2018 IEEE Latin American Conference on Computational Intelligence (LACCI)

Guadalajara, Jalisco, Mexico, November 7-9, 2018

Discovering SQL Queries from Examples using Intelligent Algorithms

Denis Mayr Lima Martins*, Gottfried Vossen* and Fernando Buarque de Lima Neto!
*University of Miinster, ERCIS
Leonardo-Campus 3, 48149 Miinster, Germany
Email: {denis.martins, vossen} @wi.uni-muenster.de
TUniversity of Pernambuco, Computer Engineering Program
Rua Benfica 455, 50720-001, Recife, Brazil
Email: fbln@ecomp.poli.br

Abstract—Formulating database queries in terms of SQL is
often a challenge for journalists, business administrators, and
the growing number of non-database experts that are required
to access and explore data. To alleviate this problem, we
proposed a Query By Example (QBE) approach powered by
intelligent algorithms that discovers database queries from
a few tuple examples provided by the user. We investigated
the effectiveness of three algorithms, namely, Greedy Search,
Genetic Programming, and CART decision trees in discovering
queries in two distinct databases. To the best of our knowledge,
no other research has focused on the comparative analysis
of such algorithms in the context of QBE. Our results show
that CART decision trees were capable of discovering the
most accurate queries. However, CART tends to produce long
queries, which may hinder user interpretation. Finally, we
suggest that the use of Interactive Evolutionary Computational
Intelligence may improve the quality of queries discovered by
Genetic Programming and may naturally incorporate diverse
user preferences in the discovery process.

1. Introduction

With the increasing amount of data being generated
every day, interacting with databases has become a vital
activity in many scenarios such as data-driven decision-
making, healthcare, scientific research, social media, and
many others. In the context of relational databases, SQL
queries are considered the most common medium for end-
users to access, analyze, and manipulate data. However, the
process of constructing accurate SQL queries raises two
particular challenges. First, users are required to materialize
their mental queries by using the SQL syntax, which is
considered to have a steep learning curve. This process is
commonly highly incremental and users frequently spend a
considerable amount of time correcting and refining query
statements and predicates rather than executing queries and
evaluating answers [1]. And second, users are required to be
familiar with the database structure and content [2], which
also is time-consuming, particularly when users are non-
database experts. To alleviate these problems, we investigate
in this paper how intelligent algorithms can be applied to

978-1-5386-4626-7/18/$31.00 ©2018 IEEE

automatically construct SQL queries by asking users to
provide data examples that correspond to or even satisfy
their mental query.

Formulating accurate SQL queries is often challenging,
particularly for the increasing number of non-database spe-
cialists who work in data intensive workplaces (e.g., journal-
ists, astrophysicists, biologists) but typically lack technical
knowledge. For these users, the process of query formulation
usually consists of a series of trial-and-error attempts that
may lead to the problem of user fatigue, when users desist
to continue with the query construction [1].

With the objective to enable non-database experts to
effectively query databases, the Query By Example (QBE)
paradigm [3] has been employed in several research propos-
als. In QBE, database queries are automatically discovered
from a set of tuple examples provided by the user, as we
illustrate in the following example.

Consider that a Web page containing information about
Brazilian soccer players displays tuples T2, T3, and T4,
retrieved from the data table depicted in Table 1. Assume
that a student wants to present the same information in a
different Web page but has no access to the query used in
the Web application. In this situation, a QBE system would
allow the student to use T2, T3, and T4 as input examples
to an intelligent algorithm that discovers a query such
as SELECT Name, Scored goals FROM Players
WHERE Matches < 900 which appropriately retrieved
the target information.

TABLE 1. SOCCER PLAYERS DATASET.

1D Player Scored goals ~ Matches
T1 Pelé 1159 1265
T2 Romdrio 1002 850
T3 Ronaldo 420 624
T4 Zico 406 596

QBE is especially useful in cases where an unknown
query has to be discovered in order to reproduce a particular
data view that was manually created or generated by a
legacy system that is difficult or costly to maintain. In such
situations, queries may be needed as part of a scientific
document to allow reproducibility of results or to reduce

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:52:53 UTC from IEEE Xplore. Restrictions apply.

maintenance costs (e.g., incorporating the discovered query
in a less expensive system that will be used to replace the
legacy one). Moreover, QBE can also assist non-database-
expert users by producing alternative queries to potentially
uncover insights about the data structure and schema or to
reveal unexpected, hidden relationships within the data [4].
Discovering alternative queries is particularly of interest in
data analytics and exploration scenarios.

In this paper, we investigate how intelligent algorithms,
namely, greedy search, genetic programming, and CART
decision trees can be applied in discovering database queries
in a QBE setting. The manuscript is organized as follows.
Section 2 introduces the appropriate problem definition and
describes relevant research conducted on the topic of QBE.
Section 3 introduces both the employed algorithms and the
performance metrics used to evaluate queries discovered
by the intelligent algorithms. Section 4 reports the con-
ducted experiments and obtained results of the two selected
problem scenarios, i.e., discovering unknown queries and
searching for alternative queries. Section 5 presents a short
discussion about the obtained results. Finally, Section 6
includes a brief conclusion and points out future research
venues.

2. Problem definition and Related Work

The original proposal of QBE, presented in the 1970s by
Zloof [3], employed a form-based user interface to construct
tuple examples describing a possible answer to a user’s
mental query. However, the substantial research conducted
on this topic in recent years has been treated the problem
of discovering database queries from data examples in two
distinct modes. For a comprehensive list of QBE-related
research conducted on both relational and non-relational
databases, we refer the reader to Mottin et al. [5].

The work of Zhang and Yuyin [6] and of Tran et al. [4]
has considered QBE as a classification problem. In their
designs, different Decision Tree algorithms were applied
to generate classifiers that appropriately classify tuples in
the database as positive or negative, whenever they match,
respectively, the examples provided by the user or not. In
this sense, the classifier itself can be seen as a predicate that
appropriately describes patterns in the data that matches the
tuples targeted by the user.

On the other hand, Bonifati et al. [7] and Martins et
al. [8] characterized QBE as a search problem in which a
large space of candidate queries is explored. They employed
heuristic search algorithms (i.e., greedy search and genetic
programming, respectively) to find a query that appropri-
ately retrieves the described in the data examples. In this
setting, the search space is composed of all candidate queries
that are possibly constructed from the given database.

In either case, the problem of discovering database
queries from tuple examples, as described in the example
above, can be formulated as follows. Given a dataset D,
find a query Q that retrieves all the tuple examples E
provided by the user such that E C Q (D). Notice that this
definition allows intelligent algorithms to discover queries

that can retrieve not only the entire set of example tuples
but also additional tuples that may be of interest to the user.
For instance, additional tuples may provide useful insights
about unforeseen patterns in the data. According to Cumin
et al. [9], allowing such diversity within query results is
particularly beneficial in data exploration and knowledge
discovery scenarios.

In this work, we consider a simplified version of this
problem following the approach introduced in our previous
work [8] in which only queries in the form of SELECT
*+ FROM database WHERE TSD are considered. TSD is
defined as a tuple set descriptor (TSD) rule, i.e., a set of
predicates that appropriately captures the hidden patterns
within E and returns all data tuples in E. Each predicate in
TSD has the form of Column operator Value, where
Column is a column in D, operator € {=,<>,>,>,<
, <}, and Value can assume any value present in the columns
of D. Additionally, predicates in TSD are combined by the
Boolean operators AND and OR.

3. Intelligent Algorithms for Discovering SQL
Queries

Following the research literature, our goals are to ana-
lyze the effectiveness of three intelligent algorithms, namely,
Greedy Search, Genetic Programming, CART decision trees
in the context of QBE. Next, we provide a brief description
of these algorithms.

3.1. Greedy Search

A Greedy Search (GS) algorithm employs the heuristic
strategy of choosing the most promising option at each
search stage. In the case of QBE, a GS starts with an empty
TSD rule and at each iteration of the algorithm, all single
predicates available are evaluated using a predefined evalua-
tion function. The best-evaluated predicate is then chosen to
compose the TSD. In this sense, QBE can be seen as a graph
search in which queries are considered edges while nodes
are the state of database D after executing the candidate
query, i.e., query results. Figure 1 shows this graph-based
representation referring to the illustrative example described
in Section 1.

0 | Player | Goals | Matches

N\
402") | T1| pelé | 1159 | 1265
b=

e T2 | Romério | 1002 | 8se
ID | Player | Goals | Matches 0=

. e
T1 | Pelé 1159 1265 S ID | Player | Goals | Matches

(775 SELECT * From D WHERE Goals < sae_/'“\J
N

g,
\’f‘\f;, T4 | zico 406 596

T2 | Romério | 102 850 T3 | Ronaldo | 420 624

T3 | Ronaldo | 420 624

Ta | zico 406 596

T,
Complete dataset (D) \‘?If%s ID | Player | Goals | Matches

% [12| Romario | 1002 | 850

T3 | Ronaldo | 420 624

T4 | zico 406 596

Data Example (E)

Figure 1. Query by Example as a graph search.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:52:53 UTC from IEEE Xplore. Restrictions apply.

X 5 y 2

Figure 2. Tree representation of a genetic individual.

3.2. Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm,
initially proposed by Koza [10] in the early 1990s, for
evolving computer programs in a process inspired by the
Darwinian concept of the survival of the fittest. GP performs
a domain-independent, stochastic process of transforming
an initial population of computer programs into a better
one composed of novel programs that are expectantly more
suitable to solve the specific problem under consideration.

GP individuals are commonly represented similar to
syntax trees that describe a particular program logic. In this
tree-based representation, leafs portray variables and con-
stants (i.e., the terminal set) while nodes represent functions
and operations (i.e., the function set). Figure 2 illustrates
the syntax tree representation of a program that computes
min(z + 5,y * 2).

The traditional GP algorithm starts with a random-
generated population of n individuals based on both terminal
and function sets. An evaluation function is employed to
assess the appropriateness (i.e., fitness) of each individ-
ual in solving the problem in consideration. Whenever an
individual is accepted as a solution to the problem, the
algorithm terminates. Otherwise, the evolutionary process
continues by selecting a subset of individuals for producing
new individuals through mating. Mating or crossover aims
to create a new population of more appropriate individuals
w.r.t. the specific evaluation function by combining par-
ent individuals. Next, the algorithm applies small random
modifications (i.e., mutations) in parts of the individuals
to ensure that diverse portions of the search space are
explored. Finally, the new generation of individuals replaces
the initial population and the evolutionary process starts
again. Commonly, only a limited number of generations (i.e.,
iterations of the algorithm) is performed.

In the context of QBE, the biologically-inspired search
performed by GP has the goal of finding a computer program
that describes query predicates to compose the TSD. This
search is similar to the approach of evolving classification
rules that accurately assign a class or category to unforeseen
data observations [8], [11].

3.3. Classification and Regression Trees

Classification and Regression Trees (CART) are one of
the most popular methods used to construct classification
models in data mining and analytics [12]. CART mine data
in its raw form so that missing data, as well as continuous
and nominal attribute values, are straightly handled without

Matches < 1057.5 Matches > 1057.5

{12, T3, T4} {T1}

Figure 3. CART decision tree expressing the predicate that retrieves tuples
{T2, T3, T4} as described in the our motivating example (Section 1).

the need for costly preprocessing steps such as binning and
feature normalization. Additionally, classifiers generated by
CART are represented as a set of comprehensible rules
readily understandable for human users.

CART recursively produces binary partitions of the data
in the form of IF condition THEN data instance goes
Left, ELSE data instance goes Right, where condition
has the form of Column < Value. Figure 3 illustrates a
hypothetical CART decision tree produced from the example
described in Section 1. As depicted in the figure, every
partition splits data tuples between two tree nodes following
the IF-THEN-ELSE rule discovered by the algorithm.

Data columns and values composing the binary parti-
tions are selected based on a splitting criterion such as the
Gini index or the Entropy criterion. CART aims to find
the data attribute which produces a partition that minimizes
the splitting criterion (e.g., a partition that reduces the Gini
index to 0).

In QBE, the decision trees produced by CART are
used to construct the TSD. Similarly to GP, trees express
classification rules describing whether a data observation
(i.e., data tuple) is part of the data example provided by the
user [4].

3.4. Evaluating candidate queries

For evaluation the appropriateness of discovered queries,
we followed the work of [13] by combining two widely used
metrics, i.e., sensitivity and specificity. Sensitivity measures
how well a query performs in retrieving all the example
tuples and specificity assesses how precise query results are
from the exact set of example tuples specified in the input.
Equations 1 and 2 show that both metrics can be computed
by considering:

o True positives (TP): The number of tuples returned
by the query that were in fact contained in the
example tuples;

o True negatives (TN): The number of tuples that are
not contained in the example tuples and were also
not retrieved by the query;

o False positives (FP): The number of tuples returned
by the query that were not contained in the example
tuples;

o False negatives (FN): The number of tuples in the
example tuples that were not retrieved by the query.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:52:53 UTC from IEEE Xplore. Restrictions apply.

TP

Sensitivity TPLFN) (1)
L TN
SpeCZfZC’Lty = m (2)

Ideally, appropriate queries must present sensitivity
equals to 1.0 (i.e., all tuples in the data example are returned
by the query) and specificity close to 1.0 (i.e., a small
amount of tuples not described in the data example is
returned in query results). In this setting, GP and GS can
be applied to discover queries that maximize the fitness or
evaluation function in Equation 3.

f(Q) = Sensitivity x Speci ficity 3)

Moreover, as concise queries are likely to be more eas-
ily interpreted, and consequently preferred by non-database
experts, discovered queries can be also evaluated by their
conciseness. In this context, conciseness can be expressed as
1/1, where [represents the number of conditional predicates
in the WHERE clause of an SQL query.

4. Experiments and Results

In this section, we describe two experiments to analyze
the effectiveness of the selected intelligent algorithms in
the tasks of discovering unknown and alternative queries
from data examples. Implementations and experiments were
conducted in the Python programming language using a 2.83
GHz Intel Core 2 Quad with 4 GB RAM.

We employed the Iris dataset! and the 1993 New Car
Data? in our experiments, since both datasets describe real-
world scenarios that are likely to be addressed by non-
technical users (e.g., biologists and business persons). The
selection of data examples employed in the experiments was
carefully designed to consider diverse coverage of the two
datasets. In this context, coverage refers to the number of
tuples selected to construct a data example.

All experiments described in this work followed the
same parameter setting. We employed a Genetic Program-
ming algorithm with crossover and mutation rates configured
as 0.9 and 0.1, respectively. The population size was set to
200 individuals, generated using the Ramped half and half
method [10]. A tournament selection strategy of size six
was employed in which new individuals were generated by
a simple one-point crossover strategy. Moreover, a uniform
mutation was used to perform changes in the individuals.
The maximum number of generations was set to 100. In
addition, all results reported in this section represent the av-
erage value obtained after 10 executions of each algorithm.

4.1. Discovering unknown queries

In this experimental case, we are interested in evaluating
the effectiveness of the selected algorithms in discovering an

1. http://archive.ics.uci.edu/ml/datasets.html
2. http://ww2.amstat.org/publications/jse/datasets/93cars.txt

> 1 i
Z 08 I GS
< 0.6 lo Gp
g 04 l0CART
5 02 m| lm

! ! ! !

1 15 50 100

Coverage

Figure 4. Average specificity achieved by the algorithms over different
coverage rates of the Iris dataset.

1
z 0o Gs
Q
% 0.5 HD GP
08; H O0CART

0 T T T

1 10 25
Coverage

Figure 5. Average specificity achieved by the algorithms over different
coverage rates of the Iris dataset.

unknown query that accurately reproduces a specific view
of the data that was possibly manually created by a user.
To the input of data examples, we randomly selected data
tuples from the datasets according to the following coverage
rates of 1, 15, 50, and 100 for the Iris dataset and 1, 10,
and 25 for the 1993 New Car Data.

In our results, all algorithms achieved the maximum
value of sensitivity (i.e., 1.0), which indicates their ability to
cover all the tuples contained in the data examples. On the
other hand, specificity values varied for both GP and GS,
depending on the coverage rate of the examples as indicated
in Figure 4 and Figure 5. Similarly, Figure 6 and Figure 7
report the resulting average of query conciseness output by
the algorithms.

4.2. Discovering alternative queries

The task of discovering alternative queries is frequently
performed to search for queries that are easier to understand
or cheaper to compute while retrieving the same set of data
tuples returned by an original query. Additionally, alterna-
tive queries may uncover hidden patterns and relationships

w 1

% 0.8 0o Gs
g 0.

2 0.6 0o Gp
S 04 0o

g 0.2 CART
© 0

1 15 50 100
Coverage

Figure 6. Average conciseness of the queries generated over the Iris dataset.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:52:53 UTC from IEEE Xplore. Restrictions apply.

v 1
§ 0.8 0o Gs
206 0o Gp
2 04 Hﬂﬂ 10CART
1 10 25
Coverage

Figure 7. Average conciseness of the generated queries considering the
1993 New Car Data.

among the data that can be exploited in data mining and
analytics projects. For instance, a discovered query may be
employed to construct accurate data classifiers.

In this experiment, we designed a set of input queries
whose resulting tuples are used as data examples. Again,
to ensure that data examples present diverse values of the
coverage factor, input queries were designed to output data
examples of size 1, 13, 50, and 115. Input queries are
reported in Table 2. Notice that we employed only the Iris
dataset® in this case, as it appropriately contains a class
label for each data tuple in the dataset. Also, for the sake
of clarity, we only report discovered queries in which sensi-
tivity reached the value of 1.0 because they are more likely
to reveal hidden patterns that appropriately characterize the
data examples.

TABLE 2. INPUT QUERIES EMPLOYED TO GENERATE DATA TUPLE

EXAMPLES.
ID | Original query predicate Coverage
Q1 petlen > 4.0 AND petwid = 1.8 AND class = 1
“Iris Versicolour”
Q seplen > 6.5 AND petwid > 1.3 AND petwid 13
<19
Q3 | class = “Iris Setosa” 50
Q4 | class = “Iris Versicolour” 50
QS5 | class = “Iris Virginica” 50
Q6 | sepwid <> 3.0 AND petlen <> 1.4 115

5. Discussion

Building upon our prior research [8], our current results
demonstrate that the selected algorithms can be effectively
applied for QBE. Since sensitivity is easy to ensure (i.e., any
method can reaching 100% sensitivity when returning all
tuples in the dataset), specificity may be seen as a measure
of diversity in query results. In this sense, only decision
trees, particularly those generated by the CART algorithm,
provided the most accurate results for QBE. In the employed
datasets, CART was capable of discovering accurate queries
that precisely retrieve all the provided data examples. How-
ever, given the binary-split strategy performed by CART,
queries discovered by this algorithm tend to be much longer

3. For the sake of space and simplicity, original column names sepal
length, sepal width, petal length, petal width, and class were renamed to
seplen, sepwid, petlen, petwidth, and target, respectively.

than the original queries, which may hinder user interpreta-
tion. Moreover, less concise queries may represent a form of
data overfitting (i.e., a loss of generalization of the model)
and real-world applications may require a predefined degree
of diversity in query results. In this sense, CART may not
be appropriate in data exploration scenarios where users are
often interested in finding tuples sharing some degree of
similarity with the provided data examples.

On the other hand, due to their heuristic nature, both
GS and GP can be easily customized to allow some sort
of diversity in both the structure of discovered queries (e.g.,
diverse predicates) and their respective results. Also, as long
queries can be penalized during the search process (e.g.,
by incorporating the conciseness factor into the evaluation
function), GS and GP allow users to find a personalized
balance between accuracy and diversity. For instance, an
Interactive Evolutionary Computation [14] approach may
permit users to interactively incorporate their preferences
during the search phase, which is not possible when using
the traditional CART algorithm. Moreover, a thorough study
of the impact of GP parameters is recommended to analyze
whether improved results may be achieved.

Despite its preliminary character, the reported results
indicate a trade-off that as the number of randomly selected
data examples increase, the difficulty of finding a classifi-
cation rule that accurately describes and retrieves all tuples
also increases. In this sense, a user experiment is required to
investigate whether this effect is caused by the randomness
of the example selection.

We acknowledge that the limitations of this work are
two-fold. First, the conducted experiments considered only
single-relation databases. We did not consider more complex
experiment scenarios in which many data tables are em-
ployed, and consequently, join queries are required. Second,
this work focused on simple data retrieval queries that use
only a subset of SQL features. In this sense, no aggregation
queries were contemplated. We plan to incorporate both
additional SQL features and multi-relation databases into
our future work.

6. Conclusion

In this paper, we reported our experimental investiga-
tion of how intelligent algorithms can be employed help
the increasing number of non-database-expert users to dis-
cover accurate database queries without the need of dealing
with the SQL syntax. As non-database-expert users fre-
quently struggle to accurately translate their mental queries
into database queries, we use of the Query By Example
paradigm, in which database queries are automatically con-
structed via tuple examples provided by users.

We selected three intelligent algorithms, namely, a
greedy search, a genetic programming, and a decision tree
to test their performance in the context of QBE. These
algorithms perform a search in a large space of all candidate
queries that can be formulated to retrieve tuples from a
database. Our findings show that the selected algorithms are
suitable for allowing users to discovery unknown queries

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:52:53 UTC from IEEE Xplore. Restrictions apply.

TABLE 3. ALTERNATIVE QUERIES DISCOVERED BY EACH ALGORITHM.

Query | Algorithm | Sensitivity | Specificity | Conciseness | Discovered query predicate
GS 1.0 1.0 0.5 seplen = 5.9 AND sepwid > 3.0
Ql GP 1.0 0.91 0.625 target = “Iris Versicolour” AND petwid < 1.8
CART 1.0 1.0 0.5 petwid > 1.75 AND target = “Iris Versicolour”
GS 1.0 1.0 0.5 seplen > 6.6 AND petwid < 2.0
Q2 GP 1.0 0.88 0.74 Not found
CART 1.0 1.0 0.5 seplen > 6.55 AND petwid < 1.95000004768
GS 1.0 1.0 1 petlen < 1.9
Q3 GP 1.0 1.0 1 petwid < 1.0
CART 1.0 1.0 1 petlen < 2.45
GS 1.0 0.917 0.33 Not found
Q4 GP 1.0 0.78 0.23 Not found
petlen > 2.45 AND petwid < 1.75 AND petlen < 4.94 AND petwid < 1.65 OR
CART 1.0 1.0 0.07 petlen > 2.45 AND petwid < 1.75 AND petlen > 4.94 AND petwid > 1.54
’ ' ' AND seplen < 6.94 OR petlen > 2.45 AND petwid > 1.75 AND petlen < 4.85
AND seplen < 5.94
GS 1.0 0.88 0.2 Not found
Q5 GP 1.0 0.793 0.83 Not found
petwid < 1.75 AND petlen < 4.94 AND petwid > 1.65 OR petwid < 1.75 AND
CART 1.0 10 0.06 petlen > 4.94 AND petwid < 1.54 OR petwid < 1.75 AND petlen > 4.94 AND
’ ' ' petwid > 1.54 AND petlen > 5.44 OR petwid > 1.75 AND petlen < 4.85 AND
seplen > 5.94 OR petwid > 1.75 AND petlen > 4.85
GS 1.0 1.0 0.5 sepwid <> 3.0 AND petlen <> 1.4
Q6 GP 1.0 0.47 0.32 Not found
sepwid < 2.95 AND petwid > 0.25 AND sepwid > 2.95 AND sepwid > 3.04
CART 1.0 1.0 0.11 AND petlen < 1.45 AND petlen < 1.34 AND sepwid > 2.95 AND sepwid
> 3.04 AND petlen > 1.45

from sets of tuple examples of diverse sizes. More specif-
ically, our experiments demonstrate that CART decision
trees are capable of generating interesting database queries.
However, queries discovered by CART achieved low values
of conciseness, outputting long queries.

We argue that the promising results obtained in this
work, may draw the researchers’ attention to investigate
different Computational Intelligence algorithm such as Ant
Colony Optimization and Fish School Search in the con-
text of QBE. Moreover, future research venues include the
application of Interactive Evolutionary Computation [14]
to improve Genetic Programming results and appropriately
deal with a user’s subjective evaluation of generated queries.

Acknowledgment

This research is financially supported by the Brazilian
National Council for Scientific and Technological Develop-
ment (CNPq) — Science without Borders Program.

References

[1] A.Nandi and H. Jagadish, “Guided interaction: Rethinking the query-
result paradigm,” Proceedings of the VLDB Endowment, vol. 4,
no. 12, pp. 1466-1469, 2011.

[2] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu, “Making database systems usable,” in Pro-
ceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’07. New York, NY, USA:
ACM, 2007, pp. 13-24.

[3] M. M. Zloof, “Query-by-example: the invocation and definition of
tables and forms,” in Proceedings of the International Conference
on Very Large Data Bases, September 22-24, 1975, Framingham,
Massachusetts, USA., 1975, pp. 1-24.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query reverse engi-
neering,” The VLDB Journal, vol. 23, no. 5, pp. 721-746, 2014.

D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “New
trends on exploratory methods for data analytics,” Proc. VLDB En-
dow., vol. 10, no. 12, pp. 1977-1980, Aug. 2017.

S. Zhang and Y. Sun, “Automatically synthesizing sql queries from
input-output examples,” in Proceedings of the 28th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ser.
ASE’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 224-234.

A. Bonifati, U. Comignani, E. Coquery, and R. Thion, “Interactive
mapping specification with exemplar tuples,” in Proceedings of the
2017 ACM International Conference on Management of Data, ser.
SIGMOD °17. New York, NY, USA: ACM, 2017, pp. 667-682.

D. M. L. Martins, F. B. d. L. Neto, and G. Vossen, “Learning database
queries via intelligent semiotic machines,” in Proceedings of the 2017
IEEE Latin American Conference On Computational Intelligence
(LA-CCI). 1EEE, Nov 2017.

J. Cumin, J.-m. Petit, V.-m. Scuturici, and S. Surdu, “Data exploration
with sql using machine learning techniques,” in Proceedings of the
nternational Conference on Extending Database Technology (EDBT),
Mar 2017, pp. 96-107.

J. R. Koza, “Genetic programming as a means for programming
computers by natural selection,” Statistics and computing, vol. 4,
no. 2, pp. 87-112, June 1994.

T. Helmuth and L. Spector, “Evolving sql queries from examples
with developmental genetic programming,” in Genetic Programming
Theory and Practice X. Springer, 2013, pp. 1-14.

D. Steinberg and P. Colla, “Cart: classification and regression trees,”
The top ten algorithms in data mining, vol. 9, p. 179, 2009.

N. Holden and A. A. Freitas, “A hybrid particle swarm/ant colony
algorithm for the classification of hierarchical biological data,” in
Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005
IEEE. 1EEE, 2005, pp. 100-107.

H. Takagi, “Interactive evolutionary computation: Fusion of the ca-

pabilities of ec optimization and human evaluation,” Proceedings of
the IEEE, vol. 89, no. 9, pp. 1275-1296, 2001.

Authorized licensed use limited to: Wikipedia. Downloaded on June 22,2024 at 14:52:53 UTC from IEEE Xplore. Restrictions apply.

