Serial Peripheral Intertace

Common serial interface on many microcontrollers

Simple 8-bit exchange between two devices

o Master initiates transfer and generates clock signal
o Slave device selected by master

One-byte at a time transfer

o Data protocols are defined by application

o Must be in agreement across devices

CSE 466 Communication

SPI Block Diagram

8-bits transferred in each direction every time
Master generates clock
MOSI: “Master Out Slave In”; MISO: “Master In Slave Out”

a

a

Connect MOSI to MOSI and MISO to MISO
Very clean terminology, unlike “TX” and “RX” which are easy to confuse

Slave Select (SS) used to select one of many slaves
Terminology varies:

a

a

Instead of SS, “Chip Select” (CS)
Instead of MOSI and MISO, SIMOD and SOMI

I5d
0

CSE 466

shift register MOSI MOSI shift register
latch msb Isb | (5DO, 50} (SDI,51)| latch msb
O D7 0| 0 D7
MISO MISO
o (SDI, 51) (SDO, 50) £
>
5CLK
clock (SCK)
5Pl master — » 5Pl slave
S5 (CS)

Communication

‘Hack: using SPI as a bus

(2) Buswith slaves individually selected

SCLK
MOSI
MISO

551

552

Yy

SCLK
MOSI

Y

MISO
55

slave 1

T

MOSI
MISO

slave 2

(b) Daisy chain

SCLK ™ SCLK
MOSI > MOSI
MISO [€— = MISO

55 > 55
master slave 1
—» S5CLK
—> MIOSI
—E— MISO

—» §5
slave 2

CSE 466

Communication

Configuration details to watch out for

CPHA (Clock PHase) aka ~CKPH (MSP430 terminology)

o =0 or =1, determines when data goes on bus relative to clock

CPOL (Clock POLarity) aka CKPL (MSP430)

o =0=» clock idles low between transfers
o =1=» clock idles high between transfers

This leads to 4 SPI clock modes

NB: on this slide,
~ means negation,
I.e. same as overbar

w N - O
O O
— O +» O

Takeaway message: make sure master and slave are configured the
same way!

CSE 466 Communication

SPI properties

Pros
o Simplest way to connect 1 peripheral to a micro

o Fast (10s of Mbits/s, not on MSP) because all lines
actively driven, unlike 12C

o Clock does not need to be precise
o Nice for connecting 1 slave

cons
2 No built-in acknowledgement of data
o Not very good for multiple slaves

o Requires 4 wires

3 wire variants exist...some get rid of full duplex and share a
data line, some get rid of slave select

CSE 466 Communication

CSE 466 Communication

Inter-Integrated Circuit Bus (12C)

Supports data transfers

10 kbit / s slow mode

100 kbit / s standard mode
400 kbit / s fast mode

1 Mbit /s fast mode plus
3.4Mbit / s high speed mode

Philips (and others) provide many devices
microcontrollers with built-in interface

A/D and D/A converters

parallel I/O ports

memory modules

LCD drivers

real-time clock/calendars

DTMF decoders

frequency synthesizers

video/audio processors

O 0o oOo o o

O 0O 0O 0O 0O 0 0 00

CSE 466 Communication

Inter-Integrated Circuit Bus (12C)

Modular connections on a printed circuit board

Multi-point connections (needs addressing)

Synchronous transfer (but adapts to slowest device)

Similar to TWI (Two-Wire Interface) on Atmegas

Pull up resistors pull lines high

Devices on bus go from “high impedance” to ground to generate a low on bus
1 Master (generates clock, initiates communication)

Up to 112 slaves (7 bit IDs, 16 reserved) — +Vcce
S S
~ ~
yd /
SCL . i
SDA
device device device
1 2 n

CSE 466 Communication 8

Serial data format

SDA going low while SCL high signals start of data
SDA going high while SCL high signals end of data

SDA can change when SCL low
SCL high (after start and before end) signals that a data bit can be read

SDA \ [\ [
SCL \ / b _____/

START STOP

CSE 466 Communication

Byte transter

CSE 466

Internal to IC External to IC

uopen "

Base ' Collector
IC Output Input E

7
Byte followed by a 1 bit acknowledge from receiver l ic Ground

Open-collector (open drain) wires
o sender allows SDA to rise
o receiver pulls low to acknowledge after 8 bits

SDA _ /1 X 2 X 3X4X5X6 X 7X8\ack/
SN AWA WA WY WA WA WA

Multi-byte transfers

o first byte contains address of receiver

o all devices check address to determine if following data is for them
o second byte usually contains address of sender

Communication 10

CSE 466

Communication

11

Ethernet

Inspired by early wireless network: “Aloha” network from U. Hawaii

Local area network
o “Classic”: 10Mbps serially on shielded co-axial cable
o “Switched”: 100Mbps, 1000Mbps, 10,000Mbps

Developed by Xerox in late 70s
o still most common LAN
High-level protocols to ensure reliable data transmission

CSMA-CD: carrier sense multiple access with collision detection

CSE 466 Communication 12

‘ Ethernet

f)
10BASES - “Thicknet”
(— . .,

10BASE2 - “Thinnet”

Vampire tap

Thicknet

o S

Drop cable

e —
10BASE-T
e
™~
10: 10 Mbps

100: 100 Mbps
BASE: Baseband signaling

(not modulated RF, like the 100s

MHz signals on your TV cable)
5: 500m max range

2: 200m max range

T: Twisted pair

™
Transeiver

AUl

Connector
Topology

Physical: Bus
Logical: Bus

Migration to
Topology

Physical: Star
Logical: Bus

RJ-45

Early Ethernet Media and Topology

=

Hub

CSE 466

Communication

Serial data format

Manchester encoding

o signal and clock on one wire (XORed together)
o "0" = low-going transition

o "1" = high-going transition

/S

I O I 1 I O I 1 I O I 1 I 1 I 0 I O I

preamble at beginning of data packet contains alternating 1s and Os
=» 10MHz square wave for 6.4us....allows rcv to synch clock to tx
preamble is 64 bits long: 10101. .. 01011

!

Extra 1 signals Start Of Frame (SOF)

CSE 466 Communication 14

Ethernet packet

Packet size: 64 bytes (min!) to 1518 bytes + 8 bytes of preamble

preamble 8 bytes: 7x10101010 + 10101011

destination address (6 bytes)

source address (6 bytes)

Type/length (2 bytes)

data (46-1500 bytes)

Checksum [CRC!] (4 bytes) computed from data

CSE 466 Communication

15

Contention

Arbitration l

VAN
e |00 e IO Comm] [rem

v \._Y_/
Transmission Contention Idle
period period period
CS MA/C D Time —

o “Carrier Sense Multiple Access with Collision Detection”

Wait for line to be quiet for a while then transmit

o detect collision

o average value on wire should be exactly between 1 and 0
o if not, then two transmitters are trying to transmit data

If collision, stop transmitting

o wait a random amount of time and try again

o if collide again, pick a random number
from a larger range (2x) and try again

Exponential backoff on collision detection
o “Random exponential backoff” or “binary exponential backoff”
o Key innovation in Ethernet...Bob Metcalf’'s thesis at Harvard

Try up to 16 times before reporting failure

CSE 466 Communication

CSE 466

Communication

17

EtherCAT

“Ethernet for Control Automation Technology”

Ethernet with

o Short update times (cycle times)
o Low communication jitter
o Low hardware costs

Not currently very well-known, but EtherCAT based!
o Used in Willow Garage PR2 robot!

CSE 466 Communication 18

How 1t works

Master/Slave, Master/Master, and Slave/Slave (via Master)
supported

Master side: conventional Ethernet MAC HW
o i.e., plug an EtherCAT network into the back of your laptop!
o Need alternate driver SW

Slave side: custom hardware
o Ethernet packets ingested & regenerated by slaves
(This would not be possible in classic bus-style Ethernet)
o Slave can extract or insert “EtherCAT datagrams” into the data portion of the
Ethernet packet
o Slave has to replace Ethernet CRC if it adds an EtherCAT datagram to the
Ethernet Frame

Ethernet Header ECAT [EtherCAT Datagram Ethernet
DA SA Type |Frame |EthenCAT|Data ICTR| Pad. |FCS
HDR [HDR
6 (6 (2) @ o0 {0...1486) (2)](0...32) (4)
v e N L
constant Header completely sorted Working Padding Bytes
M aster: (mapped) process data Counter: and CRC
constant ?EI‘IEF-Et'E'ﬂ by
thernet
Controller (MAC)

CSE 466 Communication 19

‘ How it works

= To master, it looks like there is just one Ethernet device out there (even if
there are multiple EtherCAT slaves)

= In each slave, processing is done by dedicated hardware
o Ensures fast, real-time behavior
o “Telegrams” processed directly “on the fly”

= Many EtherCAT datagrams fit in a single Ethernet packet
= Many devices can be addresses in a single EtherCAT datagram
= Frame overhead is amortized over many messages, improving net efficiency

i

Figure 4: Devices map data directly in frame

Slaves: i

Ethernet HOR

CSE 466 Communication 20

EtherCAT Datagrams

EtherCAT. ™

F—"_.JF.--.J
1* EtherCAT Datagram
10 Byte
Datag. Header
BBt 8Bt 18BR 168It 181 4T 468
 Cmd | Idx | Position | Offset | Len [R [m], mh
Address | Offset IMmEﬁnr:n.'rnumgrm?
Logical Address

L o e L

10

CSE 466

Communication 21

Research examples using these comms
schemes---Pretouch sensing

We will see E-Field Sensing, USB Virtual
COM, 12C, SPI, and EtherCAT in action

CSE 466 Communication

22

‘ Electric ’Field Pretouch

Same sensing technique you are using in lab

An Electric Field Pretouch System for
Grasping and Co-Manipulation,

ICRA-2010.
B. Mayton, L. LeGrand, J.R. Smith

T Ty T T T T P T YT,

PC
USB
FTDI
Asynch. serial
AVR
(Palm) | 12C master
| 12C bus |
AVR AVR AVR
(Fing. 1) (Fing. 2) (Fing. 3)
12C slave 12C slave 12C slave

Acoustic Theory
Sensor Design on PR2

Sensor Characterization

Seashell Effect Pretouch Sensor Design

Sensor Design on PR2

jCr -:} phone
and cavity

Sensor size on fingertips: Smm(diameter) x 8mm/(length)

Microphone T |,/ Sound Signal
(Siznal Channel) i the cavity /| . g D ™ Welch |
) B Preamp Converter Sp:a-zum.u
Microphone IT Ambient - Eshmanon
(Reference Channel) Sound S1gna

Spectral Peak */g_u:-mmd
Estimation s '*__;‘E__:-E-:um

(PN e

Qf};ﬁ;’:ﬂj’/ Filter

Movies

Ehown Utilize ambient noise — Passive!
ere 1N /18

oustic Theorsy
Sensor D iz onn PHR2
Sensor Characterization

Seashell Effect Pretouch Sensor Design

Sensor Characterization: Performance

Fe soranos Freaguenoy (Hed
B
=

Contrast 4o Moiss Fatio [CHFE] = 22104

i. 3 & 4] 1] T B 1] K1)
Diistares immil

Tano

The box and whisker plot of 1000 estimated resonance frequencies at 1-10 mm.

Application Parameters m

Frequency: 9500 H=z
Distance: 3 mm

‘ HW Architecture

Integrating w/ Willow Garage PR2 Motor Control Board
Accelerometer
EtherCAT

Signal &
Power
Isolation

Motor

1HHHHHHP

2
2

PPS
Senso

L 4 0
, HILLOW GARAGE
68-05006 E

PG

Our sensor HW: mic, op-amp, micro w/ ADC, SPI interface
To integrate our new sensor into PR2 robot, replace PPS sensor, use SPI
PicoBlaze soft microcontroller implemented in FPGA
Program PicoBlaze in Pico asm to talk to our new sensor over SPI
even though byte-level SPI is standard, at a higher level our data
format is different, so we need to reprogram the SPI master
to change from PPS sensor to our mic sensor

CSE 466 Communication 26

PicoBlaze

Softt processor from Xilinx

What is it?

Configuration of FPGA gates to implement a microcontroller within FPGA fabric
Specs

8 bit SPI master peripheral

2x 8hit timers to allow easy comms timing

512 byte double-buffer for sending sensor data to computer
Why soft processor?

Easier to program than FPGA

Faster to reprogram: seconds vs minutes

Safe: cannot brick the MCB with a bad PicoBlaze program...can easily brick MCB
with bad FPGA code

Why PicoBlaze?
Free license from Xilinx to use on Xilinx FPGAS

Very small
Simple, predictable timing (2 clock cycles per instruction)

CSE 466 Communication 27

WG006 Fingerip Sensor Programming Gude

SPI Master

There 15 a penpheral that perform fast SPI transfers to a slave device. The penipheral will transfer
Shits of SPI data to/from slave device with selectable clock speed.

Currently, the SPI penpheral only nins m mode 0 (CPOL=0, CPHA=0). There Wikipedia Senal
Penpheral Interface page that has a good explanation of the different SPI modes.

SPI clock speed

The system clock muns at 23Mhz. This clock can be divided down to produce the clock speed used for
the SPI transfers. The formmla for determming the SPI clock speed from the divisor value 1s:

SPI Clock Frequency = 23Mhz / 2 / (Divisor+1) = 12 5Mhz / (Diviser + 1)
The divisor 15 an 8-bit value so the slowest clock speed available 1s -

12 5Mhz / (255+1) =48 8kH=
The fastest (theoretical) clock speed available 1 12.5 Mhz. However, igh speed SFI signalmg has
never been tested and may require proper signal termunation on the figure tip devices.

SPI data transfer

The 5P1 peripheral fransfers 1-byte data at a ime. Starting transfer 15 as simple as wnting

SPI DATA REG with new output value. A busy status flag can be polled to wait for transfer to
complete. To retneve the received data, the SPI DATA REG can be read after a SPI transfer has
completed.

Unlink other protocols { 1e B5232 senal), SPI always receives 1 byte of mput while sending 1 byte of
output data that 15 sent. In some situations erther received data does not matter. On these cases,
DATA REG does not need to be read after transfer 15 complete. In other situations, only the mput
data matters. For these cases, start a SPI transfer by wniting “dummy™ data to SPI DATA REG.

SPI chip selects

The SFI bus has two chip selects, one for each finger. The chup selects are active-low — they are assert
with the signal 15 low. The digital 1solator used for the chip selects 15 slower than the 1zolator used for
the SPI bus. After asserting a chip-select, the program should wait for 1 or 2 micreseconds before
transferming SPT data.

CSE 466

Communication 28

SPI code example

Below 15 an example of performing commumication with an Analog Devices LTC1267L 16-at ADC.
The LTC1867L 15 given a Thit command telling 1t what mput channel to convert. While sending the

device a new command, the device provides the 16-bit result for the last conversion

In the example a 16 bit transfer is performed as 2x 8-bit transfers. Only the first Thats of command
data matter, for the remaimn 9bits we send zeros. The command value used in the example 15 1000000b,
which ends up bemng 0x8000 when 9 bits of zeros appended to end.

r
r

Firat ==t 3FI clock speed to S00kH=.

Divimor = 12 _5Mhe / S00kHz + 1 = 26 = O=lR

load =0, 1A
output =0, SPI_CLDEH_BEE
Ammert Chip—seslect 1
load =0, 3PI_A33ERT CHIFPSEL 1 FLAG:
output =0, SPI_C:RL_REG

Wait for Zus for chip-=elect to propagate to device

load =0, 2
call delay us
Send M3Byte of command to device (0m80)
load =0, &0
output =0, SPI_DETR_REG
How wait for transfer to complete
wait loop 1:
~ imput =0, SPI_CTRL REG
twest =0, 3PI_BU3Y FLAG
jump HZI, wait_loop 1
Get =ave firast byte read from LTC1CLl9&7L imto =2
input =2, SPI_Dh:h_REG
Send L3Byte of command (0xD0]
load =0, O
output =0, SPI_DETR_REG
How wait for transfer of second byte to complete
wait loop 2:
input =0, 3PI CTRL REG
test =0, 3PI_BUSY FLAG
jump MZ, wait loop 2
Save =econd byte read from LTCIC1%67L into =l
input =l, SPI_Dh:h_REG
De—a==ert chip—=select
load =0, 3PI_DEARSSERT CHIFZEL FLAG:
output =0, SPI_C:RL_REG

CSE 466

Communication

29

