

1.1

1.2

1.2.1

1.2.2

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.5.1

1.5.2

1.5.2.1

1.5.2.2

1.5.2.3

1.5.2.4

1.5.3

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.1.3

1.6.1.4

1.6.2

1.6.2.1

Table	of	Contents
License

Introduction

Audience

What	we	learn?

Chapter	1	:	What's	a	microcontroller?

What	does	a	microcontroller	consist	of?

But,	How	do	it	know?!	...

Chapter	2	:	How	to	talk	to	a	computer

The	machine	code

Everything	Binary...

Word	size

Convertion,	it's	easy!

Hexadecimal	world	welcomes	you

Mathematics?

Chapter	3	:	Arithmetic	Operations

Addition

Subtraction

Sign/Modulus	System

One's	Complement	System

Two's	Complement	System

How	to	subtract

Now,	what	should	we	do?

Chapter	4	:	Logical	Operations

How	many	logical	Operations	we	have?

NOT

AND

OR

Truth	Table

Let's	play	a	game!

NAND

2

1.6.2.2

1.6.3

1.6.3.1

1.6.3.2

1.6.4

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.9

1.9.1

1.9.1.1

1.9.2

1.9.3

1.9.4

1.9.5

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.11

1.11.1

1.11.2

1.11.3

1.11.4

NOR

Complex	Logics

Exclusive	OR

Exclusive	NOR

The	journey	to	computer	architecture!

Chapter	5	:	Logical	Circuits

The	NAND

NOT	Gate

AND	Gate

OR	Gate

Now,	we're	ready!

Chapter	6	:	Combinational	Circuits

The	Exclusive	OR

The	Exclusive	NOR

More	Logics?

Chapter	7	:	The	First	Computer

The	Function

Boolean	Algebra!

The	Half	Adder

The	Full	Adder

Ripple-Carry	Adder

Let's	talk	about	computers!

Chapter	8	:	Memory

Everything	is	NAND

Basic	Improvement

Register

The	new	flip-flop

The	final	register!

What	we	need	now?

Chapter	9	:	Register	File

The	Decoder

Simple	Register	File

The	Multiplexer

Advanced	Register	File

3

1.11.5

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.5

1.13

1.13.1

1.13.2

1.13.2.1

1.13.3

1.13.4

1.13.5

1.14

1.14.1

1.14.1.1

1.14.2

1.14.3

1.14.4

1.15

1.15.1

1.15.2

1.15.3

1.15.4

1.16

1.16.1

1.16.2

1.16.3

1.17

1.17.1

1.17.2

1.17.3

Ready	for	Architecture!

Chapter	10	:	Computer	Architecture

Computer	Architecture

Backward	Compatibility

Computer	Organization

Complex	or	Reduced?	This	is	the	question

Decisions!

Chapter	11	:	Design,	Advanced	Addition	Machine!

Managing	Inputs

A	new	device?

Demultiplexer

Selection!

Temporary	Registers

Let's	go!

Chapter	12	:	The	Computer(Theory)

The	Instruction	Set

What	Instructions	we	need?

Computer	Organization

Memory	Unit

Starting	Implementation

Chapter	13	:	Arithmetic	and	Logical	Unit

Tools	we	need

A	note	on	schematics

Start	Point

More	instructions?

Chapter	14	:	Program	Structure

Programming	for	a	typical	computer

Object	Code

The	Final	Step

Chapter	15	:	Microcontroller

Control	Unit

Combination	of	Things

What	should	we	learn	now?

4

1.18

1.18.1

1.18.2

1.18.3

1.19

1.19.1

1.19.2

1.19.3

1.20

Chapter	16	:	Programming	and	Operating	System

Intel	computers!

The	assembler

The	operating	system

Chapter	17	:	The	Dark	Side	of	The	Moon

Digital	Electronics

Integrated	Circuits

The	last	part!

Bibliography

5

License
This	book	is	published	for	free,	and	everyone	can	use	it	as	a	source	for	non-commercial,
educational	and	technical	purposes.	And,	if	you	want	to	read	this	book,	please	share	it	with
your	friends.	This	is	not	a	part	of	license,	this	is	what	author	wants	you	to	do.

License

6

Introduction
I	always	wanted	to	design	a	micro	controller	or	micro	processor,	and	I	managed	to	model
them.	Now,	I've	decided	to	show	people	how	a	micro	controller	is	designed.	And,	I'm	inspired
by	But	How	Do	It	Know?	-	The	Basic	Principles	of	Computer	for	Everyone	by	J.Clark	Scott.
I've	read	this	book,	and	also	studied	MIPS,	ARM	and	PowerPC	architectures,	so,	in	this
book,	I	try	to	simplify	a	micro	processor	and	turn	it	to	a	micro	controller.

Audience
Of	course,	you	need	to	be	geek	enough	to	read	this	book.	I	try	to	simplify	topics,	but	if	you
have	knowledge	of	logical	circuits	or	micro	processors,	you'll	understand	this	book	easier.

What	we	learn?
First,	you	will	understand	how	mankind	communicated	with	machines	for	years,	and	the	way
people	communicated	with	computers	is	unchanged.	Then,	you	start	learning	logical	circuits
which	is	base	of	computer	architecture	and	organization.	And	importance	of	knowledge	of
logical	circuits	is	clear,	in	university	(at	least	all	Iranian	universities),	you	should	first	pass	the
Logical	Circuits	course,	and	then	you	can	take	Computer	Architecture	course.	After	learning
logical	circuits,	we	start	designing	simple	circuits	and	even	computers,	memory	blocks,	etc.
At	the	end,	we	combine	everything	we	designed,	and	it	will	become	our	computer.	Finally,
we	can	program	our	computer,	and	we	actually	understand	how	a	computer	can	understand
human's	language.

Introduction

7

https://www.amazon.com/But-How-Know-Principles-Computers/dp/0615303765

Chapter	1	:	What's	a	micro	controller?
A	microcontroller	is	a	small	computer,	and	usually	System	on	the	Chip	(SoC),	which	include
a	processor	core,	memory	unit	and	programmable	input/output	unit.	The	most	famous	family
of	microcontrollers	is	AVR	or	Advanced	Virtual	RISC	family.	This	family	of	microcontrollers
are	used	in	boards	such	as	Arduino,	and	they're	used	for	industrial	and	educational
purposes.	A	microcontroller,	can	control	a	toy	car,	and	it	also	can	control	a	US	army	drone.
And	this	depends	on	microcontroller	type,	and	the	program	we	write	for	it.

What	does	a	micro	controller	consist	of?
In	this	section,	I	only	explain	process	core,	and	in	other	chapters,	we'll	study	other	parts
such	as	memory	unit	and	I/O	system.	The	process	core	is	usually	made	up	of	:

1.	 Arithmetic	and	Logical	Unit,	also	known	as	ALU.	This	unit,	does	every	logical	and
Arithmetic	operation,	and	it's	the	most	important	part	of	a	microcontroller.

2.	 Data	Bus,	this	part	is	simply	a	bunch	of	wires	which	transfers	data	between	to	parts	of
process	core.

3.	 Registers	are	small	memory	blocks,	and	they	can	store	data	temporarily	and	transfer
them.	We	always	need	them,	because	they're	our	temporary	memory	blocks	and	while
we	run	a	program,	we	need	to	store	inputs	and	outputs.

But,	How	do	it	know?!	...
OK,	now	let's	talk	about	How	does	even	a	computer	know	what	we	want?	.	The
answer	is	simple,	for	example,	when	we	write	this	code	for	x86	family	:

MOV	DX,	OFFSET	MSG

MOV	AH,	09

INT	21H

and	we	assemble	and	run	the	code,	it	shows	us	a	message	(for	example		Hello).	And
computers	can	understand	their	owners	by	programs,	let's	go	preciser.	Imagine	you
travel	Iran,	and	of	course	you	can	understand	Iranians	by	speaking	Persian.	And
Iranians	can	communicate	with	you	in	Persian.	So,	if	we	consider	computer	a	foreigner,
the	assembly	language	(and	in	better	word,	machine	code)	is	its	language	and	we	need

Chapter	1	:	What's	a	microcontroller?

8

http://arduino.cc

to	communicate	with	it	in	its	own	language.	In	this	book,	you'll	find	how	can	we	generate
a	simple	machine	language,	and	we	can	do	simple	projects	with	our	small	computer,
and	enjoy!

Chapter	1	:	What's	a	microcontroller?

9

Chapter	2	:	How	to	talk	to	computer?
In	previous	chapter,	we	talked	about	how	a	computer	can	understand	us.	In	this	chapter,	we
learn	how	to	communicate	with	our	computer,	and	how	to	command	it.	Let's	take	a	look	at	a
common	programming	language,	for	example,	C++.	When	we	want	to	print		Hello,	World!	
on	C++,	we	write	some	code	like	this:

#include	<iostream.h>

using	namespace	std;

int	main(){

	cout<<"Hello,	World!\n";

	return	0;

}

This	is	called	a	program,	and	when	we	compile	it,	it	turns	to	a	file,	usually	named		a.out	.
And	let's	run	our	program:

~:$./a.out

Hello,	World!

~:$

And	now,	we've	communicated	with	our	computer,	but	in	language	which	is	close	to	ours.
This	kind	of	programming	languages	are	called	High	Level	languages.	They're	close	to
human	language,	and	they're	easy	to	learn.	There	are	a	lot	of	high	level	languages	such	as
	C++	,		Python	,		Ruby	,		Go	,	etc.	We	use	them	when	we	need.	For	example,	for	coding	a
school	project	you	may	use	C,	or	Go.	For	coding	a	commercial	project,	you	may	use	Python,
as	it's	easy	to	learn	and	also	have	a	lot	of	libraries.	But,	what	if	you	want	to	code	directly	to
your	hardware?!	Now,	we	need	a	language	which	is	close	to	machine's	language.

The	machine	code
Machines	are	awesome,	because	they	only	use	0	and	1	to	communicate	with	each	other.
Humans	are	not	as	smart	as	computers	in	this	case,	because	we	use	lots	of	letters	in	daily
communications.	English	includes	26	letters,	Persian	includes	32	letters,	and	there	are
languages	with	more	than	100	letters.	Computers	have	only	two	letters,		0		and		1	.	Now,
let's	take	a	look	at	these	letters!

Everything	Binary...

Chapter	2	:	How	to	talk	to	a	computer

10

OK,	we	told	you	we	have	two	letters	in	machine	language.	So,	we	need	to	convert	usual
letters	and	numbers	to	words	that	computer	can	understand.	We	use	base	2	as	a	key	to
machine	language.	In	base	10,	the	regular	format	of	daily	mathematics,	we	have	digits	0	to
9,	but	in	base	2,	we	have	only	0	and	1.	Every	digit	here	is	called	a	binary	digit	,	or	in	short,	a
bit.	But	a	single	bit	alone	is	not	enough	for	us.

Word	size

Imagine	the	word		hello		in	English	language.	It	has	4	characters.	Also,	imagine	the	number
	42	,	it	has	2	digits.	In	computers,	we	need	a	fixed	size,	and	our	words	can't	be	bigger	or
smaller	than	that.	We	call	this	fixed	space	word	size.	We	need	word	size	to	compute	carry
digit,	overflow	and	underflow,	etc.	One	of	the	most	popular	word	sizes,	is	a	byte,	which	is
made	up	of	8	bits.	A	simple	byte	is	mapped	like	this	:

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

Now,	we	initialized	one	byte	using	only	zeros.	But,	we	have	two	forms	for	a	bit,	zero	or	one.
So,	how	can	we	convert	a	binary	number	to	a	decimal	one?!

Convertion,	it's	easy!

Now,	let's	take	a	look	at	a	simple	binary	number	for	example	:		1001	.	This	number	is	a	4	bit
one,	but	we	defined	our	word	size	8	bits.	We	convert	it	to	an	8	bit	number,	we	just	need	to
replace	missing	bits	with	zeros	:

7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 1

And	now,	we	know	column	3	and	0	have	value	one,	it's	so	easy	to	calculate:

2^3	+	2^0

now,	we	know		2^3		is	equal	to	8,	and		2^0		is	equal	to	one.	So,	the	result	is:

8	+	1	=	9

It's	fine	to	convert	binary	numbers	to	decimal,	but	how	can	we	convert	a	decimal	number	to
binary?	Now,	we	try	to	convert	135	to	binary.	We	all	know	135	is	equal	to		128	+	7	.	Now,	we
can	write	this	number	like	this	:

Chapter	2	:	How	to	talk	to	a	computer

11

2^7	+	2^2	+	2^1	+	2^0

So,	we	shall	enter	1	in	columns	7,	2,	1	and	0.	Our	result	is	just	like	this	:

7 6 5 4 3 2 1 0

1 0 0 0 0 1 1 1

And	yes!	10000111	is	our	result.	And	there's	a	qestion,	is	there	any	other	formats	for
communicating	with	computers?	Yes!	We	can	use	base	16,	too.	base	16	is	known	as
hexadecimal,	and	we	have	digits	0	to	F	in	that	format.	It's	wierd,	isn't	it?

Hexadecimal	world	welcomes	you

Now,	let's	talk	about	digits.	In	base	10,	we	have	10	digits.	In	base	3,	we	have	3	digits,	but
what	about	16?	In	base	16	we	have	sixteen	digits.	But	how	can	we	code	our	digits?	It's	so
easy,	we	use	Latin	letters	instead	of	numbers.	This	table,	shows	you	a	simple	convertion
among	binary,	decimal	and	hexadecimal	:

Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Chapter	2	:	How	to	talk	to	a	computer

12

These	are	our	digits,	and	we	learned	from	this	table	that	every	4	bit	is	equat	to	one	hex	digit.
So,	we	can	convert	a	decimal	number	to	hexadecimal	one	using	this	table,	and	our
knowledge	of	binary	calculations.	Let's	think	about	158.	158	is		128	+	30	.	So,	We	can	write
this	number	like	this	:

2^7	+	2^4	+	2^3	+	2^2	+	2^1

And	now,	we	can	draw	binary	conversion	table	for	this	number	like	this	:

7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 0

Oh,	10011110,	is	our	result.	let's	convert	it	hexadecimal!	It	has	8	bits,	it	means	it	has	2	digits
in	hexadecimal	format.	So,	we	draw	a	hexadecimal	conversion	table	for	this	number	:

1 0

1001 1110

According	to	table,		100		is	equal	to	9,	and		1110		is	equal	to	E.	So,	our	result	is		9E	.	In	this
sections,	we	learned	about	how	computer	sees	data.	A	computer	reads	data	in	binary
format,	but	we	simplify	it	by	showing	binary	numbers	in	hexadecimal,	and	of	course	we
translate	hexadecimal	instructions	for	computer	later.

Mathematics?
We	learned	how	to	communicate	with	a	computer,	and	now,	we	need	to	know	how	to	do
arithmetic	operations	using	a	computer.	In	next	chapter,	we	just	take	a	look	at	how	a
computer	can	do	arithmetic	operations.

Chapter	2	:	How	to	talk	to	a	computer

13

Chapter	3	:	Arithmetic	Operations
We	do	simple	arithmetic	operations	in	our	daily	life.	For	example,	when	you	buy	a	candy	for
$2	,	and	you	give	the	seller	$5	banknote,	he	will	give	you	$3.	This	is	a	simple	subtraction	we
use	in	daily	life.	Or,	if	you	want	to	buy	a	toy	car	for	$100,	and	you	have	$80	in	your	pocket,
you	may	go	to	bank	and	you	will	take	$20	from	your	account.	This	is	a	simple	addition	and
subtraction	in	daily	life.	But	how	a	computer	do	that?!

In	previous	chapter,	we	talked	about	how	computer	reads	data.	We	talked	about	binary
digits.	In	this	chapter,	we	take	a	look	that	addition	and	subtraction	of	them.

Addition
How	do	you	add	two	decimal	numbers?	for	example	105	and	55.	This	is	how	we	add	these
to	numbers	:

1

1 0 5

5 5

1 6 0

We	start	from	ones,	then	we	add	carry	of	ones	to	decimal.	Now,	we	can	do	the	same	for
1100	and	0100.	I	know	we	have	decided	to	use	8	bit	word	size,	and	so	I	draw	8	bits	table
now	:

7 6 5 4 3 2 1 0

1 1

0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

Did	you	see,	we	used	to	empty	bits	for	our	carry.	If	we	use	a	smaller	word	size,	this	carry
can't	be	displayed	in	output,	and	that	will	result	an	error.	OK,	we	just	did	a	simple	addition.
Let's	talk	about	a	bigger	one,	11000000	and	01000000.	I'll	draw	a	table	for	this	addition	:

Chapter	3	:	Arithmetic	Operations

14

C 7 6 5 4 3 2 1 0

1 1

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

In	column	C,	we've	stored	our	carry.	This	means,	we	need	a	word	size	bigger	than	8	bits,	if
we	care	about	the	final	result.	But,	currently	we	don't	care	about	it,	and	we	just	store	it	to	a
memory	block	called	Carry	Flag	,	and	we'll	talk	about	it	later.	Addition	in	binary	is	very,	very
easy.	But,	what	about	subtraction?	we	need	a	subtraction	for	our	microcontroller,	too.	But
how	can	we	implement	our	subtraction?

Subtraction
It's	a	bit	difficult	to	do	a	subtraction	in	computers,	because	we	have	no	subtraction	circuit.
We	have	Negator	and	Adder	instead	of	subtractor.	So,	we	have	different	ways	to	make	a
number	negative.	I	show	you	three	popular	way,	and	at	the	end,	we	choose	on	of	them	as
our	standard.

Sign/Modulus	System

In	this	system,	we	have	a	sign	bit,	which	is	equal	to	the	most	valuable	bit.	If	it's	1,	number	is
negative,	and	if	it's	0,	number	is	positive.	Let's	see	two	examples	,	for	example	we	convert
36	and	-66	to	a	S/M	number	:

Decimal S 6 5 4 3 2 1 0

36 0 0 1 0 0 1 0 0

-66 1 1 0 0 0 0 1 0

Oh,	let's	think	about	this	system.	This	system	is	very	easy-to-use,	but	have	two	great
problems	:

1.	 It	makes	our	word	size	smaller,	as	one	of	our	bits	wasted.
2.	 It	makes	negative	zero	condition,	and	we	need	to	use	algorithms	designed	for	this

system.	These	algorithms	are	not	popular,	so	we	don't	use	S/M.

There's	another	easy	way,	and	it's	called	One's	complement.

One's	Complement	System

Chapter	3	:	Arithmetic	Operations

15

In	this	system,	we	just	invert	bits.	Every	0	becomes	1,	and	every	1	becomes	0.	Let's
calculate	-36	in	this	system.

Decimal 7 6 5 4 3 2 1 0

36 0 0 1 0 0 1 0 0

-36 1 1 0 1 1 0 1 1

This	system	is	much	better	than	S/M.	but	still	have	a	great	problem.	It	still	makes	negative
zero,	and	it's	not	good	for	us.	So,	we	have	a	final	solution!	that's	using	two's	complement
system!

Two's	Complement	System

This	system	is	very	similar	to	one's	complement,	but	we	just	add	1	to	one's	complement,	and
it	makes	two's	complement	for	us.	Let's	calculate	-67	in	this	system	:

Decimal 7 6 5 4 3 2 1 0

67 0 1 0 0 0 0 1 1

1 0 1 1 1 1 0 0

1

-67 1 0 1 1 1 1 0 1

In	this	system,	we	have	no	negative	zero	conditions,	and	all	bits	used	efficiently.	Now,	we
choose	this	system	as	our	standard,	and	we'll	design	our	subtraction	parts	using	this
system.

How	to	subtract?

OK,	now	we	are	able	to	make	negative	numbers.	So,	a	subtraction	operation	is	simply
addition	of	a	number,	to	a	negative	number	.	So,	for	example	:

125	-	36

is	actually	:

125	+	(-36)

So,	first,	we	calculate	-36	:

Chapter	3	:	Arithmetic	Operations

16

Decimal 7 6 5 4 3 2 1 0

36 0 0 1 0 0 1 0 0

1 1 0 1 1 0 1 1

1

-36 1 1 0 1 1 1 0 0

And	now,	we	do	our	addition	:

C 7 6 5 4 3 2 1 0

1 1 1 1 1

0 1 1 1 1 1 0 1

1 1 0 1 1 1 0 0

1 0 1 0 1 1 0 0 1

The	carry	is	here	normal,	and	every	subtraction	shall	have	one,	now,	we	can	do	every
subtraction	with	this	method.	The	carry	has	a	role	now,	we	call	it	Sign	Flag	and	when	we
want	to	design	our	final	process	core,	we	will	consider	a	bit	for	this	bit,	too.	In	next	chapter,
we'll	learn	logical	operations,	which	are	very	important	in	every	computer.

Now,	what	should	we	do?
In	our	proccess	core	,	we	will	use	two's	complement	system,	as	the	main	system.	Now,	we
need	another	type	of	operations,	called	Logical	Operations.	In	next	chapter,	we	learn	logical
operations.

Chapter	3	:	Arithmetic	Operations

17

Chapter	4	:	Logical	Operations
Let's	talk	about	logic!	Do	you	know	what	logic	is?	Logic	is	somekind	of	mathematics,	mixed
with	philosophy	in	simple	word.	It's	started	by	Greek	philosopher,	Aristotle.	Simply,	logic	says
:	John	is	taller	than	Ali,	Ali	is	taller	than	Ahmed,	so,	John	is	taller	than	Ahmed.	This
was	a	very,	very	simple	example	of	a	logical	problem	in	our	daily	life.	We	can	do	this
example	for	everything	measurable	in	our	daily	life,	souch	as	area,	height,	weight,	etc.

How	many	logical	operations	we	have?
We	have	some	simple	logics,	and	we	review	all	of	them	here,	and	we	solve	some	simple
problems,	and	create	new	logics.

NOT

As	we	have	binary	system,	we	use	0	for	everything	off	and	1	for	everything	on.	0	for
everything	true	and	1	for	everything	false.	So,	here	we	have	just	one	variable	called	A.	Let's
do	NOT	operation	on	A!

NOT A ~A

0 1

1 0

We	show		NOT	A		in	this	form	:

~A

This	notation,	helps	us	write	logical	functions.	Functions	are	operations	we	do	on	one	or
more	variables,	and	it	has	unique	answer	per	inputs	from	a	bunch	of	variables.

AND

This	operation,	is	very	simple,	but	has	two	logic	inputs.	The	table	of	AND	is	like	this	:

Chapter	4	:	Logical	Operations

18

AND A B Out

0 0 0

0 1 0

1 0 0

1 1 1

We	show		A	AND	B		in	our	logical	notation	like	this	:

AB

OR

Of	course,	you	remember	famous	question	from	Shakespear's	novel	Hamlet,	To	be,	or	not
to	be;	this	is	the	question!.	Now,	we're	going	to	explain	what	OR	is.	This	table	can	explain
this	operation	:

OR A B Out

0 0 0

0 1 1

1 0 1

1 1 1

One	of	operations	needs	to	be	True,	and	it	makes	whole	answer	true.	And,	we	show		A	OR
B		like	this	:

A	+	B

Truth	Table
You	saw,	we	used	a	table,	which	includes	inputs	and	outputs,	and	also	operation.	This	table
is	called	Truth	Table.

Let's	play	a	game!
So,	let's	combine	some	logics	and	make	new	ones!	The	simplest	ones	are	:

Chapter	4	:	Logical	Operations

19

NAND

It	means	:

~(AB)

It's		NOT(AND(A,	B))		in	a	simple	word.	And	we	draw	truth	table	like	this	:

NAND A B Out

0 0 1

0 1 1

1 0 1

1 1 0

NOR

It	means	:

~(A+B)

It's		NOT(OR(A,	B))		in	a	simple	word.	The	truth	table	is	like	this	:

NOR A B Out

0 0 1

0 1 0

1 0 0

1 1 0

Is	there	any	more	logics?	of	course	yes!	But,	we	will	have	a	view	on	two	others,	in	this
chapter.

Complex	Logics
There	are	to	other	logics,	which	are	made	from	other	logics,	I	would	like	to	call	them
"Complex".	Because	They're	not	as	simple	as	NAND	or	NOR.	Also,	we	can	call	them
"Exclusive	Logics".	This	is	what	other	engineers	called	them.

Exclusive	OR

Chapter	4	:	Logical	Operations

20

This	logic,	is	implemented	like	this	:

~AB	+	A~B

So,	we	will	have	a	truth	table	like	this	:

XOR A B Out

0 0 0

0 1 1

1 0 1

1 1 0

Exclusive	NOR

This	logic	is	the	same	as	XOR,	but	with	a	little	difference!	If	you	apply	a	NOT	function	to
XOR,	you'll	get	XNOR.	But,	the	best	implementation	of	XNOR	is	this	function	:

~A~B	+	AB

And	we'll	get	this	truth	table	:

XNOR A B Out

0 0 1

0 1 0

1 0 0

1 1 1

The	journey	to	computer	architecture!
Now,	we	know	logics,	and	we	need	to	learn	about	Logical	Circuits,	which	are
representation	of	these	logics	in	computer	science	and	electronics.	In	next	chapter,	we	will
learn	how	to	use	and	design	simple	logical	circuits,	and	then,	we	start	designing	and
implementing	our	dear	micro-controller.	Of	course	you	needed	these	chapters	to	learn	the
computer	language,	but	after	learning	the	language,	you	need	to	know	how	a	computer	is
built!

Chapter	4	:	Logical	Operations

21

Chapter	4	:	Logical	Operations

22

Chapter	5	:	Logical	Circuits
Do	you	remember	two	logics	NAND	and	NOR	?	These	logics	are	called	Universal	Logic,
because	in	digital	electronics,	we	make	all	other	logics	using	these	two	logics!	The	smallest
part	of	a	logical	circuit,	is	called	a	gate.	each	gate	is	a	specific	arrangement	of	transistors.
For	example,	this	is	a	NOT	gate	using	MOSFET	transistors	:

I	picked	this	picture	from	one	of	my	old	projects,	and	in	this	book,	we	won't	use	any
transistor,	we	just	use	symbolic	schematics	of	logic	gates	to	design	logical	circuits!

The	NAND
Although	we	can	make	all	logics	using	NOR,	I	prefer	using	NAND.	This	is	just	my	personal
opinion,	and	after	reading	and	understanding	the	previous	chapter	and	this	chapter,	you	can
make	all	of	these	logics	using	NOR.	This	is	what	I	call	"The	magic	of	boolean	algebra".	First,
we	need	to	know	how	NAND	works!	It	works	like	a	key	with	two	switches,	and	when	to
switches	are	off,	the	output	will	be	on!	This	is	the	simplest	definition	of	NAND.	When	we
want	to	show	it	on	circuit,	we	use	this	shape	:

Chapter	5	:	Logical	Circuits

23

A	D-shaped	thing	with	a	bubble	at	the	end.	This	is	NAND!	You	know	how	it	works,	because
you	read	the	chapter	four	and	you	learned	what	are	these	functions!

NOT	Gate

The	NOT	gate	is	another	simple	and	basic	gate,	you	need	to	know.	It's	built	using	a	NAND
Gate	like	this:

Did	you	see	how	it	works?	Yes!	We	simply	connect	two	inputs	of	a	NAND	gate	to	a	switch.
The	NOT	gate	in	general,	is	represented	like	this	:

AND	Gate

As	you	remember	from	the	previous	chapter,	we	made	NAND	function	by	adding	a	NOT	to
AND.	So,	we	know		~(~A)	=	A	.	This	means	we	can	add	a	NOT	gate	in	output	of	NAND,	and
get	AND	function.	Just	like	this	:

But	in	reallity,	if	you	remove	the	bubble	from	NAND	gate,	you	will	have	AND	:

OR	Gate

This	is	the	last	of	these	gates!	Yes,	this	is	the	last,	because	we	will	design	exclusive	logics	in
next	chapters,	so	the	OR	gate	is	the	last	gate	we	will	know	here!	If	we	apply	two	NOT	gates
in	the	inputs	of	a	NAND	gate,	it'll	become	an	OR	gate.	like	this	:

Chapter	5	:	Logical	Circuits

24

But,	this	is	the	actuall	OR	:

Now,	we're	ready!
Actually,	when	you	know	how	to	represent	logic	gates,	and	you	know	how	their	functions
work,	you	can	design	and	implement	logical	circuits.	A	computer	is	much	simpler	than	you
think,	and	the	hard	part	in	design	and	implementation	of	a	computer,	is	the	correct	usage
and	combination	of	logics.	In	next	chapter,	we	design	the	simplest	combinational	circuits,
and	then	we	start	desgining	bigger	ones.

Chapter	5	:	Logical	Circuits

25

Chapter	6	:	Combinational	Circuits
In	the	previous	chapter,	we	saw	how	we	can	make	logic	gates.	Of	course,	the	easy	way!	In
this	chapter,	we're	going	to	make	circuits	which	are	famous	as	Combinational.	Because	we
pick	some	well-known	gates,	and	make	a	circuit	out	of	them.

The	Exclusive	OR
Do	you	remember	XOR	from	chapter	four?	The	logical	function	of	XOR	was	like	this:

~AB	+	A~B

As	you	see,	we	need	two	NOT	gates,	two	AND	gates	and	one	OR	gate!	Ok,	let's	make	the
circuit	:

We	also	have	a	gate	for	XOR,	because	it's	very	common	in	circuits,	and	in	transistor	level,
it's	implemented	much	simpler.	This	is	the	XOR	gate	:

This	was	the	simplest	combinational	circuit	we	could	ever	make.	Let's	make	another	one!

The	Exclusive	NOR
This	is	another	combinational	circuit	we	make	in	this	chapter,	the	function	is	almost	the	same
as	XOR,	but	it	has	a	little	difference.

~A~B	+	AB

Chapter	6	:	Combinational	Circuits

26

And	now,	we	can	make	the	circuit	:

We	also	have	a	gate	for	this	function.	The	gate	looks	like	this	:

More	Logics?
Of	course	yes!	We	will	make	another	useful	logics	in	the	next	chapters.	We	all	studied	these
six	chapters	for	design	and	implementation	of	more	logics.

Chapter	6	:	Combinational	Circuits

27

Chapter	7	:	The	First	Computer
Now,	you	know	logic	and	arithmetic,	two	basics	of	computers.	Of	course,	every	device	with
the	ability	of	solving	logical	and	arithmetic	problems,	is	a	computer!	Humans	are	computers,
calculators	are	computers,	and	that	expensive	(and	almost	useless)	iPhones	are	computers,
too.	In	this	chapter,	we	just	make	the	simplest	computer.	We	need	this	computer	in	near
future,	as	a	part	of	other	computer.	That's	interesting,	isn't	that?

The	Function
When	we	decide	to	design	a	device,	we	need	to	define	its	function.	For	example,	imagine	a
mechanical	engineer	who	wants	to	design	an	engine,	but	he	doesn't	describe	its	function!
So,	no	one	will	buy	that	engine,	because	no	one	knows	how	it	works	or	how	it's	made,	or
what's	its	function!	As	a	good	and	practical	design,	I	considered	Addition	Machine.	It's	a
simple	calculator	(or	computer)	we	can	design	using	a	few	gates.

Boolean	Algebra!

We	learned	boolean	algebra	in	chapter	four	and	for	now,	we	just	see	it	in	action!	For
designing	an	Addition	Machine	,	we	need	this	simple	function	:

Sum	=	~AB	+	~BA	

Carry	=	AB

Did	you	find	the	point?	we	just	need	a	XOR	and	an	AND	gate!

The	Half	Adder
Imagine	this	circuit,	which	is	the	implementation	of	the	function	in	previous	part	:

The	truth	table	for	this	circuit	will	be	:

Chapter	7	:	The	First	Computer

28

H.A A B Carry	(C) Sum	(S)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

It	makes	0,	1	and	2	for	us!	It's	another	interesting	thing	we	can	design	and	implement!	but,
it's	not	complete	yet!	Why?	It	does	not	make	3	for	us,	it	has	2	inputs	but	not	4	outputs!	So,
we	still	need	some	improvements	on	the	circuit!

The	Full	Adder
Half	adder	is	good,	but	it's	not	everything.	Of	course,	it	can't	help	us	make	bigger	adders,	so
we	need	to	connect	two	half	adders,	and	make	a	new	adder	wich	is	called	a	full	adder.	A	full
adder,	can	actually	make	all	expected	outputs	for	us.	This	is	the	full	adder	:

Truth	table	of	a	full	adder	is	like	this	:

Chapter	7	:	The	First	Computer

29

F.	A Carry-in A B Carry(Cout) Sum(S)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Now,	we	have	ability	of	making	a	big	adder!	And	that	big	adder	will	be	our	dear	Addition
Machine.

Ripple-Carry	adder
The	full	adder	we've	designed	is	actually	one	bit.	If	we	want	to	design	a	computer	with	the
word	size	of	one	bit,	we	can	consider	that	full	adder	as	a	simple	computer.	Now,	as	you
remember	from	chapter	two,	we	decided	to	make	a	microcontroller	with	word	size	of	eight
bits!	So,	I	want	to	make	a	8-bit	adder.	But	How?!

As	you	can	see,	each	full	adder	has	a	carry-in	and	a	carry-out	pin,	what	we	need	is
connecting	8	full	adders	together,	and	we	need	these	pins.	If	we	put	one	adder	,	and	connect
its	carry-out	to	next	one's	carry-in,	then	I'll	get	a	Ripple-Carry	adder.	A	ripple-carry	adder
looks	like	this	:

Not	only	8	bits,	we	can	make	the	adder	with	a	custom	word-size,	according	to	the	design	of
ripple-carry	adder.	Congratulations!	You	made	your	first	computer!

Let's	talk	about	computers!

Chapter	7	:	The	First	Computer

30

In	this	chapter,	we	just	designed	and	implemented	a	simple	computer	known	as	a	Ripple
Carry	Adder	or	Addition	Machine.	It's	a	complete	computer	with	a	single	instruction,	but	of
course	it's	not	functional	yet.	Because	we	didn't	design	a	memory	unit,	a	simple	control	unit,
etc.	In	next	chapter,	we	will	add	some	memory	blocks	to	this	computer	and	then,	we	start
designing	a	complete	and	functional	computer.

Chapter	7	:	The	First	Computer

31

Chapter	8	:	Memory
Although	our	Addition	Machine	was	a	complete	computer,	but	actually,	a	computer	without
memory	is	like	a	car	without	seats.	You	know	a	car	can	be	driven	without	seats,	but	we	add
seats,	because	seats	can	keep	passengers!	And	this	is	the	point!	We	want	a	certain	space
for	keeping	data.	According	to	the	chapter	six,	we	know	that	a	combinational	circuit	is	a
circuit	which	can	solve	a	logic/arithmetic	problem	without	storing	the	results.	In	this	chapter,
we	are	going	to	study	a	new	family	of	circuits,	which	are	called	Sequential	Circuits.

Everything	is	NAND!
You	need	NAND,	even	here.	Of	course,	we	need	to	know	how	NAND	works	and	how	can
make	memory	blocks	only	using	NAND.	The	simplest	memory	block	is	this	:

This	is	called	an	active-low	S-R	flip	flop.	If	we	replace	NAND	gates	with	NOR,	we	will	have
an	active-high	S-R	flip	flop.	So,	as	all	of	the	circuits	of	this	book	are	active-high,	let's	see
active-high	version	of	our	flip	flop	:

As	you	can	see,		Q		and		~Q		are	replaced	in	the	new	circuit.	It	doesn't	matter	what	kind	of
flip	flop	you	use,	but	I	actually	prefer	the	active-high	one.

Basic	Improvement

Chapter	8	:	Memory

32

Consider	that	lovely	NAND	based	implementation	of	SR,	and	if	we	modify	that	like	this	:

I	added	two	gates,	and	one	pin.	The	new	pin	is	called	enable.	It	enables	the	circuit,	that
means	I	actually	need	to	turn	it	on	for	applying	all	changes	in	the	input!	The	new	circuit	is
called	SR	flip-flop	with	enable.	Later,	we	will	call	that	Clocked	SR.

Register
We	can	consider	this	flip	flop	as	one	bit	memory	block	or	one	bit	register.	But,	as	we	decided
in	chapter	two,	we	want	8	bits	registers.	So,	we	need	to	connect	eight	memory	blocks
together!	How	is	it	possible?	We	just	need	to	pick	eight	of	them,	then	connect	a	common
enable	and	reset	button	to	them.	And	the	input	(S	pins)	will	be	parallel.	The	schematics	of	a
register,	is	like	this	:

Chapter	8	:	Memory

33

This	is	the	simplest	register	we	can	make,	but	we	need	a	better	design	for	our	flip	flops	to
prevent	noises	and	oscillations!	So,	we	don't	use	this	kind	of	register	in	our	computer!

The	new	flip-flop
As	we	tested	the	S-R	one,	we	found	that	S-R	can't	handle	noises,	and	oscillations.	This
means	we	will	have	a	lot	of	meta-stable	conditions.	As	a	good	solution,	we	can	use	this	kind
of	flip-flop	:

Now,	we	connect	8	bits	to	D	inputs,	and	one	Enabler	to	all	E's	we	have.	finally,	we'll	get	this	:

Chapter	8	:	Memory

34

The	final	register!
The	schematics	of	a	register,	is	just	like	this	:

It	has	8-bit	data-in	or	Din	input	and	also	data-out	or	Dout	output.	Also,	it	has	an	enabler,
which	is	shown	by	E.

What	we	need	now?
Now,	we	need	some	organization	for	memory	management.	Also,	we	need	to	see	how
memory	blocks	work	in	action.	In	next	chapters,	we	will	add	some	memory	blocks	to	our
Addition	Machine	and	see	how	it	works,	then	we	design	more	memory	devices	for	our	micro-
controller.

Chapter	8	:	Memory

35

Chapter	9	:	Register	File
In	previous	chapter,	we	made	1	bit	flip	flops,	and	connected	them	together,	then	we	had
registers.	Registers	are	needed,	but	we	can't	say	"We	are	great	computer	engineers
because	we	have	registers!".	Registers	have	special	organization	in	a	computer,	and	that's
called	Register	File.	In	this	chapter,	we	will	design	a	simple	one!

The	Decoder
Let's	make	another	combinational	circuit	here.	The	circuit	we	are	making	here,	is	called
Decoder	.	Decoders	have	n	selectors,	and		2^n		outputs.	This	is	why	they're	decoders!	You
give	them	a	binary	number	as	input	and	you	take	a	hexadecimal	number	in	the	output.	Of
course,	you	never	get	the	exact	hex	number	at	the	output,	but	you	can	find	hexadecimal
notation	of	input	by	using	a	decoder.	Let's	make	one!	The	simplest	decoder	we	make	is	a
2x4	decoder.	According	to		2^n	,	we	can	also	make	1x2	decoder,	but	it's	not	actually	a	real
decored.	It's	an	AND	gate!	The	logical	function	of	a	2x4	decoder	is	like	this	:

S0	=	~A~B		

S1	=	~AB	

S2	=	A~B	

S3	=	AB

So,	we	can	implement	our	decoder	like	this	:

But,	how	we	use	this	in	a	Register	File	?

Chapter	9	:	Register	File

36

Simple	Register	File
We	have	a	2x4	decoder.	So,	for	now	we	can	make	a	simple	register	file	with	four	registers.
The	outputs	of	decoder,	will	be	connected	to	Enabler	pin	of	registers.	Just	like	this	:

This	is	actually	not	a	good	design,	it	can	generate	a	lot	of	noises,	so	we	need	another
device,	which	allows	us	to	select	one	of	outputs!

The	Multiplexer
You	know,	we	need	a	device	which	acts	like	a	decoder,	but	it	does	a	selection	among	input
data	lines.	This	device	is	called	a	Multiplexer.	In	this	book,	We	call	it	Mux.	A	mux	can	be
implemented	using	a	decoder,	and	a	bunch	of	AND/OR	gates.	Like	this	:	This	is	a	simple
mux	:

Chapter	9	:	Register	File

37

For	our	register	file,	we	need	a	mux	which	can	handle	8	bits	input	and	output.	So,	I	connect
8	muxes	together,	and	I'll	have	a	big	mux	like	this	:

Now,	we	can	go	back	and	complete	our	register	file.

Advanced	Register	File
Now,	we	add	a	mux	to	the	register	file	we	designed,	so	we	get	this	:

Chapter	9	:	Register	File

38

S0	and	S1	are	selectors	for	moving	data	to	registers.	we	call	that	situation	Store.	And	R0	&
R1	help	us	read	data	from	registers.	This	is	what	we	call	Load.	We	can	claim	that	we	have	a
Load/Store	Architecture.

Ready	for	Architecture!
Computer	architecture	is	not	only	engineering.	It	includes	mathematics,	philosophy,
analysis,	etc.	We	need	to	combine	all	of	them,	to	design	an	architecture.	In	next	chapter,	we
will	take	a	look	on	the	philosophy	behind	computer	architecture.	Then,	we	will	start	design
and	implementation	of	our	microprocessor.

Chapter	9	:	Register	File

39

Chapter	10	:	Computer	Architecture
This	chapter	is	only	theory	of	computer	architecture.	Actually,	we	need	to	know	this	part
before	we	can	start	design	and	implementation.	There	are	a	lot	of	concepts	we	should	know.
In	this	chapter,	I	tried	to	cover	the	most	important	concepts.

Computer	Architecture
The	term	architecture	usually	used	for	everything	engineers	build,	and	it	means	all	engineers
need	to	know	the	architecture	of	what	they	made.	Computer	Architecture	is	simply
operations	that	a	computer	can	do.	Do	you	remember	our	Addition	Machine?	That
computer	had	a	simple	architecture,	it	could	add	two	numbers,	and	if	one	of	inputs	was
negative	(according	to	the	operator	of	computer,	not	computer	itself!)	it	could	help	us
subtract.	That's	nice,	isn't	that?	So	All	instructions	and	operations	of	a	computer	is	its
architecture.	This	is	the	only	concept	you	actually	feel	when	you	are	a	user.	When	you	are
engineer	you	need	to	know	more	concepts.

Backward	Compatibility
Backward	compatibility	is	the	most	important	theory	in	computer	architecture	and
organization.	In	70's,	Intel	made	8085	processor.	Later,	they	made	8086.	Let's	see	how	they
implemented	Backward	compatibility!	Imagine	a	program	written	for	8085,	8086	must
support	and	execute	that.	Every	newer	designs,	should	be	compatible	with	older	ones.	For
now,	I	have	a	laptop	with	Intel	Core	i5	processor,	and	I	can	execute	Windows	XP	on	it.	This
is	Backward	compatibility.

Computer	Organization
You	know	what	computer	architecture	means,	but	what	about	organization?	computer
organization,	is	a	level	before	architecture.	In	architecture,	we	just	analyze	computers
instructions,	and	after	analyzing	it,	we	can	tell	what	instructions	this	computer	can	do..
But,	the	*structure	of	instructions	is	not	revealed	yet!	When	we	start	studying	structure	of
instructions,	we	actually	study	computer	organization.

Chapter	10	:	Computer	Architecture

40

So,	when	we	say	our	computer	can	multiply,	we	just	talked	about	its	architecture.	But,	when
we	say	our	computer	includes	a	multiplier,	which	is	made	up	of	adders	,	we	spoke	about	its
organization.	So,	when	we	are	talking	about	what	a	computer	can	do	we	are	speaking	about
architecture.	But,	when	we	start	talking	about	how	instructions	are	implemented	,	we	are
talking	about	organization.

Complex	or	Reduced?	This	is	the	question
A	computer	is	measured	by	number	of	its	instructions,	so,	when	this	number	is	less	than
100,	we	call	the	design	Reduced	Instruction	Set	Computer	or	in	short,	RISC.	When	we
have	more	than	100	instructions	in	a	computer,	we	call	that	Complex	Instruction	Set
Computer	or	CISC.	The	computer	we	design	in	this	book,	will	be	a	RISC,	because	RISCs
are	easy	to	study,	learn,	implement	and	understand.	Also,	RISCs	are	faster	than	CISCs.

Decisions!
In	chapter	two,	we	decided	to	design	a	computer	with	the	word	size	of	8	bits.	So,	we	need	to
make	decisions	about	its	architecture	and	organization.	Next	chapter,	will	be	about	our
design,	and	then,	we	start	making	our	computer!

Chapter	10	:	Computer	Architecture

41

Chapter	11	:	Design,	Advanced	Addition
Machine!
In	chapter	seven	we	designed	the	must	simple	(and	almost	useless)	computer,	The	Addition
Machine.	Now,	we	need	to	have	a	background	of	design	and	implementation	of	complex
machines,	so	we	add	some	useful	features	to	our	addition	machine.	Our	machine	had	no
memory	blocks	and	we	couldn't	save	our	inputs	and	outputs.	In	this	chapter,	we	will	learn
how	to	add	memory	blocks	to	our	addition	machine.

Managing	inputs
Remember	our	Register	File?	For	now,	I	want	to	store	my	inputs	in	a	register,	and	then,	read
from	those	registers.	If	you	look	at	your	simple	(or	scientific)	calculator,	you	will	see	a	button
labled	M	or	M+.	That	button	is	used	for	inserting	the	inputs	or	results	in	calculator's	memory.
So,	I	want	to	make	a	memory	button	for	our	Addition	Machine.	Our	circuit	will	be	like	this	:

This	is	a	good	design	now,	but	no!	We	can	make	it	better,	but	that's	enough	for	an
Advanced	Addition	Machine.

A	new	device?
As	we	want	only	one	register	file,	we	need	a	multiplexer	in	the	input.	It	looks	like	this	:

Chapter	11	:	Design,	Advanced	Addition	Machine!

42

So,	for	new	system,	we	only	waste	four	bits	for	control.	But,	we	need	a	device	which	can
help	us	define	the	path	of	our	data!	A	device	which	can	be	used	for	unicast	(only	one
direction),	multi-cast	(more	than	one	direction)	and	broadcast	(sending	data	to	all
directions)!.

Demultiplexer

A	Demultiplexer	acts	like	a	backward	multiplexer.	With	a	multiplexer,	you	choose	one	of	data
lines,	but	with	a	demultiplexer,	you	can	send	a	single	data	line	to	a	certain	destination.	The
simplest	one	you	can	make,	is	a	combination	of	NOTs	and	ANDs,	like	this	:

The	input	line,	is	connected	to	input	of	all	ANDs,	and	S,	which	is	our	selector,	connected	with
a	NOT	to	first	AND,	and	without	NOT	to	second	one.	This	means,	with	applying	changes	in
selector(s)	we	can	send	our	data	to	different	lines!	Let's	add	some	deumx's	to	our
Advanced	Addition	Machine.

Selection!
Now,	we	need	to	add	an	8	bit	demux	to	our	Addition	Machine.	The	input	lines	will	look	like
this	:

Chapter	11	:	Design,	Advanced	Addition	Machine!

43

Now,	we	can	select	A	or	B	inputs	of	the	Adder!	Let's	add	our	adder	:

This	doesn't	add	anything,	because	we	only	switch	our	inputs?	what's	our	final	solution?

Temporary	Registers
As	you	may	find,	there's	no	addition	in	our	Advanced	Addition	Machine.	So,	we	can	add
two	registers	to	our	addition	machine,	and	those	are	called	Temprorary	Registers.	Our
machine,	with	temprorary	registers	will	look	like	this	:

Let's	go!
Now,	we	designed	a	simple	computer	which	can	work,	and	it	can	help	us	make	bigger
machines	or	devices.	But,	in	next	chapter,	we	start	our	design	of	a	real	micro-processor.	The
future	chapters,	help	you	understand	architecture	and	organization	of	the	computers	which
we	use	everyday.

Chapter	11	:	Design,	Advanced	Addition	Machine!

44

Chapter	11	:	Design,	Advanced	Addition	Machine!

45

Chapter	12	:	The	Computer	(Theory)
As	we	learned	some	theory	and	definitions	in	chapter	ten,	in	this	chapter	we're	going	to
continue	our	Theory	of	Design.	A	computer	without	a	strong	theory	behind	it,	is	like	a	car
without	engine!	This	is	the	saddest	truth	about	computer	engineering!	If	you	can't	present	a
good	documentation	of	you	design	or	build,	you'll	fail!	To	avoid	fails,	we	learn	how	to	design
a	computer	(theory	phase)	in	this	chapter!

The	Instruction	Set
Every	computer,	has	an	Instruction	Set.	The	way	instrucions	are	implemented,	is	called
Instruction	Set	Architecture	or	in	short,	ISA.	We	need	to	design	one	for	our	dear
computer,	of	course!	A	computer	without	ISA,	is	really	impossible!	There	are	a	few	tips	we
should	follow	in	our	design	of	ISA	:

As	we	want	to	design	a	RISC	computer,	we	need	to	simplify	every	instrucion	we	need.
For	example,	a	NOR	gate	can	be	designed	with	an	AND	gate	with	inverted	inputs,	So
we	don't	need	to	use	both	NOR	and	AND	gates!
We	should	document	every	step	of	our	design,	because	it's	our	Computer
Organization.	And	in	final	product,	that's	important	to	be	mentioned!
The	last	tip	is	that	we	need	to	model	everything	we	designed,	later,	we	learn	more	about
modeling.

What	Instructions	we	need?

As	a	real	computer,	we	need	a	computer	which	can	handle	at	least	one	logical	and	one
arithmetic	Instruction.	So,	We	can	make	a	computer	with	these	instructions	:

AND
OR
NAND
NOR
ADD	(Addition)
SUB	(Substract)

So,	we	need	to	design	a	unit	which	can	handle	Arithmetic	and	Logical	instructions.	we	call
this	unit	Arithmetic	and	Logical	Unit	or	ALU.

Chapter	12	:	The	Computer(Theory)

46

Computer	Organization
This	is	the	most	difficult	part,	In	this	part	you	will	learn	how	to	think	like	an	engineer!	We
know,	Addition	and	Subtraction	commands	are	implemented	by	XOR	and	AND	and	NOT
gates.	But,	what	about	NAND	and	NOR?	We	can	implement	NOR	using	an	AND	gate	like
this	:

Also,	we	can	implement	NAND,	using	an	OR	gate	like	this	:

Memory	Unit
I	think,	using	a	Read	Only	Memory	or	ROM	is	a	good	idea.	But	it's	actually	not!	Because	it
can	be	programmed	easily.	So,	we	need	another	memory	block,	which	is	known	as	Random
Access	Memory	or	RAM.	In	this	book,	I	never	detail	how	to	make	a	RAM	or	ROM,	it	makes
this	book	too	hard	to	understand	for	people	who	have	no	idea	about	RAM	or	ROM.	So,	we
know	what	kind	of	memory	we	have.

Starting	Implementation
In	this	chapter,	we	took	a	look	on	the	theory	side	of	designing	a	computer.	But,	as	engineers,
we	need	to	join	the	darker	side,	and	start	implement	what	we	need.	In	the	next	chapter,	We'll
start	design	of	our	ALU,	then	start	to	connect	other	things	we	need	to	it,	it'll	be	our	awesome
computer!

Chapter	12	:	The	Computer(Theory)

47

Chapter	13	:	Arithmetic	and	Logical	Unit
This	is	the	start	point!	In	this	chapter,	we	build	the	main	part	of	our	computer,	and	we	will	be
able	to	use	it	in	a	logical	simulator.	In	old	days,	when	computers	were	weak	and	expensive,
ALU	was	an	independent	part,	and	it	was	not	integrated	with	CPU.	For	example,	a	lot	of
computers	used	74181	IC	as	the	ALU	(e.g	VAX).	Today,	ALU,	Register	file,	RAM,	etc.	Are	all
integrated	in	one	chip	and	it's	called	a	Microcontroller.	But,	to	understand	computer	better,
we	start	a	modular	design,	then	we	put	all	together,	and	we'll	have	a	complete
microcontroller.

Tools	we	need
The	main	tool	you	need	is	a	computer,	and	this	is	the	funny	part	that	we	use	a	computer	to
design	another	computer.	But,	you	need	one,	because	we	don't	want	to	make	a	computer	in
real	life,	we	only	want	to	simulate	it.	It	doesn't	matter	which	operating	system	your	computer
runs,	Windows,	OS	X,	Linux,	etc.	You	need	to	install	Java	on	your	computer,	and	you	know
Java	is	freely	available.	Then,	you	need	the	most	useful	tool,	Logisim	Evolution,	a	good
logical	simulation	software,	which	is	free	to	use,	distribute	and	advertise.	All	the	schematics
we	designed	in	this	book,	are	designed	by	this	software.

A	note	on	schematics
In	the	book,	we	built	a	lot	of	devices	ourselves.	But,	Logisim	is	pre-packaged	with	good	and
useful	devices	such	as	Registers,	Flip-Flops,	Decoders,	Multiplexers,	etc.	So,	In	this	chapter
and	next	chapters,	we	are	going	to	use	pre-made	devices.

Start	Point
In	chapter	twelve,	we	decided	about	our	instructions.	I	want	to	assign	a	code	to	each
instruction,	and	that's	called	Instruction	Code	or	Operation	Code.	We	will	have	table	like
this	at	the	end:

Code Instruction

We	put	a	hexadecimal/binary	code	here We	put	the	instruction	here

But,	we	don't	have	any	instructions	right	now,	let's	implement	AND,	our	very	first	instruction	:

Chapter	13	:	Arithmetic	and	Logical	Unit

48

https://github.com/reds-heig/logisim-evolution

Then,	we	need	to	add	OR,	but	wait!	Two	outputs	for	one	ALU?	Is	it	possible?	of	course	not!
So,	we	use	something	called	a	Multiplexer.	So,	I	add	a	4:1	mux,	which	is	large	enough	to
cover	all	we	need!	Then,	I	add	the	OR	instruction,	and	we	will	get	something	like	this	:

Now,	our	table	will	be	like	this	:

S2 S1 Instruction

0 0 AND

0 1 OR

And	our	microcontroller's	ALU,	can	run	two	simple	programs!	But	this	is	not	enough.	You
know,	even	the	simplest	processors	classified	as	RISC,	such	as	MIPS,	can	do	more	than
these	two	instructions.	These	are	logical	instructions,	but	we	need	at	least	one	or	two
arithmetic	instructions.	Lets	add	the	instruction	ADD.	After	adding	that	instruction,	we	will
have	this	:

Cin S2 S1 Instruction

0 0 0 AND

0 0 1 OR

0 1 0 ADD

We	actually	don't	need	Cin	in	our	instruction	codes,	because	we	won't	use	this	ALU	to	do
signed	addition.	But,	we	will	need	that	for	subtraction.

More	instructions?

Chapter	13	:	Arithmetic	and	Logical	Unit

49

As	you	know,	we	are	going	to	make	a	computer	which	can	do	AND,	OR,	NAND,	NOR,	ADD
and	SUB.	We	implemented	AND,	OR	and	ADD.	But,	how	can	we	add	NAND	or	NOR?	We
will	a	NOT	gate,	and	a	2:1	multiplexer.	This	is	how	we	can	implement	these	two	instructions	:

Now	we	have	a	table	like	this	:

Ainvert Bnegate S2 S1 Instruction

0 0 0 0 AND

0 0 0 1 OR

1 1 0 0 NOR

1 1 0 1 NAND

0 0 1 0 ADD

Now,	our	ALU	is	almost	complete,	but	we	still	don't	have	subtraction.	Subtraction	is	a	bit
complex,	there	are	a	lot	of	different	ways	to	do	subtraction,	but	we	want	a	perfect	way	here.
As	you	may	remember	from	chapter	three,	we	just	suggested	Two's	Complement	system
for	our	dear	computer.	And	you	remember	how	that	works!	First,	we	need	to	invert	all	of	the
bits	(1's	become	0,	0's	become	1),	then	we	add	1	unit	to	the	inverted	number.	Cin	works	like
a	plus	one	button	for	us,	and	Bnegate	inverts	B	for	us.	If	we	add	an	OR	gate,	then	we	will
have	subtraction.	Like	this	:

Chapter	13	:	Arithmetic	and	Logical	Unit

50

When	Bnegate	is	high,	automatically	Cin	becomes	high	on	the	adder.	Now,	we	can	have	our
Instruction	Table	like	this	:

Ainvert Bnegate S2 S1 Instruction

0 0 0 0 AND

0 0 0 1 OR

1 1 0 0 NOR

1 1 0 1 NAND

0 0 1 0 ADD

0 1 1 0 SUB

We	implemented	the	most	simple	ALU	we	could,	and	after	some	modifications,	ALU	module
will	look	like	this	:

I	didn't	remove	Cin	,	because	it	will	be	needed	when	we	want	to	expand	our	ALU	(in
following	chapters,	we	will	talk	about	expanding	ALU)

Next	Step

Chapter	13	:	Arithmetic	and	Logical	Unit

51

In	these	13	chapters,	we	learned	logic	and	design,	and	we've	designed	a	simple	ALU.	But,
ALU	is	not	everything	a	computer	needs.	We	need	a	simple	memory	block,	which	can
control	programs,	etc.	So,	In	next	chapter,	we	will	learn	how	to	define	a	program	structure,
and	then	we	can	add	memory	block	we	need.	At	the	end,	we	can	really	make	our	very	own
programmable	microcontroller.

Chapter	13	:	Arithmetic	and	Logical	Unit

52

Chapter	14	:	Program	Structure
In	previous	chapter,	we	built	the	most	important	part	of	our	microcontroller.	In	this	chapter,
we	will	take	a	look	on	the	theory	side	of	programs	and	we	will	define	how	our	computer	will
understand	programs.	This	is	important	indeed,	because	we	need	to	write	a	simple
assembler	for	our	computer	which	can	generate	machine	code	for	us.

Programming	for	a	typical	computer
You	have	a	typical	computer,	which	is	compatible	with		Intel	x86	Family	.	At	least	more	than
%90	of	computers	around	me	are	like	that.	So,	I	can	write	this	piece	of	art	and	run	it	on	my
own	computer,	yours,	my	friend's,	etc.

#include	<iostream>

using	namespace	std;

int	main(){

				cout	<<	"Piece	of	Art!\n";

				return	0;

}

But	wait!	If	I	install	a	C/C++	compiler	on	my	mobile	phone,	tablet	or	gaming	console,	it	will
work!	Why?	The	answer	is	easy.	We	write	programs	for	all	devices,	everyone	can	use	our
program.	In	case	of	lower	level	languages	like	C	or	C++,	we	need	to	install	the	compiler	on
the	target	device,	but	actually	we	can	use	compiler's	options	to	compile	our	code	for	different
machines.	But,	in	case	of	higher	level	languages,	like	Python,	we	only	need	the	interpreter
on	the	target	device,	and	it	will	work!

But	let's	go	deeper,	deep	inside	the	Intel	x86	instruction	set!	Let's	print	the	expression	Piece
of	Art	on	console	using	assembly	language	:

Chapter	14	:	Program	Structure

53

STK	SEGMENT

				DW	100	DUP(?)

STK	ENDS

DTS	SEGMENT

				TXT	DB	'Piece	of	Art!',	10,	13,	'$'

DTS	ENDS

CDS	SEGMENT

				ASSUME	CS:CDS,	SS:STK,	DS:DTS

				MAIN	PROC	FAR

								MOV	AX,	SEG	DTS

								MOV	DS,	AX

								MOV	DX,	OFFSET	TXT

								MOV	AH,	09H

								INT	21H

								MOV	AH,	4CH

								INT	21H

				MAIN	ENDP

CDS	ENDS

END	MAIN

This	is	not	that	hard	to	write	and	understand.	Anyway,	we	are	not	going	to	talk	about
assembly	programming	here.	So,	have	you	seen	the	code?	But	It's	not	actually	what
computer	sees!	The	computer	only	sees	&	understands	a	bunch	of	0	and	1's.	So,	imagine
one	the	above	code	lines.	For	example	this	:

MOV	DS,	AX

When	you	assemble	the	code	using	assembler,	it	will	turn	this	line	to	something	like	this	:

B8	0000

NOTE	:	THIS	IS	NOT	THE	EXACT	MACHINE	CODE	OF	THAT	INSTRUCTION

Letter		B		stands	for	4	bits,	also	8	stands	for	4	bits.	We	have	8	bits	Instruction	Code	and	16
bits	hidden	data	in	x86	family	Object	Code.	In	this	chapter,	we	actually	decide	for	a	simple
object	code	for	our	microprocessor.

Object	Code

Chapter	14	:	Program	Structure

54

Now,	we	need	to	decide	about	a	simple	Object	Code	structure	for	our	microcontroller.	As	I
mentioned	before,	we	won't	have	a	register	file	in	our	microcontroller	and	we	directly	read
data	from	RAM.	You	may	ask	why,	because	we	can	keep	it	simple	for	future	developments
and	studies.	Let's	take	a	look	at	our	Instruction	Table,	but	this	time,	Hexadecimal	:

Instruction Code

AND 0x0

OR 0x1

NOR 0xC

NAND 0xD

ADD 0x2

SUB 0x6

Now,	we	need	to	upload	our	Programs	to	the	microcontroller.	But	how?	How	it	can	detect	the
operands?	This	is	a	simple	structure	I	suggest	for	that	:

Instruction	Code Input	A Input	B

4	bits 8	bits 8	bits

We	have	a	simple	20-bit	object	code	for	our	microcontroller.	Let's	see	if	we	want	to	add	two
numbers,	for	example	15	and	8,	how	does	it	look	like?	It	will	be	like	this	:

Instruction	Code Input	A Input	B

0x2 0x0f 0x08

Now,	we	need	to	verify	which	bits	are	for	which	part.	The	most	valuable	bits	can	be	for	our
instruction	code,	and	others	can	be	for	inputs.	This	is	what	I	suggest	:

Instruction	Code Input	A Input	B

Bits	16	-	19 Bits	8	-	15 Bits	7	-	0

So,	the	code		0x20f08		is	the	correct	object	code	for		ADD	15,	8	.

The	Final	Step?
Now	we	have	ALU,	and	we	will	add	RAM	to	our	ALU.	Then,	we	program	it	and	enjoy!	The
book	is	almost	finished,	and	there's	nothing	more	to	say	about	the	hardware	side	of	a
computer.	But	what	about	software	and	operating	system?	Be	patient,	we	will	take	a	look	at
software	and	operating	systems	in	following	chapters!

Chapter	14	:	Program	Structure

55

Chapter	14	:	Program	Structure

56

Chapter	15	:	Microcontroller
In	this	chapter,	we	make	our	dear	computer!	You've	studied	previous	chapters	to	learn	how
to	make	your	very	own	computer!	Actually,	the	most	important	part	was	ALU.	In	this	chapter,
we	will	design	a	simple	and	maybe	stupid	Control	Unit	and	we	add	a	RAM	from	logisim
standard	library.	Then,	we	can	program	it!	Let's	know	how	we	can	do	this!

Control	Unit
This	one,	is	a	bit	harder	to	understand.	But	don't	worry.	We're	just	going	to	make	the
simplest	ones.	We	will	take	a	deeper	look	on	this	unit	in	following	chapters	(and	maybe
books!)	but	for	this	book,	we	make	a	simple	one.	Let's	first	define	this	unit.	Control	unit,
controls	programs	loaded	in	our	main	memory,	and	controls	what	happens	in	ALU.	Actually,
control	unit	is	made	up	of	a	device	which	is	called	counter.	A	counter	is	a	register	,	or	a
bunch	of	registers	which	can	count!	How?	the	counting	process	is	controlled	by	clock	pulse.
But	why	is	it	important?	A	counter	can	store	address	of	a	program,	then	its	output	can	be
input	of	the	Address	Bus	of	the	RAM.	This	is	the	simplest	use	of	a	counter	in	a	computer.
But	how	can	we	make	a	counter?	we	can	connect	four	D	flip	flops	in	this	arrengement	and
make	our	counter	:

It	has	a	common	reset	pin,	and	a	clock	input.	Also,	it	has	a	4-bit	output	labled	Y.	This	is	the
simplest	binary	counter	we	can	make.	As	it	has	four	bits,	it	will	count	from	0	to	15	for	us.	This
means	we	need	a	RAM	block	with	4-bit	address	bus.	An	actual	control	unit	is	not	that	simple,
usually	it	includes	some	decoders,	multiplexers	and	AND	gates	to	control	and
activate/deactivate	computer	parts.	But	for	our	simple	programmable	computer,	this	one	is
enough!.

Chapter	15	:	Microcontroller

57

Memory	Unit
We	made	a	counter,	which	counts	address	for	us.	But,	which	address?	Actually,	we	need	a
memory	block	like	a	RAM.	If	we	look	at	RAM	simply,	it's	very	similar	to	register	file.	But,	an
actual	and	functional	RAM	is	much	more	different.	Let's	add	the	RAM	:

Now,	we	can	store	our	programs	in	RAM!	But	wait,	if	you	look	closer	at	the	picture	above,
you'll	find	that	RAM	is	not	connected	to	the	clock.	So	it	won't	work.	This	is	what	you	actually
need	:

Chapter	15	:	Microcontroller

58

Now,	let's	make	the	microcontroller!

Combination	of	Things!
We	made	a	bunch	of	devices,	connected	them	together	and	made	new	devices,	and	finally,
we	made	ALU.	Let's	connect	the	ALU	to	RAM.	Remember	this?

Instruction	Code Operand	A Operand	B

4	bits 8	bits 8	bits

And	now,	we	need	a	special	device	which	is	called	Splitter	to	split	parts	we	need.	Then,	we
will	need	smaller	splitters	to	split	instruction	code	to	bits.	If	you	remember,	we	had	this	table
for	instruction	codes	:

Chapter	15	:	Microcontroller

59

Ainvert Bnegate S2 S1 Instruction

0 0 0 0 AND

0 0 0 1 OR

1 1 0 0 NOR

1 1 0 1 NAND

0 0 1 0 ADD

0 1 1 0 SUB

let's	connect	them	together!	And	now,	we	have	this	:

What	should	we	learn	now?
After	reading	these	fifteen	chapters,	you	learned	how	to	make	your	very	own	computer	in
gate-level.	Now,	you	can	learn	programming	and	program	your	computer	and	test	it,	or	you
can	learn	digital	electronics	and	make	it	in	transistor-level.	In	following	chapter,	we	will	take	a
quick	look	at	assembly	language	of	our	microcontroller,	and	we	try	to	make	some	programs
we	need.	It	will	help	you	understand	how	your	real	computer	works!

Chapter	15	:	Microcontroller

60

Chapter	16	:	Programming	and	Operating
System
The	most	interesting	part	of	computer	engineering	is	the	programming!	Specially	when	you
know	how	it	works,	you	can	make	better	programs.	Now,	we	designed	one,	and	we	want	to
program	it.	But	wait,	let's	take	a	look	at	computers	made	before.

Intel	computers!
As	you	may	remember	from	previous	chapters,	we	had	this	for	showing	a	simple	character
on	console:

STK	SEGMENT

	DW	32	DUP(?)

STK	ENDS

CDS	SEGMENT

	ASSUME	CS:CDS,	SS:STK

	MAIN	PROC	FAR

		MOV	DL,	'A'	

		MOV	AH,	02

		INT	21h

		MOV	AH,	4Ch	

		INT	21h

	MAIN	ENDP

CDS	ENDS

END	MAIN

And	in	chapter	fourteen,	we	learned	that	this	code	will	become	Machine	Code.	And	now,	we
can	assemble	our	own	code,	and	write	programs	for	that.

The	assembler
Assembler	is	actually	a	software,	used	to	generate	machine	code.	Days	we	had	no
assembler,	we	had	to	generate	machine	code	ourselves.	This	is	hard,	isn't	it?	But	that's	the
only	way	when	you	have	no	operating	system	or	other	computer	to	assemble	your	code.
Actually,	a	computer	uses	Assembler	,	then	Linker	to	understand	the	programs.	But	in	case
of	simple	computers	like	ours,	a	simple	assembler	is	enough.	We	just	want	to	fill	RAM
blocks.	The	assembler	sees	our	code.	For	example	:

Chapter	16	:	Programming	and	Operating	System

61

AND	10,	12

and	then,	as	we	have	two	8	bit	inputs,	it	converts	the	10	to		000010101		and	12	to		00001100	.
And	it	will	look	at	this	table	:

Ainvert Bnegate S2 S1 Instruction

0 0 0 0 AND

0 0 0 1 OR

1 1 0 0 NOR

1 1 0 1 NAND

0 0 1 0 ADD

0 1 1 0 SUB

and	finds	that	code	for	AND	is		0000	.	Then	generates	this		0x00A0C		as	the	final	code!	Let's
write	long	numbers	in	hexadecimal.	When	we	use	hex,	a	20-bit	number	will	be	a	5	digits
number.	So,	we	are	the	assembler	in	this	case.	Let's	write	our	codes	:

AND	10,	12	

#	Hex	:	0x00A0C

ADD	3,	8	

#	Hex	:	0x20308	

SUB	10,	8

#	Hex	:	0x60A08

And	this	is	a	simple	program	in	the	machine	language	:

0000	00001010	00001100

0010	00000011	00001000

0110	00001010	00001000

Yes,	computer	only	understands	one	and	zero	(please	re-study	chapter	two,	if	you	forgot
this.)	and	we	need	to	generate	a	bunch	of	ones	and	zeros	to	make	a	computer	work!	But,
computers	actually	need	a	good	interface	between	the	system	and	the	user.	What's	that?

The	operating	system

Chapter	16	:	Programming	and	Operating	System

62

Operating	System,	is	the	interface!	It	connects	the	system	to	the	user.	Operating	System	is	a
software,	which	lets	other	software	be	installed	and	ran	on	your	computer.	If	you	have	a	PC
in	home,	it	may	run	Windows	or	Linux	as	the	operating	system.	If	you	have	a	Mac,	it	may	run
macOS.	And	if	you	have	an	iPhone,	it	runs	iOS.	There	are	a	lot	of	operating	systems	in	the
world,	but	a	few	operating	systems	are	usable.	Why?	because	other	ones	are	only	made	for
a	special	purpose.	For	example,	MINIX	is	made	for	educational	purposes.	If	you	want	to
learn	how	UNIX	works,	you	can	study	MINIX.	But	operating	systems	such	as	Linux,
Windows	or	macOS	are	general-purpose.	They're	made	to	be	the	interface.And	now	you
may	ask	,	will	we	write	an	operating	system	for	our	computer?	Sorry,	No!	If	you	pay	attention
to	our	assembly	code,	you	will	find	this	line	:

MOV	AH,	4Ch	

INT	21h

The	part	including		INT		is	actually	an	interrupt.	We	have	no	interrupts	in	our	computer.	This
is	the	first	problem.	We	also	have	no	loops	in	our	computer,	in	instruction	set,	we	didn't
define	anything	to	make	a	loop	and	any	recursive	structure.	8086	and	many	other	real
processors,	usually	have	instructions	like		branch		or		jump	,	and	those	instructions	help	us
make	real	software,	including	operating	systems!	So,	we	never	write	operating	system	for
our	little	computer.

Making	a	real	computer?
Now,	you	know	a	lot	about	computer	architecture	and	organization.	Also,	you	can	make	and
program	a	computer	in	gate-level.	This	is	necessary,	trust	me.	You	always	need	to	know	how
computers	work,	otherwise	you	won't	be	able	to	make	software.	But	I'm	sure	you're	curious
about	real	hardware	design.	The	next	chapter	(and	the	last	one!)	is	about	that.	You	will	learn
how	companies	design	and	produce	their	own	hardware.

Chapter	16	:	Programming	and	Operating	System

63

Chapter	17	:	The	Dark	Side	of	The	Moon
This	is	not	about	Pink	Floyd's	album,	this	book	has	nothing	to	do	with	music	of	course.	But,	I
chose	this	name	because	a	lot	of	computer	engineers	have	no	idea	about	design	and
implementation	of	the	hardware.	So,	it	can	be	the	dark	side!	Some	people,	including	some
computer	engineers	and	electrical	engineers,	joined	the	dark	side	and	made	computers.	But
this	is	not	all!	We	had	computers	before	transistors.	They	were	usually	electro-mechanical	or
mechanical.	But	the	theory	of	computation	is	much	older	than	what	you	think!	Khawrazmi,	a
Persian	scientist,	is	one	of	the	most	known	people	in	history	of	computer	science.	Even	the
word	Algorithm	is	taken	from	his	name.	In	1947,	Transistor	discovered,	and	that	was	the
starting	point	of	Electronic	Computers.

Digital	Electronics
When	transistors	discovered	and	manufactured,	scientists	and	engineers	found	that	they
can	acts	like	switches.	Then,	they	decided	to	use	them	as	switches.	A	transistor	can	act	like
a	switch,	but	first,	look	at	this	square	wave:

It	starts	at	zero	volts	and	ends	at	five	volts.	It's	like	a	switch	which	is	connected	to	a	five	volts
battery,	and	someone	pressed	button	in	defined	times.	This	pulse,	can	be	input	or	output	of
a	transistor.	First,	let	me	show	you	a	NOT	gate	which	is	made	by	a	Bipolar	Junction
Transistor	or	in	short,	BJT	transistor.	BJT	transistors	are	like	two	diodes	connected	in	a
specific	arrengement.	Usually,	we	use	NPN	transitors	to	make	logical	circuits:

Chapter	17	:	The	Dark	Side	of	The	Moon

64

If	we	apply	a	voltage	on	input	we	will	have	a	wave	form	analysis	like	this	:

As	you	can	see,	everytime	input	is	high,	output	is	low,	and	everytime	input	is	low,	output	is
high.	Why?	when	input	is	high,	current	can	move	to	the	ground,	but	when	it's	low,	current
find	another	way	to	the	ground,	which	is	our	output.

RTL/TTL	technologies	are	good,	but	later	engineers	found	that	Field	Effect	Transistors	are
better.	Then,	they	decide	to	use	Metal	Oxyde	Semiconductor	Field	Effect	Transistors	or
in	short	MOSFET	transistors	for	their	artworks!	FETs	have	different	structure,	but	still	can	act
as	switch,	and	even	better	than	BJTs.	Also,	they	can	be	minimalized	better.	This	is	why	a	lot
of	digital	chips	around	us	is	made	up	of	MOSFETs.	MOSFETS	are	usually	two	types,	nMOS,
or	Negative	Channel	and	pMOS	or	Poisitive	Channel.	As	engineers	wanted	the	best

Chapter	17	:	The	Dark	Side	of	The	Moon

65

performance,	they	just	used	both	of	them.	When	you	use	both	nMOS	and	pMOS	transistors,
you	actually	used	Complementary	Metal	Oxyde	Semiconductor	or	CMOS	technology.
This	is	a	CMOS	inverter	(or	the	same	NOT	gat):

Let's	apply	voltage	on	input,	and	see	what	happens!

As	you	can	see,	the	result	is	very	similar	to	TTL/RTL	design.	When	you	design	a	digital
circuit,	you	should	consider	everything!	Waste	of	power,	price,	noise-resistance	and	size.
For	example,	TTL	is	a	good	design	as	it's	cheap	and	has	good	resistance	against	noise,	but
it's	not	as	small	as	we	want.	But	CMOS	is	small	enough	to	be	on	a	chip!	Also,	there's	a
method	for	minimalizing	CMOS	designs,	and	implementation	of	more	logics	by	less
transistors,	which	is	called	Very	Large	Scale	Integration	or	in	short,	VLSI.	I	think	this	is
enough,	let's	take	a	look	on	other	ways	of	implementing	a	computer	in	real	life.

Chapter	17	:	The	Dark	Side	of	The	Moon

66

Integrated	Circuits
Imagine	a	rectangular	black	thing,	which	includes	twenty	transistors.	This	is	actually	an
integrated	circuit.	Integrated	circuits	are	made	up	of	tiny	transistors,	and	they	easily	can	be
find	in	electronics	stores.	They	integrated	a	lot	of	circuits	on	a	piece	of	semiconductor,
connected	metal	legs	to	that,	and	covered	with	plastic,	then	you	can	buy	them	and	use	them
in	your	projects.	Also,	IC's	classified	by	their	technology.	For	example,	you	know	7400	series
are	TTL	IC's,	or	28	Series	are	EEPROM's.	Anyway,	there	is	one	other	way,	and	you	may	find
that	the	easiest	way	to	join	the	dark	side!

Program	The	Hardware
There	are	some	programming	languages,	which	are	called	Hardware	Description
Language	or	in	short,	HDL.	They're	easy	to	use,	and	they're	actually	similar	to	C	or
Assembly	programming	languages.	One	of	my	favorite	HDL's	is	Verilog.	I	program	an	AND
gate	in	HDL	like	this	:

module	AND(A,	B,	F);

	input	wire	A;

	input	wire	B;

	output	wire	F;

	assign	F	=	A	&	B;

endmodule

And	for	that,	we	need	a	Complex	Programmable	Logical	Device,	CPLD	or	a	Field-
Programmable	Gate	Array,	FPGA.	Those	devices	have	logical	applications,	but	they	have
no	logics,	and	we	have	to	program	them	to	make	them	functional.	A	lot	of	ligical	simulator
programs,	like	logisim	can	generate	Verilog	or	VHDL	code	of	the	designed	logical	circuit.
And	then,	you	can	upload	the	code	on	your	FPGA	and	have	your	very	own	logical	device.
And	any	other	way	to	design	and	implement	a	real	hardware?	Of	course	there	is	a	lot	of
other	ways.	But	these	ways	are	the	easiest	ways	to	do	that	with	a	low-budget	(not	sure	of
this!)	and	basic	knowledge	of	computers	and	electronics.

The	last	part!
This	is	the	last	part	of	the	book!	I	tried	to	do	my	best	for	this	one.	Actually,	this	is	my	first
English	book,	but	I'm	glad,	because	I	could	share	my	knowledge	and	experiences.	This	book
is	written	to	make	understanding	a	computer	easier.	First,	I	started	it	in	Summer	(2016)	and

Chapter	17	:	The	Dark	Side	of	The	Moon

67

it	finished	in	Spring	(2017).	About	8	or	9	months	spent	on	this	book,	and	I	hope	you	enjoy!

Chapter	17	:	The	Dark	Side	of	The	Moon

68

Bibliography
1.	 But	How	Do	It	Know?	-	The	Basic	Principles	of	Computer	for	Everyone	by	J.Clark	Scott
2.	 Computer	Organization	and	Design,	The	Hardware/Software	Interface,	Revised	Fourth

Edition	by	Davide	Patterson,	John	Henessy,	Morgan	Kaufman
3.	 Logic	and	Computer	Design	Fundamentals,	Fifth	Edition	by	Morris	Mano
4.	 Digital	Design:	With	an	Introduction	to	the	Verilog	HDL	by	Morris	Mano

Bibliography

69

https://www.amazon.com/But-How-Know-Principles-Computers/dp/0615303765
https://www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123747503
https://www.amazon.com/Logic-Computer-Design-Fundamentals-5th/dp/0133760634
https://www.amazon.com/Digital-Design-Introduction-Verilog-HDL/dp/0132774208

	License
	Introduction
	Chapter 1 : What's a microcontroller?
	Chapter 2 : How to talk to a computer
	Chapter 3 : Arithmetic Operations
	Chapter 4 : Logical Operations
	Chapter 5 : Logical Circuits
	Chapter 6 : Combinational Circuits
	Chapter 7 : The First Computer
	Chapter 8 : Memory
	Chapter 9 : Register File
	Chapter 10 : Computer Architecture
	Chapter 11 : Design, Advanced Addition Machine!
	Chapter 12 : The Computer(Theory)
	Chapter 13 : Arithmetic and Logical Unit
	Chapter 14 : Program Structure
	Chapter 15 : Microcontroller
	Chapter 16 : Programming and Operating System
	Chapter 17 : The Dark Side of The Moon
	Bibliography

