci(t), ci+1(t)] + ci (t+ 1) mod2.

For example, Rule 90 can be described by

ci(t+ 1) = ci−1(t) + ci+1(t) mod 2,

which normally is not reversible, but it does have a reversible counterpart,
Rule 90R, which can be expressed as:

ci(t+ 1) = ci−1(t) + ci+1(t) + ci (t− 1) mod 2.

In other words, to determine the value of a cell at the next time step,
look to the immediate left of the cell, look to the right, look behind the cell
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Figure 3.21: The reversible CA evolved using Rule 15 and random initial
conditions.

and take the sum of these three cell states and divide by 2. The remainder,
either 0 or 1, is the cell’s state at the next time step.

The inverse then will have the form:

ci(t− 1) = ci−1(t) + ci+1(t) + ci (t+ 1) mod2.

The evolution of Rule 90R depicted in Figure 3.22 with periodic bound-
ary conditions can be visually checked and seen to be fully reversible ac-
cording to the above rules.

The above reversible rules are examples of second order cellular automata
because a cell’s state not only depends on the value of the neighboring cell
states at the previous time step, but also at the time step before that. The
reversible rule in Figure 3.17 is Rule 94R.

Cellular automata with more states per cell also have some that are
reversible, but as in the case of the elementary ones, it is only a small
percentage of the total that actually are.

3.8 Classification of Cellular Automata

In the early 80s, Wolfram began to classify cellular automata by the com-
plexity of their evolutionary behavior. Four basic classes were distinguished,
although some automata have a mixture of different classes and some fall
between two classes. Nevertheless, the vast majority of automata can be
classified in this fashion, from elementary automata, to more complex sys-
tems. In some respects, this classification parallels the types of behavior
exhibited by dynamical systems discussed in the Preliminaries. The same
four fundamental classes of behavior are to be found over a broad range of
cell state values (k), neighborhood radius (r) and dimension of the cellular
automaton.
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Generated  by A NEW  KIND  OF SCIENCE  Explorer— UNREGISTERED

Figure 3.22: This is the reversible Rule 90R with periodic boundary condi-
tions.

Class I: This behavior is the simplest and evolves to a uniformly con-
stant state for all new cells (Figure 3.23).

This class of automaton resembles dynamical systems that tend to a fixed
point attractor. In fact, the configuration of all black cells is a fixed point
(stable, stationary) attractor in the space of all space of all possible con-
figurations, in that for all initial configurations of the cells, the automaton
evolves to this one fixed state. Automata in this class cannot be reversible
because the initial information is completely lost.

Class II: In this case, the evolution is towards continually repeating
structures or periodic structures (Figure 3.24). Class II automata resemble
the periodic (cyclic) behavior exhibited by dynamical systems. They can
also act as a kind of filter in that certain sequences of data can be preserved
while others are made void. For example, the cellular automaton in Fig-
ure 3.25 preferentially selects the sequence 010 (white-black-white) while all
other sequences of 1’s and 0’s are lost, becoming 0. This sort of selection
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Figure 3.23: This is Rule 249 depicting the evolution to a uniformly constant
state from random initial conditions. Any other set of initial conditions
would evolve to the same fixed state.

process is useful in digital image processing.

Related to Class II systems are systems of finite size. In these systems,
the domain of cells is finite in extent which is what we have in all practical
cases, and this inevitably leads to periodic behavior. In the example below
of Figure 3.26, Rule 150 shows differing periodicities depending on the size
of the domain. Periodic boundary conditions are to be used. Because of
the finiteness of the domain, the system eventually finds itself in a previous
state and thus is forced to repeat itself. The maximum possible period is
of course affected by the maximum possible number of states, which in the
case of two states per cell, is 2n for a domain of n cells. Thus the period
can in principle be extremely large even for a modest sized domain. Often
however, the period is much less than the maximum and its actual value is
greatly effected by the domain size.

In a Class II system, as in the preceding example, various parts evolve
independently of one another without any long-range communication, thus
producing the periodic behavior typical of a system of finite size.

Class III: These automata exhibit random behavior typically with tri-
angular features present (Figure 3.27).

Class III automata are analogous to chaotic dynamical systems. Like the
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Figure 3.24: This automaton exemplifies the typical behavior of repeating
structures found in Class II systems.

latter, they are very sensitive to initial conditions and play an important role
in the study of randomness. For example, Figure 3.28 shows the Class III
Rule 126 with the value of just one cell changed in the initial conditions.

Class IV : In this, the most interesting of all the Wolfram classes, but
not as rigorously defined as the others, localized structures are produced
that move about and interact with each other as the automaton evolves
(See Figure 3.29).

Although the classes I, II, and III are similar in nature to corresponding
types of behavior found in dynamical systems, Class IV behavior has no
dynamical system equivalent and in fact fits between Class II and Class III
in the sense that it is poised between periodicity and randomness. According
to Wolfram [1984], this is where universal computation could be possible — in
the netherworld between order and chaos. This region is the so-called “edge
of chaos”, a term coined by Norman Packard although the idea probably
originates with Christopher Langton [1986]. The salient feature of Class
IV behavior is that information can be transmitted through time and space
opening up the possibility for complex computations to be made.

Of the elementary one-dimensional cellular automata, we have already
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Figure 3.25: This is an example of a the preservation of the data string 010
by elementary Rule 4.

mentioned that Rule 110 is capable of universal computation and is of Class
IV. By trivially reversing left and right we obtain Rule 124 which of course
is also of Class IV as are the black and white reversals in Rules 137 and
193. But these all effectively have the same dynamics. Among all the other
elementary cellular automata, it is possible that Rule 54 is also of Class IV
but according to Wolfram this is not entirely conclusive.

3.8.1 Langton’s Parameter

Because there is at least a formal similarity between the types of behavior ex-
hibited by dynamical systems and cellular automata, Christopher Langton
sought a ‘tunable’ parameter as we have seen in the analysis of the one-
dimensional dynamical system that could be used in some sense to classify
automata. However, it must of necessity only be an approximate classifi-
cation scheme for most questions about the long term evolution of cellular
automata are undecidable. For example, the automaton (Code 357, r = 1,
k = 3) of Figure 3.30 evolves to the quiescent state only after 88 steps so
that this is a Class I automaton.

However, another automaton that starts out looking similar to this one,
goes on indefinitely (Figure 3.31).

If the behavior dies out quickly, then the automaton is clearly seen to
be of Class I, but if it does not, it could still be of Class I, simply reaching
a constant state after a very long number of time steps. Or it could be of
Class II with a repeating pattern of possibly a very high period, or even
some other class. There is simply no way to determine a priori whether the
automaton dies out or not other than letting the system evolve for as long
as practicable. This question is essentially the same as the ‘halting problem’
for Turing machines.

Figure 3.32 is another example where first appearances are deceiving.
There are 10 states per cell and there appears to be the kind of complex
interactions that one would expect from a Class IV automaton. However,
letting the automaton evolve for some considerable period of time, we find
that it settles into typical Class II behavior (Figure 3.33).
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Figure 3.26: Rule 150 in finite domains (with periodic boundaries) of widths
17, 19, and 31 with periods 15, 510, and 31 respectively.

Related to this are cellular automata that Wolfram refers to as ‘com-
putationally irreducible’. There are some physical systems for which it is
possible to find a formula or algorithm that will give the state of the system
at some time t so that it is not actually necessary to let the system evolve
until time t in order to see this. Certainly Rule 255:

is an obvious case in point. If there is to be a formula or algorithm defining
the state of a system at a given time t, then it will have to involve less com-
putation than the explicit time evolution of the system itself, and hence must
be ‘more sophisticated’. But as we will see below, there are some cellular
automata (even one-dimensional) that are capable of universal computation
and thus able to perform the most sophisticated computations that can be
done. The upshot is that there will be some automata for which a descrip-
tion of their long term behavior is not possible and the only way to find
out is to let them evolve. This can even be the case for Class III automata
that are not capable of universal computation such as Rule 30 but whose
output is nevertheless random (in the sense we discussed). Thus questions
about such automata as to whether or not they evolve to a quiescent state
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Figure 3.27: This is Rule 126 (left) and Code 2013 showing the typical
random behavior found in Class III cellular automata.

Figure 3.28: The evolution of Rule 126 from initial conditions differing by
only one cell’s state. This is typical of Class III behavior and chaotic dy-
namical systems.

are formally undecidable.

In spite of the foregoing difficulties with classification of cellular au-
tomata there is still some quantitative measure that we can associate with
the four different Wolfram classes. Note that for one particular cellular au-
tomaton with k states per cell and a neighborhood radius of r, we found (Sec-
tion 3.2) there are n = k2r+1 different neighborhood-states. For instance,
when k = 2 and r = 1, we have n = 8 neighborhood-states making up the
transition function. In general, the number of neighborhood-states is given
by n = kρ, where ρ is the number of neighbors. If we denote the number of
quiescent states of the central cell resulting from these neighborhood-states
by nq, then the Langton parameter is given by:
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Figure 3.29: Complex interactions between localized structures in Rule 110
and Code 1635, typical of Class IV behavior.

λ =
kρ − nq
kρ

,

which simply represents the fraction of output states that are active (non-
quiescent) in the particular transition function defining the automaton.
When nq = kρ, then all the output states are quiescent and λ = 0. When
nq = 0, there are no quiescent output states and λ = 1. When all the states
are equally represented in the output, we have λ = 1− 1

k so that the domain
of interest is 0 ≤ λ ≤ 1 − 1

k . When k = 2, the roles of the quiescent and
non-quiescent cells tend to reverse themselves for high values of λ.

As an example, Rule 12: has λ = 8−6
8 =

0.25, which is just the fraction of 1’s in the output, and indeed it exhibits
the simple periodic behavior of Class II (Figure 3.34).

In Langton’s words, the λ value of a transition function “... is an ag-
gregrate statistic that is correlated with, but not a certain predictor of a
certain level of behavioral complexity.” It reflects average behavior of a
class of rules. Bearing this in mind, we find a correlation with the four
classes of cellular automata as indicated in Figure 3.35.

Here again we observe that Class IV is associated with Class II behavior
and precedes Class III. In Class IV, there are periodic structures as in Class
II, but unlike Class II where these structures do not interact, in Class IV
automata some of these structures interact in complex ways. Because of
these complex interactions, Class IV behavior is also on the verge of the
random behavior exhibited in Class III automata. This suggests (on average)
the following transition of class behavorial regimes with increasing λ from 0
to 1− 1/k:
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Figure 3.30: Code 357, r = 1, k = 3, evolves to a quiescent state after 88
time steps and is thus a Class I automaton.

Fixed Point =⇒ Periodic =⇒ Complex =⇒ Chaotic

This dynamical discrimination works reasonably well for ‘large’ values
of k and ρ, say k ≥ 4, ρ ≥ 5 but less so for the simplest 1-dimensional case
of k = 2. For example, taking ρ = 3, the dynamics are “only roughly corre-

lated” with the Langton parameter. Rule 18: as

well as Rule 40: both have λ = 0.25, yet Rule
18 is Class III (Figure 3.36 left) and Rule 40 (Figure 3.36 right) is Class I
and we have already seen that Rule 12 (λ = 0.25) exhibits Class II behavior.
Another approach to distinguish the four Wolfram classes, based on what
are called mean field theory curves, has been taken by H.V. McIntosh [1990].

3.9 Universal Computation

It is a remarkable fact that one-dimensional cellular automata are capable of
universal computation. As mentioned in the Preliminaries, this is essentially
a consequence of the fact that the logic gates, NOT, AND, and OR can
be emulated coupled with memory storage and retrieval. These computer
functions were demonstrated by Wolfram [2002, p.662] with the composition
of each logic gate given in Figures 3.37, 3.38, and 3.39. There are five cell
states (denoted by five colors — white, light gray, medium gray, dark gray =
0, black = 1) and the transition rule, without going into the precise details
is the same for each of the logic gates.

In addition to the logic gates themselves, Wolfram demonstrated how
information could be stored and retrieved in random-access memory (Figure
3.40).
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Figure 3.31: Code 600 (r = 1, k = 3) that does continue indefinitely as it
has a repeating pattern.

It is Chris Langton’s contention ([1990]), based on empirical experiments,
that rules capable of complex computations and indeed universal computa-
tion are likely to be found for λ values near the transition between order
and chaos. This is analogous to Wolfram’s contention that Class IV au-
tomata are capable of universal computation. The idea being that complex
computations require information transmission and storage coupled with in-
teraction between them. The likely place to find such capabilities, according
to Langton, is not in the ordered or chaotic regimes but rather in the “phase
transition” between them where there are long transients and complex, un-
predictable behavior.

3.10 Density Problem

A prototype of many problems in the CA field is that of the so-called den-
sity classification problem. In the one-dimensional two-state version it is
desired that the evolved cellular automaton becomes either all 1’s or all 0’s
depending on whether the initial configuration was more than half 1’s or
more than half 0’s respectively. The evolution of such a CA algorithm is
thus a means to ‘classify’ the binary string of 0’s and 1’s according to their
frequency (density). The problem is actually difficult for a cellular automa-
ton because the global property of discerning the higher frequency of either
the 0’s or 1’s must be carried out by local interactions only. In fact, it was
shown by Land & Belew [1995] that the density problem cannot be solved
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Figure 3.32: This cellular automaton apparently looks like Class IV but
subsequently evolves into Class II.

perfectly by any two-state CA having radius r ≥ 1.
However, all is not lost. If the output conditions of the problem are

relaxed slightly then in fact there is a perfect solution proved by Capcarrere,
Sipper, & Tomassini [1996]. The humble elementary Rule 184 given by:

ci(t+ 1) =

½
ci−1(t) if ci(t) =0
ci+1(t) if ci(t) =1,

is able to classify any binary string of length N in the following sense. If the
density of 1’s (resp. 0’s) is > 0.5, then the automaton evolves to a fixed state
with a block (or blocks) of at least two cells in state 1 (resp. state 0) within
[N/2] time steps with the rest of the output being alternating 0’s and 1’s.
(Here the brackets mean to round down to the nearest integer). Even in the
case when the density of 1’s and 0’s is exactly 0.5, the automaton evolves
towards a state of solely alternating 1’s and 0’s, thus perfectly classifiying
the density of the initial binary string. The same holds true for Rule 226
which is just the reflected version of Rule 184.

Since the density problem is not perfectly solvable in its initial formu-
lation, attempts have been made to classify the density of a binary string
‘most’ of the time. One of the best algorithms is the Gaks-Kurdyumov-Levin
(GKL) rule which is nearly always successful with binary strings having high
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Figure 3.33: The evolution of the cellular automaton in the preceding figure.

or low initial densities. The GKL rule is a wonderful piece of ingenuity that
is a two-state, r = 3 rule defined by:

ci(t+ 1) = majority{ci(t), ci−1(t), ci−3(t)} if ci(t) = 0

ci(t+ 1) = majority{ci(t), ci+1(t), ci+3(t)} if ci(t) = 1,

where the term ‘majority’ means that if two out of the three cells are in
state 0 (resp. 1), then that value is taken for the central cell update at the
next time step.

Figure 3.34: Rule 12 displaying Class II behavior with λ = 0.25.
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Figure 3.35: The association of the Langton parameter λ with the different
Wolfram classes. Note that a specific value of λ can be associated with
more than one class. Adapted from W. Flake, The Computational Beauty of
Nature.

Figure 3.36: The evolution of Class III Rule 18 (left) and Class I Rule 40
(right). Both rules have Langton parameter λ = 0.25.
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Figure 3.37: The logic AND gate where the input is fed into the first row
of the automaton with specific initial conditions and the desired output of
1 at the bottom right only in the case when both inputs P and Q are 1.

Figure 3.38: The logic OR gate which is a slight variation of the AND gate
above giving the output 1 in all but the first case when inputs P and Q are
both 0.

Figure 3.39: The NOT gate turning an input of 0 into 1 and 1 into 0.
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Figure 3.40: A one-dimensional cellular automaton model to illustrate the
storage and retrieval of information. The memory is on the right in each
figure and in the first figure a 1 is stored in the memory position 13. In the
second figure a 1 is retrieved from the memory position 19. From Wolfram
[2002], p. 663.

Roughly speaking, densities of local regions are classified and these re-
gions expand with time. Where there are regions of equal density of 0’s and
1’s, a checkerboard or white/black boundary signal is propagated indicating
that the classification be carried out on a wider scale. As effective as the
GKL rule is with initial conditions away from the critical density of 0.5, it
was found that for densities very near the critical value, the GKL rule failed
up to 30% of the time (Mitchell, Hraber, and Crutchfield [1993]).

Norman Packard [1988] experimented with genetic algorithms (see Sec-
tion 5.4.1) to solve the density classification problem and came to the seem-
ingly reasonable conclusion that when CA are evolved (as in GAs) to perform
complex computations, the evolution is driven to rules near the transition
to chaos. Similar experiments conducted by Mitchell et al. also applied ge-
netic algorithms to the density problem to produce very successful evolved
CAs, although as it happens, none quite as successful as GKL. The authors
results however were “strikingly different” from those reported by Packard.
They found that the most successful evolved rules for solving the density
problem were found close to λ = 0.5 which is the theoretical value they also
deduced, and not near the transition to chaos. Packard’s results were seen as
possible “artifacts of mechanisms in the particular GA that was used rather
than a result of any computational advantage conferred” by the transitional
regions. Interestingly, Rule 184 also has λ = 0.5.

Again using GAs, an asynchronous approach to the problem was stud-
ied by Tomassini & Venzi [2002], although their results showed that the
performance of asynchronous algorithms were inferior to the best evolved
synchronous CAs or the GKL rule although they were more robust in the
presence of noise.
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Figure 3.41: Rule 184 classifying densities in the sense mentioned in the text
of 51 white/49 black (left), 51 black/49 white (right) and 50 white/50 black
(bottom).

3.11 Synchronization

An interesting problem, of which there are now many variations, and first
posed by John Myhill in 1957, has to do with the synchronization of the
output of an arbitrarily long but finite row of CA. At some time step, all
the cells should, for the first time, attain the same state value. Like the
density problem, this is difficult for CA since a particular global state must
be reached solely by local interactions. This has become known as the
‘firing squad problem’ or ‘firing squad synchronization problem’ (FSSP). A
cell at one end of the row (a ‘general’) is distinguished from the others (the
‘soldiers’). Taking a 3-cell neighborhood, the problem is to choose the states
for each cell and suitable transition functions such that the soldier cells will
all be in the same (firing) state for the first time at the same time step.
McCarthy and Minsky (see Minsky [1967]) showed that there exist solutions
for n cells in 3n− 1, 5

2n− 1,... time steps. A ‘minimal time solution’ is one
achieved in 2n − 1 time steps, which is the number of time steps it takes
for a general to send a signal to the far-end member and receive a reply.
Waksman [1966] gave a minimal time solution involving 16 states per cell,
while Balzer [1967] gave one with 8 states per cell and showed that there
was no minimal time solution with only 4 states per cell.

The best minimal time solution to date has been demonstrated by Jacques
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Figure 3.42: The GKL rule classifying initial densities of 77 white/72 black
cells (left) and 72 black/77 white (right).

Mazoyer [1987] in a tour de force of technical analysis using 6 states. The
question is still open whether 6 or 5 states per cell is the least number re-
quired. Two generals can also be taken, one at each end who do not reach
the firing state (see examples in Wolfram [2002], p.1035).
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Figure 3.43: The minimal time solution of Jacques Mazoyer of the firing
squad synchronization problem using 6 states. Here n = 34 and time in-
creases from top to bottom. The general is on the right-hand side and also
reaches the firing state (black) together with all the soldiers in 67 time steps.
Courtesy Jacques Mazoyer.
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Chapter 4

Two-Dimensional Automata

The chessboard is the world, the pieces are the phenomena of the universe,
the rules of the game are what we call the laws of Nature.

Thomas Henry Huxley

Two-dimensional cellular automata exhibit some of the same character-
istics as do one-dimensional automata. There are two fundamental types of
neighborhood that are mainly considered. First there is the von Neumann
neighborhood (the 5-cell version of which was used in the construction of
his self-replicating machine), consisting of the 4 or 5 cell array depending
on whether or not the central cell is counted:

Figure 4.1: The von Neumann neighborhood surrounding a central cell.

The Moore neighborhood consists of the 8 or 9 cell array depending on
whether or not the central cell is counted (Figure 4.2).

In both cases r = 1 and each is useful depending on the context. The
extended Moore neighborhood has the same form as the preceding but with
r > 1.

79
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Figure 4.2: The Moore neighborhood with r = 1.

Typically, in a rectangular array, a neighborhood is enumerated as in the
von Neumann neighborhood illustrated below (Figure 4.3) and analogously
for the Moore neighborhood. The state of the (i, j)th cell is denoted by ci,j .

(i, j + 1)

(i – 1, j) (i, j) (i + 1, j)

(i, j – 1)

Figure 4.3: The enumeration of the cells of the von Neumann neighborhood.

In the 1-dimensional case with k = 2, r = 1, there were just 23 = 8
possible neighborhood-states. Now however, with just two states 0 and 1
and a 9-cell Moore neighborhood (again, k = 2, r = 1), there are 29 = 512
possible neighborhood-states ranging from all white to all black with all
the various 510 other combinations of white and black cells in between. A
given transition function would tell us how the central cell of each of the 512
neighborhood-states should change at the next time step. How many such
transition functions are there? A staggering 2512 ≈ 10154, more than the
number of all the atoms in the universe! Even with a 5-cell neighborhood,
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Figure 4.4: The ‘dog bone’ configuration as referred to by Schrandt and
Ulam in which a cell becomes alive in the next generation if it it has exactly
one alive (black) neighbor in the current generation and any cell of the
previous generation dies.

there are still 232 ≈ ten billion possible transition functions to choose from.
Beginning in the early 1960s, Stanislaw Ulam and co-workers J. Holladay

and Robert Schrandt at Los Alamos Scientific Laboratory began using com-
puting machines to investigate various two-dimensional cellular automata.
An infinite plane was considered and divided up into identical squares. The
transition rules were eclectic and the results were mostly empirical. One
particular automaton was as follows: A cell became alive at the next gener-
ation if it was a neighbor (in the von Neumann sense) of exactly one live cell
of the current generation. This rule was later coupled with a ‘death rule’
that required all cells that were a fixed number (m) of generations old to
die. Say if m = 2, then the (n + 1)st generation is derived from the nth
generation and the (n − 1)st generation is erased. Thus only the last two
generations survive in any configuration (See Figure 4.4).

We can use the same transition rule together with the death rule, and
two different initial configurations on the same array, say in different colors



82 CHAPTER 4. TWO-DIMENSIONAL AUTOMATA

Figure 4.5: A contest on a finite array in which one system (red) on the
top right of (a) gradually eliminates the system on the bottom left (green)
of (a). Solid cells represent the current generation, crosses the previous
generation. The figures represent the situation at generations: 11, 32, 49,
and 77 respectively.

to distinguish their respective live cells. The growth rule prohibits the ap-
pearance of a live cell at the next generation that has two live neighbors at
the present generation, and this condition now includes neighbors of either
color. This leads to contests between the two opposing systems with the
result that one or both may end up eliminated (Figure 4.5).

4.1 The Game of Life

It is probable, given a large enough “Life” space, initially in a random state,
that after a long time, intelligent self-reproducing animals will emerge and
populate some parts of the space.

John Conway
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The Game of Life first entered the world stage from the pages of Mar-
tin Gardner’s Mathematical Games column in the October 1970 issue of
Scientific American. The creator of the Game of Life was the English math-
ematician, John Horton Conway. Originally, Life was to be played out using
counters on a chess or Go board, but soon computer screens became Life’s
natural domain. The Game of Life caused an international sensation follow-
ing its rather dramatic creation (R.K. Guy [1985]):

... only after the rejection of many patterns, triangular and hexagonal
lattices as well as square ones, and of many other laws of birth and death,
including the introduction of two and even three sexes. Acres of squared
paper were covered, and he and his admiring entourage of graduate students
shuffled poker chips, foreign coins, cowrie shells, Go stones or whatever came
to hand, until there was a viable balance between life and death.

The rules for the Game of Life are quite simple as each cell has exactly
two states (1 - alive, or 0 - dead) and the 8-cell Moore neighborhood is the
one considered to determine the state of the central cell:

• A dead cell becomes alive at the next generation if exactly 3 of its 8
neighbors are alive;

• A live cell at the next generation remains alive if either 2 or 3 of its 8
neighbors is alive but otherwise it dies.

In anthropomorphic terms, the second rule says that if a cell is alive but
only one if its neighbors is also alive, then the first cell will die of loneliness.
On the other hand, if more than three of a cell’s neighbors are also alive,
then the cell will die of overcrowding. By the first rule, live cells are born
from a ménage á trois. Of course this is not really a game that you play in
the conventional sense but rather a microcosm of another universe that one
can explore since we know its physics entirely. An excellent exposition of
the Game of Life can be found in the monograph The Recursive Universe
by William Poundstone [1985].

There are many variants of Conway’s original set of rules, as well as
using other lattices such as triangular or hexagonal ones or considering Life
in other dimensions, but none seem to offer the richness and diversity of the
original game. It is common to let the Game of Life evolve on a lattice with
periodic boundary conditions (‘wrap’), that is to say, cells on the extreme left
and right are considered neighbors, and cells at the extreme top and bottom
of the lattice are also to be considered neighbors. Whereas, using periodic
boundary conditions in the one-dimensional case resulted in a continuous
loop, in the two-dimensional case our lattice becomes a torus (donut shaped).

The Game of Life is an example of a Class IV automaton. We note that
Packard and Wolfram [1985] found no two-dimensional Class IV cellular
automata other than “trivial variants of Life”. When the updating of cells
is asynchronous, the Game of Life no longer exhibits Class IV behavior but
instead converges to a stationary state (Bersini & Detour [1994]).
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Life is also an example of an ‘outer totalistic’ rule in that the state of the
central cell at the next time step depends on the prior state of the central cell
as well as the sum of the values of the 8 neighboring cells. The preceding
rules for the Game of Life can be represented in the following transition
table:

s u m

ci(t) 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 1 0 0

where the row that one considers for the value of ci+1(t) is given by the
value of the central cell state ci(t).

Conway had considered the rules very carefully so that Life is carefully
poised between having patterns that die out quickly and those that continue
to grow. In fact, when Life was first proposed, Conway conjectured that no
initial collection of live cells could grow without bound and offered a $50
prize to the first person who could prove or disprove this before the end of
1970. The conjecture was short lived as we will see below.

4.1.1 Lifeforms

There is an entire pantheon of Lifeforms and the interested reader can re-
fer to the website: http://pentadecathlon.com/index.shtml. We will discuss
the evolution of just some of the more common ones. Clearly any fewer
than three cells will die in one generation. For a triplet of live cells (that
do not vanish after the first generation), they either rapidly evolve to ex-
tinction (top three rows of Figure 4.6), become a block of static cells that
remains unchanged with all subsequent generations (4th row), or become an
oscillating 2-cycle triplet (bottom row):

Four-cell configurations evolve to stable forms (top four rows of Figure
4.7) as well as a long sequence of various forms.

The 5-cell ’R-pentomino’ (see Figure 4.12 right) is one of the most fas-
cinating elementary Lifeforms in that its evolutionary history does not sta-
bilize until 1103 generations. In the process it generates what are known as
‘gliders’, (discussed below) among other Lifeforms.

4.1.2 Invariant Forms

Some configurations in the Game of Life remain unchanged at every time
step (Figure 4.8). We have already seen the block of four cells and what is
known as the ‘beehive’ (the terminal figure of rows 2,3, and 4 of Figure 4.7).
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Figure 4.6: The possible evolutionary histories of three cells in the Game of
Life. The orientation of the initial cells is not relevant.

Figure 4.7: The evolution of 4 live cells with time increasing to the right.
The last two configurations of the last row alternate in a two-cycle.

The ‘block’ is the most common and it turns up frequently in Life. As each
cell of the block has exactly three live neighbors, they all persist in time yet
surrounding dead cells have only two live neighbors which is insufficient for
them to spring into life.

4.1.3 Oscillators

There are some Lifeforms that exhibit periodic behavior oscillating indef-
initely between a fixed number of configurations. Period-2 oscillators al-
ternate between two distinct states; they arise spontaneously and are very
common; see Figure 4.9.

Many other cyclic oscillators have been created artificially, including
periods 3,4,5,... 18, plus a variety of others, including one of period 144 by
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Figure 4.8: Some common invariant forms (l to r): block, tub, beehive, ship,
snake, pond, fishhook or eater, loaf.

Figure 4.9: Period-2 oscillators. The two rows indicate the two different
forms of each oscillator.

Achim Flammenkamp.

Figure 4.10: An elaborate period 3 oscillator known as the CP-pulsar dis-
playing its three different states. The final state returns to the first at the
next time step.

4.1.4 Methuselah Configuations

Such initial patterns have less than 10 live starting cells but they continue
to evolve to considerable old age before stabilizing and necessarily exclude
configurations that grow forever in the sense of an ever increasing number
of alive cells. An R-pentomino (Figure 4.12 right) remains alive for 1103
generations having produced six gliders that march off to infinity. The acorn
(center) was discovered by Charles Corderman and remains alive for 5,206
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Figure 4.11: A period 5 oscillator displaying its five different Lifeforms.

generations. Rabbits were discovered by Andrew Trevorrow in 1986 and
stabilize after 17,331 into an oscillating 2-cycle having produced 39 gliders.

Figure 4.12: Methuselah configurations (l to r): rabbits, acorn, and R-
pentomino.

4.1.5 Gliders

Gliders are another 5-cell configuration and they actually move one cell
diagonally at the fourth time step (Figure 4.13). They are known as gliders
as at time step t+2, they are reflected in a diagonal line, mathematically, a
“glide reflection”. By time step t+ 4 the glider is reflected once again back
to its original orientation, but one cell (diagonally) displaced. This 4-cycle
is then endlessly repeated. The glider is a marvelous creature to watch as it
marches in its ungainly fashion across the computer screen. In the words of
computer scientist Steve Grand, “The glider is a thing — a coherent persistent
phenomenon that moves across ‘space’ — and yet is not separate from or
superimposed on that space. It is simply a self-propagating disturbance in
the space created by these little rule-following [cells]” (Creation, p. 40).

Figure 4.13: A glider moves one cell diagonally to the right after four gen-
erations.

The maximum speed that information can propagate from one cell to
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Figure 4.14: From left to right: light-weight, medium-weight, and heavy-
weight spaceships. These move horizontally at the speed c/2.

another (either horizontally, vertically, or diagonally) is one cell per gen-
eration. In Life, this is known as the speed of light (c). Since the glider
moves exactly one diagonal cell after four generations, it is said to move at
one-fourth the speed of light (c/4).

Conway has proved that the maximum speed of any configuration moving
horizontally or vertically is c/2. Configurations that actually do move at this
speed are what Conway called ‘spaceships’, depicted in Figure 4.14.

One of the most remarkable configurations to arise in the early days of
Life, was the ’glider gun’. This arose out of work done by Robert April,
Michael Beeler, R. William Gosper Jr., Richard Howell, Richard Schroep-
pel and Michael Speciner who were in the Artificial Intelligence Project at
M.I.T. In November, 1970 they claimed the $50 prize offered by Conway
by demonstrating the glider gun (Figure 4.15) found by Gosper that would
indefinitely generate gliders every 30 generations, thus disproving Conway’s
conjecture that the number of live cells cannot grow without bound. Some-
what remarkably, Gosper’s group found that the collision of 13 specially
arranged gliders can create their glider gun. Since then glider guns have
been found with other periods of generation, even one having period 256.

Figure 4.15: The initial configuration of the original glider gun discovered
by Bill Gosper that generates a new glider every 30 generations.

Another way to produce unbounded growth in Life is via a ‘puffer train’.
These objects travel in a vertical direction and leave behind ‘smoke’ or ‘de-
bris’ that becomes stable. The first puffer train was also found by Bill
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Figure 4.16: The glider gun after it has fired off three gliders toward the
lower left.

Gosper and consisted of an engine escorted by two lightweight spaceships.
Since then numerous other ones have been discovered (Figure 4.17).

There are also ‘glider eaters’ that devour gliders and are useful in the
creation of logic gates (Figure 4.18).

Another type of unbounded growth was discovered by David Bell in 1993.
Starting with a finite configuration of live cells, it produces a ‘spacefiller’
which is a feature that can appear in other cellular automata (Figure 4.19).

4.1.6 Garden of Eden

The evolution of a cellular automaton is governed by the local transition
function which alters the states of all cells in the array synchronously at
discrete time steps. Thus, patterns of cells are changed into other patterns
of cells as the system evolves. It is natural to ask if there are some patterns
of cells that do not arise at all in the evolution of the system?

A cellular automaton configuration that can have no prior configuration
generating it (via the underlying local transition function) is called a Garden
of Eden pattern, a term due to John W. Tukey of Princeton University. In
a paper in 1962, Edward F. Moore found that in the evolution of a cellular
automaton, if a particular configuration had more than one distinct prede-
cessor, then there would have to exist some configuration that would have
no predecessor (the Garden of Eden pattern). This was only an ‘existence
theorem’ and no method was given for actually finding the Garden of Eden
configuration. The converse to this result was established by John Myhill in
1963, namely, if there is a Garden of Eden configuration with no predecessor,
then some configuration must have two distinct predecessors. Both results
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Figure 4.17: A period 16 puffer train (at right) that produces a smoke trail.
Based on a design of Tim Coe.

Figure 4.18: In this sequence, a glider-eater in bottom left of the first frame
is confronted by a glider approaching at 45 degrees. The glider is gradually
eaten until it has disappeared in the last frame. The glider-eater is an
essential component of certain logic gates.

are quite general, applying to any cellular automata of finite configurations
(i.e. those configurations with only a finite number of non-quiescent cells —
although the configurations are infinite in number) and in any dimension. It
is clear that if the array consists of a finite number of cells, say N, then the
total number of possible configurations allowing for two possible states per
cell is just 2N , with at most 2N possible outcomes resulting from the tran-
sition function acting on each of these. If it so happens that two different
configurations are transformed by the action of the transition function onto
the same configuration, then only 2N−1 configurations have been generated
by the transition function, leaving one configuration without a precedessor.
But the Moore and Myhill theorems are about the infinitely many finite
configurations of cellular automata within infinite arrays.

Because the Game of Life does have configurations that have more than
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Figure 4.19: The spacefiller Lifeform of David Bell after 46 time steps.

one predecessor (for example, a block has numerous precedessors), and the
fact that finite configurations are transformed to finite configurations, Gar-
den of Eden patterns must exist and indeed have been found over the years.
Roger Banks found the first one in 1971 with 226 live cells. The one with
the smallest number of live cells (at the time of this writing) is 143 due to
Achim Flammenkamp (Figure 4.20 right).

The preceding considerations can be discussed in a more mathematical
framework. In general, a function f is called injective (or one-to-one) if
whenever x 6= y then f (x) 6= f (y) . In other words, distinct points x and y
must have distinct images f (x) and f (y) . This also means that if f (x) = z,
then no other point can be mapped by f to z, since if some other point y
did satisfy f (y) = z, then we would have x 6= y and f (x) = f (y) , a clear
violation of the injective property of f .

We now consider the collection of all finite configurations C of a cellular
automaton, such as the Game of Life. By finite, we mean that all but a
finite number of cells in the lattice are in the quiescent state. Then any
configuration belonging to C is transformed by the local transition function
acting on each cell into another configuration and moreover, that configu-
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Figure 4.20: The Garden of Eden configurations for the Game of Life of
Roger Banks (left) and Achim Flammenkamp, having 226 and 143 live cells
respectively .

ration will also belong to C if we make the supposition that if a cell and
all its neighbors are in a quiescent state, then the cell remains quiescent at
the next time step. Therefore, although the array is infinite in extent, only
finitely many cells at any time step ever leave the non-quiescent state and no
infinite configuration ever becomes the successor of any finite configuration.
We have already encountered an example in Rule 1 where this is not the
case since its rule string is given by:

Figure 4.21: Rule 1 allows something to be created from nothing which is
not allowed in the present context.

Hence a quiescent neighborhood generates a live central cell at the next
time step. This results in an initial finite configuration of one black cell
generating an infinite configuration at the next time step and it is exactly
this sort of behavior we wish to exclude. We are in a sense getting something
from nothing and that is not allowed here.

The transformation from one configuration into another induced by the
local action of the transition function can be considered as another function,
the global transition function F that maps configurations c belonging to C
to other configurations c0 in C. So for example, in the one-dimensional case
taking nearest neighbors, if φ is the local transition function, we define the
global transition function by

[F (c)]i = φ[ci−1, ci, ci+1],

where we have suppressed the time step t in the notation.
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If the global transition function F is not injective, then this would mean
that two distinct configurations, say c and c0 in C would be mapped to the
same configuration (remembering that F is induced by the local transition
function), so that there would be a configuration with two predecessors (c
and c0) as was discussed above. Therefore, having more than one predecessor
configuration is equivalent to the global function F not being injective.

Since F is a mapping from C to C, symbolically, F : C −→ C, we can
ask if every configuration c in C arises as the image of the global transition
function acting on some other c belonging to C? If the answer is yes, then
we say that the function F is surjective (or onto). In other words, for every
c0 in C, there is some other c in C such that F (c) = c0. Then, if it so
happens that F is not surjective, we find that there is some c0 belonging
to C with no other configuration in C that is transformed into it. Such
a configuration c0 is then a Garden of Eden configuration since it would
have no precedessor arising from the global transition function F, and thus
from the local transition function. Therefore, the existence of a Garden of
Eden configuration is equivalent to the global transition function being not
surjective.

We can now state the:

Moore-Myhill Theorem. If C is the collection of all finite configu-
rations and F : C −→ C is the global transition function, then F is not
injective if and only if it is not surjective.

In other words, if some configuration has more than one precedessor
(F is not injective), then there is some configuration with no precedessor
(F is not surjective), and conversely. Moore’s theorem is the first result
and Myhill’s the converse. In most contexts injective and surjective are two
mathematical properties that normally have nothing to do with one another.

The global transition function (in the preceding context) being surjective
is now also injective and this latter is equivalent to the cellular automaton
being reversible (also called invertible), that is, at every time step it is pos-
sible to go back to a unique predecessor configuration, as was discussed in
the section on reversibility in Chapter 3. Since we know that the Game of
Life has Garden of Eden configurations, then by the Moore-Myhill theorem
it cannot be reversible. But of course we already know this as the ‘beehive’
configuration has multiple predecessors as is seen in Figure 4.7. In general,
given the local transition function for a two-dimensional cellular automa-
ton, the question of reversibility is undecidable (Kari [1990]), although for
one-dimensional cellular automata, the question of reversibility is decidable
(Amoroso and Patt [1972]).

When Moore proved his theorem, he was interested in the question of
when a machine was unable to replicate itself. About the Garden of Eden
configuration, Moore had this to say. “Since it is a machine that cannot
arise by reproduction, it must be a machine that cannot reproduce itself.”
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Another result of Moore’s about the rate at which a cellular automaton
configuration can replicate itself is found later in Section 4.3.

Interestingly, if we drop the restriction of finite configurations then in
the general case we have the following result of Hedlund [1969] who was one
of the earliest pioneers in the subject of cellular automata:

Hedlund Theorem. If the global transition function on the set of all
configurations is injective then it is also surjective.

The situation is more straightforward with respect to additive CA. If
ϕ is the local transition function acting on cell states c1, c2, ...cn in some
neighborhood given by

ϕ(c1, c2, ...cn) =
nX
i=1

λici modm,

then the global transition F is surjective if the greatest common divisor of
all the numbers λ1, λ2, ... λn, m, is 1.

4.1.7 Universal Computation in Life

An outline of a proof that the Game of Life was capable of universal compu-
tation was presented by John Conway in 1982 (in the book inWinning Ways
for your Mathematical Plays, vol.2) and independently by William Gosper.
The key here is to use a glider gun to emit gliders at regular intervals. This
permits the transmission of information from one region to another and sim-
ulates the electrical pulses of a regular computer. As the Game of Life is a
Class IV cellular automaton (whose Langton parameter is λ = 0.273 which
lies in the phase transition region), it is not surprising that it could be capa-
ble of universal computation, in view of Wolfram’s conjecture that all Class
IV automata should have this capability.

As was mentioned in the Preliminaries, at the heart of any computer sys-
tem is the construction of the ‘logic gates’ NOT, AND, OR. What Conway
and Gosper demonstrated was that each of these logic gates could be con-
structed within the Game of Life, together with a form of infinite memory
storage.

In order to construct the NOT gate we consider that P is either a 0 or
1 and a data source gun that emits a glider whenever P is 1 and nothing
whenever P is 0. An emitter glider gun at E is positioned as in Figure 4.22
and is synchronized to fire gliders simultaneously. Whenever two gliders
collide they will annihilate one another. Hence, P being 0 permits the
unfettered passage of a glider from the gun E, thus turning a 0 into a 1,
whereas if P is 1 it emits a glider that collides and annihilates the glider
from the gun E resulting in a void that turns the 1 into a 0. The result at
receptor R is not P .
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Figure 4.22: The implementation of the NOT gate in the Game of Life. If
P is 0 the result at the receptor R is 1 and if P is 1 the receptor receives no
input, or 0 since the colliding gliders annihilate one another.

We can construct the AND logic gate P ∧ Q by adjoining a bit more
structure to the NOT gave as indicated in Figure 4.23. According to the
Truth Table the conjunction P ∧ Q is to be the value 1 only when P is 1
and Q is 1. In all other cases, P ∧ Q is to be 0. Taking P and Q both to
have truth value 1 as in the figure, results in a glider emanating from the
glider gun Q being annihilated by the glider emanating from the emitter E,
whereas the glider from P passes unhindered to produce a 1 at the receptor
R. However, if P is 1 and a glider emanates from P, and Q is 0 so that
nothing emanates from Q, then the glider from P this time is annihilated
by the one from E and the receptor R receives no data, hence is 0. On the
other hand, if P is 0 and Q is 1, then the glider from Q is annihilated by
the glider from E so that again R becomes 0. Finally, if both P and Q are
0 then the glider from the emitter E is eaten by the glider eater and R is
once again 0.

The OR gate incorporates a portion of the AND gate as depicted in
Figure 4.24 but now we are provided with two emitter glider guns, both
designated E. Note that P ∨ Q has truth value 1 if P or Q is 1 (or both)
and is 0 in all other cases. Suppose firstly that P is 0 and Q is 1 as in the
figure. Then the gliders from Q are annihilated by the emitter on the right,
but the emitter on the left produces a signal at the receptor R. Similarly,
if P is 1 and Q is 0, P ’s gliders are annihilated this time, but the receptor
R still receives an input. If both P and Q are on, then again R receives a
signal. Only when both P and Q are off do the gliders from each emitter
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Figure 4.23: The AND gate in the Game of Life. Only when both P and
Q are on does the receptor R receive any data. If only P or Q is on (i.e.
emitting gliders), then the gliders from E annihilate them and the receptor
R receives nothing. Note the glider-eater at the bottom left which mops up
gliders emitted by E when both P and Q are off.

annihilate each other and there is no signal at the receptor.

Memory storage for the universal computer is accomplished by simulat-
ing a Minsky register by sliding a Life block utilizing a salvo of gliders to
either push it or pull it along a diagonal. In the Conway model, the block
(whose location gives its numerical value which can be arbitrarily large)
could be pulled 3 units along a diagonal by a 2-glider salvo, whereas a 30-
glider salvo was required to push the block 3 units along the diagonal. A
test for zero was also implemented. This ‘sliding block memory’ was later
improved by Dean Hickerson in a much more practical construction that
allowed a block to be pulled just one unit by a 2-glider salvo and pushed
one unit by a 3-glider salvo. This latter became the basis for the construc-
tion of a universal register machine implemented in Life by Paul Chapman
(http://www.igblan.com/ca/) in November 2002. This machine is capable
of universal computation with communication between the various compo-
nents carried out by lightweight spaceships. Therefore the Game of Life has
all the computational ability of any modern electronic computer.

In this context it should also be mentioned that Paul Rendell in 2000
constructed a Turing machine, however, with a finite tape which could in
principle be extended to a universal Turing machine and thus capable of
universal computation.

In the spirit of von Neumann, Conway in Winning Ways demonstrated
that there are configurations in Life capable of self-replication.



4.2. OTHER AUTOMATA 97

Figure 4.24: The OR gate in the Game of Life. If both P and Q are off then
the gliders from each emitter E annihilate each other and there is no signal
at the receptor R. In the other cases when either P or Q are on or both are
on, a signal is received by the receptor R from the emitter on the left.

There are many websites devoted to the Game of Life. Actually seeing
the mélange of Lifeforms develop and evolve is a wonderful experience to be-
hold. One of the best implementations is Life 32 by John Bontes which can
be downloaded at: http://psoup.math.wisc.edu/Life32.html. An excellent
resource website is Paul Callahan’s:

http://www.radicaleye.com/lifepage/lifepage.html#glossback.

4.2 Other Automata

There is actually a myriad of two-dimensional cellular automata that have
been created over the past thirty years. One of the classical models is called
Brian’s Brain and is due to Brian Silverman. The automaton has three cell
states denoted as ‘ready’(0), ‘firing’(1), and ‘refractory’(2) respectively. The
rules bear some resemblance with how neurons in the brain behave (a more
sophisticated model of neural activity will be presented in Chapter 5):

• A cell fires only if it is in the ‘ready’(0) state and exactly two of its
(eight) neighbors are ‘firing’(1);

• Upon firing, a cell changes to the ‘refractory’ state (2) for one time
step and then reverts to the ‘ready’ state (0).

As in the Game of Life, there are various Brainforms such as ‘haulers’,
‘butterflies’ and ‘twizzlers’. The butterflies are the analogue to the gliders
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Figure 4.25: The three state cellular automaton Brian’s Brain created by
Brian Silverman. Waves of live cells tend to sweep across the array. Here
the colors are: black = ready, red = firing, blue = refractory.

in Life and move diagonally at the rate of one cell every four time steps.
A ‘butterfly gun’ has been implemented by Rudy Rucker in his CelLab
environment.

Another ingenious creation by Silverman is calledWireworld and allows
for the creation of sophisticated electronic circuits. This automaton has four
states: ‘background’(0), ‘electron head’(1), ‘electron tail’(2), and ‘wire’(3)
and the following set of rules for each time step:

• ‘Background’ cells never change their state;
• ‘Electron head’(1) cells change their state to ‘electron tail’(2);
• ‘Electron tail’(2) cells change their state to ‘wire’(3);
• ‘Wire’(3) cells change their state to ‘electron head’(1) if one or two of

its eight neighbors are ‘electron heads’(1).

An adjacent pair of an ‘electron tail’ (T) and ‘electron head’ (H) com-
prise an ‘electron’ which can be sent along a strand of ‘wire’ (W) cells in
accordance with the preceding rules (THWWW...−→WTHWW...). With
this set-up it is possible to build AND, OR, and NOT gates, memory storage
and hence a computer. An AND gate is depicted in Figure 4.26.

A simple adder has been constructed by student Peter Lane that com-
putes the sum in base 2 of two inputs as in Figure 4.27.
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Figure 4.26: The arrangement of the AND gate inWireworld. Two electron
head cells are the inputs at the left along paths of wire cells. Only when
there are two electrons entering this configuration will the output be an
electron. Other cases result in no output.

Here the two inputs are given on the left and fed into the circuit so that
the following binary output is computed:

input A input B top output (21) bottom ouput (20)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A binary adder has also been demonstrated in the Game of Life by D.J.
Buckingham [1978].

Another interesting two-state, two-dimensional cellular automaton is
called Vote (also called Majority) created by Gérard Vichniac and is a to-
talistic rule given by the rule table:

sum 9 8 7 6 5 4 3 2 1 0

c(t+ 1) 1 1 1 1 1 0 0 0 0 0
.

where c(t + 1) is the value taken by the central cell of the 9-cell Moore
neighborhood at the next time step. Here one can easily see where the
automaton gets its name. If 5 or more of the cells (i.e. a majority) are
‘1’, then the central cell’s state also takes the value ‘1’ at the next time
step. But if less than 5 cells (i.e. a minority) take the value ‘1’, then the
central cell becomes ‘0’. The time evolution from a random initial state
depends critically on the initial concentration of 1’s and 0’s and yields large
shifting regions made up respectively of the two states and dominance at
the initial stage leads to even greater dominance at the equilibrium stage
(Figure 4.28). The totalistic code number is 992 which is 1111100000 in
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Figure 4.27: A simple adder in Wireworld that computes the sum of two
inputs in base 2 with the result outputed at the bottom.

base 2. Von Neumann neighborhoods can also be considered so that c(t+1)
becomes 1 whenever the neighborhood sum is 3 or more. These automata
are related to models of percolation and pattern formation on animal coats.

There is another more scientific way to depict the Vote rule by using the
so-called Heaviside step-function H, also referred to as a threshold function..
This is defined as follows:

H(x) =

½
1 if x ≥ 0
0 if x < 0

.

Thus you obtain an output of 1 if the quantity x, whatever it happens
to be, is nonnegative, and otherwise the output is 0. If we denote the nine
cells of the Moore neighborhood (with a slight abuse of our usual notation)
by c1(t), c2(t), ... c9(t), then according to the Vote rule, the value of the
central cell at the next time step is given by:

H

Ã
9X
i=1

ci(t)− 5
!
,

whereby if five or more of the cells have state value ‘1’, then the function H
returns the value ‘1’, otherwise it is ‘0’. The value of 5 is just a threshold
value that turns ‘on’ the central cell at the next time step once the threshold
is reached. This notion is an underlying feature of various cellular automata
models in biology (see Section 5.4).
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Figure 4.28: The cellular automaton Vote which decides the value of the
central cell of a Moore neighborhood by what a majority of the values of its
neighbors are. The initial configuration had 60% red (zero state) cells and
the above is the equilibrium state.

Another variant of Vote due to Vishniac reverses the states of the sum
4 and 5 values.

sum 9 8 7 6 5 4 3 2 1 0

c(t+ 1) 1 1 1 1 0 1 0 0 0 0

This has the effect of permitting interchange at the boundary between
regions of opposing colors where the majority is not very strong for either.
This CA has served as a model of annealing.

4.2.1 Partitioning Cellular Automata

A new type of neighborhood was devised by Margolus that is fundamentally
different from either the von Neumann or Moore neighborhoods. It consists
of a partitioning of the usual lattice into blocks of cells, which is 2x2 in
size in the simplest case and which we only consider here. The transition
rule, or rather block rule, updates the entire block as a distinct entity rather
than any individual cell as in the usual cellular automaton. Another unique
feature is that two overlapping partitionings into 2x2 are employed, one say
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Figure 4.29: The Heaviside step function which only has an output when a
nonnegative threshold has been reached.

given by dark lines, and one by light lines as in Figure 4.30 below. At each
time step, one switches from one type of neighborhood to the other.

The block rule is applied to all 2x2 blocks alternating between utilizing
the dark neighborhoods and light neighborhoods. At first glance this system
appears to be very unlike an ordinary cellular automaton, but with more
states and neighbors, it can indeed be expressed as an ordinary cellular
automaton. The Margolus neighborhood comes into its own in the section
on lattice gas automata in Chapter 5..

4.3 Replication

It is possible to demonstrate a trivial form of self-replication in a two-
dimensional cellular automaton model of Edward Fredkin. In our first exam-
ple, known as the ‘parity rule’, given a 4-cell von Neumann neighborhood:

• a central cell state becomes 1 (alive/black) if it had an odd number of
black (0) neighbors at the previous time step;

• a central cell becomes 0 (dead/white) if it had an even number of black
(0) neighbors at the previous time step.

This is also the transition function of the one-dimensional Rule 90 and
is outer totalistic in that we are only considering the sum of the four cell
states other than the central one. The effect is a quadrupling of any initial
cell pattern (Figure 4.31, top left) each 2n generations, with n depending on
the original configuration.
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Figure 4.30: A Margolus neighborhood consists of two distinct overlapping
2x2 blocks of cells and a particular cell has successively two overlapping
neighborhoods. The neighbors of a black cell (indicated by the black dot)
in a ‘light’ neighborhood are indicated at the left, and the neighbors of a
‘dark’ neighborhood are as on the right.

Here the outer totalistic rule we have used is given by the transition
table:

sum 4 3 2 1 0

c(t+ 1) 0 1 0 1 0
.

where c(t + 1) is the value of the central cell and the initial pattern has
replicated after 32 = 25 time steps (as do all the others below). However,
if we take into account the state of the inner cell as well as the 4-cell von
Neumann neighborhood, we have the totalistic rule:

sum 5 4 3 2 1 0

c(t+ 1) 1 0 1 0 1 0

with a 5-fold replication of the initial pattern (Figure 4.31, top right).
We can also consider the analogous replication with respect to an 8-cell

Moore neighborhood and here we implement the Fredkin (outer totalistic)
rule given by the transition table:

sum 8 7 6 5 4 3 2 1 0

c(t+ 1) 0 1 0 1 0 1 0 1 0

that results in an 8-fold replication (Figure 4.31, bottom left).
And lastly, we have a 9-cell Moore neighborhood counterpart with the

totalistic rule:
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Figure 4.31:

sum 9 8 7 6 5 4 3 2 1 0

c(t+ 1) 1 0 1 0 1 0 1 0 1 0
.

which replicates a two-dimensional configuration 9-fold (Figure 4.31, bottom
right). This so-called ‘parity rule’ can be designated Code 692 which is the
value in base 2 of the binary digits.

It must be noted however, that none of the foregoing examples repre-
sents the same sort of replication in the von Neumann sense we saw in the
Introduction as it is purely a consequence of the transition function and not
accomplished by the automaton itself.

Edward F. Moore, whom we encountered previously regarding Garden
of Eden configurations also made an interesting observation concerning the
rate at which a configuration can replicate. Here again, as in the discussion
of Moore’s Garden of Eden theorem, we are only considering finite config-
urations. Again, we also require the further condition that if a cell is in a
quiescent state and all its neighbors upon which the transition function acts
are in the same state, then the cell remains in the quiescent state at the
next time step. If we denote a finite configuration by c and the number of
copies of c at any time step t by #c, Moore showed that
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#c ≤ kt2,

where k is some positive constant. One consequence of this is that a self-
reproducing configuration cannot keep doubling with each time step, since
the values of t2 are 1, 4, 9, 16, 25, 36, 49... and doubling yields #c values of
2, 4, 8, 16, 32, 64, 128, ...

To see how Moore established this result, suppose that the smallest
square array that contains the initial configuration c has s cells on a side,
and hence an area of s2. At the next time step, t = 1, the square array can
only grow (via the action of the transition function) by one cell on each of its
four sides, so that the square array now has area (s+2)2. At time step t = 2,
the square array will have an area equal to (s+4)2, and in general, the array
will have area (s + 2t)2 at each time step t. This value also represents the
maximum number of alive (non-quiescent) cells at each time step t. Letting
a denote the number of alive cells of the configuration c, then the number
of copies of c at each time step is at most

(s+ 2t)2

a
.

By expanding and simplifying this expression, we arrive at Moore’s inequal-
ity above.

4.4 Asynchronous Updating

In general, it has been found that the asynchronous cellular automata evolve
much differently from their synchronous counterparts. For example, cyclic
dynamics can only occur with synchronous updating although the set of
stable attractors of a CA are the same for both update regimes (Schönfisch
& de Roos [1999]). Indeed, any configuration that is stable under one up-
dating regime is stable under any other since it is of no consequence in what
order the cells are updated. In addition, various patterns formed in syn-
chronous updating are absent with asynchronous updating. For example, in
the two-dimensional version of the Iterated Prisoner’s Dilemma (see Section
5.3), Huberman & Glance [1993] found that the complex mosaics of defect-
ing and cooperating cells attained with synchronous updating completely
disappeared with asynchronous updating and the CA reached a fixed state
of entirely defecting cells. Similarly, we have already mentioned that the
Game of Life also converges to a stable state with asynchronous updating.

So, the question arises as to which updating regime is the most appro-
priate for modelling physical phenomena. Some argue that asynchronous
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updating is more natural since there is no universal clock in Nature. The
highly geometric patterns produced in synchronous updating dissolve away
with asynchronous regimes and hence are really artifacts of the updating
regime. However, weighing in on the side of synchrony we have M. Sipper
[1995] who states that, “It may be argued that from a physical point of view
synchrony is justified: since we model a continuous spatial and temporal
world we must examine each spatial location at every time step, no matter
how small we choose these (discrete) steps to be.” However, as pointed out
by Schönfisch & de Roos [1994], “... the difference between synchronous and
asynchronous update is a question of how we look at the (real) process. If
we observe only in large time intervals we will see that all cells have been up-
dated (at least) once in one time step, implying synchrony. If we refine the
time scale such that in every time interval at the most one event will happen,
then we find asynchrony... In summary, it will depend on the actual cellular
automata how strong the influence of different updating methods will be.”

There are various methods to update cells asynchronously and these fall
into two distinct categories, step-driven and time-driven. In step-driven
updating, each cell of the array is updated by some algorithm one cell at
a time. For example, in the simplest case, a fixed directional line-by-line
sweep of each row can be made to update each of the cells sequentially.
Or, the cells can be randomly ordered and each pass is made through this
ordering or one can even take a different ordering for each pass. In time-
driven updating, each cell has an internal clock that ‘wakes up’ the cell at
some specific point in time so that its state can be updated. This waking
up can also be done in a stochastic manner so that each cell will be updated
with a certain probability, p.

In the sequel, we consider an example found in Roli & Zambonelli [2002]
of the local rule:

• A dead (black) cell becomes alive (white) if it has 2 alive neighbors;
• A living cell remains alive if it has 1 or 2 neighbors alive, otherwise it

dies..
These criteria are a watered-down version of the Game of Life but it

has some star-studded dynamics of its own in the synchronous case (Figure
4.32).

However, starting with the same block of 4 black cells in the asyn-
chronous case is much less dramatic and leads to a stationary state as in
Figure 4.33.

Roli & Zambonelli considered a third type of updating regime in addition
to synchronous and asynchronous that they termed dissipative. These CA
(called dissipative cellular automata — DCA) have asynchronous time-driven
updating, but also allow an external perturbation to change the state of any
of the cells of the array concurrently with the transition function. This can
be thought of in terms of the environment interacting with the automaton
by providing ‘energy’. The notion of a DCA was inspired by the dissipative
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Figure 4.32: Starting with four black cells and the CA in the text under
synchronous updating. These are the first 49 configurations with many
similar that follow.

systems much studied by Ilya Prigogine and his school (cf. eg. Nicolis &
Prigogine [1989]).

One way to achieve interaction with the environment is for the pertur-
bation to take the form of forcing cells at random to become alive with a
certain probability, pd. The degree of perturbation must be sufficiently high
to affect the dynamics of the CA, but not too high so as to make the be-
havior essentially random. The ratio pd/pc is the crucial factor here and
although stationary configurations are not reached, nevertheless large-scale
patterns do persist.

Because of the open nature of DCA to their environment, the authors
assert that, “the dynamic behavior of DCA is likely to provide useful insight
into the behavior of real-world open agent systems.”
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Figure 4.33: What a difference a delay makes! The asynchronous updating
of the same CA with each cell being updated or not with a probability of
pc = 0.5. The configurations are a sampling every 10 steps and the final
configuration is stable.

A certain class of CA was shown by Goles and Martinez [1990] to have
both stationary and cyclic states with synchronous updating but only sta-
tionary states were attainable with asynchronous updating.
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Figure 4.34: The evolution of the dissipative CA whereby each cell has a
probability of pd = 0.001 to be perturbed to be alive. Large scale patterns
evolve that are seen to persist but are not completely static. Interestingly,
these patterns arise even without any black cells in the initial conditions due
to the perturbations.
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Chapter 5

Applications

The scientist does not study nature because it is useful; he studies it because
he delights in it, and he delights in it because it is beautiful. If nature were
not beautiful, it would not be worth knowing, and if nature were not worth
knowing, life would not be worth living. Of course I do not here speak of
that beauty that strikes the senses, the beauty of qualities and appearances;
not that I undervalue such beauty, far from it, but it has nothing to do with
science; I mean that profounder beauty which comes from the harmonious
order of the parts, and which a pure intelligence can grasp.

Henri Poincaré

... It becomes plausible that many, perhaps all, of the processes upon
which life is based are algorithmically describable and that, therefore, life
itself is achievable by machines.

Christopher Langton

Cellular automata have applications to many diverse branches of science,
such as biology, chemistry, physics and astronomy. In the models that fol-
low, we are able to accurately reproduce many physical phenomena when we
attempt to emulate the underlying mechanisms in the setting of a cellular
automaton. And this approach has some virtues. According to Ermentrout
& Edelstein-Keshet [1993]: “CA models are fast and fairly easy to imple-
ment. Furthermore, the visual feedback they provide is striking and often
resembles the pattens experimentally observed. These two aspects of CA
modeling are its biggest advantages over more traditional approaches. CA
are thus an excellent way of formalizing a theory of purported mechanism
into computational terms. This is an important first step in the understand-
ing of any physical process.”

In ancient China, patterns appearing naturally were referred to as li, and
were thought to represent an underlying order in the world. Some of the ones
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described in the sequel can be found in the charming little book by David
Wade [2003]. One of the first attempts to mathematically recreate forms
found in Nature using simple rules, was demonstrated by Alan Turing in a
seminal work in 1952. Turing’s inhomogeneous patterns were formed by the
changing spatial concentrations of two chemical reactants in a solution and
were described by a set of ‘reaction-diffusion’ equations. These equations in
two-dimensions describe how the two reactants having concentrations u and
v respectively change with time:

∂u

∂t
= f(u, v) + d∆u

∂v

∂t
= g(u, v) + d0∆v,

where f and g are the reaction terms, and the diffusion terms are represented
by the Laplacian operator ∆ = ∂2

∂x2 +
∂2

∂y2 times (diffusion) constants d, d
0.

This sort of interplay lies at the heart of various CA models such as the first
three models in the sequel.

5.1 Excitable Media

This term refers to a group of models that are characterized by a transition of
a cell’s state following a basic pattern: a quiescent state transits to an excited
state, then to a refractory state before returning again to the quiescent state
from which the cell can become excited again, and so forth. These models
all tend to exhibit waves of various forms.

5.1.1 Neural Activity

Our first example is a cellular automaton model for generating waves, say to
heuristically model a network of neuron excitation and recovery, and is due
to Greenberg and Hastings [1978]. We have already seen a special case of
this model in Silverman’s Brian’s Brain. Either the von Neumann or Moore
neighborhood (as in Brian’s Brain) is considered. Each cell (or neuron) in
a rectangular lattice has a ‘quiescent’ state’= 0, ‘excited states’ = 1, 2, ....e
and ‘refractory states’ = e+ 1, e+ 2, ..., e+ r. Note that in Brian’s Brain,
there was one excited (= ‘firing’) state and one refractory state. The G-H
rules are as follows:

• a cell in state k, for 1 ≤ k ≤ e+ r − 1, at the next time step becomes
state k + 1;

• a cell in the last refractory state e+ r at the next time step becomes
state 0;

• a cell in the quiescent state 0:
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— at the next time step becomes the excited state 1 if one or more of
its neighbors is in an excited state;

— if none of its neighbors is in an excited state, then at the next time
step its state remains 0.

Interpreting the quiescent state as ‘susceptible’, the excited states as
‘infectious’ and the refractory states as ‘immune’, Birgitt Schönfisch [1995]
has developed a similar epidemiological model whereby a susceptible indi-
vidual becomes infectious with a certain probability that depends on how
many neighbors are infectious, rather than simply if one or more neighbors
is infectious. Deterministic examples are presented in Figures 5.1 and 5.2.

Figure 5.1: In this Greenberg-Hasting model using the von Neumann neigh-
borhood, there are 5 excited stages (red) and 5 refractory stages (gray) with
the transition at each stage from darkest to lightest. White is the rested
state. At least 3 excited neighbors are required for a cell in the rested state
to become excited. The figure shows the initial configuration (left) and af-
ter 36 iterations (right). Waves are generated in the center of the figure
and grow and move outwards. Courtesy Birgitt Schönfisch, University of
Tübingen.

The first two conditions of the Greenberg-Hastings model can be consid-
ered as the ‘reaction’ phase and the third condition is the ‘diffusion’ phase.
Simplified versions can have one excitatory state and/or one refractory state.
In the simplest version we have: ‘quiescent’ = 0, ‘firing’ = 1, ‘refractory’
= 2, so that we can formulate the Greenberg-Hastings reaction(R)-diffusion
(D) process as:
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Figure 5.2: In this Greenberg-Hasting model using the von Neumann neigh-
borhood, there are 2 excited stages (red) and 3 refractory stages (gray). As
above the transition at each stage is from darkest to lightest. White is the
rested state. At least 2 excited neighbors are required for a cell in the rested
state to become excited. The figure shows the initial configuration (left) and
after 19 iterations (right). Waves are generated in the center of the figure
and grow and move outwards. Courtesy Birgitt Schönfisch, University of
Tübingen.

ci,j(t+ 1) = R[ci,j(t)] +D[ci−1,j(t), ci+1,j(t), ci,j−1(t), ci,j+1(t)],

where

R =

½
2 if ci,j(t) = 1
0 otherwise

D =

½
k if ci,j(t) = 0
0 otherwise

and k = 1 if at least one of the von Neumann neighbors is firing and k = 0
otherwise.

As one would expect, varying the parameters leads to different wave
forms propagating outwards (Figure 5.2).

A interesting reversible G-H model can constructed by using Fredkin’s
idea of subtracting the state of the central cell at the previous time step
(Tamayo & Hartman [1989]):
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Figure 5.3: This is the regular regime at time steps 20, 80, 120, 150 (l to r
respectively). The initial conditions are: cell (50,40) is firing and all others
are quiescent. The array is 160 x 160 with periodic boundary conditions.

ci,j(t+ 1) = R[ci,j(t)] +D[ci−1,j(t), ci+1,j(t), ci,j−1(t), ci,j+1(t)]− ci,j(t− 1),

where the sum is taken mod3 and the reaction-diffusion parts are the same
as in the preceding. Here the initial conditions are quite significant as they
are preserved in the subsequent dynamics. The authors have identified three
basic regimes that the system eventually falls into:

Regular regime (Figure 5.3). Here regular wavefronts move about in an
unperturbed environment.

Random regime (Figure 5.4). Regularity gradually breaks down and
gives way to randomness lacking any structure.

Turbulent regime (Figure 5.5). Ring-like structures emerge and form
around source and sink regions that gradually become diffused.

5.1.2 Cyclic Space
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Figure 5.4: This is the random regime at time steps 50, 500, 1400, 2000 (l
to r respectively). The initial conditions are: cell (40,40) is firing, (41,40) is
refractory, and all others are quiescent.

Another interesting wave generating model similar to the preceding one was
created by David Griffeath of the University of Wisconsin and dubbed the
Cyclic Space cellular automaton by A.K. Dewdney in his Scientific American
column of August 1989. Again we employ a rectangular grid with each cell
taking state values 0, 1, 2, ... up to a maximum value of m and we can use
either the 4-cell von Neumann or the 8-cell Moore neighborhood. The array
is then initialized with all cells taking on a random value from 0 to m. The
rules for the automaton are:

• if a cell in state k, for 0 ≤ k < m, has any neighbor with state value
k + 1, then at the next time step the cell takes on the value k + 1;

• if a cell has the maximum state value m and if any neighbor has the
state value 0, then the cell at the next time step takes on the value 0;

• the cell state remains unchanged if there are no neighboring cells meet-
ing the required conditions.

Note the similarities with the Greenberg-Hastings model. The second
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Figure 5.5: This is the turbulent regime at time steps 40, 700, 1400, 2000 (l
to r respectively). The initial conditions are: cells (40,40), (49,46), (41,53)
are firing, and all others are quiescent. Wavefronts first interact (top right)
and then form around source and sink regions (bottom left) that finally
become diffused.

condition here is like the neuron cell state changing from the rested to excited
state. However, a point of difference is that in the neuron model a cell (in
the excited and refractory states) updates its state value independent of the
state of its neighbors, whereas in the cyclic space model the update depends
on at least one neighbor being in the next higher state. We can also think
of a cell in state k having a neighbor in state k + 1 as being ‘eaten’ by the
latter.

According to Griffeath, there are four phases that the automaton goes
through: debris, droplet, defect, and demon that are illustrated in the Figure
5.6. Starting from an initially random configuration, which soon looks like
debris, we find that droplets of solid color begin to emerge and grow by eating
neighbors. Then certain non-intersecting loops of cells can form ‘defects’
that initiate the next phase of spiral formation. A defect occurs when each
of the cell states of the loop differs by +1,−1, or 0 from the next cell in
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Figure 5.6: The time evolution from a random initial state to the formation
of waves of the cyclic space automaton. The frames (left to right) represent
the debris, droplet, defect and demon phases respectively.

the loop (bearing in mind that highest and lowest states differ by 1) and
furthermore when all of these flux changes are added consecutively, the sum
is nonzero. The newly formed spirals grow larger with some being absorbed
by others leading to the final stage of demons that are spiral configurations
that continue to cycle in their own confined region and occupy the entire
space (Figure 5.6).

The first three phases are what are called ‘metastable’ in so far as they
persist for many generations. The reason for this persistence is because it
is not very likely that a cell will change its state value. In fact, using a
von Neumann neighborhood and n state values, the probability p that the
central cell will change its value is given by 1 minus the probability that
none of its four neighbors is one integer value higher, i.e.

p = 1−
µ
n− 1
n

¶4

,

since the probability that a single neighbor is not one integer value higher
is (n − 1)/n. For n = 14, we find that p = 0.256, or about one chance in
four. And this is the case when all the neighbors can have random values.
If all the neighbors have the same value as the central cell, then of course
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the cell remains constant until the situation in the neighborhood changes.
The preceding formula also says that the higher the number of states, the
longer the phases persist.

5.1.3 The Hodgepodge Machine

Certain types of complex chemical reactions oscillate displaying features of
waves and spirals. One such reaction is the combination of carbon monoxide
(CO) with oxygen to form carbon dioxide (CO2) catalyzed by tiny palla-
dium crystallites. Because of the multitude of the latter a cellular automata
model was suggested by Martin Gerhardt and Heike Schuster [1989] of the
University of Bielefeld, whereby each cell represents a catalytic unit.

For each cell, there are n + 1 states given by 0, 1, 2, ...n. According to
Gerhardt and Schuster, a cell in state 0 is ‘healthy’, a cell in state n is ‘ill’,
and all states in between 1, 2, ...n − 1 are ‘infected’. Infection represents
the level of oxygen saturation of each catalytic unit and increases until a
maximum saturation level is reached (ill). There are three rules governing
the transition to the next state that reflect the chemistry of the reaction:

• If c (t) = 0, (cell is healthy — no oxygen), then it will become infected
if a suitable number of neighboring cells are infected:

c (t+ 1) =

∙
Nftd
k1

+
Nill
k2

¸
,

where Nftd is the number of infected cells in a neighborhood (either von
Neumann 5-cell or Moore 9-cell), Nill is the number of ill cells in a similar
neighborhood, and k1, k2 are constants representing minimal levels for the
cell to become infected. That is to say, if the expression in the brackets
is less than 1 because Nftd and Nill are not sufficiently large enough, then
c (t+ 1) remains 0 and thus healthy. Here the square brackets means to
round down to the nearest integer.

• If 1 < c (t) < n, (cell is infected), then the degree of infection increases
at the next time step to:

c (t+ 1) = g +

∙
Σ

Nftd

¸
,

where g is a (constant positive integer) ‘infection rate’ and Σ is the sum of
the infected state values of the cell neighborhood. If the value computed on
the right-hand side of the expression exceeds n, then the value for c (t+ 1)
is taken to be just n. Here we see that the infection state of a cell increases
by the fixed amount g plus a local average of infection.

• Finally, if c (t) = n, (cell is ill), then c (t+ 1) = 0, i.e. ill cells become
healthy due to a phase transition of the catalytic units.



120 CHAPTER 5. APPLICATIONS

To run the colorfully named hodgepodge machine, one must first specify
the number of cell states n, the constants k1, k2, and the infection rate g.
A typical example has values n = 100, k1 = 2, k2 = 3, and g = 20. One
starts with a random initial configuration and after awhile the system has
the appearance of Figure 5.7.

Figure 5.7: The spiral waves generated by the hodgepodge machine cellular
automaton.

This pattern appears to emulate the actual wave pattern depicted in the
well-known Belousov-Zhabotinskii reaction: the oxidation of malonic acid
by potassium bromate with iron or cerium as a catalyst (Figure 5.8). (See
also the subsequent works of Gerhardt, Schuster & Tyson [1990 a,b,c]).
The chemical waves of this reaction are normally described in terms of par-
tial differential equations in the form of reaction-diffusion equations — one
popular model is known as the ‘Oregonator’ whose name betrays its origins.
Another application is to the chemical waves and spiral patterns seen in the
slime mold formation (Chapter 5).

Various investigators have developed other excitable cellular automata
models that have for example, multiple-armed spirals (Madore & Freeman
[1983]) or 3-dimensional twisted scrolls (Winfree et al., [1985]).

5.2 Schelling Segregation Model

Since human interactions can and often do function on a local level, cel-
lular automata have also found various applications in the social sciences.
The earliest known work seems to have been James Sakoda’s ‘The checker-
board model of social interaction’ [1971], although the model had its origins
in Sakoda’s unpublished 1949 dissertation which takes us back to the very
origins of the Ulam/von Neumann cellular automata theory itself. A now



5.2. SCHELLING SEGREGATION MODEL 121

Figure 5.8: Wave patterns seen on the surface in the Belousov-Zhabotinskii
reaction.

classical model due to Harvard economist Thomas Schelling in 1971 has to
do with the formation of segregated neighborhoods. He believed that people
had a certain tolerance level for different ethnic groups and felt comfortable
with where they lived as long as a certain proportion of individuals of their
own kind lived in their neighborhood. In general, when the neighborhood
fell below this proportion, then the individual would move to another neigh-
borhood more to their liking. Schelling used two types of coins representing
two different ethnic groups on graph paper which he distributed over some
of the grid sites (leaving some blank regions) and which obeyed the simple
contentment criterion:

• If the proportion of neighbors in an 8-cell Moore neighborhood that
are of the same kind (state) as the central cell becomes lower than some
threshold x, then the central cell moves to a ‘nearby’ site in which the
neighborhood has a proportion of neighbors of the same kind that is at least
x.

Schelling was interested in finding out what values of the threshold x
produced segregated neighborhoods and it was quite surprising to find that
even with quite low values for x, initially integrated neighborhoods resulted
in high levels of segregation. Of course in reality, not all people living in a
neighborhood would have the same contentment threshold and many would
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not care who the neighbors were as long as they were quiet. Moreover, as
Schelling pointed out, there are other mainly economic factors that have a
segregating effect. So the model is mainly of heuristic value but does indicate
an emergent feature that is rather unexpected. However, it is pleasing to
note that Schelling was a joint winner of the 2005 Nobel Prize in Economics
in part for this work.

To implement the Schelling model, by ‘nearby’ we take Moore neighbor-
hoods of ever increasing radius until a suitable neighborhood is found or until
all sites have been tried. The updating of cell sites is done asynchronously
by choosing a cell site at random and if it is occupied, then applying the
above contentment criterion. This is done until the system reaches an equi-
librium state. Schelling found that 25% to 30% of vacant space was the most
desirable in the initial random configuration of equal numbers of black and
white cells. On average it is found that even a low contentment threshold
of 30% leads to 70% of same cell state neighbors.

Figure 5.9: The left-hand side is an initial random distribution of occupied
cell sites (25% white vacant space) and the right-hand side represents the
segregated equilibrium state of the red and blue cells reached after applying
the contentment requirement that 37.5% of the neighbors should be of the
same kind.

It is worth noting that neither Sakoda nor Schelling used the term ‘cel-
lular automaton’ at any point in their work. Interestingly, there is now even
a Journal of Artificial Societies and Social Simulation, no doubt a direct
descendent of the pioneering works of Sakoda and Schelling. A Mathemat-
ica based toolkit for the CA modelling of social interactions can be found
in the book by Gaylord & D’Andra [1998] and the Schelling model is also
discussed in Gilbert & Troitzsch [1999].
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5.3 Prisoner’s Dilemma

The Prisoner’s Dilemma is a classic model of the dynamics of cooperation
and non-cooperation. In order to play a single round of the Prisoner’s
Dilemma, two players, A and B, have but two options and must decide
whether on not they will cooperate (C) or defect (D). The classical payoffs
to each player are indicated by the following table:

B

Cooperate (C) Defect (D)

A Cooperate (C) 3\3 0\5
Defect (D) 5\0 1\1

Thus if both players decide to cooperate they are rewarded with 3 points
each, whereas if both players defect, they obtain only 1 point each. What is
known as the ‘sucker’s payoff’ is when player A defects and receives 5 points
but player B cooperates and ends up with 0 points.

What does all this have to do with prisoners? It is based on the scenario
of two people (A and B) being arrested for committing some crime (and
incidently was featured in the David Bowie movie, “The Labyrinth”). Both
A and B are interrogated separately by the police who do have some evidence
against them. We will use the value of 5−p, where p is the number of points
obtained by one of the apprehended to calculate their prison terms. So, if
they both deny their guilt (that is, they cooperate with each other), they
get relatively light 2 year sentences since they were each rewarded with 3
points. However, if they both confess to the crime (i.e. defect), then they
each get relatively severe 4 year sentences reflected in their mutually low
reward of 1 point. In the sucker’s payoff, one player makes a deal with the
police admiting guilt (defects) while the other one still denies it (cooperates)
with the latter getting the harshest prison sentence of 5 years (since their
reward was 0) and the former getting none (with reward 5).

If you are one of the players, what should your response be? Clearly,
no matter what the other player does, you should defect. If they happen
to cooperate, then you’ve scored a massive 5 points to their nil and they
are a sucker for it. Even if they have defected too, you would still score
something (1 point) whereas if you had cooperated you’d end up with nil
yourself. Of course your partner also faces the same situation and should
choose defection as well.

Viewed collectively, it is certainly true that if you both cooperate then
the rewards (3 points each) are greater than if you both defect (1 point
each), but from an individual’s perspective, there is the temptation of even
greater rewards from defection if only the other cooperates, leaving them
with nothing. Thus the potential personal gain from defection outweighs
the potential collective gain from cooperation.
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It becomes more interesting however, if the game is played over and over
in what is known as the Iterated Prisoner’s Dilemma (dating back to M.M.
Flood [1952]). The object for each player is to accrue the largest points
total which now requires that some overall strategy be adopted. According
to logician Patrick Grim, “It is no simplification to say that our strongest and
simplest models of the evolution of biological and sociological cooperation —
and in that respect our strongest and simplest models of important aspects
of ourselves as biological and social organisms — are written in terms of the
Iterated Prisoner’s Dilemma.”

One simple strategy would be to always cooperate, but this approach is
easily taken advantage of. And always defecting can lead to low total scores.
Political scientist Robert Axelrod of the University of Michigan conducted a
round-robin tournament between strategies submitted by colleagues (see the
famous paper by Axelrod and evolutionary biologist W.D. Hamilton [1981] in
Science). Each game between competing strategies consisted of 200 moves,
yielding possible scores from 0 to 1000, so that a ‘good performance’ score
was judged to be 600 points (complete mutual cooperation) and a ‘poor
performance’ score would be 200 points (complete mutual defection). In
the first round of the tournament, the overall winner with an average of
504 points per game, submitted by game theorist Anatol Rapoport, was
called Tit-for-Tat. In this simplest of strategies, a player cooperates on the
first move and then does exactly what the other player did on the previous
move. While never actually attaining a higher score in any particular game,
this strategy can lead to many rounds of cooperation between opponents
with its commensurate rewards, whereas the more defecting strategies do
poorly. While Axelrod has shown that there is no best strategy over all
competing environments, he has shown that Tit-for-Tat is very robust over
a range of environments. In fact, Tit-for-Tat has many strengths. “What
accounts for Tit-for-Tat’s robust success is its combination of being nice
[not being the first to defect], retaliatory, forgiving, and clear. Its niceness
prevents it from getting into unnecessary trouble. Its retaliation discourages
the other side from persisting whenever defection is tried. Its forgiveness
helps restore mutual cooperation. And its clarity makes it intelligible to
the other player, thereby eliciting long-term cooperation” (The Evolution of
Co-operation [1984]).

On the other hand, it was pointed out by Axelrod that at least three other
strategies would have won the first round over Tit-for-Tat. One of them was
the example strategy he sent to prospective contestants, called Tit-for-Two-
Tats but remarkably no one submitted it! This strategy defects only when
the opponent has defected on the two previous moves and is thus more
forgiving than Tit-for-Tat. In a second round of the tournement conducted
by Axelrod, with a much larger pool of competitors, Tit-for-Tat won again
in spite of everyone knowing the results of the first round. Tit-for-Two-Tats
was submitted this time but did quite poorly as some competing strategies
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were able to capitalize on its tolerance of a single defection. According to
Axelrod, “The moral of the story is that the precise level of forgiveness that
is optimal depends upon the environment.”

Axelrod [1987] also performed computer experiments in order to evolve
genetic algorithm strategies to play the Iterated Prisoner’s Dilemma. The
opposition was eight human developed strategies and it was found that most
of the evolved GAs had similar traits to Tit-for-Tat and some of them per-
formed even better in that particular environment.

A spatial component can be added to the game so that it is played on a
square grid against multiple partners. One can take those partners to be the
cells of a von Neumann or Moore neighborhood with the central cell playing
off against each one (employing periodic boundary conditions). In one ada-
pation, each player will employ either the strategy of simply cooperating or
defecting. At each time step, every square plays one round of the Prisoner’s
Dilemma against its four or eight neighbors and the score for each cell is
then totaled. Each cell at the next time step will then adopt the strategy
of the most successful cell in its own neighborhood. Clearly a cooperator
surrounded completely by defectors will get swallowed up and at the next
time step become a defector. The outcome over time very much depends
on the payoff values and often a stable equilibrium is reached. A rigorous
treatment of the evolution of cooperation in the spatial prisoner’s dilemma
setting was made by Schweitzer, Beher, and Műhlenbein [2002] utilizing a
von Neumann neighborhood, and asynchronous as well as synchronous in-
teractions with long term memory have been considered by O. Kirchkamp
[2000].

There is another way to depict the payoff values. Let R be the (Reward)
payoff for mutual cooperation, T the (Temptation) payoff for defecting in
the hope your opponent cooperates, S the (Sucker) payoff for cooperating
when your opponent has defected and P the (Punishment) payoff for mutual
defection.

B

Cooperate (C) Defect (D)

A Cooperate (C) R\R S\T
Defect (D) T\S P\P

In the classical Prisoner’s Dilemma, {R;S;T ;P} = {3; 0; 5; 1}, or more
generally it can be assumed that T > R > P > S and R > (S + T )/2. This
latter condition insures that the reward for mutual cooperation should still
be greater than that earned if players in turn exploited each other.

Nowak and May [1992] used the nonstandard payoff values {R;S;T ;P} =
{1; 0; b > 1; 0}, (note that S = P so that this is not strictly a Prisoner’s
Dilemma) which permitted a measure of control over the outcome by ad-
justing the temptation parameter b. In this scenario, in a square block
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Figure 5.10: The evolution of cooperation (blue) starting with a random
array of 80% defectors (red) using a von Neumann neighborhood. The
payoffs are: {R;S;T ;P} = {3; 0; 3.5; 0.5}. Implementation by Christoph
Hauert.

of four cooperators surrounded by a sea of defectors, the cooperators will
score a total of 4 points (if we also include cells playing against themselves),
whereas any nearby defectors are only exposed to two cooperators, resulting
in their scoring 2b points. Thus if b is less than 2, clusters of cooperators
can hold their own against hordes of defectors (Figure 5.11).

Starting with a single defector cell, a mosaic of regions of defection and
cooperation can evolve that allows them to coexist indefinitely in an ever
changing state of flux (Figure 5.12).

Another approach to the spatial iterated prisoner’s dilemma is to allow
for various strategies to compete against each other. Initially, a particular
strategy can be randomly assigned to each cell of the array. Each cell then
competes for a fixed number of rounds with each of its eight neighbors
using the standard payoffs. At the end of each session, a cell will adopt the
strategy of its most successful neighbor in terms of highest total score. If two
or more neighbors have the highest score, then the central cell will retain its
present strategy. In Figure 5.13 we have depicted just such an event with
five competing strategies: Always Cooperate, Tit-for-Tat, Random, Pavlov,
and Always Defect.

The Random strategy simply cooperates with a certain probability, and
defects the rest of the time. It came last place in Axelrod’s first round. The
other new strategy, Pavlov, begins by cooperating and then will change its
response whenever the opposition defects, the philosophy being, ‘if winning
— continue, if not — try something else.’ With time, Tit-for-Tat is seen to
predominate.

5.4 Biological Models & Artificial Life

Cellular automata models have proven very useful in biology for as Ermen-
trout and Edelstein-Keshet put it, in biology, “unlike physics, there are few
‘laws’ such as the Navier-Stokes equations or Newton’s laws”. So one has
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Figure 5.11: Using the Nowak and May payoffs with b = 1.6 (left) and
b = 1.85 (right), with an initial distribution of 10% defectors distributed
randomly. Here the central cell also plays against itself using a 9-cell neigh-
borhood. Color code is: blue = cooperator, green = new cooperator, red
= defector, yellow = new defector. Periodic boundary conditions are used.
Cooperation is seen to decrease with increasing values of the temptation
parameter b. Implementation by Serge Helfrich.

to create models of systems by extracting the most salient features of the
interactions of various components over time and describing these in some
suitable framework, be it differential equations or cellular automata. A very
early model for filamentous cell growth using local interactions between cells
to update their state in discrete time was proposed by A. Lindenmayer al-
ready back in 1968. Detailed and useful CA models have arisen in the work
of say Kaplan et al., [1988] on the dynamics of cardiac conduction which was
studied using an excitable CA model in a spatially inhomogeneous medium,
or in Pytte et al. [1991] who deduced an elegant model of a region of the hip-
pocampus (a structure in the floor of the brain) with up to 10,000 neurons
which gives qualitative and quantitative data that otherwise would require
the numerical solution of about 250,000 coupled differential equations. CA
models have been made of the immune system (De Boer & Hogeweg [1992]
and Celada & Seiden [1992]), tumor growth (Moreira & Deutsch [2002],
and genetic disorders (Moore and Hahn [2000] and [2001] among numerous
others. An informative discussion of cellular automata models in biological
modeling can be found in the survey paper by Ermentrout and Edelstein-
Keshet [1993] and in the text by Deutsch & Dormann [2004].

Biological CA models can also be considered as a form of artifical life,
which is according to Chrisopher Langton, one of the subject’s founders,



128 CHAPTER 5. APPLICATIONS

Figure 5.12: Employing a von Neumann neighborhood, these are three im-
ages in the time-evolution of of the spatial prisoner’s dilemma with a value
of b = 1.4 and an initial sole defector set in a sea of cooperators. Periodic
boundary conditions are used. The color code is: blue = cooperator, green
= new cooperator, red = defector, yellow = new defector. Implementation
by Christoph Hauert.

“devoted to understanding life by attempting to abstract the fundamental
dynamical principles underlying biological phenomena, and recreating these
dynamics in other physical media, such as computers, making them acces-
sible to new kinds of experimental manipulation and testing.” So much
work now goes on in this subject that it has its own journal: Journal of
Artificial Life. Of course the field of AL goes beyond the scope of cellular
automata, as for example in the Blind Watchmaker program of Richard
Dawkins [1989] that generates a whole menagerie of two-dimensional artifi-
cial organisms called ‘biomorphs’ that are found to emerge under suitable
biology-inspired conditions, or the highly addictive Creatures program cre-
ated by Steve Grand that utilizes a combination of genetic based algorithms
and artificial neural networks. As well, there is the Terrarium web-based
ecosystem game in which players create their own creatures that have specif-
ically programmed attributes and which then compete for survival against
the creatures developed by others.

Further biological/artificial life models are also considered in the next
chapter on Complexity.

5.4.1 Genetic Algorithms

One of the remarkable things about biological organisms is that they have
evolved to solve very complex tasks — the swimming skill of a shark, the
flying skill of a bat, the 3-dimensional vision of the human eye. All of
these have evolved through a gradual process of natural selection, so it is
tempting to apply this wonderful mechanism of Nature to the computational
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Figure 5.13: The evolution of the spatial iterated prisoner’s dilemma with
five competing strategies with the standard payoffs from an initial random
configuration. Each cell’s strategy plays off five times against its eight neigh-
bors and then adopts the strategy of its most successful neighbor. Color
code: Always Cooperate = red, Tit-for-Tat = purple, Random, cooperating
with a probability of 0.5 = cyan, Pavlov = green, and Always Defect =
black. The predominance of Tit-for-Tat over time is evident, with the Ran-
dom strategy hardly noticable. The second row has a certain level of ‘noise’
introduced, that is, a cell will make a random move in a single round thus
increasing the dynamics of the evolution. Images are taken at the initial
state, after 2, 5, 10, and 50 iterations. The code is from G.W. Flake (The
Computational Beauty of Nature [1998]).

solution of problems. This was first discussed in the 1950s (Box [1957]) and
subsequently explored by others, with the modern theory of what are now
known as genetic algorithms (GAs) being developed by John Holland with
his students and colleagues at the University of Michigan in a series of
works in the 1960s and 70s (see [1966, 1988, 1992]). See also the monograph
by Mitchell [1996] for an excellent introduction to this fascinating subject.
The wide ranging list of applications of GAs includes population genetics,
immunology, ecology, economics, machine and robot learning, and automatic
programming.

So how do we artificially mimic natural selection in the form of a genetic
algorithm? For a given task to be solved, we begin with a random population
of algorithms that act as first approximations to solving the problem. These
are encoded in some way, typically as strings of binary digits. After each
algorithm has been run, they are all evaluated by a ‘fitness test’, that is
to say, as to how close they come to actually solving the problem. The
algorithms are then selected to breed according to their fitness level in order
to form a new population of algorithms which are again subjected to the
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Figure 5.14: Graphical representation of a fitness landscape illustrating the
peaks towards which the most fit solutions of a GA migrate and the valleys
in which the least fit lie. Note that there can be peaks of varying heights.

fitness test and so on. After several ‘generations’, one expects to have created
a number of highly fit algorithms for the given task.

To visualize all this, the fitness function acting on the space of all pos-
sible solutions generates a graph of peaks and valleys called the ‘fitness
landscape’. The most fit solutions are near the peaks and the least fit lie in
the valleys and typically an initial population will climb one of the peaks (a
local maximum) as it evolves and becomes more fit (Figure 5.16).

There are three basic genetic operations that can be performed on the
algorithms:

• exact reproduction whereby multiple copies of an algorithm are taken
(cloning or reproduction);

• swapping some part of their genetic encoding with another algorithm
(called crossover or recombination);

• random mutation of some part of their genetic encoding.

As an illustration of how these operations come into play, we present a
genetic algorithm that was created by Auckland University student Michael
Brough. Starting from an array in an initial random configuration of black
(= 1) and white (= 0) cells, our aim is to turn the whole array into a
checkerboard pattern. (Note that this is not completely possible since initial
conditions having all cells in the same state will remain so, but this is of
no consequence). A 9-cell Moore neighborhood will be used along with
periodic boundary conditions. Since each cell can be in either one of two
states, there are 29 = 512 different neighborhood-states. Any particular
transition function will tell us the state value of the central cell (either 0
or 1) at the next time step for each of the 512 neighborhood-states and so
can be represented by a binary string 512 digits long, such as 1001101...110.
This is analogous to representing the Rule 150 as the rule-string: 10010110,
only now our strings are somewhat longer. In keeping with a biological
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milieu, the rule-strings are thought of as ‘chromosomes’ and the bits in the
rule-strings are ‘genes’. For our example, a hundred or so chromosomes are
chosen at random to get things underway.

First of all, each chromosome is given a fitness test in the form of how well
it converts an array of random black and white cells into an approximation of
a checkerboard. This test is repeated on a few random initial configurations
to give a fair evaluation of each chromosome’s performance. Choosing the
fitness function must be done with considerable care since one that is a bit
flawed will not deliver the end result. In our particular example, points are
awarded to a chromosome for producing patches of cells in a checkerboard
pattern (after 100 time steps) according to the scheme:

For each cell (x, y):
• subtract 3 points if cell (x+ 1, y) or (x, y + 1) is in the same state as

(x, y);
• otherwise, add 8 points if cell (x+1, y+1) is in the same state as (x, y)

and subtract 5 points if it is not, and likewise add 8 points if cell (x+1, y−1)
is in the same state as cell (x, y) and subtract 5 points if it is not.

Next, all chromosomes are ranked from highest to lowest according to
their fitness score. Each chromosome is then copied (cloned) a certain num-
ber of times that depends on its level fitness compared to the average fitness
score for all the chromosomes. In this way, those chromosomes that are
below average are weeded out (‘survival of the fittest’). Of course, there are
other schemes that can be implemented here that pass on all chromosomes
to the next phase, but the idea is to weight the chromosomes in some fashion
towards the most fit.

The remaining chromosomes are allowed to ‘breed’ with each other, that
is, exchange some of their genetic material (0s and 1s). In our example,
pairs of chromosomes are chosen at random from the initial population and
these now become ‘parents’. Typically, in other scenarios, designated blocks
of digits are exchanged between parents (crossover), but in this instance
adjacent digits have no particular relation to one another. So what has
been done instead is that a new ‘baby’ string is created by selecting one of
the state values at each of the 512 digit positions randomly from either one
of the parents. This new baby string is then added to the population of
chromosomes. This procedure resulting in new offspring is a digital version
of actual sexual reproduction.

Finally, a few bits in each chromosome are adulterated (flipping 1 to 0
or 0 to 1) by random mutation — one or two bits worked best. There needs
to be some mutation in order to introduce new genetic material, but if there
is too much then the positive qualities found at each generation can be lost.

The resulting new set of chromosomes are now given the fitness test
again and the above procedure repeated until the desired task is achieved
or not. The proof is in the evolution (Figure 5.15).

With the above genetic algorithm, it was found that it was successful
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Figure 5.15: The evolution of the checkerboard pattern produced by the GA
described in the text at 0 (random configuration), 10, 30, 50, 80, and 100
time steps.

most of the time and almost worked the rest of the time (producing patterns
that were mostly correct but having minor flaws in them). Note that the
graph of the fitness (Figure 5.16) shows a gradual increase (although at the
beginning sometimes there are decreases between generations demonstrating
a random tendency at first), then a rapid jump, followed by further gradual
increases until the maximum possible fitness score is attained. The GA
with this maximum fitness score may not be successful on all possible initial
configurations, but has done so on all the ones given to it. At this stage one
could start making the fitness function more stringent.

Thus we have employed the essence of natural selection to solve a prob-
lem in pattern formation. Further examples in AL are discussed in Chapter
5 and for more on GAs, see Mitchell & Forrest [1994].

Genetic algorithms fall under the purview of complex adaptive systems,
that is, self-organizing systems of autonomous agents that over time exhibit
some form of adaptive behavior. A beehive, a slime mold or ant colony are
among the many complex adaptive systems found in Nature (see Chapter
6) and this notion has even found its way into the world of business and
commerce. A very readable account of this whole circle of ideas can be
found in the book by Nobel Prize winner Murray Gell-Mann [1994].

Neurons have evolved to produce complex adaptive behavior in humans
and animals and it is to these that we now turn our attention.
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Figure 5.16: The fitness graph for the GA described in the text comparing
the maximum fitness level at each generation to the average.

5.4.2 McCulloch-Pits Neural Model

This a simple neural model whereby the state of the ith neuron at the next
time step is given by:

ci(t+ 1) = H

⎛⎝X
j

wijcj(t)− θi

⎞⎠ ,
where H is the Heaviside step-function, wij are weight values given to the
coupling strength between (pre-synaptic) neuron j and (post-synaptic) neu-
ron i, with ci(t) taking on the values 0 and 1 and θi a threshold value for
the ith neuron. Thus if the weighted sum of of all incoming signals to a
neuron achieves a threshold value, the neuron fires, taking state value 1. If
the threshold is not reached, the state value of the neuron is 0. A prior
example was the cellular automaton Vote, in which the weights wij all had
the value 1 and the threshold was θ = 5. The seminal, rather difficult paper
by McCulloch-Pitts [1943] containing this model spawned a large amount
of research into neural networks that continues to the present. A version of
this model has been used by Young [1984] to study a wide range of animal
coat markings and indeed, the Vote patterns themselves look very much
like coat markings. Further work in the area was carried out by Rosenblatt
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[1958] on perceptrons that are capable of a limited form of learning and
these were also investigated more fully by Minsky and Papert in their now
classic text, Perceptrons: An Essay in Computational Geometry. A neural
network model capable of learning having different dynamics was developed
by Hopfield [1982] (see the excellent exposition in Ilachinski [2002]).

The McCulloch-Pitts model uses an ‘all-or nothing’ threshold simulation
of neuron firing with fixed weight factors which is not actually the case for
real neurons, but useful nonetheless for many simulation purposes. For
example, these features allow one to simulate the basic logic gates that we
have seen in Chapter 1. Actually, we’ll make a slight modification to the
Heaviside function and write

ci(t+ 1) = sgn

⎛⎝X
j

wijcj(t)− θ

⎞⎠
where sgn is the sign function that takes the values

sgn(x) =

½
1 if x ≥ 0
−1 if x < 0

and ci(t) takes on the values +1 and−1.With this change, we can implement
the three logic gates, AND, OR, and NOT in the McCulloch-Pitts model.
What is more, McCulloch-Pitts demonstrated that a synchronous neural
network composed of neurons of this type can emulate a universal Turing
machine and hence is capable of universal computation.

Figure 5.17:

Above is a schematic diagram of a McCulloch-Pitts AND gate. The sum
of the two weighted inputs exceeds the threshold only when they are both
+1, giving an output of +1, and −1 otherwise.

If one or both of the inputs is +1 in the OR gate, then the output is also
+1. Otherwise the output is −1.
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Figure 5.18:

Figure 5.19:

The input of +1 or −1 is reversed by the NOT gate.
This suggests, at least to some people, that the brain is nothing more

than a highly sophisticated digital computer and that consciousness is an
‘emergent’ property of complex neural activity. There is also the comple-
mentary notion that a digital computer can in principle perform all the
functions of the human brain and itself achieve consciousness. These have
been highly contentious scientific and philosophical issues. Roger Penrose
argues against this position throughout much of his book The Emperor’s
New Mind [1989]:

“Is it not ‘obvious’ that mere computation cannot evoke pleasure or pain;
that it cannot perceive poetry or the beauty of an evening sky or the magic
of sounds; that it cannot hope or love or despair; that it cannot have a
genuine autonomous purpose?...

“Consciousness seems to me to be such an important phenomenon that I
simply cannot believe that it is something just ‘accidentally’ conjured up by
a complicated computation. It is the phenomenon whereby the universe’s
very existence is made known...

“Yet beneath all this technicality is the feeling that it is indeed ‘obvious’
that the conscious mind cannot work like a computer, even though much of
what is actually involved in mental activity might do so.”

The reference to consciousness not being ‘accidentally’ conjured up refers
of course to the phenomenon of emergence. Rather, Penrose believes that
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consciousness is that result of quantum effects that arise within microtubules
inside the neurons themselves and has written another book expounding on
this theory (Penrose [1994]). One the other hand, people like computer
scientist Marvin Minsky take a completely opposite view:

“We humans do not possess much consciousness. That is, we have very
little natural ability to sense what happens within and outside ourselves...

“In short, much of what is commonly attributed to consciousness is myth-
ical — and this may in part be what has led people to think that the problem
of consciousness is so very hard. My view is quite the opposite: that some
machines are already potentially more conscious than are people, and that
further enhancements would be relatively easy to make.”

Minsky provides a thought experiment in his book Society of Mind [1988]
in which you are to imagine that all the neurons in your brain have been
replaced by computer chips that perform exactly the same functions and
are connected in the same fashion to other chips as the neurons. “There
isn’t any reason to doubt that the substitute machine would think and feel
the same kinds of thoughts and feelings that you do — since it embodies all
the same processes and memories. Indeed, it would surely be disposed to
declare, with all your own intensity, that it is you.”

CA researcher Norman Packard holds a similar view. In a conversation
with Roger Lewin in his book Complexity, we have the following dialogue:

“The simple evolutionary models of the sort I’m working with will even-
tually develop behavior rich enough that I’ll see some kind of consciousness
emerge.”

“You’re saying that your computer model, a form of artificial life, will
develop consciousness?”

“I’m saying that the level of information processing in the system will
evolve toward what we could call consciousness, that the organisms will
reach a point where they will do information processing on their own, and
become aware.”

“Artificial life, becoming aware of itself?”
“Yes.”
The debate over whether the brain (mind) is just a computer capable of

consciousness or not will likely continue for some time to come. There are
others, such as Colin McGinn of Rutgers University who hold that an under-
standing of consciousness is beyond the scope of human senses in the same
way that humans are unable to see in the infrared. Let’s let Penrose have
the last word, “Let’s be honest. No one can really say what consciousness
is.”

If one is not at all concerned with the lofty notion of consciousness, there
is the system called BrainWorks by Michael Travers [1989] that uses simple
neurons such as those in the preceding to construct the nervous system
of simple animals. Neural networks have also been combined with a cell
structure in a hybrid called cellular neural networks (Chua & Yang [1988]).
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On a more abstract level, we have the notion of a random Boolean network.

5.4.3 Random Boolean Networks

Rather than implement cellular automata in the usual array format, it is
possible to consider a network whereby each cell becomes a node that is
connected to various other nodes. The nodes can be considered in various
states and these are updated at each time step by a local rule in accordance
with the other nodes to which an individual node is connected. Because
the network is finite in extent, the output tends to be similar to cellular
automata of finite size, that is periodic.

However, it is possible to enhance the dynamics of a finite network of
nodes by allowing each node to operate under its own rule picked at ran-
dom, which means that we are no longer in the realm of a classical cellular
automaton. Taking two allowable states for each node, 0 and 1 (off and on),
for a system in which each node has K inputs, there are 2K different combi-
nations of states and hence 22K

possible Boolean rules that can be formed.
For example, if each node is connected to K = 2 other nodes and thus re-
ceives two inputs, there are 222

= 16 possible Boolean functions to choose
from for each node. We list them as the following with O representing the
output of the node receiving the given inputs I1, I2:

I1 I2 O

0 0 0

0 1 0

1 0 0

1 1 0

I1 I2 O

0 0 0

0 1 0

1 0 0

1 1 1

I1 I2 O

0 0 0

0 1 0

1 0 1

1 1 0

I1 I2 O

0 0 0

0 1 1

1 0 0

1 1 0

I1 I2 O

0 0 1

0 1 0

1 0 0

1 1 0

I1 I2 O

0 0 0

0 1 0

1 0 1

1 1 1

I1 I2 O

0 0 0

0 1 1

1 0 0

1 1 1

I1 I2 O

0 0 1

0 1 0

1 0 0

1 1 1
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I1 I2 O

0 0 1

0 1 0

1 0 1

1 1 0

I1 I2 O

0 0 1

0 1 1

1 0 0

1 1 0

I1 I2 O

0 0 0

0 1 1

1 0 1

1 1 0

I1 I2 O

0 0 1

0 1 1

1 0 1

1 1 0

I1 I2 O

0 0 1

0 1 1

1 0 0

1 1 1

I1 I2 O

0 0 1

0 1 0

1 0 1

1 1 1

I1 I2 O

0 0 0

0 1 1

1 0 1

1 1 1

I1 I2 O

0 0 1

0 1 1

1 0 1

1 1 1

Some of these are previously encountered logic functions — the AND
function is the second rule listed, the OR function is second to last rule and
the EXCLUSIVE OR function is the eleventh rule.

Research on random Boolean networks was initiated by Stuart A. Kauff-
man and is discussed in his 1993 book, The Origins of Order — Self-Organization
and Selection in Evolution in order to study the emergence of order in bio-
logical systems such as genes. With two possible states of 0 and 1 for each
node, if there are N nodes, then the number of possible states for the net-
work as a whole to be in is 2N and represents the size of the state space. It
is helpful in this regard when thinking about the response of a network to
consider the nodes as lightbulbs that are off when in state 0 and on when in
state 1. No matter what the initial state of the network, it will eventually
find itself in a state it has already reached and thus will repeat its behavior
in a repeating state cycle much like an attractor of a dynamical system.
The maximum possible length of a state cycle is of course the size of the
state space itself, that is, 2N . But even for a modest sized network of say
N = 200 nodes, the state space is so large (2200 ≈ 1060) as to be effectively
infinite in extent.

Kauffman spent years experimenting with Boolean networks, “...count-
ing the number of attractors, the lengths of attractors, the stability of at-
tractors to perturbations and mutations, and so forth. Throwing the dice
again, we can randomly wire another network with the same general charac-
teristics and study its behavior. Sample by sample, we build up a portrait
of a family of Boolean nets, and then we change the values of N and K and
build up another portrait.” It was found in the simplest case when K = 1
where each node is only connected to one other, that the network exhibited
very short state cycles, often of length one. The latter is analogous to the
fixed point attractor of a dynamical system.

At the extreme of network behavior, when K = N , which means that
every node receives input from all others including itself, it was found that
the length of the state cycles was on average about

√
2N which is still
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virtually infinite even for N = 200. This means that one can wait for an
eternity to observe the state cycle repeat itself in real time! Nevertheless,
there are a number of different state cycles, on average that number will be
N/e, where e is the exponential number 2.71828... In K = N networks, if
a single node is perturbed by having its state flipped, then the network’s
future evolution is also completely altered thus exhibiting extreme sensitivity
to initial conditions. These networks can be considered chaotic except for
their modest number of state cycles. Similarly chaotic behavior was found
in networks with K ≥ 3.

Very orderly Boolean networks where found when K = 2. On average
state cycles have length about

√
N which is also about equal to the aver-

age number of different cycles. Thus, even in a very large network with
N = 100, 000 having the staggering number of 2100,000 possible states to
roam around in, the network “quickly and meekly settles down and cycles
amoung the square root of 100,000 states, a mere 317... Here is, forgive
me, stunning order... Order for free”. (Kauffman [1995]). If the network is
perturbed slightly it will return to the same state cycle, exhibiting a kind of
homeostasis. Kauffman contends that the cell types of an organism as deter-
mined by the available genes are in some sense equivalent to the state cycles
of a Boolean network with the nodes representing the genes. The numbers
seem to agree reasonably well. For example, the human genome has ap-
proximately 100,000 genes yet these produce only 254 cell types. In other
organisms it is found that the number of cell types is close to the square root
of the number of genes which is the relationship Kauffman found between
the number of nodes of a Boolean network and its state cycles (Figure 5.20).

The output for the K = 2 network in Figure 5.20 at the next time step
is given by:

1 2 3 t→ t+ 1 1 2 3

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1

which is the transition table for the 8 possible inputs for each of the three
nodes at time t and t+1 respectively. Node 1 is an OR gate, and nodes 2 and
3 act as AND gates. From this we can observe a state cycle 2: 101 À 110
as well as other state cycles.

It was found by Bernard Derrida and Gerard Weisbuch [1986] that it
is possible to vary a control parameter called P measuring the internal ho-
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Figure 5.20: A schematic diagram of a K = 2 Boolean network.

mogeneity of the set of Boolean functions. It is analogous to the Langton
λ parameter, allowing one to move from ordered networks to chaotic ones.
There is also some critical value of P , which is just at the boundary between
the two — the edge of chaos. Regarding biological systems, Kauffman con-
tends, “The reason complex systems exist on, or in the ordered regime near,
the edge of chaos is because evolution takes them there”.

Figure 5.21: A schematic diagram showing some state cycles and their basins
of attraction for K = 2, N = 8. Different colors represent different network
states.

5.4.4 Predator-Prey

For many years, biologists have studied predator-prey models, in which a
predator inhabits the same environment as its prey and the fluctuating pop-
ulations of both are investigated subject to a variety of conditions. A set of
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differential equations known as the Lotke-Volterra equations have been tra-
ditionally used to describe predator-prey models based on continuous inputs.
Their solution encapsulates the cyclic waxing and waning of the predator
and prey populations. Since predator-prey populations are actually discrete
in nature, we shall explore the popular cellular automaton model proposed
by A.K. Dewdney in his Scientific American article [1984, 1988] known as
WATOR.

Dewdney imagines a water (i.e. WATOR) world inhabited by sharks
and fish where the fish are the prey, the sharks the predators, and both are
allowed to reproduce. This scenario leads to five parameters which can be
varied by the experimenter:

Nf = initial number of fish
Ns = initial number of sharks
Bf = number of generations before a fish can breed
Bs = number of generations before a shark can breed
S = number of generations since its last fish meal before a shark starves

to death.

The fish and sharks live out their lives within the framework of a two-
dimensional cellular array where of course time is discrete. Let us give the
water, cell state = 0, fish, cell state = 1, and sharks, cell state = 2. We
use periodic boundary conditions so that the fish and sharks are actually
swimming around on the surface of a torus. The various rules of engagement
governing our aquatic inhabitants at each time step are:

(i) Fish swim at random to an adjacent cell in either a N,E,S,W direction
provided one of these cells is unoccupied. If all adjacent cells are occupied,
the fish remains where it is.

(ii) Sharks are also able to move in a N,E,S,W direction. If some of these
adjacent sites are occupied by fish, it chooses one at random, moves to that
site and eats the fish which now departs this imaginary WATOR-World. If
no fish occupy adjacent cell sites, the shark swims to one of them at random
as a fish does, avoiding other sharks.

(iii) When a stipulated number of generations have elapsed (Bf , resp.
Bs), fish and sharks are allowed to breed one of their own kind. A ready-
to-breed fish or shark that can swim to an adjacent cell deposits one of its
offspring in the cell it is just leaving and both the offspring and adult have
their biological clocks set to zero for breeding purposes. If there is no free
adjacent cell for a fish, then it can neither swim nor breed. However, a shark
with adjacent cells occupied by fish can still breed by choosing to eat one of
the fish at random and depositing its offspring in the cell it just left. Neither
fish nor sharks need need to mate for the purposes of reproduction.

(iv) Sharks will starve to death and depart WATOR-World if they have
not eaten any fish after S generations. After a meal of fish however, the life
clock for the shark starts at zero again.
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Figure 5.22: The WATOR-World of fish (dark blue), sharks (black) and
water (pale blue). There is an initial random mixing of 200 fish and 5
sharks. The image is taken at the 297th time step where the fish population
is now 93 and the shark population has risen to 177. Breeding ages for
fish and sharks is 2 and 10 generations respectively and the starvation time
for sharks has been set at 3. The geometry of the local population mix can
affect the dynamics. Image generated by the Wa-Tor predator-prey program
of Kovach Computing Services.

The fish and sharks are initially distributed at random in the lattice with
the vacant cells being water. In general, with a small number of sharks,
the fish population increases significantly, resulting in an increase of sharks
which produces a drop in the fish population which in turn leads to starva-
tion and death of sharks. The remaining fish population can again increase
and so on (Figure 5.23).

However, this cyclic behavior of both fish and shark populations all de-
pends on the spatial geometry of the two populations and the fine tuning
of the five parameter values. With too many fish or too many sharks, the
model soon becomes overwhelmed with one of them.

This model is not a cellular automaton in the strict sense as it has asyn-
chronous updating. Indeed, if a fish is surrounded with four empty cells in
its von Neumann neighborhood, then the fate of these cells is indeterminate
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Figure 5.23: The ebb and flow of the fish (blue) and shark (black) popula-
tions from the above simulation demonstrating how the predator population
follows the trend of the prey population but out of phase with it. Time steps
are referred to as ‘chronons’, a term used by A.K. Dewdney in his Scientific
American article. Image generated by the Wa-Tor predator-prey program
of Kovach Computing Services.

until the next time step when the fish chooses one at random and the fish
cell and the chosen empty cell effectively exchange states.

Of course there are many variants of WATOR. Among others, if a fish
or a shark cannot breed because of lack of available space, it would have
to wait until the next multiple of its breed time rather than breeding at
the next possible time step. This introduces a ‘stress factor’. One can also
allow fish and sharks to swim in eight directions of the Moore neighborhood,
instead of the von Neumann neighborhood employed here. Or the model
can be made completely deterministic, dispensing with the random aspects
altogether. In an earlier predator-prey model, Auslander et al. [1978] found
that in one scenario, the prey population exhibited chaotic behavior. It was
even suggested that this could be a mechanism to prevent the predator from
‘tracking’ the prey. On the topic of fish, an interesting probabilistic fish
migration model is presented in Schönfisch & Kinder [2002].

The predator-prey model employs autonomous agents and is referred to
as an IBM (individual based model).
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5.4.5 Bacteria growth

Here we are interested in studying the spread of a bacteria colony (through
cell division) in the presence of diffusable nutrient with overcrowding playing
an important role. The model is due to Ermentrout and Edelstein-Keshet
[1993] and uses an 8-cell Moore neighborhood. Since the word ‘cell’ can
now have two different meanings in the present context, let us stipulate that
‘cell’ means a bacteria cell occupying a ‘site’ (having state value 1) of a
two-dimensional lattice.

The amount of nutrient in every site at the next time step is deduced from
the amount at the current time step, n(t), plus a weighted average of nutrient
in the eight neighboring sites minus the amount consumed, according to the
formula:

n(t+ 1) = (1− δ)n(t) + δ · average− eaten

where

average =
4(N + S +E +W ) + (NE + SE + SW +NW )

20

δ is a diffusion parameter, and

eaten =

⎧⎨⎩
a1 if a new cell is formed (food for growth)
a2 if a cell already exists (food for sustenance)

0 otherwise.

Now it is necessary to take the effects of crowding into account by con-
sidering the number of surrounding sites that are occupied. This will be a
function k(t) for each site that takes small values for small and large num-
bers of occupied neighboring sites, with a suitable maximum somewhere in
between. Cell growth occurs every m time steps in an unoccupied site (in
state 0) with probability 1/2 if for that particular site

k(t) · n(t) > θ

for some threshold value θ. The above formula means that when an un-
occupied site is crowded by a lot of neighbors so that k(t) is small, then a
large amount of the nutrient n(t) is required before cell growth can occur. A
‘new’ cell remains as such until the next m time steps. Notice that making
a1 significantly larger than a2 has the effect of inhibiting growth adjacent to
a site where a new cell has formed as opposed to having an old cell at that
site (Figure 5.24).
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Figure 5.24: A bacteria colony and the forms it takes with increasing values
of the threshold θ. Note the fractal-like appearance that develops.

This model is related to the solidification model of Packard [1986] in
which higher temperature results in fewer cells experiencing the phase tran-
sition from liquid to solid. This is analogous to lower nutrient levels and
lowered rates of cell growth in the bacteria model. Other features, such as
inhibition and crowding, are also found in the Packard model. Perhaps the
simplest solidification model based on inhibition and crowding is the one of
snow crystal formation that follows.

5.5 Physical Models

Cellular automata have been used to model many of the dynamic features
of the physical world. In this section we will discuss just a few of the more
notable applications.

5.5.1 Diffusion

The dispersion of heat or of one chemical substance into another due to
the random movement of molecules has classically been modelled by the
diffusion equation, which in one-dimension is given by
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Figure 5.25: The diffusion of a solid substance after 100, 1000, 5000, and
10,000 steps.

∂u

∂t
= c

∂2u

∂x2
,

where u = (x, t) is the amount of heat or concentration of the dispersing
substance at distance x and time t, and c is just a constant that depends on
the medium. One shortcoming of the solution is that at any given distance
from the source, there is to be expected some quantity of the substance,
at any given time. So for example, if you throw a lump of sugar into a
swimming pool, the diffusion equation solution of this event always predicts
a small quantity of sugar far from the site of the initial lump even a short
time after it enters the water.

By contrast we can produce a cellular automaton model that is much
closer to what one expects as in Figure 5.25.

The automaton employed here is quite simple and tends to mimic the
actual diffusion of a substance like sugar in water in which particles of sugar
swap places with parcels of water. In our example, we are taking 100 rows
with the solid substance such as sugar, represented by the vertical strip
of cells in blue which can diffuse into the surrounding medium of water
represented by white cells. Taking one row at a time, we choose a cell at
random and swap its contents (i.e. state) with the adjacent cell to its left.
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Figure 5.26: The density values (vertical axis) for u(x, t) for t = 100 (10,000
iterations) and t = 300 (30,000 iterations) respectively plotted with the
theoretical values of u given by the solution to the diffusion equation. The
diffusion of the material into the surrounding medium is evident. Only the
right-half of the bar is considered.

We then proceed to do this for each of the 100 rows and count this as the
first time step. Then we start again with the first row, choosing a cell at
random and swapping its contents with the adjacent cell to the right, again
carrying out this procedure for each of the rows. This is the second time
step. We continue in this fashion so that at each odd time step (1,3,5,...)
we swap the contents of a random cell in each of the rows with the adjacent
cell to the left, and at even time steps (2,4,6,...) we swap with the cell to the
right. If two cells have the same contents, then their swapping will result in
no change to either.

Quantitative data can even be extracted from the cellular automaton
model by choosing a particular vertical column, i.e. a distance x from the
source, and adding up the number of occupied cells n. Then the average,
n/100 (since there are 100 cells vertically), is a density value for u(x, t), for
the given time t, representing say, the amount of sugar present at the given
distance and time.

Another interesting example of the process of diffusion can be found in
the formation of a particular type of meteorite. In certain asteroids, there
has been a process of differentiation, as has happened with the Earth, in
which a heating event causes the nickle-iron content to sink to a central
core with the silicate material forming an outer mantle. At the core/mantle
boundary the two components are immiscible when in a fluid state, but
certain events like an impact with another asteroid can cause the two ma-
terials to diffuse into one another. Sometimes solidification due to cooling
then takes place before the two components of silicate and metal can sepa-
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Figure 5.27: A slice of the gorgeous Marjalahti pallasite, a witnessed fall in
1902. The yellow crystals are the mineral olivine and the slice is sufficiently
thin that light passes through them. Photo about 3/4 actual size. Courtesy
Darryl Pitt/The Macovich Collection.

rate again. If the asteroid then suffers another major impact exposing the
core/mantle boundary material and this is acted upon by certain astrophys-
ical forces that send it onto a collision course with the Earth, and enough
of it survives the atmospheric burnup to reach the ground, then we have
the very rare, but certainly the most beautiful of meteorites — a pallasite
(Figure 5.27).

To simulate the formation of a pallasite, we have taken a hexagonal
array. As in the preceding example, taking one row at a time, we pick a
random cell and swap its state with the cell to the left, but in this case
we alternate between ‘upper left’ and ‘lower left’ at each time step. The
time evolution is represented in Figure 5.28, with the olivine layer (left)
overlaying a nickel-iron core (right) of a differentiated asteroid.

5.5.2 Snow Crystals

Snow crystals form when water vapor condenses on some seed, usually a
speck of dust. When water freezes, molecules of water ice arrange themselves
in a hexagonal lattice, the result being that ice crystals take the form of a
hexagonal tablet or prism. At certain temperatures the sides grow much
more rapidly than the top and bottom surfaces and the crystal spreads out
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Figure 5.28: A two-dimensional simulation of the formation of a pallasite
meteorite. This results from the diffusion of silicate and nickel-iron at the
core boundary of a differentiated asteroid and subsequent solidification at
the final stage. There is still a sequence of astrophysical events that have
to happen before this material can be recovered on Earth. The CA images
represent 0, 100, 1000, and 10,000 time steps.
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Figure 5.29: Some of the exquisite forms of actual snow crystals. Pho-
tographs taken by Wilson Bentley. Courtesy The Jericho Historical Society,
Jericho, VT.

into a planar figure. Since the snow crystal experiences the same ambient
conditions across its entire face, it grows with a six-fold symmetry. However,
the crystal growth is strongly influenced by the temperature and as the snow
crystal is blown about it experiences different temperatures which lead to
different morphological features. Thus the physics of how water molecules
are added to the growing crystal structure can be very complex. By the
way, snowflakes are actually assemblages of snow crystals that are loosely
bound together.

One of the pioneers of snowflake photography was Wilson Bentley(1865-
1931) a Vermont farmer who turned to snow crystal photography taking
more than 5,000 images in his lifetime (see Figure 5.29). His book, Snow
Crystals published in 1931 has been re-released by Dover [1962] and is still
in print.

Norman Packard [1986] has shown that a simple automaton model can
reproduce many of the snow crystal patterns quite effectively. When a water
molecule is added to the crystal structure, a small amount of heat is released
at the site which acts as an inhibiting factor for more water molecules to
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Figure 5.30: The evolution of the Packard model of snow crystal formation
starting with a seed of a single black cell on a hexagonal lattice. A close
correlation with actual snow crystals is observed. From Wolfram [2002], p.
371.

attach at the same site. So the Packard automaton model states that:
• a cell site becomes black (representing the presence of solid material)

if it has exactly one black neighbor;
• a cell remains white (representing the absence of solid material) if it

has more than one black neighbor.

Starting with a single black cell (the seed) on a hexagonal lattice, we
obtain a sequence of cellular automata snow crystals (Figure 5.30):

Very clear similarities can be seen between the actual snow crystals above
and the cellular automata ones. One can also note an evolution that alter-
nates from a branched structure to the tablet form and back again.

A more sophisticated model capable of capturing snow crystals forms
has been presented by Clifford Reiter [2004]. This model also employs a
hexagonal grid and states of cells are allowed to take on real number values
as opposed to simply integer values. Such models with states allowed to
take real values are referred to as continuous automata. In this instance the
values are a measure of the amount of water at a particular cell site and if
that value is ≥ 1 then the water is taken to be ice. The cellular array is
divided into two distnct classes that are updated differently:

• Receptive (R): cells that are ice (value ≥ 1) or have an immediate
neighbor that is ice;



152 CHAPTER 5. APPLICATIONS

1.000 1.000 1.000

1.0001.0001.000

1.0001.0001.000

1.000

0.500

0.500

0.500

0.500

0.200

0.200 0.200

0.200 0.200

1.000 1.000 1.000

1.0001.0001.000

1.0001.0001.000

1.000

0.500

0.500

0.500

0.500

0.200

0.200 0.200

0.200 0.200

receptive

nonrecepitive add constant
(γ = 0.100)

average

add 
together

1.000 1.000 1.000

1.0001.0001.000

1.0001.0001.000

1.000

0.500

0.500

0.500

0.500

0.000

0.000 0.200

0.000 0.000

1.000 1.000 1.000

1.0001.0001.000

1.0001.0001.000

1.000

0.500

0.500

0.500

0.500

0.000

0.000 0.200

0.000 0.000

0.000 0.000 0.000

0.0000.0000.000

0.0000.0000.000

0.000

0.000

0.000

0.000

0.000

0.200

0.200 0.000

0.200 0.200

0.000 0.000 0.000

0.0000.0000.000

0.0000.0000.000

0.000

0.000

0.000

0.000

0.000

0.200

0.200 0.000

0.200 0.200

1.100 1.100 1.100

1.1001.1001.100

1.1001.1001.100

1.100

0.600

0.600

0.600

0.600

0.000

0.000 0.300

0.000 0.000

1.100 1.100 1.100

1.1001.1001.100

1.1001.1001.100

1.100

0.600

0.600

0.600

0.600

0.000

0.000 0.300

0.000 0.000

1.100 1.100 1.100

1.1001.1001.100

1.1001.1001.100

1.100

0.617

0.633

0.617

0.633

0.150

0.167 0.350

0.183 0.150

1.100 1.100 1.100

1.1001.1001.100

1.1001.1001.100

1.100

0.617

0.633

0.617

0.633

0.150

0.167 0.350

0.183 0.150

0.000 0.000 0.000

0.0000.0000.000

0.0000.0000.000

0.000

0.017

0.033

0.017

0.033

0.150

0.167 0.050

0.183 0.150

0.000 0.000 0.000

0.0000.0000.000

0.0000.0000.000

0.000

0.017

0.033

0.017

0.033

0.150

0.167 0.050

0.183 0.150

Figure 5.31: The updating of the hexagonal array of Receptive and Unre-
ceptive cell sites as described in the text. Adapted from Reiter [2004].

• Unreceptive (UR): all other cells.
The R sites are updated at the next time step by just adding a constant

parameter γ, the idea here being that water may be supplied from outside
the plane of growth and stored.

The UR cell sites are not yet ice and so are governed by the diffusion of
water vapor. If u = u(P, t) represents the amount of water vapor at position
P and time t, then the diffusion equation describing the vapor flow is:

∂u

∂t
= a∆u,

where ∆u = ∂2u
∂x2 +

∂2u
∂y2 is the Laplace operator applied to u. On a hexagonal

array, this can be expressed in a discrete form as

u(P, t+ 1) ≈ u(P, t)
2

+

P
N∈nn(P ) u(N, t)

12
,
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where nn(P ) represents the set of nearest neighbors of P, and we have taken
a = 1/8 as the canonical case

The updating is a two-stage process. Firstly, the array is split into
Receptive and Unreceptive groupings. The Receptive group consists of all
the R cell sites but also has 0 as a place holder at any UR cell sites. The
Unreceptive group consists of all the UR cell sites with 0 as a place value
for the purposes of averaging at any of the R cell sites. See Figure 5.31.

As mentioned above, all the UR cell sites in the Receptive group have
the constant γ added to their value with 0 placeholding the UR sites. All
the sites in the Unreceptive group are updated according to the averaging
given by the preceding equation, even the sites having value 0. Finally, the
corresponding cell values of the Receptive and Unreceptive groups are added
together and this gives the state of the array at the next time step.

There is one other parameter that we are free to set and that is the
background level given by the constant β. By a suitable choice of the two
parameters γ and β, the model is able to generate a large variety of snow
crystal forms. Of course we could also vary the parameter α but Reiter has
found that in general the qualitive behavior of snow crystal growth is not
affected by the choice of α. In Figure 5.32 we start from a single seed of
value one with all other cells having background value β.

Figure 5.32: Images have parameter values β = 0.35, γ = 0; β = 0.4,
γ = 0.001; β = 0.8, γ = 0.002; β = 0.95, γ = 0; β = 0.95, γ = 0, respectively.
The last two have the same parameter values and represent different time
steps. The first three types are stellar dendrites and the last two are plate
forms. Courtesy Clifford Reiter.

The morphological changes with varying β and γ can be seen in Figure
5.33 (from Reiter [2004]).

A fascinating account of snow crystals formation and morphology can
be found in the book by Kenneth Libbrecht/Patricia Rasmussen [2003].

5.5.3 Lattice Gases

Our first model for the simulation of fluid flow is due to Hardy, de Passis,
and Pomeau [1973], and accordingly is known as the HPP model. It is a
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Figure 5.33: The morphological changes of the snow crystals in the Reiter
model as a function of the background parameter β and the additive constant
γ. From Reiter [2004].

two-dimensional model of fluid particle interactions, where time is discrete,
particles are all identical and travel at unit speed. The lattice is rectangular
and particles are deemed to be at the nodes of the lattice and can travel
only in the four directions of the lattice itself. One’s first impression is that
this is not really a cellular automaton, but as we shall see it turns out that it
is equivalent to the partitioning cellular automata of Margolus. Lattice gas
models also appear in biology models (cf. Ermentrout & Edelstein-Keshet
[1993]) since the particles can also represent cells or organisms.

At each time step, each particle travels from one node to the next nearest
node as indicated by its velocity vector (which is just an arrow indicating
the direction of flight along one of the lattice lines). An exclusion principle
forbids any two identical particles to occupy the same node at the same time,
but up to four particles can be at the same node. The rules for interaction
between particles at the same node is the following:

• Particles arriving at a node from opposite directions (head-on col-
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Figure 5.34: Particle interactions in the HPP model. Head-on collisions
result in particles exiting at right angles (left) and any other type of collision
results in the particles continuing on their original course.

lisions) give rise to two particles traveling at right angles to the original
direction of flight (Figure 5.34 left);

• In all other particle collisions (say at right angles or between more than
two particles) the particles simply continue on the path indicated by their
velocity vector (Figure 5.34 right).

So that the above collisions rules make sense when thinking about col-
lisions say between billiard balls, it is important to note that individual
particles cannot be distinguished after a collision takes place. There are
actually 16 possible interactions at a node which we may describe in the fol-
lowing table, where we have indicated the directions of flight by N (north),
W (west), S (south), E (east) with a ‘1’ denoting the presence of a particle,
and a ‘0’ the absence of one:

I n O u t I n O u t

N W S E N W S E N W S E N W S E

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1

0 0 1 0 0 0 1 0 1 0 1 0 * 0 1 0 1

0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1

0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0

0 1 0 1 * 1 0 1 0 1 1 0 1 1 1 0 1

0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0

0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

Only the two head-on collision events indicated by (*) produce any
change in direction for the incoming particles. Observe that the number of



156 CHAPTER 5. APPLICATIONS

Figure 5.35: SWAP-ON-DIAG: In every 2x2 block of the current partition,
swap the contents of each cell with that of the cell diagonally opposite to it
in the block.

incoming particles (which are identical in mass and velocity) always equals
the number of the outgoing particles so that energy and momentum (mass
x velocity vector) is conserved by collisions. The HPP model captures many
of the macroscopic properties of fluid dynamics. However, one pecularity of
this model is that the horizontal component of momentum is conserved along
all horizontal lines of the lattice, and the vertical component of momentum
is conserved along all vertical lines. As this does not actually happen in the
real physical sense, it leads to discrepancies.

However, let us see how the HPP model follows from the Margolus neigh-
borhood notion. Following Toffoli and Margolus [1987], let us adopt just the
simple rule that the authors call SWAP-ON-DIAG (see Figure 5.35).

By considering say, a particle in the bottom left-hand corner of a dark
2x2 block, it will according to the SWAP-ON-DIAG rule go diagonally to
the top right-hand corner of the block. Next it will be considered in a
light block, again at the bottom left-hand corner, and the rule will move it
further diagonally to the top right as in Figure 5.36 (left). Particles at other
positions will also move diagonally.

At this stage we have produced particle motion but not any collisions
and particles heading directly towards one another will just by-pass one
another, traveling merrily on their way as in Figure 5.36(right).

In order to account for the collision rule of the HPP model we need
only make one slight emendation to the SWAP-ON-DIAG rule. Namely,
where there are two particles are at opposite ends of a diagonal in a block
(and no other particles in the block!), we ROTATE the two particles 90o to
the other diagonal. Thus we simply need to amend the 2nd and 3rd rules
of SWAP-ON-DIAG as in Figure 5.37 and maintain all the others as they
were.

By way of illustration, in Figure 5.38 we have the movement of two
particles moving freely through space (left) and colliding head-on (right).

Thus all the dynamics of the HPP lattice gas model have been repro-
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Figure 5.36: Particle movement following the SWAP-ON-DIAG rule. Move-
ment is always diagonally across the lattice. Particles that encounter one
another, either head-on or side-on move as if ‘through’ one another.

Figure 5.37:

duced using the Margolus neighborhood and the preceding modification of
the SWAP-ON-DIAG rule.

A model employing the same general principles but which provides a
much better fit with real fluids is due to Frisch, Hasslacher, and Pomeau
[1986], and known as the FHP model. It uses a hexagonal lattice (again in
two dimensions) so that particles can travel along six different directions.
A sample of particle interactions is given in Figure 5.39. Both mass and
momentum are again conserved at each vertex.

The virtue of the FHP model is that in the macroscopic case taking a
sufficiently large number of particles, the classical two-dimensional Navier-
Stokes equations are satisfied. The Navier-Stokes equations are the funda-
mental partial differential equations governing the fluid flow of liquids and
gases. For some additional technical discussion regarding the behavior of the
viscosity of the model, see the references of Frisch [1987] and [1990]. Various
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Figure 5.38: Particle movement with the modified SWAP-ON-DIAG rule
showing free movement in space and a head-on collision.

other lattice gas models have been devised including one for 3-dimensional
hydrodynamics (Henon [1987]).

5.5.4 Ising Spin Models

The Ising spin model originally arose out of a study of ferromagnetic ma-
terials. A lattice model of spins was proposed by Wilhelm Lenz in 1920
and investigated by his student Ernst Ising. The resulting model considers
a lattice of sites at which is placed a ‘spin’ which takes on either the value
+1 or −1. Equivalently, one can think of the +1 spin as an arrow [↑] repre-
senting ‘spin up’ and the −1 spin as an arrow [↓] representing ‘spin down’.
The lattice we consider in the sequel consists of squares, but triangular or
hexagonal lattices have also been employed in two dimensions, although the
lattice can be in any dimension. The Ising system also serves to model a
large class of thermodynamic systems that experience phase transitions.

The spins lie at the vertices of the lattice which results in an interaction
energy (or ‘bond energy’) between each site’s spin and those of its von Neu-
mann nearest neighbor sites. The energy contributed by these interactions
is +1 whenever the sites have opposite spins and −1 whenever the sites have
the same spin, in a sense like opposite poles of a magnet attract each other
and like poles repel. This is illustrated in the example below.
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Figure 5.39: Various particle interactions in the FHP model. Particles at
time t are given by a single arrow, and those at time t+1 are given by double
arrows. Head-on two body collisions have two possible outcomes with equal
a priori weights (bottom left and bottom right). Other particle interactions
not depicted are unaffected by collisions. Redrawn from Frisch, Hasslacher,
and Pomeau [1986].

[↓] −1 [↓] +1 [↑] +1 [↓]
+1 +1 +1 +1
[↑] −1 [↑] +1 [↓] +1 [↑]
−1 −1 −1 −1
[↑] −1 [↑] +1 [↓] +1 [↑]
−1 +1 −1 +1
[↑] +1 [↓] −1 [↓] −1 [↓]

Here the spins up [↑] and spins down [↓] each have four bond energies
with their nearest neighbors in the NESW directions which are +1 when the
spins are opposite and −1 when the spins are the same.

In order to compute the total energy of the system, one adds up all the
nearest neighbor energies for the lattice. If we denote by si (= ±1) the value
of the spin at site i, then the bond energy between the nearest neighbor pair
si and sj is given by the negative of their product: −si sj . Taking the sum
over all of these nearest neighbor pair interactions gives the total magnetic
energy of the system
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E = 1

2

X
i,j

−si sj = −
1

2

X
i,j

si sj .

Periodic boundary conditions are taken to achieve the closest approximation
to an infinite lattice. In order that the total energy value does not depend on
the size of the system, we will normalize it by dividing by the total number
of spins N and denote: E = E/N. In the extreme cases when all the spins
are either up (+1) or down (−1), we find that E=− 2 since there are four
bond energy sums for each of the N spin sites with each having a value of
−1 and the factor of 1/2 compensates for the fact that we have counted each
bond energy twice, giving E = −2N/N = −2. In the other extreme case
when all the spins alternate consecutively between up (+1) and down (−1)
over the entire lattice, then there are 4N bond energy sums each having the
value +1 so that E = 2. Thus the total energy has the bounds: −2 ≤ E ≤ 2.

The magnetization of the system is given by the sum of all the values
si and normalized again by dividing by the number of spins N, giving

M =
1

N

X
i

si. (5.1)

This means that if all the spins were up (+1) then M = +1 and if all
the spins are down then M = −1 so that the magnetization lies in the
range: −1 ≤ M ≤ 1. The formulation for magnetization in Equation 5.1
also represents M as the fraction of the up spins minus the fraction of the
down spins and hence M = 0 when exactly half of the spins are up and half
are down.

Let us just take note of what we have created here. For an array that is
10x10 so that N = 100, the total number of different lattice configurations
equals 2100 ≈ 1030, a rather large number indeed. The set of all these
configurations is called the phase space. This is the universe we get to roam
around in to explore the dynamics of magnetization. Taking the extreme
case again when all the spins are either all up (+1) or all down (−1), we
found that E = −2 and either M = 1 or M = −1, respectively. Even when
a large proportion of the spins are either all up or all down, the energy E
will be low and close to its minimum. Furthermore, from the model we
can glean the fact that whenever exactly half the spins are either up and
half are down, then M = 0 as mentioned above. Moreover, there are many
different possible configurations with half the spins up and half the spins
down (essentially where there is a random ordering of the spins) and each
one has a possibly different total energy. We can conclude that for a large
number of values of E, we will haveM = 0. This includes the case when the
spins alternate consecutively up and down and the energy has the maximum
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Figure 5.40: In the Ising spin model, large numbers of configurations (essen-
tially half the spins up, half down) have magnetization values close to zero.
This includes the highest energy state E = 2 in which the spins alternate
between up and down over the entire array. When the spins are oriented
mostly up (+1) or mostly down (−1) then the magnetizationM takes values
close to +1 or −1 respectively and correspond to the lowest energy levels E.
The graph represents the idealized situation for an infinite array of spins.

value E = 2. It turns out that the (ideal) situtation looks like Figure 5.40
when we graph the magnetization vs. energy for different configurations.

In a physical context, it is observed that the magnetization of a magnetic
material is influenced by its temperature. That is, at high temperature,
there is essentially no magnetization, and as the temperature is lowered
below some critical (Curie) temperature, Tc, regions of magnetization are
spontaneously generated. The high temperature scenario corresponds to a
high internal energy and a random ordering of the spins (essentially half
the spins up, half down), so that M is effectively 0, whereas in the lower
temperature case, spins tend to orient in a particular direction over regions
wherein M is either positive or negative. This spontaneous generation of
magnetism is called a phase transition and represents a kink in the behavior
of M at Tc (i.e. a discontinuity in the rate of change of M) as can be seen
in the graph.

In 1944, it was demonstrated by Lars Onsager that in the two-dimensional
case there is a mathematical description of the phase transition in the Ising
spin model. This model has become the the natural way in which to study
phase transitions in general, such as occurs during freezing, melting, or su-
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perconductivity.

In order to explore the dynamical behavior of the Ising model since
there is no time parameter in the model itself, the system is made to evolve
according to some algorithm that will ‘flip’ the spins in some fashion. We
discuss an elementary formulation that preserves the total energy E that
is based on the so-called Q2R rule of Vishniac and developed in Toffoli &
Margolus [1987]. The algorithm is: we flip all and only spins that have two
nearest neighbors with spins +1 and two with spins −1, so that the sum of
the four bond energies associated with each such spin remains unchanged.
However, one must be a bit careful how the flipping of spins is carried out.
In the figure below, the two central (down) spins can both flip according to
our rule,

... [↑] [↑] ...
... [↑] [↓] [↓] [↓] ...

... [↓] [↑] ...

but if they did both flip simultaneously and their neighbors remained un-
changed, yielding

... [↑] [↑] ...
... [↑] [↑] [↑] [↓] ...

... [↓] [↑] ...

then each of their bond energies will have changed from 0 to −2 with a
resulting change in the total energy. To avoid this we place the spin sites on
a black/white checkerboard grid and we apply the flip rule by alternating
between the black and white sites. This circumvents the aforementioned
difficulty and results in a reversible cellular automaton. This procedure
can still be construed as simultaneous updating of all cells by introducing
a spatial parameter that alternates at each time step between the values 1
on the black cells, 0 on the white cells, to 0 on the black cells and 1 on
the white cells. Each cell with the parameter value 1 will have the flip rule
applied and if the cell value is 0 then the cell state is to remain unchanged.

More specifically, the total energy is computed for any initial configu-
ration by first taking the total bond energies for all the black cells of the
lattice, allowing all spins on black cells to flip that are energy preserving,
and then computing the energies of the spins on all white cells and flipping
all of those spins that are energy preserving. The total energy is computed
by taking one-half the sum of the energies of the spins on black and white
cells respectively.

For a typical simulation, with proportions of spins up (and down) whose
energy levels are greater than the critical value, the system evolves to a
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Figure 5.41: An Ising spin simulation with an initial configuration of 15%
spins up (black) and after 1000 iterations. This shows the system evolv-
ing to the equilibrium state of 50% up spins and 50% down spins with a
magnetization of zero.

more or less stable configuration of half the spins up and half the spins
down whose magnetization is zero as in Figure 5.41.

Generally, there is a small degree of fluctuation of the magnetization
over subsequent iterations that preserve energy because the system is finite.

Moreover, if we also plot values of energy) vs. magnetization for the
equilibrium configuration after the system has settled down, and do this
over a wide energy range, we find a relationship close to the idealized one
(Figure 5.42). Just below the critical value, the equilibrium magnetization
can fluctuate rapidly between the higher and lower states but the overall
result looks much like the ideal graph.

Another more sophisticated cellular automata model of Ising spin dy-
namics has been developed by Creutz [1986] but the algorithm also conserves
constant total energy and updates cell spins in a checkerboard fashion. Of
course there are many other types of models that have been explored and
we have only given the briefest introduction to the subject here.

5.5.5 Steady-State Heat Flow

By allowing the cells of our lattice to have any values whatsoever, we can
obtain quantitative information on a whole host of problems in physics. One
such is the determination of the steady-state temperature (i.e. not changing
with time) of the interior of a homogeneous body when only the surface
temperature is known. The temperature at each point of the interior is
governed by a famous partial differential equation known as the Laplace
equation:
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Figure 5.42: In this depiction of magnetization vs. energy, we have con-
sidered on a checkerboard lattice a range of random initial sites with the
proportion of up spins ranging from 0% to 100% respectively. The spins
that are energy preserving on black and white cells are flipped until the
magnetization stabilizes and that value is then plotted for the given energy
value. Note that the graph is very close to the ideal depicted above.

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0,

where u(x, y, z) denotes the temperature at each point (x, y, z). This equa-
tion is also satisfied by electrostatic and gravitational potentials and is thus
one of the fundamental equations governing how the world works.

Let us consider a solid sphere of some homogeneous material and suppose
that the surface of the sphere is held at a specified temperature which may
vary continuously from point to point on the surface. The interior will in
time reach an equilibrium steady-state temperature which we now seek to
determine. The salient feature about this situation is that the temperature
at the center of the sphere should be exactly the average of all the values
on the surface of the sphere. This is so because each point on the surface
is equidistant from the center and thus influences the temperature there
exactly to the same degree (no pun intended); see Figure 5.43.

Mother Nature knows this and makes this obvious choice for the temper-
ature at the center. This feature of the steady-state temperature (or electro-
static and gravitational potentials for that matter) is called the mean value
property. The same property holds if we consider a thin circular disk and put
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a suitable temperature distribution on its circumference. The steady-state
temperature at the center of the disk will be the average of the temperature
values on the circumference. For this important property of the mean value
to hold, the boundary temperature distribution should essentially be contin-
uous but it can have a finite number of jumps or ‘discontinuities’. These are
actually of no consequence and Mother Nature can deal with these as well.
We will employ such a boundary temperature with a few discontinuities in
the example below.

Figure 5.43: A circular region with a continuous temperature distribution
T on the boundary. Since every point on the boundary is equidistant from
the center, the (steady-state) temperature at the center will be the average
of all the values of T .

Suppose that we wish to measure the temperature inside a rectangular
region that is twice as long as it is wide and for the sake of simplicity, say
this is just a two-dimensional figure. Let us put a temperature distribution
of 100o F on one long side and maintain 0o F on the three other sides as in
the Figure 5.44.

Let us try to find the steady-state temperature at the center of the
rectangle. We fill up the rectangular region with a lattice of square cells and
can cheat a trifle here by putting in 101 square cells along the long sides of
the rectangle and 51 square cells along the shorter sides, thus giving us a
cell that surrounds the point in the center. The ratio of length to width is
not exactly 2-to-1, but certainly near enough. The cells bordering one long
side take the fixed boundary value of 100o F and the cells along the other
sides take the fixed value 0o F as in Figure 5.44.

All we need now is the transition rule which will follow naturally from
the mean value property. Taking a Moore neighborhood for each cell, the
eight neighbors around the central cell will be a sufficient approximation to
a circular neighborhood.

By the mean value property, each central cell should be the average of
its neighbors and so this is how each central cell will be updated at the next
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Figure 5.44: The rectangular region with length twice as long as it is wide
and having a temperature distribution as indicated on its boundary. How
warm will it be at the center of the figure?

time step. However, the cells at the corners of the Moore neighborhood,
namely, a, c, f, h do not have the same influence as the cells b, d, e, g that are
directly facing the central one and we take their value to be one-half that
of the former ones. A little algebra gives us the formula for the transition
rule:

T =
b+ d+ e+ g

6
+
a+ c+ f + h

12
,

where T is the temperature at the next time step of the central cell, and
a, b, c, d, e, f, g represent the values of the neighboring cells at the current
time step. We can check this is correct by putting a temperature of 1 in
each of the eight neighborhood cells. Then the value at the center will then
be T = 1+1+1+1

6 + 1+1+1+1
12 = 1, the desired ‘average’ value.

Running the cellular automaton we find that the value of the central cell
converges to T = 44.5120o F, where all cell values have been rounded off to 4
decimal places in each calculation. Thus we have actually used in the entire
procedure, a finite number cell values (= states), but we did not a priori
specify each of them, and so the number of cell states must be considered
potentially infinite. While we have not actually found the temperature at
the central point of our region, but rather a value for the whole of the central
cell, this is consistent with what can actually be measured in practice.

There is another rather interesting way in which to determine the value
of the temperature at the center of our rectangle. In 1941, the Japanese
mathematician Shizuo Kakutani discovered that for a problem such as this
one, the temperature at any interior point p of the rectangle was equal to
the probability (times 100) of a ‘random walk’ that started at p first hitting
the side having the 100o F temperature, i.e. the top side.
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Figure 5.45: The eight neighbors taken in the mean-value temperature cal-
culation of the central cell.

Firstly, what is a random walk? Basically, it is a path consisting of very
small steps such that each step is taken in a random direction, like the path
a drunkard would take after a few too many (Figure 5.46).

Figure 5.46: Random walk simulation inside a rectangle in order to deter-
mine the temperature at the starting point at the center.

So, if we start a particle at the center of the rectangle and take a sequence
of small steps each time in a random direction, eventually we will hit one
of the sides (it is a mathematical fact that we will not wander around the
interior of the rectangle forever). If we first hit the side with the 100o F,
we stop the particle and keep a tally of this and repeat the random walk
of the particle from the center again and again after each time we hit a
side. The number of hits on the 100o F side divided by the total number
of random walks taken gives us the desired probability of hitting the 100o
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Figure 5.47: Here we have color coded the steady-state temperature values
of our cellular automata simulation from red (hot) to blue (cold). See text
for details.

F side first. This little algorithm is easily implemented on a computer and
the simulation was run a total of ten times taking 2,000 random walks each
time, with the average of these ten values at the center of the rectangle being:
T = 44.3500o F, which is in very good agreement with our method using
cellular automata. Of course each time we ran the random walk simulation
we obtained a slightly different value because each individual random walk
does indeed have a random outcome, which will not be the case in the cellular
automaton approach.

Another more analytical mathematical technique available to solve this
problem called the method of separation of variables. Without going into
the technical mathematical details, the answer it gives for the temperature
u(x, y) at any interior point (x, y) is in the form of an infinite series,

u(x, y) =
400

π

∞X
n=1

sinh((2n− 1)πy/a)
(2n− 1) sinh((2n− 1)πb/a) sin((2n− 1)πx/a),

where a is the length of the rectangle and b is the height of the rectangle.
If we put in the coordinates of the center of the rectangle, namely

(50.5,100.5), with a = 201, b = 101, and take a suitably large but finite
number of terms of the series in order to calculate the sum (so even in the
analytic case, we are forced to make a finite approximation), we find that
u(50.5, 100.5) = 44.4258o F. This value is the most accurate, but the others
are in excellent agreement with it. The value obtained by using cellular
automata could have been improved further by taking the cell size even
smaller, since the temperature we obtained is that for the entire central cell
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and we are really interested in the value at the central point. Of course
this is just an illustration of what can be done using the cellular automata
technique when other methods are not so accessible.

5.5.6 The Discrete Universe of Edward Fredkin

Your theory is crazy, but it’s not crazy enough to be true.

Physicist Werner Heisenberg to Wolfgang Pauli

Many entities in the physical world are indeed discrete. Even though a
table appears like a solid object, we know that it is made up of atoms which
themselves are composed of discrete subatomic particles. Light is another
entity that made up of discrete photons, and even the angular momentum
of particles is known to be discrete.

It is now thought by many scientists that the fabric of space time is also
discrete rather than smooth and continuous. Although this at first seems
highly contradictory to experience, much of Quantum Mechanics, which is
the physics of the subatomic world, has no counterparts in everyday expe-
rience. In Quantum Mechanics, the smallest components of space-time are
the Planck length λp =

p
hG/c3 ≈ 10−33 cm (where h is Planck’s constant,

G is the universal gravitational constant, and c is the velocity of light) and
Planck time tp ≈ 10−43. The two are related in that tp is the time it takes
for a photon of light to travel a distance of λp, so that, tp = λp/c These are
the smallest measurements of length/time that have any meaning in physics
as we know it. So it is quite possible that at these scales, the physical world
looks granular rather than continuous and that it evolves in a step-like pro-
cess, much like the still frames in a movie film. Some work on a discrete
quantum mechanics has been initiated by Succi [2002].

Computer scientist Edward Fredkin [1990, 1993], has proposed the no-
tion of Finite Nature which is “the assumption that, at some scale, space
and time are discrete and that the number of possible states of every finite
volume of space-time is finite.” Let us explore this idea further and see what
are some of its consequences. Interestingly, Stephen Wolfram does not pro-
pose a cellular automata model of discrete space-time, but rather a different
model based on a causal network of nodes (Wolfram [2002], Chapter 9) in
which space-time and its contents are made up of the same ingredients.

You can see that we are now talking about a Cellular Automaton here
and the scale of the Fredkin cells is somewhere between the Planck length
and the Fermi distance of 10−13 cm, which is about the size of a proton
or neutron. In fact, the exact scale is not so important for many of the
consequences of the theory. Each cell has the usual 3-dimensional space co-
ordinates x, y, z, as well as a time coordinate t in an absolute fixed reference
lattice of cells.

One important consequence of the assumption that all entities in Nature
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are discrete is that each Fredkin cell contains only a finite amount of infor-
mation and thus can be coded as a finite string of integers representing a
particular state. Then in order for the discrete universe to evolve with (dis-
crete) time, it must be acted upon by a fundamental informational process
that takes the present state of the cells, and probably their past state as
well, in order to determine their future, in other words, a second order sys-
tem. In the resulting model of physics that Fredkin calls Digital Mechanics,
the convention is adopted that a particle contains such information as its
momentum, energy, spin, and rest mass in digital form.

A feature such as rectilinear motion of a particle would be achieved by the
sequential updating of the particle’s position with respect to the reference
lattice. Such a preferred reference coordinate system is indeed essential for
the description of motion in an informational based system. But Fredkin
states that these coordinates are most likely implicit and contained in the
bits that represents a particle’s other properties, rather than explicit in the
fabric of the entire universe.

Of course, there is no experimental evidence to support the existence of
such a universal reference frame (although according to Fredkin, the Cos-
mic Background Radiation is one such example) and the famous Michelson-
Morley experiment explicitly failed to detect the Earth’s movement through
any such reference frame. However, the existence of such an absolute refer-
ence frame does not contradict any of the laws of physics nor the Theory of
Relativity.

Support for a notion of this kind comes from the Nobel Prize winning
physicist, Richard Feynman (The Character of Physical Law, Messinger
Lectures, Cornell University, 1964):

“It has always bothered me that, according to the laws as we understand
them today, it takes a computing machine an infinite number of logical op-
erations to figure out what goes on in no matter how tiny a region of space,
and no matter how tiny a region of time. How can all that be going on in
that tiny space? Why should it take an infinite amount of logic to figure out
what one tiny piece of space/time is going to do? So I have often made the
hypothesis that ultimately physics will not require a mathematical state-
ment, that in the end the machinery will be revealed, and the laws will turn
out to be simple, like the chequer board with all its apparent complexities.”
(italics added).

The fundamental process beating at the heart of Digital Mechanics, Fred-
kin views as one capable of universal computation, and the reason is that
the laws of physics have allowed us to build computers that are capable of
universal computation and hence the fundamental process should be capable
of this as well. Moreover, the fundamental process is a reversible cellular
automaton (because the laws of physics are) and so the universe is run by
a reversible, universal cellular automaton, or RUCA. As Fredkin claims,
“What cannot be programmed cannot be physics”.
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Reversibility implies a conservation law of Fredkin’s: Information (in
Finite Nature) is conserved. We have encountered this aspect of reversible
cellular automata before and seen that reversibility allows one to retrieve
the initial conditions no matter how complex the subsequent evolution has
been (see Section 3.7). Information is lost in a non-reversible system when
two distinct configurations have the same successor so that it is not possible
to choose which predecessor to return to. (Another of Fredkin’s interesting
achievements [1982] was the creation with Tommaso Toffoli of a billiard ball
computer that allowed complete reversibility of computation, which is not
normally a feature of even ordinary computers).

One essential feature of Quantum Mechanics, is randomness. Yet the
randomness generated by a computer is deterministic and will be the same
each time it is generated. But here we can invoke Wolfram’s notion of
computational irreducibility in that there is no way to predict the outcome
of some computations and the only way to know the future is to compute
it. This notion is embodied in the Fredkin statement, “In general, physics
is computing the future as fast as it can.”

Concepts such as Conservation of Energy and Momentum for particles
that interact, are, in the Fredkin world, consequence of the sharing of the
information that the particles possess about their energy and momentum.
Since the energy and momentum information cannot be lost, it is just reshuf-
fled among the particles and hence conserved.

So far so good, and many scientists might agree that in some sense the
universe acts as if it were a cellular automaton. However, in Fredkin’s view,
it is a cellular automaton. This means that there is some computer (the
engine) that runs the fundamental processes that run physics and that this
engine exists outside our universe.

Now the theory of Fredkin is beginning to sound a bit crazy, but could
it be crazy enough to be true?
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Chapter 6

Complexity

Order vast, order ordained, order for free.

Stuart Kauffman

The physicist’s problem is the problem of ultimate origins and ultimate
natural laws. The biologist’s problem is the problem of complexity.

Richard Dawkins

We have seen that with cellular automata one can sometimes achieve
self-organization whereby a higher-level order is created from the local in-
teraction of autonomous agents obeying simple rules. This type of behavior
of a system of interacting units that engender some self-organizing global
order that is not present at the lower level is part of the notion of com-
plexity. The self-organization is an emergent property in that it emerges
spontaneously from simple local interactions with the result that in some
sense the whole is greater than the sum if its parts. This is contrary to the
conventionally held reductionist view in science that the whole can be un-
derstood only through a thorough understanding of each of its parts. Who
would have expected that the power of a desktop computer lay hidden in
the transition function for elementary Rule 110? Could one ever have antic-
ipated the vast diversity of Lifeforms that arose in the Game of Life or their
complex interactions that produced new Lifeforms simply from knowing the
rules of the game? Or the completely ordered structure that arose from
the mists of the seemingly random conditions of Rule 94R in Figure 3.17?
None of this order was imposed by recipe or design (which is another way to
achieve complex structure such as in the blueprints for a building), but was
rather an invisibly preordained consequence of the rules of local interaction,
or as Kauffman says, “order for free”. It is the ‘ghost in the machine’ if you
will.

Moreover, according to Camazine et al., “Complex systems... may show
diverse responses that are often sensitively dependent on both the initial

173



174 CHAPTER 6. COMPLEXITY

state of the system and nonlinear interactions among its components. Since
these nonlinear interactions involve amplification or cooperativity, complex
behaviors may emerge even though the system components may be similar
and follow simple rules. Complexity in a system does not require compli-
cated components or numerous complicated rules of interaction.” This has
been in evidence throughout all our investigations thusfar.

Self-organization can be either intrinsic as in the cellular automata ex-
amples examined thusfar, or it can be extrinsic and come about by some
external stimulus, such as in the self-aggregation of the slime mold discussed
in the sequel.

One problem that needs to be faced in dealing with complexity is how
to define and measure it. Many people have an intuitive understanding of
the concept, and would agree for example, that the human brain is more
complex than that of a rat, but there is no formally accepted definition.
In fact, it means somewhat different things in different fields. Ilachinski in
his book on cellular automata [2002] discusses eight measures of complex-
ity from varying perspectives under the headings: algorithmic complexity,
computational complexity, graph complexity, hierarchical complexity, Shan-
non’s information, logical depth, simplicial complexity, and thermodynamic
depth. All of them are of some value in the appropriate context but all
have some drawbacks as well. In computer science, complexity is related
to the theoretical limits of computation itself. In biology, Dawkins [2004]
gives the example (borrowing ideas from information theory) of comparing
the complexity of a lobster to a millipede by writing a book describing a
lobster and writing another one “down to the same level of detail” as the
millipede. The lobster book is longer and so the lobster is a more com-
plex organism. But Shannon information obeys an additive property, so
this cannot be the whole story of complexity because we should not be able
to generate more complex systems by simply adjoining multiple copies of
simpler ones. Indeed, “The millipede book would consist of one chapter de-
scribing a typical segment, followed by the phrase, ‘Repeat N times’, where
N is the number of segments.” (Dawkins [2004]). Actually, the whole no-
tion of biological complexity very much exercises the minds of evolutionary
biologists like Dawkins and others, because highly complex systems like the
human brain have already evolved over millions of years from simpler forms
and are not just theoretical constructs. Indeed, Stuart Kauffman goes so
far as to say that the complexity found in Nature is not only the result of
natural selection but the result of self-organization as well.

Likewise, the notion of emergence is somewhat ill-defined. “None of us
has a solid grasp of emergence, far less a full definition” (John Holland in
Complexity by Roger Lewin). So in the sequel, we will content ourselves
by illustrating the concepts of complexity and emergence with a number of
examples. Of course, we have already seen many such examples of both
concepts throughout the text. Popular accounts of the subject of emergence
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and complexity from a variety of perspectives can be found in Johnson [2002]
and Lewin [1999].

6.1 Sea Shell Patterns

Probably most people have picked up a sea shell at one time or another
and marveled at its pattern of pigmentation. There are many varieties of
such patterns, each with its own beauty and challenge to the scientist as to
understanding its formation. It is not known why these patterns are formed
as much of the life of the mollusc is spent buried in mud and so they do not
seem to be related to adaptation to their environment. The pigmentation
is secreted by individual cells along the growing edge of the mollusc and
it is thought that the cells are activated and inhibited by a kind of central
nervous system.

As we have mentioned in Chapter 5, it was Alan Turing who first worked
on the problem of mathematically replicating patters found in Nature using
reaction-diffusion equations. Some years later, a computer simulation model
for a pigmentation pattern on the seashell belonging to the genus Conus was
first proposed by C.H. Waddington and Russell Cowe in 1969. Then in 1973,
G.T. Herman and W.H. Liu, using their Cellular Linear Iterative Array
Simulator (CELIA), obtained good results of mollusc pigmentation patterns
employing one-dimensional cellular automata. Wolfram (see [2002]) uses
even simpler one-dimensional cellular automata to depict similar sea shell
patterns. A very successful simulation of sea shell pigmentation patterns
over a wide range of pattern types was demonstrated by Hans Meinhardt in
his attractive text, The Algorithmic Beauty of Sea Shells [1995]. Meinhardt
presented numerous sophisticated reaction-diffusion models (based on work
with M. Klinger) and was able to replicate details of a large variety of shell
pigmentation patterns. The entire topic of the use of cellular automata mod-
eling of biological patterns can be found in the text by Deutsch & Dormann
[2005].

Ermentrout, Campbell, & Oster [1986] proposed a neural activation-
inhibition model which can be presented in the basic CA form:

xjn+1 = H
¡
Ajn − Ijn − θ

¢
,

where xjn represents the state (either 0 or 1) of the jth cell position in the
nth row and Ajn is the activation component, I

j
n is the inhibition component,

θ the threshold, and H is the Heaviside step-function. The activation and
inhibition are suitably defined in terms of weighting factors involving long
range interactions. Another approach by Vincent [1986] used a totalistic
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cellular automaton model that did not seem to have much justification in a
biophysical sense.

The cellular automata model we discuss below is due to Ingo Kusch
and Mario Markus [1996] that developed out of an earlier CA model for
stationary Turing patterns and spiral waves by Schepers and Markus [1992].
It is a probabalistic activation-inhibition model that uses the traditional 1-
dimensional array and also a circular array to permit radian growth found
in some molluscs, although only the former is considered here. There are
only two states for a cell c(t) at time step t: 0 (resting — no pigment) and
1 (activated — pigment). Whether a cell becomes activated or deactivated
at the next time step depends on the amount of chemical inhibitor present
at each cell site, I(t). Denote by N the number of activated cells in a
neighborhood of radius r about the central cell c. Two intermediate cell
states are required for both c(t) and I(t) in order to compute their respective
values at the next time step, namely

x(t)→ x1 → x2 → x(t+ 1) for x = c, I.

The rules of the automaton are:
(i) Decay of inhibitor
If I(t) ≥ 1, then I1 = I(t)− 1, otherwise I1 = 0.
(ii) Activator production due to random fluctuations
If c(t) = 0, then c1 = 1 with probability p, otherwise c1 = c(t).
(iii) Production of inhibitor due to activator
If c1 = 1, then I2 = I1 + w1, otherwise I2 = I1.

(iv) Activator production from diffusion of activator
If c1 = 0 and N > {m0 +m1I2} , then c2 = 1, otherwise c2 = c1.

(v) Diffusion of inhibitor
I(t+ 1) = {hI2i} .
(vi) Suppression of activator due to inhibitor
If I(t+ 1) ≥ w2, then c(t+ 1) = 0, otherwise c(t+ 1) = c2.

Here the notation hi means take the average over a neighborhood of
radius R, and {} means take the nearest integer. The authors found that at
times another rule was needed which replaced rule (i):

(i*) Decay of inhibitor
If I(t) ≥ 1, then I1 = {(1− d)I(t)} , otherwise I1 = 0.
There are eight free parameters that the experimenter has to play with:

r, R, w1, w2, m0, m1, p, and d. Here R denotes the typical length for the
spread of the inhibitor whose average is determined in rule (v). Also, w1 is
the amount of inhibitor produced in each activated cell per time step (rule
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Figure 6.1: Left: Neritina ziczac (Philippines). Right: r = 1, R = 17,
w1 = 1, w2 = 1, m0 = m1 = 0, p = 2× 10−3. Left image courtesy Kusch &
Markus.

Figure 6.2: Left: Olivia porphyria (Panama). Right: r = 2, R = 0, w1 = 10,
w2 = 48, m0 = m1 = 0, p = 2 × 10−3. The activation is propagated from
cell to cell via ‘traveling waves’ that annihilate upon contact with another.
Images courtesy K&M.
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Figure 6.3: Left: Lioconcha castrensis (Philippines). Right: r = 1, R = 16,
w1 = 8, w2 = 6, m0 = m1 = 0, p = 2× 10−3. Considered to be of Class IV
although this is not so apparent as in some other patterns. Images courtesy
K & M.

Figure 6.4: Left: Conus marmoreus (Philippines). Right: r = 4, R = 9,
w1 = 2, w2 = 19, m0 = 0, m1 = 0.2, p = 0. Images courtesy K & M.

Figure 6.5: Left: Chione grisea. Right: r = 1, R = 23, w1 = 4, w2 = 71,
m0 = m1 = 0, p = 0, d = 0.05 (rule i*). Left image courtesy K & M.
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Figure 6.6: Left: Voluta hebraea. Right: r = 1, R = 2, w1 = 5, w2 = 10,
m0 = 0, m1 = 0.3, p = 2 × 10−3. Stationary lines (where the inhibitor is
high) and traveling waves (where the inhibitor is low) are the two competing
forms. Considered to be of Class IV. Images courtesy K & M.

Figure 6.7: Left: Neritina pupa (Antilles). Right: r = 2, R = 0, w1 = 6,
w2 = 35, m0 = 0, m1 = 0.05, p = 2× 10−3, d = 0.1 (rule i*). Considered to
be of Class IV. Left image courtesy K & M.
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(iii)) and w2 is a threshold that once it is surpassed, inactivates the cell
at the next time step (rule (vi). The radius r is the typical length over
which the activation is propagated and m0 is the threshold for activating a
cell whenever there is no inhibitor (i.e. when I2 = 0 in rule (iv)), and m1 is
another activation threshold value dependent on the inhibitor value (I2). The
variable d is the fraction of the inhibitor I(t) that is lost at each time step,
so that rule (i*) means that the inhibitor decays exponentially, as opposed
to the linear decay of the inhibitor in rule (i). Lastly, p is the probability
that an inactivated cell becomes activated by random fluctuations (rule (ii)).
The automaton starts with initial conditions I(0) = 0 for each cell site with
the activated and non-activated cells distributed randomly.

Above are some samples of various species of mollusc and their cellular
automaton counterparts together with the parameters used in each case.

One very noteworthy feature of this model is that the pigmentation pat-
terns generated by it include the Wolfram classes 2,3, and 4. In Figure 6.1
we see an example of Class II behavior, and in Figures 6.2, 6.4 and 6.5,
Class III dynamics is evident. In Figures 6.6 and 6.7 we see evidence of
Class IV phenomena, and Kusch and Markus have even devised a quantita-
tive measurement which is used to discriminate between the four classes to
support their assertions. Accordingly, Figure 6.3 is also given Class IV sta-
tus although this is not obvious visually. The authors claim these examples,
“would be the first experimental evidence for class IV processes in nature.”

It is interesting to compare the CA approach of Kusch and Markus with
the reaction-diffusion models of Meinhardt. As it turns out, some shell pat-
terns are modeled equally well in both approaches, some are more effectively
simulated using the CA approach (those involving traveling waves and Class
IV patterns), while it is conceded that the Meinhardt-Klinger partial differ-
ential equations have managed to reproduce some patterns that the CA’s
could not. At least not yet.

6.2 Autonomous agents

The notion of an autonomous agent has taken on a life quite independent of
cellular automata theory and is a major subject of research, such as in the
study of complex adaptive systems. Often the differences between cellular
automata and agent based models (or individual based models — IBMs) are
purely semantic. Over the years, numerous definitions of an autonomous
agent have been proposed (see Franklin & Graesser [1996]) but a general one
might be: a computational system in a dynamic environment that senses this
environment and acts autonomously within it. Of course, an individual cell
of a cellular automaton falls into this category but some autonomous agent
models are more general in nature than a cellular automaton. A notable
example is the popular interactive computer simulation, The Sims, that
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allows the user to interact with a host of human-like autonomous agents.
Autonomous agents have also been used to model political conflicts (Ian
Lustick’s Virtual Pakistan, and Middle East Polity) as well as military ones
(the Pentagon’s OneSAF ). Of course, all of these are just models, based on
the rules built into them, so that the output is virtual and not necessarily
real. On the other hand, Lustick has successfully tested Virtual Pakistan
against real field data like, “What proportion of Pushtuns who live in cities
are also part of the commercial elite?”, even though this sort of data was
not part of the program itself (Popular Science, March, 2004).

In this regard, a particularly useful software development is Swarm cre-
ated by Christopher Langton and developed at the Santa Fe Institute in
New Mexico. It provides the environment in which autonomous agents can
be employed to model a whole host of collective behavior and has been used
by scientists to study among other things, rain forest ecosystems and nuclear
fission chain reactions.

Swarm is intended to be a useful tool for researchers in a variety of
disciplines. The basic architecture of Swarm is the simulation of collections
of concurrently interacting agents: with this architecture, we can implement
a large variety of agent based models. For an excellent presentation of how
self-organization pertains to swarms and its many applications to problems
of optimization, see the monograph by Bonabeau, Dorigo, and Theraulaz
[1999].

6.2.1 Honey Bees

One creature that does indeed swarm is the honey bee, a subject of much
fascination. “The challenge here is to understand how a colony-level (global)
structure emerges from the activities of many individuals, each working more
or less independently. In the building of these large biological superstruc-
tures, it is difficult to imagine that any individual in the group possesses a
detailed blueprint or plan for the structure it is building. The structures
are orders of magnitude larger than a single individual and their construc-
tion may span many individual lifetimes. It seems far more likely that each
worker has only a local spatial and temporal perspective of the structure
to which it contributes. Nonetheless, the overall construction proceedes in
an orderly manner, as if some omniscient architect were carefully overseeing
and guiding the process.” [Camazine et al. 2003]. The authors then proceed
to demonstrate how a characteristic pattern develops on the honeycomb due
to a self-organizing process of the bees.

But let us look into the actual construction of the honeycomb. First of
all, each cell of the honeycomb is hexagonal in shape, which itself appears to
be a self-organizing phenomenon. “There is a theory, originally propounded
by Buffon and now revived, which assumes that the bees have not the least
intention of constructing hexagons with a pyramidal base, but that their
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desire is merely to contrive round cells in the wax; only, that as their neigh-
bours, and those at work on the opposite sides of the comb, are digging at
the same moment and with the same intentions, the points where the cells
meet must of necessity become hexagonal.” (Maeterlinck [1901]).

Each cell of the honeycomb is about 12 mm long and the worker bees
deposit royal jelly into them onto which the egg is laid. The honeycomb is
double sided with the cells from each side meeting in the middle. But the
base of each cell is not just flat across the bottom because a little depression
or well is required to keep in the royal jelly in place as well as the egg. The
bees create this depression in the form of a 3-sided pyramid. The pyramidal
bases for each cell from one side of the honeycomb are interleaved with the
pyramidal bases coming from the other side of the honeycomb so that it all
fits snugly together.

Figure 6.8: The honeycomb consists of a double-sided hexagonal array of
cells wih a pyramidal base at the bottom end of each cell.

But something even more profound happens in the construction of the
honecomb. The question one can ask is, “At what angles should the three
planes of the pyramid meet, if one wished to minimize the amount of labor
and material that goes into their construction?” This turns out to be a
rather non-trivial mathematical question requiring a knowledge of Calculus:

“... it has been demonstrated that, by making the bottoms of the cells
to consist of three planes meeting in a point, there is a saving of mate-
rial and labour in no way inconsiderable. The bees, as if acquainted with
these principles of solid geometry, follow them most accurately. It is a cu-
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rious mathematical problem at what precise angle the three planes which
compose the bottom of a cell ought to meet, in order to make the greatest
possible saving, or the least expense of material and labour. This is one
of the problems which belong to the higher parts of mathematics. It has
been accordingly been resolved by the ingenious Maclaurin, by a fluctionary
calculation, which is to be found in the Transactions of the Royal Society
of London [1743]. He has determined precisely the angle required [70◦ 32´,
109◦ 28´], and he found, by the most exact mensuration the subject would
admit, that it is the very angle in which the three planes at the bottom of
the cell of a honeycomb do actually meet.”(Maeterlinck [1901]).

Maeterlinck then attempts to come to terms with the notion of complex-
ity well before the concept was ever enunciated, “I myself do not believe
that the bees indulge in these abstruse calculations; but, on the other hand,
it seems equally impossible to me that such astounding results can be due
to chance alone, or to the mere force of circumstance.”

6.2.2 Slime Molds

Another model based on Turing’s morphogenesis work was formulated by
Evelyn Keller and Lee Segel [1970] to describe the unusual behavior of the
species of slime mold, Dictyostelium discoideum. It consists of thousands
of independent-living amoebae that feed off bacteria on the forest floor and
normally live and move freely from one another. During periods of adverse
conditions such as food scarcity, up to 100,000 cells aggregrate into a sin-
gle organism (the ‘slug’ stage) that moves about in search of food. At a
later stage, the slug transforms itself into a ‘fruiting body’ comprised of a
globule of spores sitting atop a slender stalk. Under suitable conditions the
spores are released and germinate to begin the life-cycle anew. How this os-
cillation between single organism - multiple organisms is achieved has been
the subject of intense scientific investigation. Prior to Keller and Segal’s
work, the prevailing theory due to B.M. Shafer of Harvard was that so-
called “pacemaker” cells of the slime mold would release a chemical signal,
known as cyclic AMP, which would trigger other cells to do the same and
so on throughout the dispersed community of cells. The cyclic AMP was a
signal to re-form the aggregate. The only difficulty with this theory, since
the release of cyclic AMP was well documented, was that all slime mold cells
were much like any other and no “pacemakers” could be found.

According to the Keller-Segel version of the theory, the individual amoe-
bae begin to aggregrate on their own when some cells (which could be
thought of as ‘pacemakers’) perceive adverse environmental conditions and
begin releasing cyclic AMP. This triggers a chain-reaction of the other amoe-
bae in the colony to release the chemical and in response they would gravitate
towards regions of highest concentrations of cyclic AMP in a process known
as chemotaxis This leads to the formation of small clusters which become
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Figure 6.9: The slime mold simulation of Mitchel Resnick starting with 1,000
cells at various time steps. It is thought that eventually one aggregate will
form. Courtesy Mitchel Resnick, Turtles, Termites, and Traffic Jams.

larger with the final result being the aggregrate slime mold organism. D.
discoideum illustrates how in Nature a self-organizing system can be formed
from the simple interaction of autonomous agents. A comprehensive discus-
sion of various models of slime mold aggregation can be found in the paper
by Alan Garfinkel [1987]. A computer simulation that captures some of the
salient features of slime mold aggregration has been developed by Mitchel
Resnick of MIT and is discussed in his book, Turtles, Termites, and Traffic
Jams [1994]; see Figure 6.9.

Rather interestingly, the cyclic AMP released by the amoebae washes
through the colony in waves and spirals that can be described by the Hodge-
podge Machine (Section 5.1.3)! However, this particular feature does not
appear to be essential to the aggregration process as was demonstrated by
Prigogine and Stengers [1984] although Camazine et al. [2001] point out
that it may serve some adaptive purpose in the case of the slime mold.
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Figure 6.10: The first eight steps taken by Langton’s ant.

6.2.3 Langton’s Ants

In Christopher Langton’s 1986 study of artificial life, one of the things he
considered was the activities of ants because they can exhibit complex be-
havior arising from very simple interactions with their environment. To this
end he created virtual ants or vants that play out their lives in a cellular
array. These were independently discovered by Greg Turk, although in the
more general setting of Turing machines moving on a two-dimensional grid
(see A.K. Dewdney’s Scientific American article [1989] who christened them
of ‘tur-mites’). Let us start with an initial configuration of all white cells
(state 0), although a random initial condition of white and black cells (state
1) is also possible. Consider a solitary vant on a central white cell that
is facing in an E-W (or N-S) direction. The ant behaves in the following
manner:

• It changes any white cell it is on to black, then turns 90◦ to the right
and moves one cell forward;

• It changes any black cell it is on to white, then turns 90◦ to the left
and moves one cell forward.

Thus a vant operates as a virtual Turing machine on a two-dimensional
tape and as such is not a true cellular automaton in that all cells are not
updated simultaneously by a local rule.

It can be seen in the figures above that the ant quickly starts to run into
cells that have already been visited, and for the first 500 or so steps creates
somewhat symmetrical patterns with 180◦ rotational symmetry, returning
periodically to the central square. It then begins to move in a very random
fashion for thousands of steps. The long term evolution of the vant however,
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Figure 6.11: Langton’s ant after 11,000 steps with the infinite highway well
under construction. This same structure was independently discovered by
Greg Turk and appears in Scientific American, September 1989, p. 126.

is quite unexpected.

Eventually, after more than 10,000 time steps have elapsed, a diagonal
“highway” is constructed by the ant that consists of a sequence of 104 steps
that then shifts one cell horizontally and vertically (Figure 6.11) and then
repeats this process endlessly.

Although it has so far not been proven that the ant will always build a
diagonal highway, empirical evidence suggests that this is indeed the case
even if the initial grid contains a finite number of black squares!

Various generalizations of the vant have been considered. The simplest is
to change the rectangular array to some other shape such as a hexagonal grid
(see http://www.dim.uchile.cl/˜agajardo/langton/general.html).See Figure
6.12.

Another way to generalize the virtual ant is to allow each of the cells
of the array to exist in n states instead of just two, say states (or colors):
0, 1, ...n− 1. If the ant lands on a cell in state k, it changes it to state k+1
(modn), so that each state value is increased by one and state n−1 changes
to state 0. The direction the ant is to turn is governed by a fixed rulestring
of n symbols consisting of 0’s and 1’s. If the ant lands on a cell that is in
state k, one then checks the (k + 1)st symbol of the rule-string and if it is
1 the ant turns right 90◦ and moves one cell forward and if it is 0, the ant
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Figure 6.12: The Langton ant on a hexagonal array showing bilateral sym-
metry in an enlarging pattern. Time steps are at 72, 810, and 15,600.

turns left 90◦ and moves one cell forward. The rulestring also serves to give
an identification number in base 2 so that the ant with rulestring 1001 is
called ant 9. Langton’s original ant is ant 2 since its rulestring is 10.

Generalized ants were considered by Greg Turk as remarked above and
independently by Leonid Bunimovich and S.E. Troubetzkoy [1994]. Al-
though there are not many definite results that have been proven about
generalized ants or even Langton’s original ant for that matter, we do have
the following beautiful theorem:

Bunimovich-Troubetzkoy Theorem. The time evolution of the gen-
eralized ant is unbounded if the rulestring contains at least one 0 and one
1.

That is to say, that the complete trajectory of the ant is not contained
within the bounds of any finite array of cells, no matter how large. The
argument goes like this. Let us suppose that we are dealing with the Langton
ant (rulestring 10), although the proof (given in Bunimovich-Troubetzkoy
[1992]) also applies to the general case. Note first that the cell pattern
the ant has created together with its current position and heading uniquely
determine the ant’s future, and the same is true for its past because the
rule governing its behavior is completely reversible. Now if we assume to
the contrary that the trajectory of the ant is actually bounded, it follows
that at some stage, the ant will repeat the same pattern sequence, position
and heading because these are only finite in number. By reversibility, the
ant’s past must be a repetition of this pattern and clearly, so must the ant’s
future behavior. In other words, the ant exhibits periodic behavior visiting
the same collection of cells infinitely often and nothing more.

Because the ant always turns 90◦ to the left or right after it enters a cell,
if it enters horizontally it leaves vertically and if it enters vertically it leaves
horizontally. Thus, (depending on the ant’s starting orientation), all the cells
can be labelled either h (entered horizontally) or v (entered vertically) with
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contiguous cells taking the opposite designation in a checkerboard fashion.
Now there will be one cell which we callM that is as far to the right and top
of the array as is possible. Thus any cells to the top or right of M are not
visited by the ant. If M happens to be an h cell, it must have been visited
horizontally from the left. It must turn 90◦ to the right implying that M
must have been a white cell which the ant turns to black. On the next cycle
of the ant, since M is now black and entered horizontally from the left, the
ant must turn 90◦ to the left and exit vertically out the top of M . But no
cells above M are visited, resulting in a contradiction. If M is a v cell, a
similar contradiction arises. Thus it must be the case that the trajectory of
the ant is unbounded, proving the theorem.

Some trajectories of the generalized ant are trivial, such as the one with
rulestring 11 which simply goes around and around a 2 x 2 square. Other
trivial rulestrings are 111, 1111 etc. Rulestring 01 is just the mirror image
of the Langton ant. For ants with rulestring of length n > 2, take cell state
0 to be white and cell state n− 1 to be black, using shades of gray for the
intermediate cell states with all cells initially in state 0. In what follows are
some results of computer simulations by James Propp.

Ant 4 (100) creates various symmetrical patterns with bilateral sym-
metry (6.13), but then resorts to random behavior without any evidence of
settling down to some regular structure as was the case with ant 2.

Figure 6.13: The bilateral symmetry exhibited by ant 4 at step 236 of its
evolution.

Ant 5 (101) is similar to ant 2, but does not seem to create a highway.
However, ant 6 (110) does create a “highway” after 150 steps, but this
time the structure is composed of a sequence consisting of only 18 steps, or
“period” 18 (Figure 6.14) unlike the period 104 highway of the Langton ant
2.

Ant 8 (1000) does not build highways nor any do other regular patterns
emerge. Ants 9 (1001) and 12 (1100) create ever larger patterns that are
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Figure 6.14: The highway exhibited by ant 6 consisting of a sequence of
period 18.

exactly bilaterally symmetric the moment the ant returns to the initial cell,
a phenomenon already noted by Greg Turk (Figure 6.15). Moreover, Bernd
Rummler has proved that ant 12 will continue forever to build increasingly
large bilaterally symmetric structures.

Figure 6.15: A bilaterally symmetric pattern exhibited by ant 12 at step 392
of its evolution.

Ant 10 (1010) has the same behavior as ant 2 (10) only with a 4-color
trail instead of one with two colors. This is due to the general principle
that if a rulestring is built up of repetitions of a shorter rulestring, then the
behavior of the former will be that of the latter.

Ant 13 (1101) wanders around in a random fashion for about 250,000
steps, but then builds a highway having period 388. Ant 14 (1110) is rather
interesting in that it possesses some features of ants 2 and 6. It creates a
highway, but the period is 52, i.e. half that of ant 2, and the appearance
is like that of ant 6. Experimental evidence of Olivier Beuret and Marco
Tomassini suggests that whenever the triple 110 is preceded by 1’s, as in
1110, 11110, etc. then that particular ant will also build a highway.
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Employing 5-bit rulestrings, unlike ants 9 and 12, there were no ants
that exhibited increasing bilateral symmetric structures. However, James
Propp found one new feature in ant 27 (11011), namely, an increasing
spiral pattern. With rulestrings of length 6, Propp found that ants 33, 39,
48, 51, 57 and 60 each exhibited bilateral symmetry, all of whose numbers
are divisible by 3, but why this is so remains a mystery.

One interesting aspect of all of this is the fact that even though we know
the explicit rule by which an ant’s behavior is governed, the emergence of
a highway after 10,000 steps for ant 2 or 250,000 steps for ant 13 is totally
unexpected. Nothing in their prior behavior gives any hint that the long
term future of these ants is periodic highway building, nor is there any hint
in the simplistic rulestring. It is quite possible that the question of whether
certain ants, such as ant 4 say, ever produces a highway is undecidable and
hence their long term behavior can only be ascertained by living it.

6.2.4 Multi-ant systems

Empirical investigations of systems containing two three and four ants have
been considered by my student Malcolm Walsh, using software provided by
the website (in Spanish): http://cipres.cec.uchile.cl/˜anmoreir/ap/multi.html

Figure 6.16: The production of individual orthogonal highways by two ants
in ∼1700 steps and ∼3800 steps respectively. The ants were initially 16 cells
apart horizontally with one facing north, the other south.
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Interactions between two ants can have varying consequences. In dealing
with multi-ant systems, there is always the possibility that at any particular
time step two (or more) ants will meet up at the same square. In this
instance, a right-of-way rule must be agreed upon and by numbering the
ants 1,2 ... we agree that 1 preceeds 2, 2 preceeds 3 and so forth. In our first
experiment with two ants 16 cells apart with one ant facing north and the
other south, we find that they construct individual orthogonal highways.
This is not exceptional in itself, except that the first highway appears at
∼1700 steps and the other at ∼3800 steps, whereas it takes more than
10,000 steps for a single ant to produce a highway. Whether or not two ants
will always produce a highway or highways is completely unknown as in the
single ant case.

Of course with two ants there is always the possibility that they will undo
each other’s work and return to their initial positions. This phenomenon
indeed ocurrs as in the following experiment where the ants are initially
displaced 16 cells apart horizontally and 1 cell vertically and facing north
and south respectively. This results in periodic behavior (Figure 6.17).

Figure 6.17: The interaction of two ants leading to the mutual destruction
of all their work and their return to the initial positions and orientations,
resulting in periodic behavior.

A fascinating interaction in the following experiment had the two ants
forming a highway relatively quickly by one of them in ∼1700 steps. Then
at ∼2500 steps, the other ant ascends the highway in order to ‘attack’ it,
initiating the mutual destruction of all trails resulting in the ants returning
to their initial positions after 5611 steps! On the surface, this certainly
appears like ‘intelligent’ behavior, but we know that the ants are both just
following the simple, dare we say ‘dumb’, rule set down by Langton.

In the preceding, the ants’ orientations at the final stage are rotated
by 180o. Continuing to let the ants run on, they interact once more but
ultimately again undo each other’s work, this time returning to their original
positions and orientations. This results in a periodic 2-cycle of frenzied
activity. Significantly, this experiment demonstrates that: A system of two
ants can result in their behavior being entirely bounded, in contrast to the
necessarily unbounded behavior of one ant established in the Bunimovich-
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Figure 6.18: This sequence shows the construction of a highway by one of
the ants (top left); the scaling of the highway by the second ant (top middle);
the beginning of the destruction of the highway (top right) initiated by the
second ant; the destruction of the highway by both ants (bottom left); the
complete annihilation of all work by both ants and return to their initial
positions but with orientations rotated by 180o (bottom right). The original
positions had one ant facing south and the other facing it from the east
separated by 22 cells horizontally.

Troubetzkoy Theorem. After running this experiment and discovering this
bounded behavior we found that this phenomenon has also been noted in the
book by Chopard and Droz [1998]. Of course, as we have seen above, there
are two-ant systems that exhibit unbounded behavior as well. Similarly,
four-ant and eight-ant systems have been found that exhibit analogous 2-
cycle bounded behavior for all time.

In a further two ant scenario, if ant1 and ant2 are separated by 10 cells
horizontally and 11 cells vertically, with ant2 northwest of ant1 and facing
east, while ant1 is facing north, then the ants begin to make a cooperative
highway after around 500 steps which seems to be a heretofore unobserved
phenomenon. This cooperative highway extends itself slightly faster then the
normal Langton highway and has a period of 102 compared to the Langton
highway which has a period of 104. It seems that the creation of this coop-
erative highway is the fastest way for an ant to travel, that is, if an ant has
somewhere to go, it saves time to work in pairs.

Another interaction that can occur is that one ant building a highway
will meet the highway of another ant. One scenario is that the ants cease
their highway construction and revert to more disorderly behavior. On the
other hand, it is possible for the ant hitting the highway of the other to
actually proceed out the other side of the first ant’s highway as in Figure



6.2. AUTONOMOUS AGENTS 193

Figure 6.19: The cooperative highway made by two ants having period 102
and a form of rapid transit for each ant.

6.20 below.

In three-ant systems, experiments have shown that multiple highway
systems can be built and unbuilt, however it seems to be the case that
these systems are again unbounded as for a single ant. Once again, the
102 step cooperative highway structure can be created by two of the ants
with suitable initial conditions. Around step 5000 ant3 will begin creating
its own Langton highway in nearly the opposite direction, never to interact
with the other two ants again (Figure 6.21).

Four-ant systems display similar characteristics to two-ant systems with
most leading to four unbounded highways, and as mentioned above, along
with eight-ant systems some have been shown to remain bounded. This
occurs if the ants are symmetrically placed so that they will pair off with
the result that the highway constructed by one of the pair will eventually
be undone by the other.

6.2.5 Traveling Salesman Problem

Virtual ants have found a very real application in finding a solution to the
famous ‘traveling salesman problem’. An early instance of it was presented
at a mathematical colloquium in Vienna by the mathematician Karl Menger
in 1930 as ‘Das botenproblem’ (‘messenger problem’).

A number of cities are spread out across a two-dimensional map and
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Figure 6.20: In a 2-ant system we can have intersection of two highways and
the continued construction of both, one out the other side of the other. Here
the initial positions were 93 cells apart horizontally with one facing south
and the other to the west of it facing west.

Figure 6.21: The 3-ant system after 500 steps that shows the construction
of the period 102 cooperative highway by two of the ants (left) and the third
ant starting to make its own Langton highway (right).



6.2. AUTONOMOUS AGENTS 195

Figure 6.22: A 50 city optimal route solution to the traveling salesman
problem by Tomáš Kojetinský.

a traveling salesman is required to find the shortest route that visits each
of the cities once and returns to the original site. Of course the salesman
knows the distance between each pair of cities. The difficulty arises from the
fact that for n given cities, there are n! possible routes. However, we need
only consider half this number as every route can be traversed in reverse
order which is essentially the same route, and since we can start in any
given city, the number of different routes is further reduced by a factor of n.
This still leaves (n− 1)!//2 different routes to choose from. So for example,
with only 15 cities there are over 43 billion different possible routes. There
is simply no mathematical algorithm that can find the shortest route in all
cases, and this is the sort of problem computer scientists call NP complete.
The traveling salesman problem has many practical applications, not only
involving traveling between cities but to telecommunication networks and
even to the machine punching of holes into circuit boards.

There are various schemes to find optimal routes, or at least near optimal
ones, and one recent one due to Marco Dorigo and Luca Gambardella [1997]
involves virtual ants. Their work was inspired by the behavior of real ants.

The interesting thing about real ants is that they are capable of finding
the shortest route from their nest to a food source without using any visual
cues from their environment. Even if an obstacle is put in their path, the ants
will soon find the next shortest path to the food source. They manage to do
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this because each ant lays a chemical pheromone trail whenever it is carrying
food. Coupled to this is the ants’ preference to follow a trail that is richer in
pheromones over one that is not (see Ermentrout & Edelstein-Keshet [1993]
for a simple model of this behavior). Since an ant who has taken a shorter
route to a food source will return with it somewhat sooner than an ant who
travels to a more distant source, the former ant’s trail becomes reinforced
by other ants and accumulates more pheromone per unit of time than longer
routes. Soon the latter die out and all ants will follow the shortest one.

Nest Food Nest Food

Nest Food Nest Food

Obstacle Obstacle

Obstacle

Figure 6.23: Ants following a pheromone trail will soon discover the short-
est route to a food supply even if an obstacle is put in their way as the
shorter route will accumulate more pheromone. Redrawn from Dorigo and
Gambardella [1997].

Dorigo and Gambardella realized that the ants finding the shortest route
was an emergent phenomenon that could be put to use in finding optimal
routes in the traveling salesman problem. In the electronic version, the
cities are connected by pathways and an army of virtual ants is allowed
to travel along them leaving a virtual ‘pheromone’ trail as they go from
city to city. The ants are given the propensity to prefer trails with a lot of
pheromone along pathways that connect nearby cities. Once all the ants have
completed their tour of duty, the ant with the shortest route has its route
further enhanced with pheromone so that the shorter the route, the more
enhancement it receives. This process is then repeated many times even
allowing for the evaporation of pheromone at a steady rate as happens in real
ant colonies (although the rate adopted by the researchers was much higher).
The resulting ant colony system (ACS) can achieve near-optimal to optimal
solutions to the traveling salesman problem and is as good or better than
other competing systems having already been applied to telecommunications



6.2. AUTONOMOUS AGENTS 197

networks. Ant colony behavior is providing impetus to other fields such as
robotics, data sorting, and office design.
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Chapter 7

Appendix

Wolfram’s 256 elementary cellular automata, all starting with one black cell.
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Figure 7.1:
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Figure 7.2:



202 CHAPTER 7. APPENDIX

Figure 7.3:
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Figure 7.4:
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Figure 7.5:
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Figure 7.6:
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