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This practical guide to designing electronic
cireuits using small computers and pro-
grammable calculators makes it easy to
implement both classical and sophisticated
design techniques. It uses the interaction
between circuit designer and computer to
clarify both design techniques and funda-
mental concepts. It also shows how to
produce useful answers quickly, while
developing a feel for the procedure and
obtaining insight into fundamental proc-
esses—such as the errors between exact
derivatives and their finite-difference
estimates.

Circuit Design Using Personal Com-
puters is intended for practicing electrical
engineers and for university students with
at least senior-class standing. Its topics will
also interest electronics engineers, who
design circuits derived in terms of com-
plex variables and functions, to provide
impedance matching, filtering, and linear
amplification. Circuits operating from very
low frequencies all the way through milki-
meter waves can be designed by these
techniques. The necessary numerical
methods will also be of interest to readers
whao do not have specific applications.

The numerical methods presented include
solution of complex linear equations, inte-
gration, curve fitting by rational functions,
nenlinear optimization, and operations on
complex polynomials. These programmed
tools are applied to examples of filter syn-
thesis, to illustrate the subject as well as
the numerical methods. Several powerful
direct-design methods for filters are
described, and both single-frequency and
broadband impedance-matching tech-
niques and limitations are explained. An
efficient ladder network analysis method,
suitable for hand-held or larger computers
is treated and programmed for confirming
network design and evaluating various
effects, including component sensitivities.

The methods presented in the book are
supported by seventeen programs in
reverse Polish notation (RPN) for
Hewlett-Packard HP-67 and HP-97 hand-
held programmable caleulators and, with
minor modifications, for models HP-41C
and HP-9815, and are also furnished in
twenty-eight programs in microsoft
BASIC language for PETand similar
desktop computers.
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Preface

Circuit design, an essential part of electrical engineering, has become an
exciting field because of the availability of responsive personal computers.
Productive interaction with the designer’s own computer has been possible for
several years, but only recently has il become completely respectable through
the introduction of a highly touted personal computer by the largest manufac-
turer of big computers. Modern circuit design usually involves extensive
mathematical calculations based on increasingly theoretical concepts to satisfy
escalating performance requirements. 1 wrote this book to show how effective
personal computers can be in circuit design,

The first goal is to describe practical radio frequency circuit design tech-
niques that are especially appropriate for personal computers and have one or
more fundamental concepts or applications. For example, the polynomial
root-finder algorithm can solve as many as 20 complex roots and is based on
the important Cauchy—Riemann conditions. It works well, and the underlying
principles are worth studying. The second geoal is to exploit the interaction
between circuit designer and computer to clarify both design techniques and
fundamental concepts. It is possible to produce valuable answers rapidly while
developing a feel for the procedure and obtaining insight into fundamental
processes, such as errors between exact derivatives and their finite-difference
estimates,

The most frequently encountered design procedures are appropriate for
personal computers, even though there are a few heavily used procedures that
must be performed on large computers. This book is based on the premise that
most designers are better served by computer programs that they can call their
own. Only a few must master large-computer operating procedures and
program manuals several inches thick; these procedures are beyond the scope
of this book. Rather, 1 have selected some of the most productive and
interesting circuit design techniques, some very old and others quite recent.
Many students have recently developed an appreciation and interest in these
topics precisely because the techniques have become visible on the personal
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viil Preface

computer. Excessive theoretical analysis has been avoided by providing refer-
ences to more detailed explanations; these also provide the interested student
with efficient avenues for further investigation.

This book is intended for practicing electrical engineers and for university
students with at least senior-class standing. The topics should also interest
electronics engineers who design circuits derived in terms of complex variables
and functions to provide impedance maiching, filtering, and linear amplifica-
tion. Circuits operating from very low frequency through millimeter waves can
be designed by these techniques. The necessary numerical methods should
also interest those who do not have specific applications.

The numerical methods include solution of complex linear equations,
integration, curve fitting by rational functions, nonlinear optimization, and
operations on complex polynomials, These programmed tools are applied to
examples of filter synthesis to illustrate the subject as well as the numerical
methods. Several powerful direct-design methods for filters are described, and
both single-frequency and broadband impedance-matching techniques and
limitations are explained. An efficient ladder network analysis method, suit-
able for hand-held or larger computers, ts described and programmed for
confirming network design and evaluating various effects, including compo-
nent sensitivities. Linear-amplifier design theory is based on the concept of
bilinear transformations and the popular impedance-mapping technique. This
also enables a description of load effects on passive networks and is the design
basis of filters that absorb rather than reflect energy.

The methods are supported by seventeen programs in reverse Polish nota-
tion {RPN) for Hewlett—Packard HP-67 and HP-97 hand-held programmable
calculators and, with minor modifications, for models HP-41C and HP-9815.
There are also 28 programs in Microsoft BASIC language for PET and similar
desktop computers. PET is a registered trademark of Commodore Business
Machines, a division of Commodore International. Microsoft Consumer Prod-
ucts has furnished a consistent and widely accepted BASIC programming
language to many prominent personal-computer manufacturers. Some of the
BASIC programs are short enough for hand-held computers, but most require
a desktop computer having several thousand bytes of random-access memory
and appropriate speed. Each chapter, except for the introduction, contains a
set of problems, most of which reguire 2 hand-held caleulator for solution.

The material in this book was and is being used in a two-semester
graduate-level course at Southern Methodist University. The first semester
covered numerical methods—including optimization, examples of filter syn-
thesis, and ladder network analysis—contained in Chapters Two through Five.
The more specialized, second-semester content included impedance matching,
linear amplifier design, direct-coupled filters, and the other direct filter design
methods in Chapters Six through Nine. The course was taught with several
students in the classroom and the majority on a closed-circuit television
network that included video output from a desktop, BASIC language personal
computer on the instructor’s desk. The ability to edit and rerun the programs
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in this book was a most valuable teaching aid. All students were encouraged
to acquire at least a hand-held computer; university desktop personal comput-
ers were available, but many industrial students had their own.

This material was taught three times as a 48-hour industrial seminar for
practicing engineers who desired a cognitive overview of the field with
emphasis on personal computing. Approximately 6 hours of study per chapter
should be spent for all but Chapter One, and goaod visual aids and computer
TV monitors are required in the classroom. More limited seminars may also
be taught as follows: numerical methods in Chapters Two and Five; numeri-
cal methods, filter synthesis, and elliptic filters in Chapters Two, Three, and
Sections 9.2-9.4; ladder network analysis and sensitivities in Chapter Four;
impedance matching and direct-coupled and stub filters in Sections 6.1-6.5,
Chapter Eight, and Section 9.1; and linear amplifiers, impedance mapping,
and filter-load effects in Chapter Seven and Sections 9.5 and 9.6. Individual
engineers with some familiarity with the subject will find this book a good
basis for review and discovery of new design methods and programs. Access
to or ownership of a desktop computer is a necessity; the minimum require-
ment is ownership of a programmable hand-held calculator and access to a
desktop computer or a readily accessible, responsive computer terminal to run
BASIC language programs.

I wish to express my deep appreciation to colleagues at Collins Radio
Company, Texas Instruments, and Rockwell International for their sugges-
tions, constructive criticism, and other contributions to understanding. Special
recognition is due to Dr. Kenneth W. Heizer, Southern Methodist University,
who endured years of my questions concerning technical relevance and
origins. His knowledge and patience satisfied my aspiration for both generality
and applicability.

TaoMas R. CUTHBERT, JR.
Plano, Texas
December 1982
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Chapter 1

Introduction

This book describes design and analysis techniques for radio frequency
circuits that are particularly well suited to small computers. This chapter
presents the rationale and an overview of the book’s organization.

Both entering and experienced engineers are addressed for entirely different
reasons. Many new electrical engineering graduates have reccived heavy
exposure to digital circuits and systems during recent training. Apparently, the
curriculum time limitations have resulted in less thorough treatment of analog
topics, especially filter, impedance matching, and similar circuit design tech-
niques. The industrial need has not diminished. Experienced engineers are
probably far less aware of the new opportunities available through small-
computer design methods. These computing aids are becoming a necessity in
this field, if only o meetl the competition from those already exploiting the
opportunities. This book establishes a level of capability of hand-held and
desktop computers for those who have not been following recent applications.

Engineers can now own the computers and programs as well as their
technical expertise. It is interesting to estimate the current (1982) costs for the
equipment an engineer may consider buying for professional use. The fol-
lowing figures do not account for potential tax advantages. Typical program-
mable-calculator and peripheral equipment costs range from $150 to $800.
Typical desktop personal computers and peripheral equipment costs range
from $500 to $5000, and professional-grade equipment (e.g., Hewlett-
Packard, Wang, and Digital Equipment) costs about twice these amounts, The
most expensive desktop computing systems cost as much as $30,000. It is
estimated that within five years the same performance may be obtained at half
these costs; conversely, twice the performance may be available at the same
cost.

Hamming (1973, p. 3) has remarked that computing should be intimaiely

‘bound with both the source of the problem and the use that is going to be

made of the answers; it is not a step to be taken in isolation from reality.
Therefore, the art of connecting the specific problem with the computing is
important, but it is best taught within a field of application. That is the
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2 Introduction

viewpoint taken in this book. It is now desirable for an engineer with average
job assignments to make effective use of small computers. Tasks that were not
feasible just 10 years ago can now be performed routinely. Hamming also
noted that computing is for insight; modern technology certainly demands a
high level of understanding. Design difficulties often can be detected early by
computer analysis,

Running the programs in this book will provide many engineers with a
convincing display of principles and results that are often elusive as abstrac-
tions. For example, calculus literally works before your eyes on the computer
screen when an optimizer is reporting its strategy and progress! Program
modifications are suggested throughout the text to demonstrate computational
behavior for degenerate cases. Most readers will find that using the programs
while studying this material will improve comprehension immensely. Many of
the suggested extensions have been developed and programmed by the author,
and are known to be both feasible and worthwhile.

The computer programs furnished in this text are deliberately unsophisti-
cated. The best program is one written, or at least adapted, by the end user.
This avoids a significant amount of computer programming, namely the effort
any programmer expends to anticipate all possibie reactions of the unknown
user. Also, a prudent engineer will be skeptical unless programs written by
others are exceptionally well documented, tested, and constructed to deal with
degenerate cases and to provide user prompting. Often there is little profes-
sional satisfaction in simply running programs others have developed; after
all, a clerk could do that job at lower cost.

A valuable feature on many desktop computers is a TRACE program that
allows the user to either step through the program execution one line at a time
or to execute slowly with current line numbers displayed for correlation with
code listings and/or flowcharts. Another recommended computer feature is
an EDITOR program that enables a search for the names of variables. Most
BASIC languages allow only “global” variable names, which are not private
within subroutines. A good EDITOR facilitates the expansion and combina-
tion of programs in this book without the risk of conflicting variable names.

Most of the short programs are furnished in Hewlett—Packard’s reverse
Polish notation (RPN). For Texas Instruments hand-held calculators, such as
the T1-59 and others using an algebraic operating system (AOS) language,
coding can originate with the equations provided and in the format of the
given programs. Differences between RPN and AOS have been discussed by
Murdock (1979). Hand-held computers have not been made obsolete by
desktop computers; there are many occasions when a completely portable
computer is much more effective when used at the place of immediate need.

Numerous geometric illustrations have been employed in place of more
abstract explanations. A number of graphs depicting design parameter trends
are also presented; use of computers does not diminish the value of graphic
displays, sensitivity and similar computations not withstanding.

It is assumed that the reader will pursue interesting topics at his or her own
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level of sophistication once the possibilities are clear. To that end, extensive
references are provided for further inquiry. Many references are quite recent,
which is not to overlook some of the older classics—for example, an early
direct-coupled-filter article by Dishal (1949). There are some derivations that
are crucial to important issues; these have been included in an appendix or
outlined in the problem set.

There are several indispensable numerical analysis tools that will be re-
quired throughout this book and that are applicable in almost all phases of
electrical engineering. Chapter Two begins with the most elemental of these
{(especially in steady-state sinusoidal network analysis): the complex addition,
subtraction, multiplication, and division functions. A hand-held computer
program is given for convenient usage, and the reader will need to have ready
access to this capability on many occasions. The Gauss-Jordan method for
solving real equations in real unknowns is discussed in connection with a
BASIC language program; this is used later in Chapter Two for fitting rational
polynomials to discrete complex data sets and in Chapter Three in the
Gewertz synthesis method. A very convenient extension of this method to
solve systems of complex equations is also described; this technique is conve-
nient for solving nodal analysis equations and similar systems.

Chapter Two also describes the trapezoidal rule and its application in the
Romberg method of numerical integration; this is used in the broadband
impedance-matching methods in Chapter Six. Also, Simpson’s rule is derived
for later use in time-domain analysis in Chapter Four. Chapter Two concludes
with methods for fitting polynomials to data. First, real polynomials are
generated to provide a minimax fit to piecewise linear functions using Che-
byshev polynomials. Second, complex data are fit by a rational function of a
complex variable, especially the frequency-axis variable in the Laplace s
plane. This will be applied to broadband matching, and is useful in other
ways, such as representing measured antenna impedance data.

Many of the computer aids developed in this book are not only efficient
tools, but are based on important principles worth the attention of any
network designer. Moore’s root finder in chapter three is a good example,
because it depends on the Cauchy-Riemann conditions and a powerful but
little-known method for evaluating a complex-variable polynomial and its
derivatives.

Engineers interested in network synthesis, automatic control, and sampled
data systems need many other mathematical aids. Polynomial addition and
subtraction of parts, multiplication, long division, and partial and continued
fraction expansions of rational polynomials are described in Chapter Three.
Their application to network synthesis is used to develop the characteristic
and transducer functions in terms of the ABCD (chain) matrix of rational
polynomials. These are then realized as doubly terminated ladder networks.
Gewertz's singly terminated network synthesis method concludes Chapter
Three; this method accomplishes input impedance synthesis, given the net-
work function’s real part.
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Chapters Four and Five need not be considered together, but the efficient
ladder network analysis method in Chapter Four is constructed so as to
become a part of the powerful gradient optimizer in Chapter Five. The
recarsive ladder network analysis method is based on assumed load power
and impedance (therefore current) and accommodates flexible interconnection
of two-terminal branches. The topological description is very compact, so that
the technique can be employed in hand-held as well as in larger computers.
Node voltages and branch currents are available for many purposes, including
the powerful Tellegen method for sensitivity calculations. Two-port chain
maltrix parameters are described for use in cases where transmission line,
bridged-T, and arbitrary two-port network sections appear in cascade. A
node-bridging analysis technique is discussed to avoid the need for nodal or
other matrix methods for only slightly more complicated ladder network
problems. The input and transfer quantities obtained are related to the
terminal voltages and currents. This is developed by introducing the first of
several scattering parameter explanations in order to simplify the calculations.
Almaost all other topics in this book depend on the enginéer’s ability to check
his Or her design by means of a ladder network simulation. Simpson’s
numerical integration is used to evaluate Fourier and convolution integrals so
that the frequency samples of network response previously generated can
provide time response to an impulse or any arbitrary excitation. Chapter Four
concludes with a compact explanation of sensitivities computed by approxi-
mate finite differences and by the exact Tellegen method. Applications dis-
cussed include establishing tolerances and automatic adjustment of network
elements to approach some arbitrary frequency or time response—in other
words, optimization. :

Chapter Five is a practical application of nonlinear programming (optimi-
zation) for adjustment of design variables. It begins with a brief review of
essential matrix algebra in terms of geometric concepts. Then the significant
properties of conjugate gradient search methods are illustrated by computer
demonstration, and the role of linear searches in useful algorithms is illus-
trated. A Fletcher—Reeves optimizer is furnished in the BASIC language with
several practical examples. The creation of sampled objective functions, their
component response functions, and gradients are described as related to
network optimization. Methods for enforcing simple bounds and for satisfying
more complicated constraints conclude Chapter Five. Numerous opportunities
are used to point out in passing some mathematical concepts of general
interest: for example, the relationship of eigenvalues and eigenvectors to
ellipsoidal quadratic forms. Only gradient methods are discussed; the reason-
ing behind this choice and a few remarks concerning the alternative direct
search class of optimizers are provided.

Design methods and computer programs for impedance matching at a
frequency and over lowpass and bandpass intervals are contained in Chapter
Six. At single frequencies, resistance and phase transformations are obtained
by L, T, and pi networks. Complex source and load specifications are
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accommodated by explanation of programs for the 1+Q? method and
paralleled-reactances technique. Transmission-line matching applications for
complex source and load are described by less well-known methods. Levy's
broadband-matching adaptation of Fano’s original theory is reviewed, and
programs are provided, Standard lowpass prototype filter notation, lowpass-
to-bandpass transformation, and Norton transformers are used in practical
examples. The last two topics in Chapter Six are new methods of broadband
matching. Carlin’s method for matching measured impedances is developed
on the basis of several computing aids that include a Hilbert transform
application with quite general significance. Cottee’s pseudobandpass (lowpass
transformer) matching method employs numerical integration of the
Chebyshev squared-frequency function. This is accomplished with the Rom-
berg integration program from Chapter Two.

Chapter Seven contributes uniquely to reader background. Amplifier de-
signers experienced in scattering parameters, the equipment for their measure-
ment, and the body of technique for their use are probably aware of the large
and growing number of computer programs available for the methods in-
volved. The better-known programs exist on timeshare computing services and
provide stability, gain, impedance, selectivity, optimization, and device data
base information for amplifiers and their matching networks. There are also
numerous smaller programs of reduced scope available for desktop and
hand-held computers. Furthermore, the trade journals and institutional litera-
ture are full of design articles about scattering parameter applications. Chap-
ter Seven provides the perspective and computing tools that are not readily
available and yet are the basis for the popular methods. Generalized reflection
coefficients for power waves are defined and related to scattering parameters
for two- and three-port linear networks. A convenient means for ladder
network analysis with embedded circulators is noted. The bilinear function of
complex variable theory is introduced and arranged to represent a Smith chart
of all possible branch impedance values on a linear network response plane.
Convenient methods and computer programs are given for determining the
coefficients, the relationship of the Smith chart to two-port power, and
geometric models of important network behavior. Concise unification is
provided for earlier Linvill models, gain analysis, and impedance-mapping
methods for linear networks, This insight also applies to oscillator, filter, and
impedance-matching design. A new gain design method based on the older
Linvill model is described. o

Chapter Eight introduces a new method for direct-coupled filter design
based on a loaded-Q parameter that is well known to early radio-man-
ufacturing engineers. The great strength of the method is the wide range of
element values that can be selected by the designer with guidance by its clear
principles. Direct-coupled-filter principles are widely utilized in design of
microwave filters based on the inverter principle. They have important appli-
cations at all frequencies down to vif. This topic is developed by a practical
relationship of resonators (ianks), inverters, and end-coupling methods, and
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the selectivity effects that result. Also, the resonator slope-equivalence tech-
nique is described to extend the method to adapted elements other than the
ideal lumped elements usually considered. The full range of response shapes—
from overcoupled (equal ripple), through maximum flatness, to undercoupled
—is described; the important minimum-loss case is covered too. Tuning
methods and sensitivity relationships are explained in terms of laboratory
methods and the loaded-Q parameter.

The last chapter deals with other direct filter design methods, especially
those that depend on recursive formulas for element values or means other
than synthesis. This potpourri was chosen because the methods are useful,
frequently applicable, and demonstrate worthwhile principles. Chapter Nine
begins with Taub’s equal-stub microwave filter design method. Then, a new
elliptic filter design method is introduced by a general discussion of filter types
and performance parameters. The entire family of related selectivity functions
is reviewed, and a standard nomograph and program provide performance
estimates. Next, the basis of two new and powerful programs for doubly
terminated filter design by Amstutz is explained, and program operation is
illustrated. Useful tables of lumped-element equivalence transformations are
included.

Chapter Nine also contains theory and design tools to estimate load effects
on passive networks, and maximum possible efficiency is shown to be the
controlling parameter. This topic is important because filters designed to
operate properly between carefully defined load resistances are likely to be
operated between quite different terminations. The last topic in Chapter Nine
extends the load effects concept to invulnerable (intrinsic) filters that absorb
rather than reflect energy. These may be regarded as selective attenuators;
they are quite valuable in mixer and low-frequency applications where cir-
culators are not feasible. Equations and a design chart.for a lowpass, invulner-
able network are derived.

Another way to view the contents of this book is according 10 the mathe-
matical subjects treated, even though the material was organized according to
design applications. Matrix algebra topics include multiplication, exponentia-
tion, inner products and norms, quadratic forms and conics, and partitioning,.
Polynomial algebra of real and complex variables touches on power series and
product forms, as well as rational-polynomial continued fractions, partial
fractions, and Chebyshev expansions. Calculus tools include multivariate
Taylor series, partial derivatives and gradient vectors, the Cauchy—Riemann
principle, numerical differentiation and integration, and infinite summations
and products. Complex variables appear throughout, and special attention is
given to bilinear transformations and the generalized Smith chart. Hilbert,
Fourier, and Laplace transforms and the convolution integral are employed.

The material that follows has been tested in industry and can become an
important part of your set of engineering tools.




Chapter 2

Some Fundamental
Numerical Methods

It is necessary to create several computing aids before addressing specific
design tasks, Certainly the most elementary of these is a hand-held computer
program to calculate the complex four functions. Also, the solution of linear
systems of equations, both in real and complex variables, and numerical
integration are useful in many electrical engineering applications. The former
is required in the last part of this chapter to fit discrete, complex data by
a rational polynomial in the frequency variable to the least-squared-error
criterion. Before that, a piecewise linear function will be approximated in the
minimum-of-maximum-errors (minimax) sense by a polynomial in a real
variable. This is a useful tool that allows the introduction of the versatile
Chebyshev polynomials, which will make several later appearances.

2.1. Complex Four Functions

The convenience of addition, subtraction, multiplication, and division of
complex numbers on a hand-held calcuiator, both manually and within
programs, cannot be overrated. Program A2-1 in Appendix A provides these
subroutines on function keys B, C, and D for manual keying or for GSB (Go
Subroutine) commands within programs. As explained in the program descrip-
tion, the more frequently required polar complex number format has been
assumed.

Hopefully, the reverse Polish (RPN) stack concept is somewhat familiar to
the reader, since it has been used by many calculator manufacturers in several
countries. Owners of calculators with the algebraic operating system (AOS)
are at no great disadvantage, because RPN programs are easily converted (see
Murdock, 1979). In Program A2-1 and in similar programs to follow, the polar
complex number(s) are entered into the calculator’s XYZT “stack™ as angle in

1
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degrees, then magnitude. For the operation Z,+ Z,, it is necessary to enter
degZ,. magZ,, degZ,, magZ, and press key B to see mag(Z,+Z,) in the X
register {(and the angle in the Y rtegister by pressing key A to swap X and Y
registers). Complex subtraction depends on a feature of the HP calculator in
which a negative-magnitude number adds 180 degrees to the angle during the
next operation. Thus a separate key for complex subtraction is not required;
just key in the sequence for Z,+Z,, but press the CHS (change sign) key
before pressing B (+) key. The answer is Z,~Z,. A complex-division key 1s
made unnecessary by providing the complex inverse function 1/Z on key C.
Thus to compute Z,/Z,, the siack entries (in order) are: degZ,, magZ,,
degZ,, magZ,. Then press key C to obtain 1/Z, (the answer is placed
properly in stack registers X and Y without disturbing registers Z and T),
followed by pressing key D for the complex multiplication. Again, the answer
appears in stack positions X and Y. Example 2.1 shows that mannal or
programmed steps with complex numbers are as easy as with real numbers.

Example 2.1. Consider the bilinear function from Chapter Seven:
' _aZ+a,
=zl 2D

All variables may be complex; suppose that a, =0.6 /75°, a,=0.18 /—23°,
and a,=1.4 /130°. Given Z=0.5 /60°, what is w? The manual or pro-
grammed steps are the same: enter Z in the stack and also store its angle and
magnitude in two spare registers. Then enter a, and multiply, enter O degrees
and unity magnitude and add, saving the two parts of the denominator value
in two more spare registers. The numerator is computed in the same way, the
denominator value is recalled into the stack and inverted, and the two
complex numbers in the stack are multiplied. The correct answer is w=
0.4473 /129.5°. Normally, a given sei of coefficients (a,, a,, and a,) are fixed,
and a sequence of Z values are input into the program. A helpful hint for
evaluating bilinear functions is to rewrite them by doing long division on
2.1
a;  d4,—a /a,

w-—;l—3—+———aaz_H . (2.2)
Then store a,/a,, a,, and a;. Now the operations for evaluating (2.2) do not
require storing Z, although a zero denominator value should be anticipated by
always adding 1.E -9 (0.000000001) to its magnitude before inverting. If there
is a fourth complex coefficient in place of unity in the denominator of (2.1),
the standard ferm of (2.1) should be obtained by first dividing the other
coefficients by the fourth coefficient.

2.2, Li.near Systems of Equations

Every engineering discipline requires the solution of sets of linear equations
with real coefficients; this will alse be required in Section 2.5 of this chapter,
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Although the Gauss—-Jordan method considered here is well known, it is less
well known that the real-coefficient case can easily be extended to solve
systems having both complex coefficients and variables. BASIC language
Program B2-1 for the Gauss—Jordan method is contained in Appendix B, and
its preamble for coping with the complex system case is Program B2-2,

2.2.1. The Gauss—Jordan Elimination Method. The Gauss—Jordan elimina-
tion method is but one of several acceptable means to solve systems of real
linear equations (see Hamming, 1973, for a commentary). The problem to be
solved is to find x when

Ax=a, 2.3
in matrix notation, or, written out,
ayxXptapXtaX;=ay,
ayX) tapX;tanx;=ay,, (2:4)
ay, %y tapX;ta;x;=a,.
The order N =13 case will be discussed without loss of generality. Readers not
familiar with the matrix notation in (2.3) are urged to refer to an introductory
book on linear algebra, such as that of Noble (1969). There will be frequent
need for this shorthand notation, although the subject will not be much more
rigorous than understanding the equivalence of (2.3) and (2.4). It is also
helpful to sketch the N=2 case of two lines in the x, —x, plane and to recall
that the solution is merely the intersection of these two lines. The concept

extends to hyperplanes in N-dimensional space.
The Gauss—Jordan algorithm evolves (2.4) into the solution form

x;+04+0=b,,,
0+ X2+0=b24 » (2-5)
0+0+X3=b34,

by scaling adjacent rows so that subtractions between rows produce the zeros
in the columns in (2.5), working from left to right. Recall that scaling a given
equation or adding one to another does not change a system of linear
equations.

A specific example (Ley, 1970) begins with the “augmented™ matrix formed

from (2.4):

a;; ap Az Al .

Ay Ay 8y 8y |. (2.6)
dy] d3p d33 Ay

Consider the array

-2 -1 1 -1
[ T T 6}- (2.7
3
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First normalize the first row with respect to “pivot coefficient” a:

1 05 —-05 05
11 1 6
3 -1 2

This is done to avoid potential numerical overflow or underflow in the next
multiplication. In order to make the a,, coefficient zero, form a new row 2 by
multiplying row 1 by a,, and subtracting this from row'2. Also, form a new
row 3 by multiplying row | by a;, and subtracting this from row 3. The result

18

1 05 —05 05

0 05 15 551 (2.9)
0 -05 05 05

The next cycle is to normalize the coefficients of row 2 with respect to the
new pivol coefficient a,,:

(2.8)

i 0.5 —-05 05
0 1 3 11 (2.10)
0 -05 05 05
Note that after normalization the new coefficient is always
A~ ik dxy (2.1

where K is the pivot row, I is the new row being formed, and J is the
coefficient (column) being formed. Continue by forming new rows | and 3 in
(2.10%:

o1 3 N
00 2 6

In the final cycle, normalize the coefficients of row 3 with respect to
coefficient a4, :

(1 0 -2 -5
]. (2.12)

(10 -2 -5
0 1 3 11 (2.13)
10 0 1 3
Finally, form new rows 1 and 2 using (2.11):
1 0 0 1
01 0 2, {2.14)
0 01 3

Because (2.14) now represents the system in (2.5), the solution is in column 4:
x;=1,x,=2, and x,=3.

The BASIC language Program B2-1 in Appendix B implements this algo-
rithm. Note that new coefficients are generated according to (2.11) in program
line number 9330, Lines $140-9240 implement a feature not yet mentioned. If
any pivot coefficient is too small (taken to be less than or equal to 1E—6 in
line 9020), then the rows are interchanged. The reader is encouraged to first
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work this procedure on paper and then run Program B2-1 with the same data;
it is easy to appreciate the advantages of readily available computers! Pro-
gram B2-1 documentation also contains some preamble code to change the
input from the user prompting mode to input by READ commands related to
DATA statements. Statement numbers lower than 9110 in the original code
may be replaced by the alternate code, so that extensive input data need not
be flawlessly entered in real time,

Example 2.2. The DATA statements in Program B2-1 contain the element
values of the matrix in Figure 2.1. This system of 10 Kirchhoff current and
voltage equations is solved in 42 seconds on a Commodore PET computer.
The currents thus calculated should sum to zero at each node.

[ 1010 10 00 00 00 00 00 00 00 10
00 00 00 00 00 00 00 10 10 10 20
~10 00 00 10 00 ~10 00 00 00 00 00
00 00 ~10 00 10 00 00 00 —10 00 00
00 60 00 00 00 10 10 06 00 -10 00
00 00 00 00 00 00 —70 80 00 —100 00
00 00 00 00 -50 00 00 80 -90 00 00
00 20 ~30 00 -50 0O 00 00 00 0O 00
10 20 00 —40 00 00 00 06 00 00 00
00 00 00 -40 00 —60 70 00 00 00 00 |

S e’
Coefficient Column
matrix matnx
e J—

Augmented matrix
Figure 2.1. A six-node, 10-branch resistive network. [From Ley, 1970.]

2.2.2. Linear Equations With Complex Coefficients. There is a simple way to
apply any real-coefficient method, such as the preceding Gauss—-Jordan
method, to solve systems of linear equations with both complex coefficients
and variables. Without loss of generality, consider the following two equa-
tions:

aj3t+ibs

ay+jby ap+iby,
ay +jby  ayp+jby,

X +iy
%2+ ]y,

: (2.15)

ay;+]by;
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Write (2.15) as two equations in two unknowns in the same way that (2.3) and
(2.4) were related; then perform the algebraic multiplication of the complex
products and collect real and imaginary parts on each side of the equality
signs, Recall that in complex equations the real parts on the left of the equality
sign must equal the real parts on the right side, and the same holds true for
imaginary parts, Four equations result from these operations; in matrix
notation, they are represented as follows:

a;; —by oa; —by || x a3
by a;; by A2 |1 Y12 b3 _ ("2.16)
a; —by ap —by X% axn
by, ay by 4 1LY b

There is a general pattern in (2.15) and (2.16) for transforming a complex
augmented matrix, All odd-row coefficients in the new matrix {2.16) alternate
in sign, beginning with a positive sign and ending with a negative sign. All
imaginary coefficients (b;) in the even rows of (2.16) are the same as the
coefficients diagonally above, except for the sign. The solution of NC complex
equations requires a 2ZNC by ZNC+ 1 real, augmented matrix in the preceding
Gauss—Jordan algorithm.

BASIC language Program B2-2 in Appendix B requests the complex
coefficients in rectangular form, as in (2.15). The program then forms (2.16)
and outputs the solution in the sequence X,, y,, X;, ¥, etc. For example,
evaluate each equation in the system given in problem 2.10 by using hand-
held computer Program A2-1. Then enter the matrix and right-hand-side
coefficients into Program B2-2 to find the solution elements 1+33 and
-3 +j5.

As in the real-coefficient program, a READ and DATA modification
preamble has been added to Program B2-2 documentation to replace all
statements numbered less than 100.

Example 2.3. The DATA statements in Program B2-2 relate to the six
complex equations described in Figure 2.2. These are the mesh equations for
the sinusoidal steady-state condition of the network, and they are equivalent
10 12 real equations. The solution is obtained in 70 seconds on a Commeodore
PET computer. The six complex mesh eguations can be checked by using the
solved mesh currents and hand-held computer Program A2-1.

2.2.3. Linear Equations Summary. The Gauss-Jordan algorithm is reason-
ably fast, accurate, brief, and solves real and complex equations. Systems of
NC complex equations can be solved easily by a simple, programmable
transformation to an equivalent system of 2NC real equations. Programs are
commercially available to solve real systems of equations. However, adapting
these for the user’s purposes, especially incorporating them into other pro-
grams, is often quite difficult. Programs B2-1 and B2-2 should be suitable for
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Mesh equations for the sinusoidal steady state:
(1.25+j1.0), +50.51, = 50 +86.6
051, + (254 j4.2)1,— (10+2.2)1,=0
—(10+2. 0L +(3.6+15.3)L - (1.2+j1.6},=0
—(124j 1601, + (L7 +j2.2D)1, +j0.8T, - (0.5+j1.47)], =0
JOBL+ (27415}, —j2.31,=0
—{05+ 1471 — j231,+(0.5+j1.27) ;=0

The corresponding augmented matrix is therefore given by:

(1.25+j1.0) 0.5 0 0 0 0 (50+86.6) ]
j0.5 (25+j42)  —~(1.0+j2.2) 0 0 0 0
0 —(10+j2.2)  (36+j53) —(L2+jl.6) 0 0 0
0 0 —(12+j1.6)  (1.7+j227) o8 —(0.5+1.47) 0
0 0 0 0.8 (27+j1.5) —j2.3 0
o 0 o ~(0.5+j147)  ~j2.3 (0.5+j127) 0

Figure 2.2, A six-mesh network; v=350+]86.6, | radian/second. [From Ley, [970.]

special user applications. Further application of Gauss—Jordan Program B2-1
will be made in Section 2.5,

2.3. Romberg Integration

Numerical integration, or quadrature, is usually accomplished by fitting the
integrand with an approximating polynomial and then integrating this exactly.
Many such algorithms exhibit numerical instability because increasing degrees
of approximation can be shown to converge to a limit that is not the correct
answer. However, the simple trapezoidal method assumes that the integrand is
linear between evenly spaced points on the curve, so that the area is the sum
of 2 small trapezoids for a large enough i (sec Figure 2.3). The trapezoidal
method is numerically stable. There are other numerically stable integration
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fla)
f{x)

f{a + h)
f(b)

Figure 2.3. The trapezoid rule for numerical integration.

methods, such as Gaussian quadrature, based on weighted-sample schemes,
but calculation of the weights consumes time and memory. The latter methods
pose difficulties in recursive calculation of estimates of increasing order, thus
limiting their use as computer aids.

The Romberg integration method first approximates the integral as the area
of just one trapezoid in the range of integration, then two, continuing for 2!
evenly spaced trapezoids until a larger i does not change the answer signifi-
cantly. The other main feature of the Romberg method is deciding how many
trapezoids are enough. The width of each trapezoidal area starts at h=>b—a,
then h/2. The areas found for these values are linearly extrapolated versus h?
to h=0; when the estimate using width h/4 is found, the extrapolation to
h=0 is quadratic, and this is tested against the linearly extrapolated answer
for convergence. There is a sequence of estimates for decreasing trapezoid
widths and increasing degrees of extrapolation until either convergence or a
state of numerical noise is obtained. The Romberg method is very efficient,
stable, and especially suitable for digital computing. However, the integrand
must be computed from an equation, as opposed to using measured data.

In the next four sections it will be shown how the formulas for trapezoidal
integration, repeated linear interpolation, and the Romberg recursion are
obtained. A BASIC language program will then be described, and an example
will be considered. Finally, a once-repeated trapezoid rule will be shown to
yield Simpson’s rule for integration; this will be used in Chapter Four.

2.3.1. Trapezoidal Integration. The integration problem is to find the value
of the integral T given the integrand f(x) and the limits of integration a and b:

T(a, b)=fbf(x) dx. 217

Summing the two trapezoidal areas in Figure 2.3 yields

fotfion | faentfy
7 T2 )

T=h( 2.18)
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and it is convenient o rearrange (2.18) as
T=h[(f,+f, n+ 1) —3(f,+f) ] (2.19)

Similar equations for four trapezoids can be written and then expanded to
obtain the general rule for 2' trapezoids:

To,iﬁhi{( s r) —%;[f(a)+f(b)]}, e
k=0

where the trapezoids have the width

(b-2)
-
The error in the trapezoid rule estimate is proportional to h?. The interested
reader is referred to McCalla (1967) for more details. The zero subscript on T

in (2.20) indicates that the estimate was obtained without the extrapolation
discussed next, i.e., a zero-order extrapolation.

h.

(2.21)

2.3.2. Repeated Linear Interpolation and the Limit. A linear interpolation
formula will be derived in terms of Figure 2.4. Equating the slopes between
the two line segments in Figure 2.4 gives

74 _ %4 (2.22)
X—X, Xy—X; |

which reduces to the standard interpolation (or extrapolation) formula;

_ D= x)—q{x,—X)
XX )

a(x) (223)

Now suppose that the q(x) function is the integral function T, and two
particular estimates, Tj; and T,;,,, have been obtained by (2.20). For the
function of h, T, ;(h), use (2.23) with the interpolation variable h%:

 Tou (202 = To (b, — b

1,1
hiz_hr‘zﬂ

: (2.24)

L}

1

i

I

|

]
- —
X

b - m - -

1

%
Figure 24. Interpolation of a real function of a real variable.
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where T, ; indicates a degree-1 (linear) extrapolation. To extrapolate trapezoid
widths to zero, set h equal to zero in (2.24) and simplify the result by using
(2.21):

- 3T0.i +1 + TU.i+ 1 TO.i

T,; 2.25
‘ 13 22__ 1 ( )
The linear extrapolation in (2.25) is rewritten in a form for later use:
T0.i+ 1~ Tos
T, =Tois+ —y (2.26)

This has an error from the true integral value proportional to h, and is thus a
more accurate estimate than the individual trapezoidal estimates.

Again note that the linear extrapolation is versus h? and not simply versus
h; the reasons for this choice and the following general formula are explained
by McCalla (1967) and, in more detail, by Bauer et al. (1963). Briefly, the
trapezoid rule estimate may be expanded as a finite Taylor series with a
remainder in the variable h, the true value being the constant term. Since the
error is of the order h% the remainder term is proportional to f”(§)h?, with &
somewhere on the interval h. McCalla (1967, p. 289) argues that f”(£) should
be about equal over h; and its subdivided intervals h, ,=h;/2. This leads
directly to (2.25), thus justifying the linear extrapolation to zero of successive
trapezoidal estimates.in the variable h2.

The scheme is simply this: one, two, and then four trapezoids in the range
of integration enable two linear extrapolations, as described. The two extrapo-
lated results can then be extrapolated again for a new estimate. McCalla
{1967y shows that repeating linear extrapolations once is equivalent to qua-
dratic (second-degree) extrapolation. The concept of estimating performance
at a limit, here at h=0, is known as Richardson extrapolation; it will appear
again in Chapter Five.

Using this rationale, a general expression for Romberg integration is
obtained from (2.26):

Tk‘j=Tk—1\j+1+

T, coi~T, . P
k—1j+17 1y LJ, (k+_] i, (227)

%] j=i—-1,i-2,...,1,0.

Index k is the order of extrapolation, and there are i bisections of the
integration interval (b—a). The compactness of (2.27) makes it ideal for
programming. The table in Figure 2.5 illustrates the Romberg extrapolation
process. The step length, or trapezoid width, is shown in the lefi-hand column.
The brackets indicate pairs of lower-order estimates that produce an estimate
of next higher order by linear extrapolation to step length h=0. Then the
better estimates are similarly paired for extrapolation. Accuracy is ultimately
limited, because the estimates are the result of the subtraction of two numbers.
Eventually, the significant digits will diminish on a finite word-length com-
puter, and the process should be terminated.
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Truncation Error O(h) O(h} ) Oth®) Othd)-+-
Step i 0 1 2 3
Length b; i
b-a=hy 9 T0.0—1 Tig Tz.0-| LT

";a =h, 1 Ty, T”—Jl Tz‘,_]

h=1 0.750000000 0.694444445 0.693174603 0.693147478 0.693147182

h=035 0.708333333  0.693253968 0.693147902 0.693147183
h=0325 069702381 0.693154531 0.693147194

h=0.125 069412185 0.693147653 f(x)=% a3 2‘

Figure 2.5, Table of T values in the Romberg integration algorithm.

2.3.3. Romberg Integration Program. BASIC language Program B2-3 in
Appendix B implements (2.27), as illustrated in Figure 2.5, The only storage
required is in vector (single-subscript array) AU(-). The integrand function
should be coded by the user beginning in line 10,000; the values returned by
the user’s subroutine are expected to be labeled by the variable name “FC.”
The table of values in the format of Figure 2.5 can be compared to the
program’s computing sequence by adding lines to Program B2-3, as shown in
Table 2.1.

Run the example in the subroutine programmed in line 10,000 and after.
The integrand is 1/x, so that the integral is known in closed form, namely ln x.
Input limits a=1 to b=2, so that the answer should be In2. The progress of
the Romberg algorithm for this example is shown in Figure 2.5, and the
answer at termination is underlined. Parameter ND=11 in Appendix-B Pro-
gram B2-3 limits the algorithm to a2 maximum of 1025 evaluations of the
integrand function. The accuracy parameter EP=1.E—5 usually produces at

Table 2.1. Statements to Output the
Romberg Table

9062 PRINT”II AU(IIY”
9064 PRINTH; AU(])
9282 PRINT

9284 PRINTH; AU(I)
9352 PRINTIIL; AU(ID)
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least six decimal places of true value. The value for In2 in Figure 2.5 is off in
the ninth place.

2.3.4. Simpson’s Integration Rule. The order of truncation errors for re-
peated linear interpolation is shown in the top row of Figure 2.5. The j=0
column is the trapezoid rule, and the j=1 column happens to be the well-
known Simpson rule. The other columns represent increasing orders of accu-
racy, but they do not coincide with other frequently used methods, such as
Weddle’s rule (see Ley, 1970, p. 246). Simpson’s rule is to be applied in
Section 4.6, where independently incremented function data will be integrated.
Therefore, it will be convenient to obtain a closed formula for Simpson’s rule,
comparable 1o (2.19) for the trapezoid rule. Recall that the area in Figure 2.3
is an estimate of an integral of f(x)} from a to b; call it Tj;. From Figures 2.3
and 2.5, Tyo=h{f, +f). So, with i=0 in (2.26), T, , becomes

Tl.0= %(fa+4fa+h+fb)» (223)

where

N

b-a, (2.29)

. h >

This is Simpson’s three-point rule.

The general formula for Simpson’s rule can be recognized by first finding
the five-point rule, namely, T,,, using h,=h/2. Extending the analysis
evident in Figure 2.3, the five-point trapezoid rule is

Top= h( Shtlnnthnthomt Zf ) (2.30)
Substituting (2.30) and (2.28) into (2.26), with i=1, yields
h/2
T, = / —(F o+ 2+ A o HE) (2.31)

Deducing Simpson’s rule from (2.29) and (2.31) and putting it into standard
form, using variable t, we obtain

tn
f (1) dtz%—t(fo+4f1+2f2+ oo df,_ HE), (2.32)
to

where n is even and

A=22 (2.33)

=

Recall that errors in the trapezoid rule were proporuonal to (AtY. Simpson’s
rule errors are proportional to (At)*.

2.3.5. Summary of Integration. Romberg integration is based on numeri-
cally stable trapezoidal integration. The number of trapezoid sections neces-
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sary to produce an accurate estimate of the integral value is obtained by
repeated linear extrapolations. The recursive algorithm is compact and re-
quires only one small vector in memory. The repeated extrapolation to zero of
the squared trapezoid width (h?) is the classical method of Richardson. The
first extrapolations of pairs of trapezoidal estimates produce Simpson’s rule
estimates. Subsequent higher-order estimates do not coincide with other
well-known integration rules, but they are well behaved and can be calculated
in an efficient manner,

24. Polynomial Minimax Approximation of Piecewise Linear Functions

There are many instances in engineering when a mathematical expression is
required to represent a given graphic function, This is often required to be a
real function of real variables. (Rational complex functions of a complex
variabie are the next topic). Many methods require the approximating func-
tion to pass through the given data points, perhaps matching slopes as well.
Others require the function values at selected, independent-variable values to
differ from given function values by a minimum aggregate error, e.g., least-
squared errors (LSE). The minimax criterion specifies that the approximating
polynomial minimize the maximum magnitude in the set of errors resulting
from not passing through the given data points. In ideal cases, the minimax
criterion results in “equal-ripple” behavior of a plotted error function (see
Ralston, 1965, for more details).

This section describes a minimax approximation to a function that is given
graphically by a series of connected line segments, i.e, a piecewise linear
function. This function description is often convenient because involved
integral relationships are simplified considerably. (This is also the case in
Section 6.7). However, the approximation technique to be described in this
section could easily be adapted to numerical integration of analytical func-
tions by using the Romberg integration just described. Either way, this
technique relates polynomials in x (power series) to weighted summations of
classical Chebyshev polynomials of the first kind. These truly remarkable
functions appear throughout mathematics, as well as in several places in this
text. The basis of this method will be described, and a BASIC language
program with two variations will be provided.

2.4.1. Chebyshev Functions of the First Kind. Chebyshev functions of the
first kind can be expressed in polynomial or trigonometric forms. The former
are given in Table 2.2, where T{x) are Chebyshev functions of the first kind.
Chebyshev functions of the first kind oscillate between amplitudes +1 and
—1 in the interval —1<x< +1, as shown in Figure 2.6. This equal ripple is
crucial, but it is only one of many interesting characteristics.

The polynomials in Table 2.2 can be calculated from a single recursive
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~ Table 2.2. Chebyshev ‘Polynomials
of the First Kind

Tix)=x

Tyx)=2x>~1
Ty(x)=4x"—3x
Taix)=8x"—8x+1

Ts(x) = 16x°—20x* + 5x
Te(x)=32x%—d8x*+ 18x*— 1

Figure 2.6. Low-order Chebyshev functions.

formula, and they are equivalent to the following trigonometric expressions:
T,(x)=cos(icos™ 'x), (2.34)
where —1<x< +1, or
T(x) = cosh(i cosh ™ 'x), (2.35)

where [x|> 1. The interested reader can consult Guillemin (1957) for more
details,

24.2. Chebyshev Expansions. Given some real function g(x) over a range of
real x values, it is desired to find some approximating polynomial in power
sertes form:

f(X)=hg+bx+bx>+ - +b,x". (2.36)

If g(x) is specified at a finite set of x, values, then the objective is to minimize
the error, ‘

E =max|g(x,) — f(x,)[, (2.37)

for r=1,2,...,M. The unknowns are the n+ 1 coefficients by, by,...,b,. For

reasons of scale and formulation, it is necessary to work on the range
—1<x< +1. Suppose that the given function g(x) is defined in the variable y
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over the range a <y < b. Then the linear translation

2y—(b+a)
= 23
* b—a (2.38)
relates g(y) values to the chosen x range. Once an approximating function,
k(x), is obtained, the inverse relation of (2.38) can be used to find f(y).

Example 24. Suppose that a given function, g(y), is defined by samples over
the range from a=5 to b=15. Then (2.38) reads x=(2y~-20)/10, so that
every value of g(y) can be considered as g(x). Once the approximating
function f(x) in (2.36) is determined, then every value of f(x) can be consid-
ered as f(y) by the inverse relation y=35x+10.

Usually, the problem of finding the unknown coefficients in (2.36) is badly
conditioned, i.e., the solution is difficult on a finite word-length computer.
Therefore, another remarkable property of Chebyshev polynomials will be
utilized by redefining the approximating function in terms of a weighted sum
of Chebyshev polynomials:

f(x)y=agTo+a, T (x)+a,T,(x)+ - +a,T (x). (2.39)

The concept of weighting is seen by referring to Table 2.2: there are some
scaling coefficients (a,) that multiply each Chebyshev polynomial, Ti(x), so
that their sum suitably approximates the given polynomial g(x) over the range
—1<x< +1. The set of unknowns that is chosen for solution contains all the
a;, i=0,1,...,n, and this problem is almost always well conditioned. Once
these are known, they can be used directly in the form (2.39), or the b,
coefficients in (2.36) can be found by collecting contributions to coefficients
of like powers of x (see (2.36) and Table 2.2). There is a simple recursion to
convert the a; set to the b, set (see Abramowitz and Stegun, 1972). The
algorithm requires little coding. Determination of the a, coefficients in (2.39) is
classical (see Vlach, 1969, p. 176):

f+ 1 g(x)T (x
e

where Ty=1 is defined for convenience. This integral can be evaluated
numerically for any analytic function g(x), since the integrand is thus known
(see Section 2.3). Even so, it may be suitable to approximate the given
function or a given discrete data point set by connected line segments of
arbitrary lengths. Then the integration in (2.40) is analytically simplified, as
shown in the next section.

x, i=0ton, (2.40)

2.4.3. Expansion Coefficients for Piecewise Linear Functions. Integration of
{2.40) can be avoided by assuming that the given function g(x) is composed of
linear segments:

g(x)=kx+gq, (241




22 Some Fundamental Numerical Methods

y‘
- Y2
I
K=
ks, qs
V1
X, %y Xg Xg Xg

X
Figure 2.7. Piccewise linear function to be approximated. [From Vlach, 1969 ]

where X, <X <X, as shown in Figore 2.7. Tt is also helpfal 1o introduce a
new variable, angle ¢, that is clearly related to(2.34):

X=Cosd. (2.42)
Then (2.41) and (2.40} yield

kx+q)Ty(x
=2 [ BT 0
7% 1 —x?
and (2.42) and (2.34) in (2.43) yield
a, = :—zjq"“(k cos ¢ cos i+ q cosig) dé. (2.44)
' T Jg

This integrates eazily for i=0 and i=1. For i=2,...,n it is

sinfi+ | sin(i— 1) 1% inig 1
o, = —k[ 20T DE  SMAZDR_2arsinie)’ ;) )
Toow i+1 i—1 o 7 1,
Each a;, is the contribution to the (2.40) integral by each trapezoid between x;

and x,,, in Figure 2.7. The final expression for the a; coefficients in (2.39)
applicable to piecewise linear g(x) is

M-1 :
a= 3 a, (2.46)

r=1

where M is the number of given g(y) data pairs.

244, A Minimax Approximation Program. Program B2-4 in Appendix B
performs the preceding calculations from given sets of data in the range
—1<x< + 1. The end points at x=—1 and x=+1 must be included. The
output first shows the a, weighting coefficients for the Chebyshev functions in
(2.39) and then the b, power series coefficients of x in (2.36) for various values
of degree u.
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Table 2.3.  The Data Pairs Defining a
Piecewise Linear Function

X -1 0 +1
y i) 0.6 0.6

Tabte 2.4. Chebyshev and Power Series
Coefficients for n=4

a,=0.409014 b= (.561803
ay= 030 b,= 030
ay=—0.127324 by = —0.458366
a;= 0. by= 0.

as= 0.0254648 by= 0203718

From Viach, 1967. ©€1967 1EEE.

fix)

[
-1 0 A
X

Figure 2.8. Degree-4 approximation 1o a three-point function. [From Vlach, 1967. © 1967 TEEE.)

Example 2.5, Consider the data given in Table 2.3. Input these into Program
B2-4 and ask for polynomial degrees 4 through 6. The program will display all
seven coefficients for the Chebyshev expansion first, then the degree-4 power
series coefficients. These are shown in Table 2.4, and the graph of either of
these representations is plotted in Figure 2.8, Note that the program also lists
the approximating function values and the errors at each sample point in x.

Program B2-4 documentation also indicates two variations on the coding,
also given by Vlach (1969). These make the data input and calculations more
efficient when strictly even or odd functions of x are approximated. The data
samples must be on the closed (end points included} interval 0<x < + 1. Run
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the modified programs with three data pairs (o approximate a constant and a
45-degree line for the even and odd cases, respectively.

2.4.5. Piecewise Linear Function Approximation Summary. Arbitrary real
functions of real variables can be expressed as a linear weighted sum of
Chebyshev polynomials of the first kind. The coefficients are determined by
an integral formula, but for piecewise linear functions the Chebyshev coeffi-
cients are found by an aigebraic formula. Chebyshev polynomials have many
amazing characteristics, one being the minimax error property (see Hamming,
1973, for a commentary).

A linear (weighted) summation of Chebyshev polynomials is easily restated
as a power series polynomial in real, independent variable x. Since these
approximations are found on the normalized interval — 1 <x< +1, a simple
linear mapping is required in the usual case where given functions are defined
otherwise. It is not commoniy observed, but the approximation described in
this section has close connections with Fourier series approximations, which
are more familiar to electrical engineers. Many other closed-form approxima-
tions are related to the method described (see Ralston, 1965, p. 286).

2.5. Rational Polynomial LSE Approximation of Complex Functions

There are many applicatiofs in electrical engineering for complex curve
fitting, i.e., finding a complex function of a complex variable soch as fre-
quency. Examples include modeling an antenna impedance versus frequency
for interpoiation or for synthesis of an equivalent network; the latter might be
used as a “dummy load” in place of the real antenna. Another example is
approximation of a higher-order-system transfer function by a lower-order one
over a limited frequency range.

A rational polynomial in complex {Laplace) frequency s has more approxi-
mating power than an ordinary polynomial in s and can be an intermediate
step to synthesizing an equivalent network. Such rational polynomials take the
form

3 agta;s+as’+ - +asf
l+b,s+bysi4 - +bs"’

Z(s) (247

where s =jw will be used interchangeably. The relationship between functions
of complex s and real w is rooted in the concept of analytic continuation,
which is described in most network synthesis textbooks (see Van Valkenburg,
1960), Although the method to be presented will generally assume that s=jw,
it also applies to the less general real-variable case s’= — w? for approximating
even functions.

The kind of problem to be solved is shown in Figure 2.9; it was given by
E. C. Levy (1959), who published the algorithm to be described in this section.
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o N A S R E R B R B R
10 — ,’\\ - 80
1o 1
Phase angie 40 2
o o
E 0 =
g §
-4 &
{
Magnitude T - ~o -80
ol L 1 1 ] L1 | 120
0.1 02 0.4 1 2 4 10 20 40 100
Frequency cw (in radians/second)
Frequency response characteristics of a dynamic system with
a transfer function given as
Fljw) = 1+jw '
1+2(0.5)(w/10) + (jw/ 10
Magni- Phase
k W) tude Angle R, 1
o 0.0 1.00 0 1.00 0.000
1 0.1 1.00 5 1.00 0.090
2 0.2 .02 16 1.00 0.177
3 Q.5 [.i2 24 1.02 0.450
4 0.7 .24 k]| 1.05 0.630
5 [.0 .44 39 1.10 0.900
6 20 227 51.5 141 1.78
7 4.0 4.44 50.5 2.82 342
8 70 8.17 28 7.23 382
9 (0.0 10.05 -6 10.00 - 1.00
0 20.0 3.56 —59 2.85 -4.77
I1 40.0 255 ~76 0.602 -2.51
12 70.0 1.45 —82 0.188 ~143
13 100.0 1.00 —84 0.091 - 101

R, =(Magnitude at w,} X cos(phase angle at w,)
I, =(Magniude at w,) X sin(phase angle at w,).

Figure 2.9. Frequency response and discrete data for a second-degree system. [From Levy, etc.,
IRE Trans. Auto. Control, Vol. AC-4, No. 1, p. 41, May 1959. © 1959 IRE (now IEEE))

The table of values is the given data. Although measured data are often
inaccurate (noisy), this particular data set was compuied from the F{w) values
shown in Figure 2.9 for purposes of illustration. The graph shows the magni-
tude and angle components of the function. The technique will be to approxi-
mate only the magnitude function by finding the unknown coefficients of
(247,
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The error criterion will be the weighted least-squared-error (LSE) function
over the frequency samples 0, 1,...,m:

E= 3 [Wial] (2:48)
k=0
where
&= F(w,) — Z(wy)- (2:49)

The complex numbers F(w,) are the given data to be fitted, i.e., the target
function. The complex approximating function Z{w,} is given in (2.47). The
W, values in (2.48) are the weighting values at each frequency e,. The
necessary condition for a minimum value of E (generally not zero) is that the
partial derivatives of E with respect to the coefficients ag,ay,...,a,, by,
b,....,b, in {2.47) be equal to zero. A set of simultaneous nonlinear equations
will result if the formulation in (2.48) and (2.49) is used with independent
weights W, . The equations are badly conditioned and extremely difficult to
solve. Gradient optimizers (Chapter Five) usually are not successful in finding
a solution (according to Jong and Shanmugam, 1977).

E. C. Levy’s method will be described. It employs a weighted LSE objective
function similar to {2.48), except that the weights are dependent functions.
This produces a system of simultanecus linear equations that are readily
solved by the Gauss-Jordan program described in Section 2.2. The derivation
will be outlined, the matrix of linear equation coefficients will be tabulated,
and a brief BASIC language program will be furnished to calculate the four
kinds of matrix coefficients. An example will be provided here, and others will
be given in Section 6.7.

2.5.1. The Basis of Levy’s Complex Curve-Fitting Method, The definition of
Z(s) in (2.47) is expanded, with s=jw, to produce a set of linear equations:

(Ro— 2,07 +aw’+ -+ ) +jufa, - agei+aget+ )

Z(s)= , 2.50
) (1=byw® +byw*+ - Y +jw(b, —byw’ + bew*+ -+ +) (229)
which is further defined by
A a+jop _ N{w)
)= a¥jor ~ D) (2.51)

The real terms in the numerator and denominator of (2.50) are even functions
of frequency, and the imaginary terms are odd. Quantities in parentheses are
equated by relative position with the variables appearing in (2.51), where the
numerator and denominator functions are also identified.
With these definitions, the unweighted error function in (2.49) becomes
N(w)
s(w) = F(w) - —.m . (252)
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When (2.52) is multiplied through by D{w), the squared magnitude is
ID(wje(w)|* = D(w)F(w)~N(w) (2.53)

It is important for the reader to understand the following point in order to
apply this scheme to practical situations. Compare {2.53} 10 (2.48) and (2.49);
(2.53) shows that the “weighting” at any frequency is the magnitude of the
approximating function’s denominator. Suppose that a rational approximating
function has been found; ordinarily its denominator is large when its value is
small. The large denominator means that the function was most heavily
weighted in the frequency “stopband.” This weighting can be offset by taking
more samples at “passband” frequencies than elsewhere, which is the price
paid for making the method tractable.

The equations to be solved are found by first extending the definition of the
target function Flw) appearing in (2.49) and (2.52):

F(w)=R(e)+]jI(w). (2.54)
Then (2.48), (2.51), and (2.54) yield

m
E = kE_:Q [(Rk"k - wkaIk - ak)2+ (‘*’kaRk + Oka e wk Bk)z]. (2.55)

So the necessary conditions for minimum E,

ggi —0= % for all j and j, (2.56)
can be written directly from (2.55) using the relations defined by (2.50) and
(2.51). A large amount of ordinary calculus and algebra is involved in
reducing the resulting' linear equations to the compact form given by Levy
(1959). The resulting matrix equations are given in Figure 2.10 in terms of the
coefficients defined by (2.57).

m m
A= E ‘*’lrcls Sy= 2 "’;':Rk:
k=0 k=0 (2-57)
m m
To= > I, Uy= > wp(RE+17).
k=0 k=0

2.5.2. Complex Curve-Fitting Procedure. The basis of the procedure appear-
ing in Figure 2.10 and (2.57) may seem complicated at first glance. This is
remedied by a brief explanation and an example for the problem shown in
Figure 2.9. The equations in (2.57) have been placed in BASIC language
Program B2-5 in Appendix B. The F(w) real and tmaginary components are
defined as R(w) and I{w) in (2.54); they are given versus frequency w in the
data shown in Figure 2.9 and are used in (2.57). Program B2-5 reduces this
calculation to entering the m+1 data triples w,, R,, and I,. The matrix
equations in Figure 2.10 have as unknowns the set of a and b coefficients that




A O
0 A
A0
0 A,
Ay O
0 A

T, - S‘.‘.
S, T,
T3 -5,
s, T,
T, -8
S Ty
T, -8
L

=X, 0 A, O
] Xy 0 A
—A4 0 x ©
0 A 0 A
—Ag 0 A 0
0 —Ag 0 Ay
-T, S Ts —35
-8 -Ts S T,
—Ts 5 T9 -5
-8 -T; 8 Ty
=T, S Ts —3p
-8 - Ta Sio Ty
-Ts

Tll __SIZ

T 8 -T, -8 Ts 5 -T, ! 5o
-5 T, $; -Ts -8 T, S; a; T,

T, 8¢ ~Ts —8 T, 8 -T, a, S,
-3, Ts 5 -T, -8 T, Sio a, T

Ts 8 -T: -5 Ty 8 Ty a4 54
-8 T 83 —Ty =5, Ty S as Ts
U, 0 -y, o U, 0 -, b, 0
0 u, 0 -Us; 0O Uy 0 b, U,
u, 0 -y 0 U 0 U by 0
¢ u, 0 -Ug 0 Upg © by U,
Ug 0 —Uy 0 Uy 0 -Up, bs 0
¢ U 0 -~Uy 0 U, 0 bs Us
Ug 0 -U, 0 b, 0

U, 0

Note: The upper-left and lower-right submatrices must be square.

Figure 2.10. Levy's matrix of linear equations.
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determine (2.47). How many of each are contemplated becomes the basis for
partitioning and selecting the equations in Figure 2.10. This is best shown by
an example.

Example 2.6. Suppose that the given sampled data are those in Figure 2.9
and the rational polynomial required to fit these data is

ag+a,s+a,s’

Z(s)= -
) 1+b;s+b,s?

(2.58)

There are five variables: ay, a,, a,, b;, and b,. The vector (column) of
variables in Figure 2.10 appears just to the left of the equality sign. The
horizontal dashed partition line should occur just below a,, and the bottom of
the matrix just below b,. The vertical dashed partition line is placed so that
the upper-left submatrix is square. The set of linear equations appropriate for
{2.58) is thus

FAO 0 A {l T, qu-ao-‘ |—Soﬂ
0 Ay 0 1-8 Tilla T,
Ay 0 A | Ty S, ||a|=]S, | (2.59)
T, -8, ~T,) U, 0 |[b | |0
R ~8,1 0 Usgfba]| |{Ua]

Now Program B2-5 is used with the 14 data triples from Figure 2.9; the h
subscript will vary from 0 to 4, the limit being obtained by inspection of
entries required in (2.5%). In this case, the program output is shown in Table
2.5. The system in (2.59) is then solved by Gauss—Jordan Program B2-1, and
the resulting a and b coefficients are also listed in Table 2.5 for use in (2.58).
Of course, these rational-polynomial coefficients agree fairly well with those in
Figure 2.9 because the problem was constructed for confirmation purposes.

Table 2,5. Example 2.6 Levy Coefficients

h A Sa T, U,

0 14, 31361 05470 241.1188

i 255.5 270.695 —361.3096 2703.4268

2 17670.79 5341.3495 — 22880.6508 57201.6953

3 1416416.48 229485.25 ~ 1698745.45 2540544.42

4 126742674 15729105 — 142523023 175956492
3,=0.9993 a,=1.0086 ay= — 1.59E—5

bo=1 b, =0.10097 b,=0.0100
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2.5.3. Summary of Complex Curve Fitting by Rational Polynomials. Levy’s
method for fitting complex data at sampled frequencies in the weighted
least-squared-error sense is straightforward. The weighting versus frequency is
inversely proportional to the value of the rational polynomial thus found.
Since the polynomial should roughly correspond to data values to be of any
use, nonuniform samples versus frequency should produce emphasis on the
frequencies where the magnitude of the complex data is least. For example, if
a lowpass function is to be fitted over several decades, then the fit to the
passband {(lower) frequency data may be poor unless samples are spaced more
closely in this frequency range. Proposed iterative schemes have been based
on a sequence of solutions similar to those presented here; they tend to
converge {0 a situation equivalent to uniform weighting (see Jong and
Shanmugam, 1977, and Sanathanan and Koerner, 1963). However, equal
weighting may still require some experimenting. Thus the built-in inverse
weighting does not seem too severe a limitation.

The method requires the user to input real and imaginary data parts, with
the associated frequency, into Program B2-4 to obtain coefficients for a
system of linear equations. The system’s matrix elements are partitioned from
a general matrix format (Figure 2.10) according to the approximating rational
polynomial’s numerator and denominator degrees. The system of linear equa-
tions is then solved by Gauss~Jordan Program B2-1 or by any other program
that solves linear systems of real equations. This method will play an impor-
tant role in Carlin’s broadband impedance-matching technique in Section 6.7.

[

Problems

2L If

Z~Z,
=zrzs

where Z,=2+33, find p when Z=3—j5. |
2.2, Given that V=V +jV; and I=1_+]I;, show that
' Re(VI*)=Re(V*])=V I +V][.
2.3. Show that |Z)*=2Z*.

2.4. Show that 2 Re(Z)=Z+Z*.
25 H

V+ZI V—2Z*1 .
a= , b= , and Z=R+j)X,
2yR 2R

show that |aj*—|b[*= Re(IV*).

F




2.6.

2.7.

2.8.

2.9.

2.10.

211

212

Prablems K}

I
_al+a,
T aZ+ 1’
find the derivative w' =dw/dZ.
If z=x+jy and 2P=X_+jY ,
(a) Calculate z2=(x+jy}x +jy).
(by Find X, Y, X;, and Y.
{c) Given
X, =2xX_  ~(X*+¥)X,_2.
Y, =2xY_ ~ (2 +¥)Y, ;.
find X, and Y.
(dy Do (a) for p=3 and (¢} for k=3.

—2 =1 11[1] |bua
1 1 11j2]=]bay
3 1 —-11[13 by,

find the values of b,,, b,s, and by,.

Given

Solve the following system for x, and x, by the Gauss—Jordan method,
showing the sequence of augmented matrices.

4x, +Tx, =40,
6x, + 3x,=30.
Given
23 —4+j7 1431 [a;+ibys
6451  8—i10 || —3+j5] |ay+iby |

find the values of a3, b3, a5, and by,
For the matrix equation
1+j2 243 33— 11 1-j3 z,
3+ =3-31 6+91ll6-j7|=|zy |
—2-j§3 =3+32 7+j512+;3 Z3
find z=(z,,7,,2,)" numerically.
Given
[0.5 /60 11 /250 H 2 /40 ] [m, &}

03 /0 09 /—60{02 /=10| |m, /8,

find the values of m), §,, m,, and 4,.
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2.13. Write the trapezoidal integration formulas for T, Ty, and Tg,. Then
use extrapolation formula (2.27) to find Simpson rules T, g and T, ,.

2.14. Calculate
f Sxe* dx
3
numerically, using:

|

|

|

|

| (a) Simpson’s rule with five samples.
| (b) The trapezoidal rule with three evenly spaced samples.
| {c) The trapezoidal rule with five evenly spaced samples.

|

(d) The Romberg extrapolation to the limit, using the preceding
results in (b) and (¢) above.

2.15.  Evaluate Chebyshev polynomials T (0.8} and T,(3.1) by:
(a) Horner’s nesting method

T(x)=ap+x{a, +x[a,+x(...)]}.

(b} Trigonometric or hyperbolic identities.
. {¢) Numerical recursion

Ti(x)=2xT, _,(x)— T;_(x}.

2.16. Chebyshev polynomials of the second kind are defined by
P(y)y=yP,_,—~P,_,.
where P, =1 and P,=y. Find P, P,, P., and P, numerically for y=1.5.
2.17. Find an expression for x at the n—1 extreme values of

T.(x)=cos(ncos™ 'x).

2,18, Write the power series equivalent to
P(x) =T (x)+4T,(x) + 2T3(x) — T4(x)
=ag+ax+ax +ax +axh;
in other words, find the a; coefficients. See Table 2.2 for T,.

\
2.19. Suppose that q(y) is defined on —7<y<25. ¥ (q)x is defined on i
—1=<x<1, find the value of y corresponding to x=0.5 using the linear

mapping in (2.38).

220, The three points

X -1 —0.5 +1
g(x) 0 ] 0

define a piecewise linear function that can be fitied in the minimax




221

2.22,

2.23.

Problems 33
sense by the sum of first-kind Chebyshev polynomials T(x):
f(x)y=a,Ty+a,T,;+a,T,+a,T,+a,T,.
Find the value of a,.
Given the function of two variables
F(X,,%;) =612 —60x, — 132x, + 13x] — 10x,x,+ 13x3,

find the values of x; and x, at the extreme value by equating the first
partial derivatives to zero.

Given the fitting-function form
ap+as+a,s’

Z(s)= N
) 1+b,;s+b,s2+b,s’

write the third equation from the appropriate set from Figure 2.10.

Discrete, complex numerical data can be fitted versus frequency by a
rational polynomial. For the polynomial

ap+a,s+a,s’ +a,s+ast
1+b;s+bys’+ by’ +b,s'+bes®

Z(s)=

write the first and last linear equations that result from Levy’s method
in terms of constants A, S;, T,, and U; fori=0,1,....




Chapter Three

Some Tools and Examples
of Filter Synthesis

This chapter provides the necessary computing aids for manipulating polyno-
mials in Laplace complex frequency s. These programs are explained and then
appliéd to a meaningful sequence of modern network synthesis steps by way
of example. The result is a sense of confidence, case, and insight that is
difficult to obtain by a purely academic approach to either computing
methods or synthesis.

A reliable root finder based on useful, important principles begins the -
chapter. The synthesis process involves assembly as well as disassembly
{factoring) of polynomials; so, programs that form polynomials from factors
and by the polynomial four functions (add, subtract, multiply, and divide) are

" considered next. Also, programs for continued and partial fraction expansion
are presented with some applications.

By the end of Chapter Three, those who have used the programs, tried the
examples, and followed the fairly routine mathematical steps should be able to
appreciate more detailed explanations of synthesis methods, for example,
those of Temes and Mitra (1973).

3.1. Complex Zeros of Complex Polynomials

Finding complex zeros of polynomials ranks, along with solution of linear
systems of equations, as a fundamental tool in engineering analysis. Textbooks
usually give examples that factor by the quadratic formula or inspection,
leaving the serious student to do his own numerical root finding by some
system routine on a large and perhaps inconvenient computer. Moore {1967)
described a conceptually interesting root finder that works well and fits easily
into small computers. This is the time to eliminate the frustration or missed

M
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opportunity that yesterday’s student suffered upon encountering the instruc-
tion, “In general, this will have to be done numericaliy.”

The problem is to find the n values of z that make the following polynomial
equal to zero:

f(z)= k§=j0(ak +jb,)z*=0, (3.1

The coefficients of this summation, a power series in z, may be complex,
Certainly the independent variable z and the roots in z may be complex, with
rectangular components

Z=x+jy. (3.2)

Clearly, given a value of z, the polynomial may have a complex value with
components
fz)y=u+jv. (3.3)

To be explicit, the problem is to find the roots z; so that the product form of
the summation in (3.1) is
fz)y=(a,+jbYz—2 )z~ 25)...(z—2,) (34

Polynomials in modern network synthesis commonly have only real coeffi-
cients, a condition that results in roots being cither real or in conjugate
complex pairs. Moore’s root finder was formulated for the more general case
having complex coefficients, as in (3.1), which occurs, for example, in solving
the characteristic equations associated with complex matrices. The real-
coefficient polynomial will be solved more than twice as fast if the suggestions
that follow are incorporated. However, the more general case is retained for
instructional and practical reasons, Moore’s method employs derivatives of
the polynomial. This causes some multiple-root inaccuracy not found in
nonderivative methods, such as the popular method of Muller (1956). There
are also root finders that utilize synthetic division in special ways, so that
convergence depends upon initial conditions (e.g., the Newton—Raphson, Lin,
and Bairstow methods). Some other methods that guarantee convergence are
not straightforward and are often slow, for example, the Lehmer—Schur and
Graeffe methods. See Ralston (1965) for descriptions of these six other
root-finding techniques.

There are two intriguing ideas central to Moore’s method. The first is the
Cauchy-Riemann principle that defines the derivative of an analytic (regular)
complex function in terms of the partial derivatives of u and v (3.3) with
respect to x and y (3.2). Any student of complex-variable theory or its
application will find this worth knowing. The second idea is the Mitrovic
method for evaluation of a polynomial and its derivatives. This is a much
more efficient means than the better-known “nesting” programming tech-
nique, especially on computers where polar complex arithmetic is either slow
or nonexistent.
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Topics in this section include Moore’s search algorithm, synthetic division
for linear and quadratic factors, the Mitrovic evaluation method, BASIC
program ROOTS, and polynomial scaling.

3.1.1. Moore’s Root Finder., Moore’s root-finder method adjusts the compo-
nents of z=x+jy until the squared magnitude of f=u+jv is zero at z=z,. The
root factor (z—z) is then removed from the polynomial by synthetic division,
and the process is repeated on the remainder polynomial. The adjustments on
x and y are made by the Newton—Raphson method. The method now will be
developed in detail.

The error function to be minimized over the (x,y) space is

F=|fl*=u?+v? (3.5)

as illustrated in Figure 3.1. The positive, real function F in (3.5) must have
exactly n zeros, as does the given complex function f in (3.1) or (3.4). It is well
known that u and v are well-behaved functions of x and y; ie., they are
continuous, and their derivatives exist, In such cases, the Cauchy-Riemann
condition defines f'(z), the derivative of f with respect to z:

ooy B df dv _dv _.du
f(z) = i ax-i-_]aa— _]—E. (3.6)

Furthermore, {3.6) defines a relationship between real parts and between
imaginary parts; consequently, knowledge of partial derivatives with respect to
x will furnish partial derivatives with respect to y without further work.
Proceeding, the partial derivative of F with respect to x is written by inspec-
tion of {3.5):

%=2(ug—“ +vﬁ) 3.7

The partial derivative of F with respect to y is similarly written, but the

Fiz)

x Figure 3.1, Polynomial error surface near a root.
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equalities available from (3.6) enable an expression again using only partial
derivatives with respect to x:

dF ov Ju

—_— —yuU— -+- — 1. .

By (-udr+var) (3-8)
The slopes of the error surface in the x and y directions are now available to
guide the search for one of the zero-function values illustrated in Figure 3.1,

Suppose that the search is a1 some particular coordinate intersection in the

x —y plane. The adjustment of each of these values is

Ax= -0 , (3.9
|f112
Ay=-0 a}ljf,/l?y , : (3.10)
where the steps are damped by 1 and scaled by the squared length (norm) of
the gradient
"2 a_u 2 "a-y_ 2
14 —(Bx) +(ax)' (3.11)

The gradient is the vector that points in the uphill direction of the steepest
slope, and its components are just the partial derivatives in (3.7) and (3.8). The
square root of (3.11), the gradient’s magnitude, expresses the steepness of the
slope. These are matters that will be considered in more detail in Chapter
Five. The Newton—Raphson search scheme for several variables also will be
derived there. It happens that the Moore search steps defined in (3.9)-(3.11)
are exactly the steps in the Newton—Raphson method, which converge very
rapidly. If these steps are too large, so that the new value of F exceeds the last
one, then the step sizes are reduced by a factor of 4 until a decrease in
function value is obtained. The details will be considered in Section 3.1.4.

3.1.2. Synthetic Division. Once a root is found by the search procedure just
described, then that factor is removed by synthetic division. Without loss of
generality, real coefficients will be used in a third-degree polynomial for
illustration of the synthetic division process. Consider the polynomial

f(z)=a,+az+a,2* +a,2° (3.12)
and its equivalent preduct form
f(z)=(z—z)(cy+c.z+ czzz), (3.13)
where z; is the root. The unknowns are the coefficients ¢, where k=0, 1, and
2 in (3.13), since the right-hand term is the next polynomial to be used in the
root search algorithm of Section 3.1.1. Ralston (1965, p. 371) shows that the
recursion is

k=n—1,...,0

. 20, (3.14)

Cp =4+ 70y {
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Example 3.1. Consider the factors
f(z) = (z+2)(3+2z+12%), (3.15)
which are equal to the polynomial
f(z)=6+Tz+42°+2°. (3.16)
The algerithm in (3.14) will be used to find the quadratic factor in (3.15),
which is the unknown in real problems. Proceeding with (3.14):
k=2: c,=14(—-2)x0=1,
k=1: c,=4+(-2)x1=2, (3.17)
k=0: Cu=T+{—-2)x2=3.

There is no change in the algebra when coefficients a, in (3.12) and ¢, in
(3.13) are complex; complex arithmetic is employed in (3.14) instead of the
real arithmetic previously indicated. However, when all b, in (3.1) are zero, so
that coefficients a; in (3.12) are known 1o be real, then there may be one or
more real roots and any complex roots will occur in conjugate pairs. This will
be the case in ordinary filter synthesis, so that compuling effort can be
reduced substantially in both synthetic division and evaluation of the polyno-
mial and its derivatives. Assuming real coefficients, real roots are removed, as
in (3.14), using only real arithmetic. When a root’s imaginary part is not
essentially zero, then the quadratic factor containing the root and its conjugate
is removed.

Consider the identity

(z—g)(z—z)=2"+pz+q;, (3.18)

where p;= —2x,, g;=x2+¥?, and z*=x—jy (see (3.2)). Ralston (1965, p. 372)
described removal of quadratic factors; no complex arithmetic is involved.
Without loss of generality, consider the polynomial

f(z)=ag+a;z+az’ +a,z° +azt +az’ (3.19)
and its equivalent product form
f(z)= (2" +pz+q)(co +ciz+ 2 +¢,2%), (3.20)

where the quadratic term corresponds to (3.18) with the one discovered root z,.
The recursion is
k=n-2,...,0,

Cn=cn,|=0. (3.21)

Ch =827 Pi%+1~ AiCu+2» {

Example 3.2. Consider the factors

f(2)= (22 + 32+ 2)(60+ 472+ 1222+ 2%), (3:22)
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which are equal to the polynomial
f(z) = 120+ 2742+ 22527 + 852" + 152* + 2°. (3.23)

The algerithm in (3.21) will be used to find the cubic factor in (3.22), which is

the unknown in actual problems. Proceeding with (3.21):
k=3: ¢=1—(HX0-2)x 0=1,

2 =15—-(3)x1-(2)x0=12,

l: ¢, =85—(3)x12—-(2)x1=47,

0: Cr=225—(3)x47—(2)x 12=60.

(3.24)

~ o= R
It

So far, a means to find and remove roots of a defined polynomial has been
described. It has been assumed that, given a trial value of the independent
variable z=x+jy, the polynomial’s real and imaginary parts (u and v) and
their partial derivatives with respect to x can be evaluated,

3.1.3.  Efficient Evaluation of a Polynomial and Its Derivatives. Given a value
of z, many programmers are aware that evatuation of (3.16) is better accom-
plished by the nesting
f(z)=6+2[7+z(d+2)]. (3.25)
However, the indicated multiplications are neither convenient nor fast on
most small computers, which either lack polar complex arithmetic or execute
slowly in that mode. Kokotovic and Siljak (1964) have described the Mitrovic
method, which uses only rectangular components (real numbers), in an
efficient scheme for evaluating both the polynomial and its derivative, as in
(3.1} and (3.6).
Consider a defined expression for the independent variable raised to some
power p: ’
P=(x+jy)’ = X, +iY,, (3.26)
where the upper- and lower-case x and y variables are different; for example,
22=(x+jy)(x+jy) = (x> —y)) +i(2xy), (3.27)
where it is seen that X, =x*—y* and Y,=2xy. It can be shown in general that
X =2xX, = (x> + ¥ X 2,
Y =2xY,_, — (¥’ +¥)Y, _,,
where k=2,3,...,p; X5=1; Y,=0; X,=x; and Y, =y. Although (3.28) will be
used numerically, the reader is urged to verify {3.26) by using (3.28) algebra-
ically for p=2 and p=23; this will agree with (3.27) for p=2 and similarly for
p=3.

The desired results are obtained from (3.28) and the following equations,
which are derived by substituting (3.26) into (3.1) and associating real and

(3.28)
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imaginary parts with (3.3); this straightforward process yields

u= %(akxk—kak), (3.29)
v=> (3. Y +bX,). (3.30)
0

Furthermore, differentiating (3.1) with respect to z and following the same
procedure yields

n
3—1;=§]:k(akxk_,—kak_,), (3.31)

o= Sk +bX ) (332)

Clearly, (3.29)-(3.32) can be programmed easily in the BASIC language,
especially since complex-variable calculations have been avoided. For the
common situation where the given polynomials have only real coefficients,
half the work in (3.29)-(3.32) can be eliminated, because all b, are zero. This
and savings in synthetic division by quadratic factors make it worthwhile to
have a separate real-coefficient, root-finding program.

3.1.4. Root-Finder Program. BASIC language Program B3-1 is documented
in Appendix B, including a flowchart and listing. This is similar to the
Hewlett—Packard Co. (1976a) program in the RPN language. Given a polyno-
mial as in (3.1), the program always starts at the point z=0.1 +]j1 (see Figure
3.1). Subroutine 3000 calculates (3.28), (3.29), and (3.30). Only program lines
2040-2070 are required to obtain the derivatives in (3.31) and (3.32), so that
the adjustments in x and y can be calculated for the Newton-Raphson step in
(3.9) and (3.10). If taking that step increases the objective function (goes too
far up an opposite hill in Figure 3.1), then the steps are reduced by a factor of
4 in the flowchart loop to reentry point 2190 until a lower objective value is
obtained. Note that while in that cutback loop, new derivatives are not
required, because the search direction is unchanged. It is interesting to observe
how seldom cutback is required by temporarily adding the lines in Table 3.1,

* Table 3.1. Temporary Code to Print Search
Cutback in Program B3-1

4005 PRINT "***CUTBACK***ON ITER#”; L.
5035 PRINT” ITERS="; L

Example 3.3. Input the coefficient real and imaginary parts for the polyno-
mial f(z)=1—z% The roots are on the unit circle; they are located at the four
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axis intersections and spaced between these at 45 degrees. Running the
program shows that these roots have coordinates equal to either unity or
1/42, with agreement through eight significant figures on most computers.
Adding the temporary statements in Table 3.1 and running the program again
show how few times the algorithm needs to reduce the step length in a chosen
search direction. Such reductions usually occur early in the search at some
distance from the root (minimum) location.

The roots are printed whenever changes in x and y are less than 1.E—5 or,
following 10 step-size reductions, when F is no greater than 1L.LE—8. The
algorithm is aborted if the latter condition fails or when there have been more
than 50 iterations (search directions). Little memory is required; there are two
vectors (single-subscript arrays) for the cocfficient’s rectangular components
a, and b, and two more vectors for X, and Y, in (3.26). These are dimen-
sioned to hold N elements, where N is the maximum polynomial degree.
However, on computers with exponent ranges of about 10exp(+ /—37),
numerical overflow occurs for polynomials of degree greater than 20. Expo-
nent ranges to 10exp(+ / —99) usually solve polynomials up to degree 35. The
difficulty occurs in the large polynomial value because of the poor initial root
guess of z=0.1+j1.

Gradient root finders such as Moore’s suffer from a chronic problem with
multiple roots. Consideration of a function such as y=(x— 1)* and its deriva-
tive shows that repeated (multiple) roots cause gradients (coordinate deriva-
tives) that tend to zero in the neighborhood of the root. This causes some
inaccuracy in repeated root values, because Moore’s method depends on
gradient scaling in the step length formulas (3.9)-(3.11). The code in Table 3.2
can be added to print the value of (3.11).

Table 3.2. Temporary Code to Print the
Squared Length of a Gradient

2085 PRINT"GRAD MAG SQD="; PM

Example 3.4. Add the program code in Table 3.2 to root-finder Program
B3-1 and solve the polynomial

1080 + 2466z + 202527 4+ 7652 + 1352 + 92° = 9(z + 1) (z + 2)(z+ 3)(z+ 4)(z+ 5).
Note that the “GRAD MAG SQD” value (3.11) is well scaled. Then solve the

polynomial
54+ 1352+ 12622+ 562° + 122* + 2° = (2 + 1)(z+ 2)(z +3)".

Note that the squared gradient length used as a divisor in the search step
adjustment is well behaved until the z= —3 repeated root is encountered.
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Repeated roots are usually determined to within two or three significant
figures; this may be adequate for most but certainly not all engineering work.

3.1.5. Polynomial Scaling. By the initial guess z=0.1+)1 for the root loca-
tion, there is an assumption that the roots are not too far from the origin.
Some polynomials may require scaling of coefficients to obtain the assumed
condition, and the roots will require subsequent rescaling to correspond to the
original problem. Two methods will be described, as given by Turnbull (1952):
(1} decreasing all roots by the factor 10; (2) decreasing all roots by subtracting
some fixed amount. The choice of method and amount depends on the
problem being solved; there is usually adequate information to make those
choices.

To reduce all root real and imaginary components by a factor of 10, reduce
all polynomial coefficients of the kth-power terms by 10exp(n—k), where the
polynomial degree is n. The following example clarifies the procedure.

Example 3.5. Consider the polynomial
f(z) = 19404 — 3942+ 222, (333)

which has roots 98+j0 and 99+j0 (available from the root-finder program).
Rewrite the polynomial with revised coefficients using the rule given above:

f(2)=194.04 - 39.42+22% (3.34)

The root-finder program will show that the roots of (3.34) are 9.8+j0 and
9.9+)0. Similarly, the roots of

f,(2) =1.9404 — 3.94z + 27* (3-35)
are 0.98 +)0 and 0.99 + ;0.

The method for shifting the roots by a given amount is somewhat more
involved but uses synthetic division in an interesting way. Again, consider the
degree-3 polynomial in (3.12) without loss of generality. Suppose that variable
z is decreased by amount h:

z=s5+h or s=z-h. (3.36)

Making that substitution in (3.12), there must be an equivalent polynomial,
F(s), in the new variable s:

1(Z)=F(s)=by+ b5+ b,s* + bss. (3.37)

This is rewritten two more ways:
F(s)=by+5(co+¢ 2 +¢2%), (3.38)
F(sy=by+s[b,+s(cy+zci) |- (3-39)

Note that (3.39) is nested in the same fashion as (3.25). Now (3.13) is written
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Table 3.3. Procedure for Decreasing Roots by Amount h

1. Setz=hin(3.14)and find ¢ _, usingk=n—1,...,0,
— 1; note the extra subscript added to (3.14).
2. Setbyg=c_,; replace a; with ¢;,i=n—1,...,0; and
replace n with n— 1.
3. Dosteps | and 2 again, but equate by=c_ .
. Continue finding b, , b, ..., b, through the n=0 cycle.
5. Find the roots of (3.37); then the roots of (3.12) are z;=s, + h.

in a more general application of synthetic division:
f(z) =1f(z)+ (2= z)}(co+ €12+ ¢ 2%). (3.40)

The first term on the right side of (3.40) is zero by definition if z is a root of
f(z); but (3.40) is valid for evaluating f(z) for any z, not necessarily a root.
That first term is found as the value of c_, when (3.14) is calculated through
k= —1 instead of just through k=0 as previously applied. Suppose that z,=h,
and (3.36) is substituted for the linear term in (3.40). Then (3.38) is the result
of synthetic division cycle {(3.14) on (3.12), and b, is obtained as c_, when that
cycle is carried on through k=0. Now note that b, in (3.39) relates to (3.38) as
b, in (3.38) is related to (3.12). So synthetic division starting with ¢;, ¢;, and ¢,
(found by the last synthetic division cycle) will yield by, cj, and ¢} in (3.39).

The procedure in Tabie 3.3 finds a new polynomial, F(s), as in (3.37), given
polynomial f(z), as in (3.12), so that s=z~—h.

Example 3.6, Given polynomial f(z) in (3.33) with roots 98+j0 and 99+ 0,
find the corresponding polynomial F(s) having roots that are 100 less.

n=2, h=100, a,=2, a,=—3%, a,=19404;
k=1: ¢ =2+(100)x0=2
k=0: ¢y=—39%4+(100)x2=-194

=—1: c_,=19404+(100) X (—194)=4=b,

n=1, h=100, a,=2  a,=—194 (3.41)
k=0: co=2+(100)x0=2
k=—1: c_,=—194+(100)Xx2=6=b,

n=0, h =100, a,=2;
=—1: ¢_;=2+(100)x0=2=b,
The polynomial with roots —2+j0 and —1+j0 is thus found to be
F(s)=4+6s+25". (3.42)
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3.1.6. Root-Finder Summary. Moore’s root finder is a practical tool that is
accurate and robust except for repeated roots, when accuracy is reduced. Tt is
based on the Cauchy-Riemann condition and the Mitrovic method for
evaluation of the polynomial and its derivative, Computation is reduced by
more than half when all polynomial coefficients are real, which is usually the
case in modern network synthesis. There are many other applications for this
fast root finder, such as in root locus plotting versus gain factors and in
z-transform calculations in sampled data system design. The structure of the
particular problem may result in roots being far from the origin of the
complex plane; in these cases, where the root finder may be slow or may fail
to converge, scaling of polynomial coefficients can reduce each root by either
a factor or a fixed amount. Roots thus found closer to the origin can then be
moved back to their original location by shifting in the opposite fashion.

The following sections will employ this root finder for network synthesis
steps and partial fraction expansions.

3.2. Polynomials From Complex Zeros and Products

The next two sections describe the composition of polynomials by multiplica-
tion and addition, respectively. The computer programs provided will con-
tinue to be in BASIC language, although these calculations are just as feasible
in hand-held computers. This section begins with composition of polynomials
from known root factors as available in the preceding root-finder section.
Complex factors will be multiplied to find the generally complex coefficients
of the resulting polynomial. Then a program will be given that multiplies a
sequence of polynomials having real coefficients.

The last half of this section includes the beginning steps in doubly termi-
nated network synthesis; both the ideas and the use of the computing aids are
important in what follows. Power transfer from a complex source to a complex
load will be introduced and then specialized to the real-source impedance
case. The generalized reflection coefficient will be defined, and the Feldtkeller
energy equation will be discussed for a given steady-state frequency of
excitation. Finally, polynomials used in network synthesis will be described,
and the fundamental polynomial relationship will be derived from power
transfer considerations of a lossless two-port network,

3.2.1. Polynomials From Complex Zeros. Only polynomials with rea} coeffi-
cients are considered, so that their roots must be real or occur in conjugate
pairs. A conjugate pair of complex numbers can always be expressed as a
quadratic factor, as previously described by (3.18). Program B3-2 in appendix
B asks for a set of complex zeros in rectangular components, then outputs the
resulting polynomial coefficients, also in their rectangular components. It is
interesting to confirm some of the previously described characteristics of
polynomials by use of this program.
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Example 3.7. Use Program B3-2 to multiply the root factors
F(s)=(s—s;)(s—82), (3.43)

choosing pairs of roots from *4+j5. Note that conjugate pairs produce the
quadratic factor described by (3.18) and that conjugate pairs from the left-half
plane (o <0 in Figure 3.2) yield all positive coefficients. The zeros of transmis-
sion (loss poles) of the two major synthesis polynomials, to be described in
Section 3.2.4, must be accompanied by both their conjugate and negative
roots, as shown by the “quad” in Figure 3.2, The special cases of real,
imaginary, or zero roots are also indicated. Also multiply all four possible
roats from the data above to obtain the quadratic polynomial with real
coefficients; further multiplication by factors with real roots does not change
this condition, of course.

X
< oo x
I |
|
l |
' I
! |
—_— ———X —X o
I !
! .'
' |
X —— WL —— X
X Figure 3.2. Possible locations for transmission

| Zeros in p(s).

For further exercise of Program B3-2, multiply the root factors given in
Example 3.4. Note that the coefficient of the highest degree term is always
unity. The interested reader might wish to add a scaling feature to multiply all
coefficients by any desired factor; this is often a requirement in network
synthesis, The actual computation in Program B3-2 occurs in lines 170-320;
those interested in details of the scheme are referred to Viach (1969).

3.2.2. Polynomials From Preducts of Polynomials. The need to multiply two
polynomials having real coefficients will be encountered throughout network
synthesis, The appropriate algorithm is not complicated; Program B3-3 in
Appendix B is adapted from Vlach (1969), where it is explained in detail. A
chaining feature has been added, so that the last product computed exists as
the first of the next polynomial pair to be multiplied. Note that the main
calculation in Program B3-3 requires only lines 210-300.
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Exampie 3.8. Use Program B3-3 1o multiply
(s*+ 35+ 2)(557 +4s— 10)(3s* + 1) = 155%+ 575" + 415* — 475" — 485 — 225 — 20,
(3.44)

using the program’s chaining feature. Also, multiply the left-half-plane and
right-half-plane quadratic factors found in Example 3.7 to confirm the earlier
results.

3.2.3. Power Transfer. Power delivered from a complex source to a complex
load will be encountered repeatedly in the following sections. It will be
specialized to the real-source case for classical network synthesis in this
chapter. Consider the source and load connection shown in Figure 3.3, It is
well known that the maximum available source power is

|E,?

Pﬂs = W 5 (345)

which occurs when Z=2Z}*, Kurokawa (1965} developed relationships for less
power transferred into other load impedance values. An important parameter
is the generalized reflection coefficient
Z-Zr
T Z+Z,°
It defines a Smith chart with the center corresponding to Z¥; this will be

explained in detail in Section 7.2. The power delivered to the load relative to
the maximum available turns out to be

o

(3.46)

PI; =1—{af* (347
The numerator of the reflection coefficient indicates that its magnitude is zero
when Z=Z* so that P=P,, as mentioned. Program A2-1, introduced in
Section 2.1, makes the evaluation of the preceding two equations quite
elementary for any range of load impedances, given a fixed source impedance.

In this chapter the source impedance is considered to be resistor R, and Z

Zs = Rs+ixs e

Z=R+jX

. [~

—

P

Figure 3.3. Power transfer from a fixed complex source to a variable complex load impedance.
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Lossless
vy
network

Z, Py
Figure 34. A doubly terminated lossless network.

is the input impedance Z, for the lossless network in Figure 3.4, The network’s
load termination is R,; the resistive terminations at both ends make this a
doubly terminated network, Any power that enters the network must exit into
R,, so that the reflection coefficient of interest is
Z,~-R,
PEZ ¥R,
TRy

(3.48)

Consequently, power delivered to Z, and R, in Figure 3.4 is described by the
famous Feldtkeller energy equation:

[H(jw)[*= L. (3.49)
Py 1)

where H is the transducer function.

3.24. Network Synthesis Polynomials. The network in Figure 3.4 is now
assumed to be composed of lumped inductors and capacitors, so that Z, and
other impedances will be well-behaved functions of complex Laplace fre-
quency s. If Z(w)= R(w)+jX(w), then one should know that R(w) is always an
even function of w and that X(w) is always an odd function of w. Thus, brief
consideration will lead to the conclusion that Z*(jw)=Z( —jw). The imaginary
axis in the s variable is jw. According (o the analytic continuation principle, jew
may be replaced by s in expressions where it occurs. Furthermore, the
resulting functions of s have significance over the entire s plane. This concept
leads to an identity with considerably greater importance than is at first
apparent:

[fGe)=f(s)f(~s), s=jw. (3.50)
This is the squared-magnitude function, and it is also an even function of w.

Example 3.9. Suppose that a given function is

f(sy= —76s*+ 11s*—33s*+ 25— 4. (3.51)

Compute f(s)f(—s) using Program B3-3, and save the result. Note that the
- resulting magnitude function is even in s.
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The transducer magnitude function in (3.49) implies the existence of H(s),
and it will be apparent later as to the convenience of defining a companion
function,

K(s)=pH(s), (3.52)
called the characteristic function. Using (3.49) and (3.50), an importan\t energy
relationship between the transducer and characteristic functions is obtained:

H(s)H(—s)=1+K(s)K(—s). (3.53)

This shows that |H(jw)| # =1, as required. Both H(s) and K{(s) are rational
functions with numerators and denominators identified as

H(s)= % : (3.54)
f
K(s)= ;((% : (3.55)

A concise statement can be made about the nature of the individual
polynomials e, f, and p. The roots of e(s} and f(s) are real or in conjugate
pairs. The roots of e(s) lie in the open (not on jw axis) left-half plane and are
the natural modes of the LC network; the roots of f(s) are called reflection
zeros or zero-loss frequencies. Polynomial f(s) is either even or odd, with
degree no greater than that of e(s). As in Figure 3.2, the roots of p(s) are
conjugate by pairs, are purely imaginary (on the jw axis) for ladder networks,
and are called the loss poles (peaks) or transmission zeros. Polynomial p(s) is
either even or odd. .

Using (3.53)-(3.55), the fundamental polynomial relationship in doubly
terminated network synthesis is

e(s)e( —s)=p(s)p(—s)+f(s)f( —s). (3.56)
Either H or K is given, so that either f or e must be found from (3.56),

respectively. The latter is illustrated in the example from Temes and Mitra
(1973).

Example 3.10. Find H(s) given
— 4 i_ 2 —
K(s)= 765°+11s"— 335"+ 12s—4 (357
43 (s2+4) :

Compare (3.57) with (3.55) to identify f(s) and p(s); e.g., f(s) is shown in (3.51).
Use Program B3-3 to calculate p(s)p(—s) and f(s)f(—s). Adding these manu-
ally (a program to do this will be described in Section 3.3.1), (3.56} yields

e(s)e( —s) = 57765" + 489555 + 1481s* + 504> + 784, (3.58)

The eight roots of (3.58) are found easily using Program B3-1:
+0.226127 +j0.828392; #0.596242 +j0.379658. (3.59)
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The last step is to associate the left-half-plane roots with e(s) as required
above. Using the four left-half-plane roots from (3.59) and Program B3-2, the
e(s) polynomial is obtained, except for a constant. By (3.58), that counstant
must be v¥5776 =76, so that

e(s)="76s"+ 1255 + 1355> + 845 + 28. (3.60)

Using the denominator of (3.57) as p(s) and (3.60), the rational polynomial
H(s) is thus found according to (3.54).

3.25. Summary of Polynomials From Zeros and Products. Programs that
calculate polynomial coefficients given complex zeros or given a sequence of
polynomials to multiply are easy to program and require very little computer
memory. Quadratic factors, magnitude functions, and polynomial factors
having roots in the left-half plane are important parts of the mathematics of
network synthesis.

The basis of doubly terminated network selectivity behavior is the Feldt-
keller energy equation (3.49), which describes the power transfer from a
source, relative to maximum available power, in terms of the reflection
coefficient at that interface. This leads to the transducer and characteristic
functions that are polynomials in complex frequency s= o +jw. There is a free
exchange of s and jw in the magnitude—function relationships (the interested
reader is referred to Van Valkenburg, 1960, for details of the underlying
analytic continuation principle). There is a straightforward procedure for
finding the transducer numerator polynomial given the characteristic function
numerator and denominator, and vice versa. The programs in this chapter
make these computations relatively easy.

33, Polynomial Addition and Subtraction of Parts

The transducer and characteristic functions H and K have been introduced by
way of the Feldtkeller energy equation. The chain {or ABCD) parameters for
two-port networks are commonly encountered as complex numbers at a
frequency, but alsoc may be rational functions of complex frequency s. This
section will introduce a simple program for adding and subtracting polynomi-
als, the main step required to use H(s) and K(s) to find the polynomials A, B,
C, and D prior to finding an LC network that corresponds to the given data.
The program and the synthesis steps will be described.

3.3.1. Program for Addition and Subtraction of Parts. Program B3-4 in
Appendix B adds or subtracts coefficients of like powers of s in two given
polynomials, or just those coefficients of even powers or of odd powers. It is
written in BASIC, but the single-subscript array R(-) is the basis of the
memory assignment; this makes its {ranslation to hand-held calculators espe-
cially elementary. The computation occurs in lines 200-370.
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Example 3.11, Consider the polynomials
P/(s)=9s*+3s+4,  Py(s)=10s*+2s+1, (3.61)

which are neither even nor odd. Try these in Program B3-4; note that the two
polynomials stay intact for subsequent operations (add or subtract; all, even,
or odd parts). The answers can be checked by inspection; real problems are
seldom this simple.

3.3.2. The ABCD Matrix of Rational Polynomials. The ABCD two-port .
parameters are defined in terms of the standard voltages and currents shown
in Figure 3.4:
V,=AV,—BIl,, (3.62)
I,=CV,-DI,. (3.63)
This form of expressing two-port behavior has a number of important proper-

ties that will be useful in many later sections. An input impedance expression
will be of use here:

Vi
Z=—. (3.64)
Il .
Similarly, the load resistance at port 2 is related to its voltage and current by
~V,
R,= i (3.65)
2

Solve (3.65) for V, and substitute in (3.62) and (3.63); then the resulting
equations reduce (3.64) to
7 = AR,+B 166
" CR,+D" (- .)
The goal is to find the ABCD polynomials in terms of H and K. It can be
seen from (3.45) and (3.49) that
E,

_ 1
|H|— 12 .

2JR R,

(3.67)

But Figure 3.4 shows that E,=1, X R +V; substituting this relationship and
(3.62) and (3.63) into the numerator of (3.67) yields

(AR, +DR,)+(B+CR R,

2R R,

To find a similar expression for K, substitute (3.66) into (3.48), and substitute
the result obtained, along with (3.68), into the definition of K in (3.52). The
result is

H(s) (3.68)

AR,—DR,)+{(B—CR,R
(AR, 1)+ 1 2). (3.69)
2/R.R, l

S

K(s)=




Continued Fraction Expansion 51

Note that the magnitude symbols have been omitted in the last two equations
and that the substitution s=jw has been made on the assumption that
magnitude functions such as (3.50) are involved. Also, the grouping of
parameters is strategic, because it can be shown that, for lossless networks, A
and D are even functions of s, while B and C are odd. Further, reciprocity
requires that AD—BC=1. Beyond that, the grouping is convenient because
adding or subtracting H and K cause major cancellations. One good reason
for defining K at all is the following important result:

I:A B ]-.__. 1 (Hc+Ke)Rl (H0+K0)R1R2
¢ D \,‘R]RZ (HU_KO) (He_Ke)RZ

where the e subscript denotes an even polynomial and o an odd polynomial.

. (370)

Example 3.12. In Example 3.10, K(s) was given in (3.57) and the numerator
of H(s) was found as (3.60). Note that the denominators of H and K are the
same. Enter the numerators of H and K into Program B3-4 in that order; then
(3.70) yields the ABCD mairix numerators without difficulty. The result is:

1022 +24  1365%+96s
[A B]= 43(*+4) 43 (s+4)
C D 1145+ 725 1525* + 16852+ 32
43 (s +4) 43 (s*+4)

(3.71)

where R, =R, =1 is assumed, as explained in Section 3.4.4.

3.3.3. Summary of Polynomial Additieon and Subtraction of Parts. This sec-
tion began with a simple BASIC language program to add and subtract even,
odd, or all parts of polynomials. It continued with a look at the well-known
ABCD (chain) parameters for two-port networks. The H(s) and K(s) functions
were related to the ABCD parameters by considering input power transfer and
input impedance and then assuming s=je for implied magnitude functions.
The right tools make the task quite simple along theoretical lines that are easy
to remember after a little practice.

The strategy behind the convenient ABCD development is to obtain simple
expressions for LC impedance and admittance parameters in terms of the
ABCD polynomials already found. A continued fraction expansion of these
produces the corresponding network element values, as shown next.

34. Continued Fraction Expansion
Continued fraction expansion of reactance functions (Z, ) will be described

and used to realize a lowpass network as the last step in the LC network
synthesis procedure. These functions are the port impedance or admittance of
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lossless LC networks when open or short-circuited at the opposite port (see
Figure 3.4). They are rational polynomials that are always an even polynomial
over an odd polynomial or vice versa. Such expansions provide lowpass or
highpass network element values and can also be used to determine if a given
polynomial is a Hurwitz polynomial (all roots in the left-half plane).

3.4.1. Lowpass and Highpass Expansions. Continued fraction expansions
may be finite or infinite. Two finite examples and their equivalent rational
polynomials are:

4 2
Z](S)=28+ 1 - 120s ':365 +1 (3.72)
Bk — 605>+ 8s
ds+ L
s+ 3
1 1 1+ 3852+ 120s*
Z,(s)==—+ = . 3.73
O T T T 7 aereds (3:73)
S
4s  1/5s

A convenient shorthand for representing continued fraction expansions is
described by Vlach (1969); applied to (3.72) it is

111

210k N e

(3.74)

3.4.2. A Continued Fraction Expansion Program. Consider the rational poly-
nomial to be in one of the following forms or their reciprocals:

2 4 n
agtras +as +---4as

_ 3
a;s+a;s’+as’+ - +a,_s"!

I is even; (3.75)

ag+as’+ast+t - +a,_st!

. . n is odd. 3.76
ast+ast+as + - +a s (3-76)
Program B3-5 in Appendix B is adapted from Viach (1969); it requires only
lines 210-340 for computation.

Example 3.13. Program B3-5 will be run using (3.72) for the cases where the
rational polynomial represents an LC, two-port input impedance with an
open-circuit load or an input admittance with a short-circuit load. Consider
Case 1 for maximum degree N=4 in Figure 3.5. Certainly, the input imped-
ance of the network shown must be Z =sL +remainder, according to the form
of (3.72). Therefore, the first element must be an inductor with a value of 2
henrys. If the remainder polynomial Z_is inverted to provide Y, =1/Z , then
the next term removed must be Y =sC, where C=23 farads. Comparison of
this case with (3.72) shows how each element value was obtained for the
lowpass network. Note that a short circuit across the 5-farad capacitor would
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1
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11 _ 2453 +8s
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{a) N=3 __JW\TNV\__
2 4
1 245 + 65

(bl N=4 rwr\s rvv-\s
cges 11112050 3657 41 y-——}‘l‘ 1
e S e T2 T“
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YT o0+ TiB 4 Tds + 055 o, 4 pas® Y 4

Figure 3.5. Some continued fraction expansions.
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be senseless. Run Program B3-5, answering “YES” to indicate that the first
element is a series L, because (3.72) is considered an impedance function.
However, note that the same programmed solution applies to the network in
Figure 3.5 for Case 2, N=4, if (3.72) is considered a two-port input admit-
tance function (with a short-circuit load). In that case, an open circuit after
the 5-farad inductor would be senseless. The reader is urged to run Program
B3-5 for all the possible combinations shown in Figure 3.5.

Program B3-5 can also be used to determine whether all roots of a
polynomial (ag+a,s+ --- +4a,s") are in the left-half s plane, i.e.,, whether the
polynomial is “Hurwitz.” If any of the continued fraction expansion coeffi-
cients are negative or zero, or if the program fails with a “divide by zero”
error, then the polynomial was not “Hurwitz.” The polynomials being tested
in this way are not rational, but are just the sum of all terms in (3.75) or (3.76).

3.4.3. Finding LC Values From ABCD Polynomials. 1t should be clear from
the last section that two-port networks subjected to open- or short-circuit port
conditions are relevant to the synthesis procedure. Equations using ABCD
parameters to describe two-port networks were introduced in Section 3.3.2.
Two more of the infinite set of such descriptions are now introduced, based on
the port voltages and currents and terminal conditions. Consider the equations
based on Figure 3.4:

V,=Lz,;+ 1z, (3.1

These characterize any two-port network, lossless or not. It is important to
understand what the coefficients mean. For example, z,, is V, /1, when I,=0,
as seen from (3.78). [,=0 says that the output port is terminated by an open
circuit. These two equations are known as the open-circuit impedance parame-
ters because both independent variables are the port currents. Look at z,,
another way: it is the output voltage into an open circuit when the input
current is | ampere.
A similar characterization is based on short-circuit terminal conditions
where
L=Viy + Vi, (3.79)

L=Viyy+Vyyn. (3.80)

Now, for example, y,, is the current entering port 2 in Figure 3.4, carried by a
short-circuit load, for 1 volt applied across the input port. It is convenient to
write the open- and short-circuit equation systems in matrix notation:

V=ZI (3.81)
1=YV (3.82)

It is well known that matrix Y is the inverse of matrix Z and vice versa; doing
this algebra provides relationships between z and y parameters.
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It was shown in Section 3.3.2 how to find the rational polynomials for A, B,
C, and D. The ABCD linear equations were given in (3.62) and (3.63),
comparable to the z- and y-parameter equations above. In order to find a port
immittance (impedance or admittance) as functions of ABCD when the
opposite port is terminated by either a short or open circuit, it is necessary to
find the z and y parameters in terms of the ABCD parameters. For example,
solve for V, in (3.63):

y.o L+DL

Using this in (3.62) yields
V,=Il(%)+IZ(D%uB). (3.84)

Comparison of (3.84) with (3.77) provides z,, and z,, in terms of the ABCD
parameters. The coefficient of I, in (3.84) is further simplified for lossless two
ports because AD—BC=1 in that case, Therefore, the following identities
apply for two-port networks:

Z=%H‘ ]')} (3.85)
Y=%[ b _H. (3.86)

These are valid for complex numbers or for rational functions; the latter will
illustrate the last step in network synthesis. For example, (3.85) says that the
open-circuit impedance parameter z,,=A/C and both A(s) and C(s) were
described in terms of H(s} and K(s) in (3.70). The numerator and denominator
polynomials of H and K were defined in (3.54) and (3.55). For z;,, the result is

eo(s) +(s)

le(S)=le. (387)

This is the impedance for Case 1, N=4, in Figure 3.5. Note that 1/y,, was
relevant to N=3 but not to N=4. An example from Temes and Mitra (1973)
is given below,

Example 3.14. Given the characteristic function K=s% find z;, and 1/y,,
and the related networks. It is seen from (3.55) that f(s)=s" and p(s)=1. Then
(3.56) is

e(s)e(—s)=1—s®= (I +s)(1—s)(I +s+sz)(l —s+s2). (3.88)
As noted in Section 3.2.4, the roots of efs) are the natural modes, which must

be in the left-half plane. Therefore, the transducer function according to (3.54)
is

H(sy= ) (Ls)(l+s+57)=1+2s+257 45, (3.89)

p(s)




(a) (b}
Figure 3.6. Network realizations for Example 3-14 using (a) z;, (or 2;;) and (b) the reciprocal
of ¥;y.

Using the even and odd parts of H and K in (3.70) and assuming that
R,=R,=1, the chain matrix is found to be:

[A B}=[1+252 25+25°| (3.90)
CcC D 2s 1 +2s?
Therefore, (3.85) yields
A_28%+1 ‘

ZH=E= SZS s (39])

and (3.86) yields
3
I = E= 25°+2s (3'92)

Yu D 241

A network for this example is shown in Figure 3.6, as found by continued
fraction Program B3-5. There must be three elements according to the degree
of (3.89). Figure 3.6a uses z,, to find only the first two elements. (Why?)
Figure 3.6b uses 1/y,, to find all three elements, because y is a short-circuit
parameter, and the last element is in series. Note that both z;, and z,, could
have been used to find all three elements, two at a time, including the shunt C
in the middle twice. That would have shown whether or not R,=R, (Why?)
and could provide greater numerical accuracy. Mellor (1975) has estimated
that computer decimal-digit word length (N} and filter synthesis degree (N)
are compatible if N < N,/2. However, Lind (1978) gives a simple method for
increasing accuracy.

144, Comments on Contimued Fraction Expansion. Continued fraction ex-
pansions are an important mathematical tool with many applications, e.g., for
LC ladder network realization and the polynomial Hurwitz test. The synthesis
procedure described above is based on reactance functions (Z,.), not the
input impedance of a resistively terminated two-port network (Zy ). How-
ever, Zg o can be reduced to the corresponding Z, ., as described in Section
3.5.3.

Example 3.14 gave K and found H; conversely, (3.56) can be rewritten to
be explicit in f(s)f{ — s} when given H to find K. In the latter case, allocation of
roots (reflection zeros) to f(s) and f{ —s) is more arbitrary; it is necessary only
to keep roots in conjugate pairs and to place in f(—s) the negative of each root
in f(s). Each arrangement of root allocation in f(s)f(~s) will result in a
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different chain matrix and therefore a different network. They will all have the
same transducer magnitude function versus frequency, but their input imped-
ance functions will differ (see Temes and Mitra, 1973).

Example 3.14 gave K=f/p so that p=1. As noted in Section 3.2.4, any
roots of p(s) occur on the jw axis for lossless ladder networks. A more general
case would be the K(s) given in (3.57), where the roots of p are at w=+2. A
lowpass function would then produce a network with “traps” to produce zero
transmission (loss peaks) at these root frequencies of p(s). A very effective
method for designing netwaorks of this sort without resorting to synthesis will
be described in Sections 9.2 and 9.3. The continued fraction expansion
described here will not suffice for the synthesis of these more general net-
works., However, Temes and Mitra (1973) provide a compact summary of
Orchard’s elegant method for networks containing the four possible arrange-
ments of traps; the method is well suited for small computers.

Finally, as noted in Example 3.14, R, =R, is not the general case. However,
it is a fairly standard procedure to make this assumption, then derive one or
more clements by synthesis from opposing ends of the network, and then
decide (by any difference in answers) what the impedance scaling must be,
i.e., how R, is related to R,.

3.5, Input Impedance Synthesis From Its Real Part

Sections 3.2 through 3.4 developed a method of doubly terminated network
synthesis, along with the introduction of various computer aids for a variety of
engineering applications. The specification related to power transferred from a
source to a resistively terminated lossless network, and the power was relative
to the maximum available from the source. There are many situations where
the source impedance has no real part, so that the maximum power available
is infinite in theory. An equivalent case is the situation where the complex
source is connected to an unterminated lossless network, so that no power can
be transferred to the network. In either case, there is often an interest in the
output voltage function versus frequency. These cases arise from singly
terminated networks.

It is important to understand that the discussion of singly terminated
networks and the synthesis of input impedance from its real part are the same
thing. The need to realize an input impedance function might occur, for
example, in building a lumped-element dummy antenna to approximate the
real antenna behavior over a band of frequencies. Suppose that a constant
current source is connected to the singly terminated lossless network, as shown
in Figure 3.7. The input power must be P,=|[||’R,_, and the power in the
output resistor must be P,=|V,|*/R,. Since the network is lossless, P,=P,,
and the impedance transfer function is thus

|Z,; (@) =R, Re Z,,(w). (3.93)

Networks with only one possible signal path are called minimum-phase




58 Some Tools and Examples of Filter Synthesis

I P
—
+ Lossless *
I Vi network A& Re
| [ o
P1 zm = Rm +jx‘m Pz

Figure 3.7. A singly terminated, lossless network.

networks. A ladder network is a minimum-phase network, but a bridge circuit
is not, If the real part of the input impedance of a minimum-phase network is
known for all frequencies, then its imaginary part (reactance) is dependent
and can be found. A desktop computer program for finding the reactance at
any frequency, given the piecewise linear resistance function versus frequency,
will be furnished in Section 6.7. Here, a regular resistance function of
frequency will be given in polynomial form, and the entire Z(s) rational
function will be found. This will be the Zg, - shown in Figure 3.7. Then, a
method will be described for finding the corresponding reactance function
Z, o, so that the continued fraction realization previously given may be
employed to find the network element values.

3.5.1.  Synthesis Problem Statement. Suppose¢ that a resistance function is
given as the rational polynomial

Ag+ A+ +A @™

Rf{w)=
(«) B0+Blw2+ S e

(3.94)

Such a function may result from the fitting procedure of Section 2.5. However,
note that the denominator in (3.94) has a nonunity coefficient {B,), and the
coefficient of highest degree is unity. As mentioned earlier, resistance func-
tions are even, so that all powers of w are even. The goal is to find the
corresponding impedance function:

_agtastasid oo +a, s
bo+bs+byst+ - +1s"

Z(s) (3.95)
Remarks similar to those regarding the denominator coefficients in (3.94)
apply to the dencminator of (3.95). There are at least two ways to solve this
problem: Bode’s method and Gewertz’s method, as described by Guillemin
(1957). The latter, which follows, is more compact.

3.5.2. Gewertz Procedure to Find RLC Input Impedance. Form an even
function of complex frequency by substituting w”= —s” in the given resistance
function (3.94):

2.65)= Ag— A +AS — () TA ST
) By—Bs?+Byst— - +(—1)"s™

(3.96)
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Find the left-half-plane roots of the denominator in (3.96). The product of
these lefi-half-plane root factors is the denominator polynomial in (3.95). Tt
remains to find the numerator of (3.95).

The remaining unknowns, a,,a,,...,a,, in {3.95) can be found by solving a
linear system of equations using the known terms by, b,,... just found and the
easily derived Ay, A,,..., A, in (3.96). Gewertz solves the linear system

by, 0 0 0 |l a, Ay
_b2 bl —bU 0 al = A] ) (3.97)
b, —bs b, —b |[a Ay
- bé b5 - b4 b3 a3 A3
Gauss-Jordan Program B2-1 solves linear systems of this sort with ease. The
solution yields the numerator of (3.95), which is the desired input impedance
Zgic of the terminated lossless network. An example from Carlin (1977)
follows,

Example 3.15. Suppose that a given resistance function is

22
R(w)= : . 3.98
) = 2 5607 4 420" + 4.290° (39%)

Substituting ?= —s? in (3.98) yields

o 2.2

)= T 56— a.aas~ 4295 (39)
which must be divided in both numerator and denominator by 4.29 in order to
be in the form of (3.96). The roots of the denominator are found using
Program B3-1. Roots s, and s, are =0.502752 + j0, and roots s, through s, are
+0.397782 +j0.895596. The left-half-plane roots define a polynomial ob-
tained by Program B3-2; the resulting b, coefficients in the denominator of
(3.95) are shown in Table 3.4, Using these, by=bs=b,=0, and A;=2.2/4.29
in (3.97), the Gauss-Jordan Program B2-1 yields the a; coefficients in the
numerator of (3.95); these are also shown in Table 3.4. The rational input
impedance polynomial is

2, P(s
1.0746105>+ 1.3951845 + 1.062172 & F(5) (3.100)

Z{sy= = ;
) $3+ 129831657+ 1.360294s + 0.482804  Q(s)

Table 3.4, Input Impedance
Coefficients for a
Gewertz Example

by =0.482804 ay=1.06270
b, = 1360294 a,= 1395182
b,=1.298316 a,=1.074609

b,= 100 a;=0
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The real part of (3.100) evaluated at any s=jw gives the same answer as (3.98)
for that value of w.

What is obtained by Gewertz’s procedure is the input impedance of a
terminated lossless network; the corresponding reactance function is required
for the continued fraction expansion of Section 3.4 to apply. The conversion
of Zpic to Z, - is discussed next.

3.5.3. Reactance Functions From Impedance Functions. A particular expres-
sion for the input impedance of a two-port network will be required in order
to find Z, .. given the corresponding Zyi ¢ as found in the preceding section.
In Section 3.3.2 the input impedance of a two-port network was found using
the ABCD equations and the load impedance, We proceed snmllarly with the
open-circuit parameter equations by substituting V,= —1,Z, in (3.78) and
solving that for I,. But Z; =V, /I,; so (3.77) readily yields

Z12iy
L=z 1220 101
Zi=1zy — (3.101)
Using Z; =1, this can be written
1+Az/z,,
Z]n-—znw (3.]02)
where the open-circuit-parameter determinant is
Az=1z2,y— 2,52, . (3.103)

A means for finding y parameters in terms of z parameters was suggested in
Section 3.4.3. An equivalent expression for (3.102) turns out to be

1+ 1/yy

L=z, [+25, (3.104)
where z,,, z,,, and y,, are ratios of even and odd polynomials.
Now consider a Zg, . expression such as (3.100):
P(s P.(s)+P(s
Zo(5)= (s) _ P(s)+Po(s) , (3.109)
A AUEHFAE

where the ¢ and o subscripts denote the even and odd parts, tespectively, of
polynomials P(s) and Q(s). Two ways of writing (3.105) are

_ P, 1+P/P,
Zn= Q. TFGQ, (3.106)
z = Po 1+P/P, (3.107)

T Qe 1+Q./Q.

Comparison of the last two equations with (3.104) enables the construction
of Table 3.5. The left-hand column represents cases where the Z, - numerator
is even and the denominator is odd, so that there is a pole at the origin. The
following example 1llustrates the use of Table 3.5 and a continued fraction

expansion,
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Table 3.5. Open- or Short-Circuit Z;
Impedance Functions

Pole at Origin No Pole at Origin
z,,=P./Q, 2,=P,/Q,
2‘22=Qe/00 7@2=Q0/Qe
¥yu=P./P, yn=P,/P,

Example 3.16. Consider the pi network in Figure 3.8. Suppose that the
impedance Zg . looking back into the terminated network at port 2 is the
same as (3.100). Open-circuit impedance function z,, is selected because y,,
implies a short circuit that would prevent determination of C,. But the
presence of C; means that a port admittance function is required, so that the
selection from Table 3.5 is

2
Q. _ 1.29831657+0.482804 (3.108)
Qo+ s +1.360294s
Continued fraction expansion Program B3-5 applied to (3.108) yields C,=

0.350 farad, L,=2.890 henrys, and C,=0.931 farad after scaling from the
1-ohm source to the 2.2-ohm source shown in Figure 3.8.

—1_
Ip =

220 1 L 2
JM o ] Y o

-+ ‘I-m . 103
| [

Figure 3.8, A three-pole normalized lowpass network.

3.5.4. Impedance Real-Part Synthesis Summary. It has been shown that
lossless networks terminated on only one end can be synthesized according to
input impedance behavior. This is based on the fact that, for constant input
current, the input power (and comsequent output power) is proportional to
input resistance. A similar statement can be made concerning input conduc-
tance in the case of constant voltage sources. Singly terminated instances of
resistive sources connected to unterminated lossless networks are equivalent
by proper consideration of the reciprocity theorem.

The Gewertz procedure was described for problems beginning with the
even resistance function of frequency. Substitution of w?= —s® produces a
polynomial whose denominator left-half-plane roots produce the input imped-
ance denominator. The input impedance numerator coefficients are obtained
by solving a system of real, linear equations involving these roots and known
coefficients. The result is the input impedance Zg, . of a terminated network.
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Utiljzation of the continued fraction expansion of reactance functions from
Section 3.4 requires the conversion of Zg, ¢ to its corresponding Z; .. This is
obtained by inspection of Zy; ~ behavior at s=0 and reference to a standard
table, which was derived. The worked example relates to the looking-back
impedance at the output of a resistively driven LC two-port network. Starting
from a given resistance function polynomial, which could have been obtained
by the fitting procedure of Section 2.5, pi-network element values that realized
this behavior versus frequency were obtained. This example will be of centrai
importance as the final operation in a relatively new broadband impedance—
matching procedure considered in Section 6.7.

3.6. Long Division and Partial Fraction Expansion

The last section of Chapter Three describes an important design tool that is
useful for network synthesis in the frequency domain as well as for Laplace
analysis in the time domain. The former is illustrated by Bode’s alternative to
the Gewertz procedure (see Guillemin, 1957). The time domain application of
partial fraction expansions will be illustrated next (from Blinchikoff and
Zverev, 1976).

Suppose that a given system transfer function is

4 3 2

H s =S + 65 +22$ +3OS+14. 3.109
() s*+ 657+ 2257+ 30s + 13 (3109

As will be demonstrated, it can also be expressed in the form

0.1 0.02 0.02s+0.04

H,(s)=1+ - + s 3.110
= ey T+ ) T Gspe-sh (3-110)
where s is the Laplace complex frequency variable, and root s, is s, = —2+)3.

Using a standard table of Laplace transforms for time and frequency func-
tions, it is easy to show that the time response corresponding to (3.110) is

75

where 8(1) is an impulse function, and u(t) is a unit-step function.

The algorithm to be described operates on proper rational functions, i.e.,
those whose numerator degree is lower than the denominator degree. Clearly,
(3.109) is not proper, but would be if one long-division step were accom-
plished. The first subject treated in this section will be a compact long-division
algorithm, both for obtaining proper fractions and to convince the reader that
it is not complicated to program. This is important, because long division is
one of two main features of the partial fraction expansion algorithm to follow.

hy(t)=8(1)+ [0.1tc"—0,02e_‘+2e_‘(0.01 cos 3t— Si—“?ﬁ)]u(t), 3111

3.6.1. Long Division. Vlach (1969) gives a brief FORTRAN program for
long division; it is adapted to BASIC language in Appendix-B Program B3-6.
The calculation occurs in the last 10 lines of the program.
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Example 3.17. Using Program B3-6 and by longhand, show that

_4s?+9s5+3 _ 1
Hy(s)= 512 - 4s+1+———s+2. (3.112)

Also, perform one division on (3.109) to show the constant-plus-proper-
fraction form

1
Hi{s)=1+ . 3.113

(5) st 4657+ 22524 305+ 13 ( )
Note that the program is not dependent on having coefficients input in
ascending or descending powers, because the algorithm proceeds the same in
either case if the user is consistent.

3.6.2. A Partial Fraction Expansion Program. Chin and Steiglitz (1977) have
presented a partial fraction expansion algorithm that is claimed to reduce the
number of computer operations by a facior of about 2. They correctly explain
that this is important in spite of existing brief algorithms, because the
calculations may occur many times in an iterative process, and they may be
programmed on small computers, where program and storage size and speed
are important.

The algorithm is based on two operations, the first being long division with
a remainder (see Figure 3.9). Note that the given problem must be posed as a
proper fraction and that the numerator is in polynomial form and the
denominator is in factored form, i.e., the denominator roots must be known.

P(x)= 204+ 9x* =~ 267 + 5x - |
(x+ 1P (x—~ D +2D)

=——#L——a[2x4+7x3~3x2— 18x+23— 34—]

(x4 Dix— 1P(x+2) x+1

=r~—1———[2x3+5x2~ 13x—-5+ 44(28— 24 )]
(xﬁl)3(x+2) X+1 x+1

1 2 1 28 24 )
= [ 2+ Tx— 6+ ——| ~ 11+ -
(1—1)2(x+2)[ x_l( HT (x4 1)? ]
1 1 —-11+8, —8 12
- —_ +
(x—l)(x+2)[2x+9+x-—](3+ x—1 x+1 +(x+i)2)]

1 1 3-1 -3 l -6
— — — =+ +
x+2[2+x—l(“+x~1+(x_1)2 x+1 (x+1)1)]

1 111 2 -3 1 3
=——|2+ + + +——
x+2[ =1 (x—1)? (x-l)] x+1 (x+])2]
SR NP S Sl SV’ SRR N
x+2 x—1 (x—-1  (x-1)° 1 (x+1)?

Figure 3.9. Algebraic flow of a particular example. [From Chin, F. Y., and Steiglitz, K. JEEE
Trans. Circuits Syst., Vob. CAS-24, No. 1, p. 44, January 1977. ©1977 IEEE|]
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Figure 3.9 shows that two successive long divisions by the factor x+ 1 were
accomplished with remainder numerators —24 and 23-24/(x+ 1), respec-
tively. It is helpful to follow this process by doing the division either manually
or with Program B3-6 and writing the results of each separate division. Then a
division step by the factor x—1 occurs, leaving the constant — 11 plus the
prior rational remainder. The process is fairly clear up to the point where the
second main operation occurs. However, the next (second} division by factor
%x— 1 leaves the constant 3 plus the expression

(L 2 24 —11+8 , —8 12
x—l( “+x+l (x+l)2) x—1 @ x+I (x+l)2. (3.114)

In this identity the right side preserves the form of the preceding collection of
terms, and thus preserves the algorithm as different root factors are encoun-
tered. This illustrates the general scheme; interested readers are referred to
Chin and Steiglitz (1977) for further detail.

Two more comments are appropriate. Some ill-conditioned roots may cause
rounding errors to accumulate unless the roots are processed in order of
ascending magnitude. Note that the example in Figure 3.9 employs real roots;
the roots may be complex and therefore in conjugate complex pairs. They are
processed separately in Program B3-7 using complex arithmetic. As in the
root-finder Program B3-1, this can be avoided by dealing only with quadratic
factors, as mentioned by Chin and Steiglitz (1977).

Example 3.18. First run the example in Figure 3.9 to be sure that the output
sequence of residues is understood. Then perform a partial fraction expansion
of (3.109) by first obtaining the proper fraction in (3.113) by one long-division
step (Program B3-6). Use root-finder Program B3-1 to find denominator roots
~1+4j0, —14j0, —2+4)3, and —2—j3. Enter these roots, in that order, into
partial fraction expansion Program B3-7 to find the residues of each term.
These are shown in (3.110), except for the combined conjugate roots term,.
This is obtained with the Juseful identity

K. K* (Ki+K#)s—(Ksf + K's))

T

S—s§ s-sl*ﬂ (s—s)(s—s})

1

, (3.115)

where K; is a residue. Note that residues of complex conjugate roots also
occur as complex conjugates.

3.6.3. Summary of Partial Fraction Expansion. A long-division algorithm
that is simple enough for even hand-held computers is furnished in BASIC
language. It is useful in reducing rational polynomials to proper form, ie.,
numerator degree less than denominator degree. Long division is also one of
the two main features of an efficient algorithm that is also especially suitable
for small computers.

The input to the partial fraction expansion algorithm consists of the
numerator real coefficients and the denominator roots in order of ascending



-

Problems 65

magnitude. The program provides the residues corresponding to the order in
which the roots were furnished and in descending root multiplicity. The
residue output order can be understood best by running the example appear-
ing in Figure 3.9 and comparing the results. A Laplace transformation to the
time domain was illustrated as one of many important applications of the
partial fraction expansion program.

Problems

3.1. Differentiate
f(2)=(z- -2
using the calculus formula
d{uvw)=vwdu+uwdv+uvdw.
Differentiate
f(z)=2—522+8z—4

and evaluate f'(2). Note why the derivative of polynomials with multi-
ple roots is zero at the root.

3.2. Given the polynomial
f(z)=2'= (x+jy)’ = (X = 3xy?) +j(3x’y — y') =u +jv.
(a) Find derivative df /dz by differentiation.
(b) Find derivative df /dz using the Cauchy-Riemann identity.
(c) Show, using f(z), that
u_dv av_ _du
dx oy and 9x dy
3.3. Given the complex polynomial -
f(z)=5+3z422+42° 22" =u+jv
for z=x+]y, use the Mitrovic method to find numerically the values of
u, v, and the following derivatives when z=1-j3:

a_u ov @. and .@X

ax’ 9x’ Dy’ dy

3.4, A root finder has located root z;= ~ 2 —j/7 /2 of the polynomial equa-
tion

f(z)=22"+92*+ 132 +2* — 132+ 4=0.
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3.5.

3.6.

3.7.

3.8.

38,

3.10.

311
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Find the polynomial that remains when the quadratic factor related to
this root is removed using synthetic division.

Derive p, and q;, defined by

(t-z){z—2)=2"+pztq;.

Linear synthetic division in Example 3.1 on
f(zy=6+T2+42°+ 2,

using root z,= — 2+ j0, gave the remainder coefficients when the z+2
factor was divided out. D¢ procedure (3.14) on this polynomial, but
with k=2, 1, 0, and —1, with ;= ~14j0. Compare coefficient ¢_,
with f(—1).

Show why quadratic factors of conjugate-pair left-half-plane roots will
have all positive coefficients.

Given the lowpass network

L o

(a) Write the Z_(5) expression using immittances
Z, =sl, Yo=sC.

(b) Let s=jw and express Z, {w)=R{w)+iX{w). Show that
Zi(w)=Zip( —w).

(¢) Evaluate Z,, at w=0.1 and w=7.91, using the expression obtained
in (a).
A l.volt rms source with Z, =3 —j2 is connected to the network shown

in Problem 3.8. At w=2, Z, =0.20+]j1.60. Find the input reflection
coefficient & and the power delivered to the l-ohm load resistor.

A fixed sinusoidal voltage source with impedance Z,=R,+)X, is con-
nected to a variable load impedance Z=R +jX, as in Figure 3.3. Given
the definitions in (3.45) and (3.46), verify algebraically that (3.47) is
true, i.e., the power P delivered to Z is P=P_(1 —|a|?).

Find the inverse of the two-dimensional chain matrix

(2 1]

- | I
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3.12. Given the resistive network
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e

find chain parameters A, B, C, and D.
3.13. Find short-circuit parameter y,, in terms of open-circuit parameters z;.

3.14. Derive algebraically the ABCD chain parameters in terms of the
short-circuit admiitance parameters; i.e., derive (4.34).

3.15. Suppose that the characteristic polynomial K(s)=s’. Find the asso-
ciated transducer function H(s).

3.16. Given the transducer function
|H(w){2= 1 +€2T§(w), E-':%,
find H(s), K(s), the ABCD polynomials, and the lowpass network L-
and C-element values.

3.17. Synthesize the four-element, lowpass, doubly terminated LC network
providing the Chebyshev response

P
{H(w)[*= o= +0.25T(w),
2

where T,(w) is the degree-4 Chebyshev polynomial of the first kind.
Show the K(s), H(s), A(s), B(s), C(s), and D(s) polynomials. Find the
four element values and the termination resistances at the input and
output ends of the L.C two-port network.

3.18. Suppose that an LC network terminated in 1-ohm resistance has the
following Chebyshev input resistance function:

1.25

R(w)= —=0—.
“) 1+0.25Ti(w)

Use the Gewertz method to find the coefficients of the network’s input
impedance function:

g+ 2,5 +a,8" +a,8°
bo+ b5+ b,s*+ by +5*

Zpic(s)=




68

3.19.

3.20.
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Check the result by evaluating the two equations at w=0 and w=1
radian.

The Butterworth input resistance function for a three-element lowpass
network is

1
R{w)= ]
(w) 14w
The corresponding Z(s) function would be
;
Z(s)= .
®) 1—s®

The Gewertz method yields the corresponding input impedance func-
tton:
2
25t +4s+1
$+257+2s+1

Obtain the partial fraction expansions of Z (s) and of Zg;(s). Com-
pare these results and describe the similarities briefly.

Zrie(s)=

Find the component values of a five-element lowpass filter having the
response shape determined by the Legendre polynomial. The polyno-
mial recursion expression is

(2n+ 1P (X} —nP,_ (%)
Pn+l(x)— ([‘l+1)

The polynomial starting values are Py(x}=1, and P,(x)=x. Scale the
function for a 1—dB response at an w=1 radian passband edge.



Chapter Four

Ladder Network Analysis

Nearly.all the design procedures in this book lead 1o ladder networks: these
occur commonly in engineering practice. Ladder network analysis is quite
practical for hand-held calculators. Computers having only 224 program steps
can accommodate jadder analysis routines for networks with nine dissipative
lumped elements, and the newer hand-held computers can do much better
than that. More general network analysis, e.g., the nodal admittance maitrix
with LU factorization, is largely wasted on ladder networks, where most nodal
matrix entries are zero. There is a great need for efficiency in ladder network
analysis beyond fitting routines into small computers, Iterative (repeated)
analysis at many frequencies and for many combinations of network compo-
nent values occurs in optimization—the computer adjusiment of components
to obtain improved performance (Chapter Five). So ladder network analysis is
extremely important for design confirmation, automatic design adjustment,
and insight into certain impedance-matching and selectivity functions.
Chapter Four is based on a well-known method. An output current is
assumed to exist. It is then traced back to the input by successive application
of Kirchhoff’s current and voltage laws to find the input current and voltage
that would produce the assumed output. Since the ladder network is assumed
to be linear, all voltages and currents thus found can be scaled by any factor
representing steady-state changes in the input excitation. The discussion will
almost always concern steady-state sinusoidal excitation. However, a conve-
nient method of frequency sampling for a band-limited function will be shown
to provide the impulse and other time responses of that network. This amount
of calculation requires the speed and memory of at least a desktop computer.
The ladder networks considered here are guite general. The “menu” of
element types can include nearly any one- or two-port subnetwork that can be
programmed in a describing subroutine. Dissipative lumped elements (R, L,
and C); dissipative uniform transmission lines in cascade or as terminated
stubs; bridged-T networks; embedded two-port networks, inciuding those
described by data sets at each frequency; and two-terminal elements bridging
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nonadjacent nodes can be accommodated. Each branch of the basic ladder
network may contain a large variety of series-connected-element subsets
connected in parallel, and vice versa. A compact means for describing the
network topology is an important part of Chapter Four.

All branch voltages and currents are available by the ladder network
analysis method employved. Beyond direct applications, these provide exact
sensitivity (partial derivative) information about how network performance
changes with respect to each component value. This is an important part of
gradient optimization methods and plays a significant role in manual and
automatic network-tuning considerations,

A convenient, accurate, and familiar ladder network analysis program is
ong of the most important tools an individual can have in the world of radio
frequency (rf) engineering. .

4.1, Recursive Ladder Method

A definite form, nomenclature, and convention wili be employed throughout
Chapter Four. Various parts have been discussed in numerous references. The
ladder network structure is shown in Figure 4.1.
¢

4.1.1. Ladder Nomenclature. Series (even-numbered) currents and shunt
(odd-numbered) voltages are shown in Figure 4.1, with numbering beginning
at the branch across the load impedance Z, and proceeding back to the input,
which may be either a series or a shunt branch. All voltages and currents will
be rms (root mean square) values. Voltages beiween nodes (across series
branches) may be obtained as the differences between the node voltages, and
currents in shunt branches may be obtained in a similar way. If a branch does
not exist physically, its immittance (impedance or admittance, as appropriate)
is set equal to zero.

Each branch might contain only a single lumped element; e.g, Y, =juC
and Z,=jwL. If these occurred in reverse order, the immittances would be -
Y, =1/jwL and Z,=1/jwC for nonzero elements. The load branch Z, =R, +
JX, might be set to a very large real part (1E10) and a zero imaginary part if
an open-circuit load is to be simulated. The load real part, R, must never be
zero, as explained below.

Vs Va Vi
e Z‘3 Za 22 - ZL
la Iy T lz [ ID
Y5 Y, Y,

l

Figure 4.1. The ladder structure with afternating shunt admittances and series impedances.
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4.1.2. Complex Linear Update. load current I; in Figure 4.1 can be se-
lected arbatrarily, but for several reasons (to appear later in the chapter) it is
much more usefu! to specify load power P, and load impedance Z, , and thus
determine the load current:

IO= f{—L . (4.1)

All other branch voltages and currents correspond to this condition; this
choice in no way precludes the later rescaling of all voltages and currents by
some meaningful factor. Again, this decision means that R, must never be
zero, although R = 1E~ 10 is perfectly satisfactory.

The recursive calculation of node voltages and series currents is shown in
Table 4.1. Load current I; is found from (4.1) and multiplied by Z; to produce
the complex number V,. The current in the Y, branch is V,Y,. Admittance Y,
is calculated at this time, and the branch-1 current is computed and added to
the load current. Kirchhoff’s current law states that this sum is equal to
branch current I,. These operations are easily accomplished with Program
A2-1, for example.

Each [ine in Table 4.1 has the general form

E=BC+D, (4.2)

where the variables are not the ABCD parameters. The variable € is either an
impedance Z or an admittance Y, as they appear in Table 4.1. There are two
good reasons for performing the operations in (4.2) in the rectangular format
shown in (4.3) rather than in a polar format such as Program A2-1.

=b,c,— b +d,,
A= Or (4.3)

a;= bicr""' b.,ci + di .

o

Table 4.1. Typical Ladder
Network Recursion
Scheme

\\

=V,Y,+];

Vi=1,Z,+V,

14 = V3Y3 + 12, etc,
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The r and i subscripts indicate real and imaginary parts, respectively; e.g.,
@ =a_+ja,. First, polar-to-rectangular conversions require cosine and sine
functions that execute slowly 'in nearly all computers. Second, few if any
versions of BASIC language allow variables to be declared complex, nor is the
polar-rectangular conversion provided as a single operation. Providing a
subroutine to remedy this deficiency is not convenient because few BASIC
language sets have subroutine argument lists to transfer the several indepen-
dent and dependent variables to and from the subroutine.

4.1.3. An Elementary Topology Code. The means for specifying the arrange-
ment of two-terminal elements for the ladder structure in Figure 4.1 is now
described. The concepts will be extended for paralleled combinations of
elements in series, and vice versa, in Section 4.1.5. Inclusion of arbitrary
two-port networks will be described in subsequent sections of this chapter.
The “menu” at this point will consist of just three kinds of components:
resistors, dissipative inductors, and dissipative capacitors, assigned by integers
1, 2, and 3, respectively, Provisions for as many as nine different component
types will be assumed, the arbitrary limitation (see Section 4.1.5) being that
the descriptor must be a single, nonzero integer. The scheme employs a triple
of component type number, a value for each of the element kinds, and its
quality factor Q. A program using this scheme requires two integer pointers to
keep track of its progress in the recursion shown in Table 4.1. Figure 4.2
shows a typical network and these parameters. Only the right-hand three
columns are input by the user. The program will know when it has worked
back to the network’s input, because it will encounter a type-number zero in
the next memory location, signalling that the input element has been pro-
cessed.

The component types (1, 2, or 3) are shown in a column and correspond to
the appearance of components in order from the load end back to the input
end. Note the important use of a minus sign on some element-type numbers.

C,
g 8.°% 7 5§56 4 3 Cay
———o—)—{ ‘-—)—O— ZL
Rg Ly
N K Type Value Q
2 -3 275 500
2 3 2 58 100
3 5 -1 94 [
4 6 2 43 250
5 8 -3 325 2000

Figure 4.2. A typical lumped-element network with pointers and component triples.
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This always indicates to the program that the preceding ladder branch
immittance was zero, i.e., a null prior branch. If the first —3 in the type
column had been a positive 3, then the program would think that capacitor C,
would have been in branch 1 (Figure 4.1). The value is in the units specified
separately, e.g., in microhenrys or picofarads. The Q column is the component
quality factor; it is meaningless for resistors, of course. A program feature
allows Q=0 to indicate a lossless element (see Section 4.1.4). The two integer
pointers N and K are used in the program to keep track of component
number and branch number, respectively. It is very important that the reader
understand this simple scheme. It puts some of the work on the user, but
programs employing this scheme are very efficient in both memory and speed.
The scheme can also be extended in many ways; for example, the column of
component values is often the set of variables that an optimizer can adjust for
improved performance. Subsequent sections in this chapter extend the topol-
ogy capability in many ways.

4.1.4. Ladder Analysis Program. Program B4-1 in Appendix B is written in
BASIC language. Some adaptation to make it more appropriate for hand-held
computers is discussed in Section 4.1.5. The program will be explained and
illustrated using the concepts previously discussed.

Program input begins with a request for the frequency, inductance, and
capacitance units; typically, this might be 1E6, 1E—6, and 1E—12 for
megahertz, microhenry, and picofarad, respectively. Then the load resistance
and reactance values, in ohms, are requested. They are assumed to be
frequency independent in this program, but that can be changed without great
difficulty. The power delivered to the load is requested next; this enables
calculation of the load current according to (4.1). Referring to Program B4-1
in Appendix B, the main analysis loop at each frequency begins at line 1200,
where the frequency is input in the units previously specified. Radian fre-
quency is then calculated for subsequent use.

The recursion in Table 4.1 is implemented in the loop from lines 1300
through 1390. It is first initialized with load current magnitude (4.1) and phase
angle zero in code line 1220, Variable F1 is a flag to indicate that a null
branch was processed in the previous complex linear update cycie. This is set
up in subroutine 9000, where a zero value is assigned to the null-branch
immittance. Otherwise, branch immittance is assigned by the calculated sub-
routine call it line 1385. The variable MK had previously been assigned from
the component type array M(+); in line 1385, type MK =1 would send the
program to subroutine 9100, MK =2 to subroutine 9200, etc. The actual
complex linear update (4.3) occurs in subroutine 9900, called at line 1370. A
little thought will show how elementary yet effective this ladder network
analysis scheme can be.

1t is important 1o understangd the operation of the element-type subroutines
9100, 9200, and 9300 in Program B4-1, There is a small amount of standard
overhead. If the branch number is odd (an admittance is anticipated), then the
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impedance, which is always calculated for a resistance or an inductance, must
be inverted. A similar test of opposite properties is made for the capacitance
subroutine (line 9300), where it is most convenient to calculate the admittance
and invert it if the branch number is even. The Q parameter has been applied
to add a series resistance to inductors and a parallel conductance to capacitors
according to

Z=R+jX=X(d+jl); (4.4)
Y =G+jB=B(d+ijl), (4.5)

where the decrement d is equal to 1/Q (line 1150). Also, X=wL and B=wC.
Note that a lossless element may be described by Q=0 and vet avoid a
“divide-by-zero” in the decrement calculation because of the test and replace-
ment in line 1140, which sets Q=1E10. There is some question as to whether
Q is frequency independent. It is always possible to calculate Q in an arbitrary
way in subroutines 9200 and 9300, where the frequency information is
available. However the decrement is determined, inversion of (4.4) or (4.5)
requires the identity
1 _d-jl

d+jl &4y
This is coded in lines 9240-9260, which are potentially in common between
subroutines 9200 and 9300.

(4.6)

Example 4.1. Run Program B4-1 for the three examples specified in Figure
4.3. The topological input is terminated by entering 0,0,0. Note that any
number of frequencies may be analyzed sequentially once the basic informa-
tion has been input.

The input impedance is calculated last by lines 9955--9985; these will be
discussed in Section 4.5.1.

4.1.5. Branch Topology Levels and Packing. The flexibility of the topologi-
cal description may be extended considerably by defining branch levels, as
illustrated in Figure 4.4. The analysis program keeps track of which branch
number is being processed, and even-numbered branches are processed using
a branch impedance value. If the branch were to contain several paralleled
elements, their admittance should be calculated, added, and then inverted to
give the branch impedance. This state of paralleling admittances in an
even-numbered branch will be called level 1. Suppose that the branches to be
paralleled are composed of elements in series; then these impedances should
first be added, and the separate resulis should be inverted, so that the level-1
operation can proceed. The state of adding series impedances to obtain
subsets to be paralleled in an even-numbered branch is called level 2. Branch
2 in Figure 4.4 contains two level-2 subset branches and one level-1 branch.
The dual case is shown in branch 5 of Figure 4.4,



3 400 2

30+j10 &
Example a: ow
3, 325,200

325
2,400, 100

50 MHz; nH, pF.

V,=17.3205+j5.7735 =18.257T4 [18.4349°
I,=—32922E-3+;1.7714=1.7714 /90.1065°

Vy=—205.2845+j7.5860 =2054246 /177.8837°

100 W
Example b:

—32,400,100 325
3,325,200 > I

Zi, = 0.320569396 —|10.84356363

I LYY i O 20 — 30 2

50 MHz; nH, pF
V,=44.7216—j67.0820 =80.6227 /- 56.3098°
1,=22361+j0 =22361 /0°

V,=47.5313+)213.9106=219.1277 /771.4723°
[,= —19.5803 +j4.9622=20.1993 /165.7790°

4 3 3B 3 1
5O+ ]0 & ———y
Example c: 50 W
~3,325,0 .
2,400, 100 oo

50 MHz; nH, pF
V, =500 =50 /0°
=140 =1 /0° (because P; =R;)

V4=50-]9.7942 =509502 /—11.0830°
1,=0.9260—j0.3986=1.0081 /—23.2896°

Figure 43. Three ladder network examples with answers.
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_.“__rvv\_

N TYPE.d VALUE
o -nm SE-3
2 23.001 [.75E-6
3 12.02 45E--3
4 202 . 5.E—3
5 23.001 1.75E—6
6 ~10 0.
7 23.001 [1.5E—6
8 20 205E-13
9 13.001 6.25E—6
10 2.0 205E-3
il 23.001 115E-6

Figure 44. Branch topological extensions to two levels.

Study of the component-type array (integer part of middle column) in
Figure 4.4 shows that level 2 is described by adding 20 to the element-type
code; i.e., an even-numbered branch having a paralleled subbranch consisting
of L and C in series would be designated by 22 and 23, Similarly, an
even-numbered branch consisting of just L and C in parallel wounld be
described by adding only 10 to the level-1 designation (i.e., 12 and 13),

Consider Figure 44 in detail. The first component, —22, is an inductor
(type 2), and the minus sign indicates that the prior branch, namely, branch 1,
is null. The second component, 23, is a capacitor; it is in series because branch
2 is an even (impedance) branch and level 2 is specified. The program should
sum the L and C impedances. The third component, 12, indicates a change of
level. The program code should recognize this, invert the impedance sum, and
start an admittance sum. Then the 12 is processed as a capacitive admittance,
which is added to the admittance sum. The next 22 and 23 begin a new
impedance sum, which is terminated by the change of level indicated by — 1.
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This last impedance sum is inverted, added to the admittance sum, and this is
then inveried to become the final branch-2 impedance. Only then is the
resistor processed; but it is branch 4, since the minus sign indicates a
null-branch 3. .

Note that the resistor is iniroduced with a zero value; this is one of two
degenerate situations that may exist. The null resistor is needed to separate the
branch-2 description from the branch-5 description. The second degenerate
condition is covered by the following two rules: (1) level 1 can come before or
after level 2, or not at all; (2) multiple level-2 entries must be separated by
level 1, even if by a null element. These dummy elements might be null C in
parallel or null R in series.

Depending on the mass storage capability of the small computer, it may be
possible for the program owner to have another program to prompt him for
input and arrange it in the proper form. However, the topological scheme just
described is easily mastered by sole vsers.

There are several ways to save memory in hand-held computers that are
register oriented. Referring to the topology data shown in Figure 4.4, one way
to save registers is to store each component type and its decrement (d=1/Q)
in one register to the left and right of the decimal point, respectively. For
example, the data in Figure 4.2 would be stored as —3.002, 2.01, — 1.0, 2.004,
and —3.0005. Unpacking is simplified by use of the integer and fractional
operators. Calls to the component-type subroutines are still easy, because most
calculators ignore the sign and the fractional part of the numbers. However,
any level-1 and level-2 increases to the mantissa magnitude would need to be
removed; this usually occurs anyway in the test to see if levels 1 and 2 are
indicated. The unscaled component values would be paired with the registers;
this occurs naturally in the HP-67/97 calculators, where primary /secondary
register pairing is featured. In other programmable calculators, the pairing is
by a fixed register number difference, e.g., registers 1 and 21, 2 and 22, ete.
Packing the N and K components and branch integers into one N.K format
also saves one register,

4.1.6. Recursive Ladder Analysis Summary. The concept of working back-
ward in a ladder network, from what is arbitrarily assumed to have occurred
at the output end to what caused it at the input end, is well known. It is useful
because the network is assumed to be linear. The method is valuable for both
computations and algebraic formulations, as will be demonstrated in Section
8.3. There is only one complex functional form, which is solved repeatedly; it
requires just one multiplication and one addition. This operation is best
programmed in assembly language for fast evaluation on machines providing
that opportunity along with a higher-level language, e.g., BASIC. The voltages
and currents obtained for shunt and series branches, respectively, are often of
direct interest; how they enable the exact calculation of component sensitivi-
ties will be shown in Section 4.7.
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A detailed scheme for describing the network to the computer has been
discussed. It requires minimal memory and controls program branching
during numerical evaluation of the network at each frequency, An arbitrary
component “type” number may be assigned to single- or even multiple-
element component “types”. The subroutines for each single element can be
called separately and by the multielement types for maximum programming
efficiency. A level-0 BASIC language program has been described, and several
examples were run to illustrate its speed and simplicity.

Several enhanced features for the ladder network analysis approach were
described, and other additions will be presented in the following sections.
These include embedded two-port networks and bridging between nonadja-
cent nodes of the ladder network.

4.2, Embedded Two-Port Networks

An essential feature of any ladder network analysis is the ability to include
two-port networks connected in cascade in the ladder network. The uniform,
dissipative transmission line connected in cascade may be treated as such a
two-port subnetwork. Transistors with feedback, three-port circulators with
one port terminated,. and bridged-T equalizers are other common examples
that will be discussed later. The two-port networks may be described by
various parameter sets, but this analysis will be accomplished using a unique
application of the ABCD (chain) parameters. Conversion among various
parameter sets has been described by Beatty and Kerns (1964).

The approach will be to reduce the ABCD characterization to an L section
of two adjacent ladder branches. Then the standard complex linear update
will apply with negligible modification. This topic is developed by first
discussing additional properties of the ABCD parameters. This will expose the
inefficiency in the common use of the ABCD parameters for ladder network
analysis, such as in Hewlett—Packard (1976b).

4.2.1. Some Chain Parameter Properties. It is convenient to redefine the
output current direction and port subscripts for cascaded, two-port subnet-
works (see Figure 4.5). Then (3.62) and (3.63) are equivalent to

1,=CV,+DI,. | (4.8)

The purpose is to cascade a number of subnetworks, where Figure 4.5 might
be the jth one. Then the input current and voltage are also the ocutput current
and voltage from the subnetwork immediately to its left. Denote the ABCD
matrix of the jth subnetwork at T;. Then it follows that the total network’s
ABCD matrix T is simply the product of all n of the subnetwork chain
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+ Two-port
V. ABCD
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Figure 4.5. A typical cascaded, two-port subnetwork.

maltrices:
T=T XT,XTy%x-- ><TJ->< -+ XT

- (4.9)
This is a popular means for analysis, but it will be shown to incorporate some
gross inefficiencies.

The two-port networks for series Z and shunt Y are shown both separately
and combined in Figure 4.6. The definition of the ABCD parameters is clear
from (4.7) and (4.8); e.g., A=V, /V, when I, =0. Applying this approach to
the Z and Y two-port networks in Figure 4.6, their product is

OB DCF

For emphasis and review, the L-section ABCD matrix on the right-hand side
of (4.10) was obtained using complex arithmetic as follows. The upper
left-hand corner element was obtained as 1-1+Z-Y. The upper right-hand
element has even more trivial operations, namely 1-0+2Z-1. Similarly, the
lower left-hand element was found from G- 1+ 1-Y. Finally, the lower right-
hand element resulied from G-+ 1- 1. Further cascading will cause muitiplica-
tion by another branch matrix having two I’s and a 0. Clearly, this is an
ineffective technique for cascaded two-terminal elements such as the Z and Y
branches most commonly encountered. It is reasonable if most of the subnet-
work ABCD matrices are nontrivially full. It will obtain the complete ABCD
matrix for the entire network. However, the reader should confirm what the
fundamental ABCD definitions from (4.7) and (4.8) show: two network
analyses with Z; =1E—10 and Z, =1E+ 10 will provide the overall ABCD
matrix values. This matrix is sometimes required. Kajfez (19803) described its
use in noise figure calculations, and (3.66) is another application that will be
considered in much more detail. A more efficient ABCD calculation is now

o
'

' a

% z i Foa e 2 e
+ + \I', + ;l, +
v, v, 1 vy | Va

Figure 4.6. An L section by cascading Z and Y two-port networks.
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considered for two-port subnetworks occasionally embedded in a Z and Y
ladder network.

4.2.2. Chain Parameters in Complex Linear Updates. Equations (4.7) and
(4.8) are normalized to A and D, respectively, and (4.7) is reordered:

V., g
L_vCyy 4.12
D= ep T (412)

These two equations should be compared to those in Table 4.1. Consider the L
section shown in Figure 4.7. The two-port subnetwork is given a component-
type integer assignment, say 6. In the situation in Figure 4.7, the branch
pointer K indicates that the next branch is to be an impedance, because N=4
(an even number). Equation (4.11) is then relevant, since current I,=1,
(already known) is to multiply an impedance. Also, node voltage V.=V, is
already known from the back-to-front recursion in progress. These fit into the
first equation shown in Figure 4.7, using Z,=~B/A. To make (4.12) fit the next
complex linear update equation, V; must be temporarily stored and not
allowed to migrate to the second equation in Figure 4.7; V, =V, is slipped into
that place. 1, migrates normally, Y;=C/D, and the solution I, is obtained, as
shown in Figure 4.7. Finally, V, is recalled from storage, denormalized by
multiplication by A, and placed as shown in the third equation in Figure 4.7.
Current I migrates normally, but is denormalized by multiplication by D.
Then the ladder recursion continues normally. In fact, it is not really dis-
turbed; when component-type 6 is encountered in the topological list, the
program should go to the subroutine for ABCD two-port subnetwork type 6,
where its ABCD parameters are computed and the several modifications are
controlled. The reader should inspect the “next-branch-is-odd™ case shown in
Figure 4.8.

The technique just described is a little intricate, but it need be programmed
only once in its own special subroutine. Other component-type subroutines
can call it any number of times. The technique is independent of how the
ABCD parameters involved were cbtained. Also, much of the algorithm is

v, i, v, v, v
/ / / 7 |a Next 5 Ib 3
V=12, + = = Oy available {B/A) —T-—---
><?‘E'—- Modification branchi(6} I
Last
L=l =VeYs + 1, (c/oy I_' used

branch({3)

*Canvert Vg = A\g
Ig = Dlg

Figure 4.7. ABCD L sections: the next-branch-is-even case.
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|
a Vb lh Va Vb
/ / / . 9 7 b 5 lp  Last 3
bg = Ve Y5 ¥4 — {B/A} used —C— ———
~— Modification Nexi branchfz.}j
ViV =g Zg + available '_I (C/D)
- branchi{?}

lg = VoY +1g

*

*Convert Vy = AV,
1y =Dl

Figure 48. ABCD L sections: the next-branch-is-odd case.

especially suited to programmable calculators, e.g., register.arithmetic for
denormalizing variables.

4.23. Summary of Embedded Two-Port Networks. The conventional use of
ABCD parameters for cascaded subnetworks has been reviewed. It was shown
that where only a few nontrivial ABCD subnetwork matrices are involved, the
usual procedure, which multiplies all branch and other ABCD matrices to
obtain the overall ABCD matrix, is quite wasteful. It usually amounts to
complex multiplications by 0+4j0 and 1 +j0 many times. The review illustrated
the mechanics of ABCD matrix multiplication, which will be applied algebra-
ically in Section 8.1. It was also mentioned that two recursive analyses with
extreme load impedance value would calculate the overall ladder network’s
ABCD parameters should they be required for special applications.

The normalization of the two ABCD-parameter equations resulted in their
matching the form of the standard complex linear update formula. Then it
was shown that the impedance and admittance quantities appropriate to the
ladder branch were simply B/A and C/D, respectively. Thus an L section,
turned in the direction to match the next two ladder branches to be consid-
ered, allowed the recursion to proceed. One complex linear update variable
had to be denormalized, stored, and then recalled; another had to be swapped
into a nonstandard position. The process is somewhat intricate, but is indepen-
dent of how or where the ABCD parameters were obtained, Thus the ABCD
L-section method requires programming only in one subroutine, and this can
be done with little programming code.

4.3. Uniform Transmission Lines

Dissipative, uniform transmission lines with real characteristic impedances will
be considered (see Murdock, 1979, for the even more general case, if re-
quired). These will be treated as embedded, cascaded two-port subnetworks in
the ladder network environment, as just described, or as short- or open-
circuited stubs having only two terminals. The latter will reduce to the same Z
or Y case as the dissipative lumped elements treated in Section 4.1. There are
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many occurrences of these components in filter models, especially in micro-
wave filters; one of the latter will be designed and analyzed in Section 9.1.
Because of prior formulation, this topic reduces to a consideration of the
* ABCD-parameter calculations, some useful approximations, functionai-form
shortcuts in the programming associated with the calculations, and additions
to the topological list technique.

' 4.3.1, Transmission Line ABCD Parameters. The ABCD parameters for
' dissipative, uniform transmission lines have been given in many places (for
| instance, Matthaei et al., 1964, p. 28):

A=D=cosh(NP+j8), (4.13)
B=Z,sinh(NP+j#), (4.14)
C=Y,sinh(NP+j#). (4.15)

I

|

|

|

| Real characteristic impedance Z, is the reciprocal of admittance Y, angle 8 is

i the line elecirical length at some frequency , and NP is the frequency-
independent loss, in nepers, for that length of transmission line. Note that |

| neper=38.686 dB. The hyperbolic functions above have complex arguments.

: They may be evaluated by the following indentities from Dwight (1961, pp.

153, 4):
. . eNP(cosf+jsind)—e~NF(cosf—jsinf)
sinh(NP+j8 )= 3 , (4.16)
| . eNF(cos@+jsin8)+e “P(cos#—jsind)
cosh(NP+j6 )= 3 . {407

Note the functional similarity; only one interior sign is different, so that one
program segment with a flag variable should suffice for evaluation. Program-
mers of hand-held calculators should also note the efficiency of the polar-to-
rectangular conversion of unity at angle # to obtain cos(#)+]jsin(d) in one
aperation,

4.3.2. Lossy Transmission Line Stubs. A compact means for calculating the |
input impedance of a short- or open-circuited dissipative transmission line will
be described. The analysis of Section 3.3.2, leading to (3.66), is directly
applicable for an arbitrary load impedance at port 2 of a two-port network:
_AZ +B

|

Zl‘ch+D’

(4.18)

where Z, is the stub input impedance, and the ABCD parameters are given in
(4.13)~(4.15). For Z, approaching infinity and zero, it follows that

7, o0= el
YOS tanh(NP+;68)°
Z, sc=Zytanh(NP+j8), (4.20)

(4.19)
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for the open- and short-circuited-stub cases, respectively. It is possible to
avoid (4.16) and (4.17) entirely by the identity
tanh(NP} +jy

tanh(NP +j0 )= W ,

(4.21)

where the definition for y will occur in many places throughout this book:
y=tanf. (4.22)

There is no point in stopping with this exact result for two reasons. First,
short- or open-circuit terminations in the real world are only approximate.
Second, this fact provides an opportunity to drastically shorten the calcula-
tions in both programming steps and execution time. Consider the series
approximation

NP? | 2
tanhNP=NP—-§-+—1—5-NP5— (4.23)
For dissipation less than 1 dB, the second term is less than 1/226 of the first
term. An approximate stub input impedance expression is obtained for these
assumptions:
_7 K+iy
=LKy

y=tan; K= { NP for 8§C, (4.24)
NP~! for OC.

Clearly, only one subroutine with a flag variable will suffice for both kinds of
stubs in ladder network analysis, using either exact Equations (4.19)-(4.21) or
approximate Equation (4.24) with (4.22). Component menu descriptions with
sample data will be given in Section 4.3.4,

4.3.3. Lossy Transmission Lines in Cascade. Section 4.2.2 shows that param-
eters A and D are required for normalization purposes in the L-section
formulation for embedded ABCD two-port subnetworks. They are equal,
according to (4.13) and (4.17). Furthermore, the L-section branches are

2 =7, tanh(NP+j8), (4.25)
£ =Y tanh(NP+j0), (4.26)

where the considerations above for the tanh function apply. The approximate
form is recommended only for the more limited hand-held computers. The
rest of the calculation for the cascaded transmission line is accomplished as
for any cascaded two-port subnetwork (see Section 4.2.2). The transmission
line component topology code will be considered next.

4.3.4. Transmission Line Topology Codes. Each cascade and stub transmis-
sion line component will require five items to describe it: type, nepers loss,
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Table 4.2. Transmission Line Component Topology and Numerical Data

Type Name Z, NP :Ad Zy Zin

4  SCstub 70 0.0567 40.0 0 6.8506 +}58.4061
4 OCswb —-70 00567 400 1E10 9.7068 —j82.7569
5  Cascade 70 00691 171.54 20-—j30 29.0996—j39.9780

characteristic impedance (Z;), radian frequency reference, and the electrical
length, in degrees, at that frequency. Optimization is anticipated, and the two
variables for adjustment could be Z, and electrical length, in degrees, at a
reference frequency. Both of these gquantities will be in a reasonable numerical
range (well scaled). Electrical length at any arbitrary frequency will be
w
= 90;,—0 . (4.27)
Table 4.2 shows some typical data for illustration and numerical testing.
Stubs are type-4 components with the sign of Z, indicating the termination.
The dissipative, uniform transmission line subnetwork in cascade is type 5.
The stub input impedance was calculated by the approximate relationship in
(4.24); the exact equations were used for the cascaded transmission line.
Register packing for hand-held calculators is easy. Two pairs of registers
are employed for each topological entry (see Table 4.3). The first register in
the first pair contains the type integer in the integer part and the nepers in the
fractiona! part (the loss thus being limited to the realistic maximum of less
than [ neper, or 8.686 dB). The second register in the first pair contains Z,, a
potential optimization variable. The first register in the second pair contains
the reference radian frequency, and the second register contains the electrical
length at that frequency, also a potential optimization variable. Each transmis-
sion line component thus requires two topological pairs instead of just one, as
previously encountered. Actually, a component could occupy as many register

Table 4.3. Tapological Input
Data for the Filter
in Figure 4.9

4,05 1.0
29531E1Q 90.0
5.05 1.0
2.9531E10 90.0
—4.05 1.0
2.9531E10 90.0
5.05 1.0
2.9531E10 90.0
—4.05 1.0

2.9531E10 90.0
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pairs as required, since the topology pointer (N in Section 4.1.3) is incre-
mented in the subroutine for that particular component.

Example 4.2. A three-stub transmission line filter, to be designed in Section
9.1, is shown in Figure 4.9. It is composed of three shorted stubs that are
separated by cascaded transmission lines. All elements are 90 degrees long at a
bandpass center frequency of 4700 MHz (2.9531E10 radians). The characteris-
tic impedance is normalized, so that Z;=1 is assumed. Loss for each of the
line lengths is 0.05 nepers, or 0.4343 dB. The hand-held calculator, paired-
register topological description is shown in Table 4.3.

ZD=1aD=90° 20=1'90=

Y, =K &, =80° Yy =K 84 = 80°

Figure 4.9, A microwave equal-stub filter from section 9.1.

4.3.5. Transmission Line Summary. Dissipative, uniform transmission lines
with real characteristic impedances (Z,) have been analyzed using both exact
and approximate methods. For two-terminal stubs with either open- or short-
circuit terminations, the approximate analysis is suitable, because the termina-
tions are realized with relative inaccuracy in practice. The faster execution and
more easily programmed approximate method is especiaily attractive for
hand-held caiculators. There is less justification for an approximate calcula-
tion for cascaded transmission line subnetworks, but it is still an option for
hand-held computers as opposed to desktop or larger machines. The approxi-
mation involves the computation of the hyperbolic tangent function with
complex argument. Identity (4.21) utilizes only rea] arguments and enables the
use of series approximation {4.23) for the tanh function. The first term of the
loss-related series is usually satisfactory.

The menu of ladder network components was extended by type-4 stubs and
type-5 cascaded transmission lines. The stub termination was indicated by the
sign of the characteristic impedance, a negative number chosen to select the
open-circuit termination. Optimization and other reasons lead to the choice of
nepers, Z,, radian reference frequency, and electrical degrees at that fre-
quency as the four transmission line parameters. It was shown how these may
be placed in calculator register pairs and remain consistent with the topologi-
cal data previously defined. A microwave filter example indicated how ele-
mentary such a circuit description can be,
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4.4. Nonadjacent Node Bridging

There are many applications where single components (e.g., R, L and C) are
connected between nonadjacent nodes of a ladder network. The bridged-T
network is often employed for servo lead/lag phase compensation and for
group time delay equalization in radio circuits. There are also a number of
narrow-band filter design methods that realize transmission loss poles by
bridging nonadjacent nodes with L or C. This section considers convenient
means for analyzing such networks without having to resort to the less
efficient nodal analysis.

4.4.1. Derivation of Bridged-T Chain Parameters. The approach for analyz-
ing the bridged-T structure in Figure 4.10 is to find its ABCD parameters and
then treat it as another cascaded two-port subnetwork, as described in Section
4.2. The four branch admittances may be composed of any number and kind
of components. A specific delay equalizer, bridged-T arrangement will be
considered in Section 4.4.2, and its ABCD parameters will be obtained using
the following development.

Consider the separate two-port networks in Figure 4.11. The left one is the
top branch of the bridged-T, and the right one is the remaining T structure.
Paralleling these two structures produces the complete network in Figure 4.10.
It will be shown that addition of the two separate short-circuit admittance
matrices provides the short-circuit matrix of the entire bridged-T network.

To obtain the shori-cirenit parameters for the subnetworks, defining Equa-
tions (3.79) and (3.80) are recalled. It is easy to see for the subnetwork in
Figure 4.11a that y,,,=V,;, =Y. Generally, y,,=1,/V, when V,=0.If V =1,

o —~0
Figure 4.10. The bridged-T structure with admittance branches.
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Via l2, Iy I3,
Y, - Y, ~——— Y, -
+ + + I +
Via Vo Vig ifJ Voo
(a) (b

Figure 4.1}, Two subnetworks that form a bridged-T network when paralleled. (o) Matrix Y,;
(b)Y matnx Y,

then it is seen that y,,= —Y,; the sign is due to the I, current convention,
Furthermere, y|, has the same value (reciproeity).

The two-port subnetwork in Figure 4.11b has y,, equal to the admittance
looking in when the output is shorted. It follows that

Yi(Y2+Y5)

Y™ —*—“———Y[ Y, Y, (4.28)

The output admittance y,,, is obtained from (4.28) by swapping the Y, and Y,
variables. To find y,,;,, the output must be shorted and the current-division
rule applied to find the part of the input current that flows through Y, in
Figure 4.11b. The input current I, is defined by I,=y,,, when V,=1. The
current-division rule says that

Z,

_IZEIIZZ-G-—Z;’ (429)

where Z=1/Y for each variable involved. This leads directly to
—Y\Y,

Y21 = _—Y,+Y2+Y3 . (4.30)

The two subnetworks in Figure 4.11 have been described by their y
parameters. The independent variables are the terminal voltages; these coin-
cide when the network terminals coincide. Also, [, =1,,+1,, and I, =1, +1,,
where I, and I, are the port currents for the complete bridged-T network in
Figure 4.10. It follows from (3.79) and (3.80) that y,,=y,1,+¥> and an
analogous argument applies for each of the other y parameters. This is simply
an addition of the two subnetwork matrices. Thus the y parameters of the
bridged-T network in Figure 4.10 are

Ny )
I Y AT, +Y, 4 -
Yy(Y,+Yy)
Y2 IV, e ‘ (432)
Y[YI

Y,. (433)

Ynp=¥n= —W—
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A similar development could be accomplished by addition of open-circuit (z)
matrices, as explained by Seshu and Balabanian (1959).

Section 3.4.3 showed how to find z and y parameters in terms of the ABCD
parameters. The ABCD parameters in terms of the y parameters are found in
an entirely analogous way. They are provided in the matrix identity

A B)=_:l( Yo 1) 4.34
(C D Yo \¥n¥2—YaYne Yu/ (4-34)

It is tempting to substitute (4.31)-(4.33) into each element of (4.34). It is

always worth checking algebraically to see if gross simplification or cancella-
tion of mutual terms may be accomplished. But, for analysis purposes, it
usually turns out that carrying forward the numerical results of important
stages of the computation is by far the most effective procedure.

4.4.2. A Group Delay Equalizer. Geffe (1963) has described the lowpass
group delay equalizer shown in Figure 4.12. Suppose that the five component
values have been determined, and what remains is the analysis task for this
subnetwork. Using decrement d=1/Q for each component, a comparison of
Figures 4.12 and 4.10 shows that

Y, =Y,=wCy(dg, +il), (4.35)
Y4=[""L1(du+j1)]_l, (4.36)
Y= { [0Cy(dey+i1)] 7 +ela(dy 1)) - (4.37)

It is important to recognize that all paris of these calculations reside in the
component type-2 and type-3 subroutines described in Section 4.1.4, So the
bridged-T subroutine calls for the type-2 and type-3 subroutines to evaluate
the main parts of (4.35)—-(4.37). This means that the bridged-T topological
input list must consist of four register pairs in the proper order, and it must
control the topological pointer N appropriately before type-2 and type-3

Note: These sections may be used only if
1

- 4= <-L —0577
L| 0!2 + ﬁ2 < B E
Y
Resonance Tests
_1
G G =2 Type 111a:
—_— - 1. L resonates with }C, at
4ot W)= Jaz + ,B1
i # - 302 2. 1, and G, resonate at
_ 4 wy=y B%-3a’

Ly = by

Figure 4.12, Geffe’s type-Illa lowpass group
delay equalizer, [From Geffe, 1963.]
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Table 4.4. Topological Input
~ Data for the Geffe
Bridged-T Equalizer

6.4, L, value
6.dc, C, value
6.chy, L, value
6.dc, C; value

subroutines are called. The registers for storage of the ABCD parameters are
available for all preceding computations. If the order of the calculations is
well planned, it is not difficult to calculate the four complex numbers
according to (4.35)-(4.37), then the short-circuit parameters in (4.31)—(4.33),
and finally use the ABCD parameters in (4.34) to compute A, D, B/A, and
C/D, as required in Section 4.2.2. The paired-register topological code for a

_ type-6 bridged-T network appears as in Table 4.4,

4.4.3. Interpolation of Nonadjacent Node-Bridging Current. Figure 4.10
showed a T network bridged by a branch with admittance Y,. It is often
necessary to know what voltages and currents exist internal to such networks,
e.g., the voltage across Y,. Cases also occur where the bridging component
bypasses more than one node. Moad (1970) described an approach that solves
this problem efficiently. The following similar development is based on
computing two of the bridged subnetwork’s ABCD parameters and thus
finding the bridging current. This establishes the correct output current for the
bridged subnetwork, so that the ladder recursion may continue normally. in
fact, the recursion also is used twice to find the two required ABCD parame-
ters.
Consider the subnetwork in Figure 4.13, which is bridged by impedance Z_,
The ladder recursion method will arrive at port b with values determined for
both node voltage, V,, and Iy, the current in the KA (even) branch. If I,
(thus 1)) were known, the recursion could continue to the subnetwork’s input

zl:
a L
a%e Srae—
ABCD
+ bridged
\Y subnetwork

Figure 4.13, A subnetwork bridged by branch impedance Z_.
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port (node a in Figure 4.13), at which time I_ could be added to I,, and the
recursion could again proceed normally. Equation (4.7) applies to the bridged
subnetwork. Kirchhoff’s law for node b in Figure 4.13 yields

I.=I;-1L,. (4.38)
Also, Figure 4.13 shows that
V.-V, =1Z_. (4.39)
Substitution of these two equations into (4.7) yields .
| LZo-Vy(A-1)
b~ B+Z,

Only A and B need to be determined. But (4.7) shows that A=V_ when V=1
and I, =0; also, B=V, when I,=1 and V,=0. Two analyses of the ladder
subnetwork using these output terminal conditions will provide A and B. Then
(4.40) yields I, and (4.38) yields bridging current I ..

This procedure begins when the recursive ladder method encounters a
component-type code that indicates a node-b condition, as in Figure 4.13. V, -
and I are saved and replaced by 1 and 0, respectively, The complex linear
update is allowed to find V,=A, and this is saved. Then the complex linear
update is restarted at node b in Figure 4.13, with V=0 and I,=1; it is
allowed to find V,=B. Then I, is calculated according to (4.40); that and the
saved V) value are used to restart the complex linear update from node b for
the third and last time. The subnetwork voltages and currents will then be
correct, Upon arrival at node a in Figure 4.13, 1, is increased by I according
to (4.38) and the ladder recursion method continued toward the ladder input
terminals.

{4.40)

Example 4.3. Suppose that the embedded subnetwork is the bridged-T
shown in Figure 4.14, with recursion variables I, =2 and V,=3. To find A
according to its definition from (4.7}, set I, =0, V =1, and find V. Since
there is no current through the 40-ohm branch, node-d voltage to ground must
be 1, and the branch current must be 1/30. Therefore, A=V,=14+50/30
=8/3. Setting V,=0 and I,=1, node-d voltage to ground must be 40 and

Figure 4.14. A resistive bridged-T embedded network.
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,=1+40/30=7/3. Thus B=V,=40+50x7/3=470/3. Then (4.40) shows
that 1,=3 /100 and (4.38) shows that I =1.970.

4.4.4.  Summary of Nenadjacemt Node Bridging. A general method for find-
ing the ABCD parameters of any bridged-T network was presented. Equations
for the short-circuit (y) parameters were derived in terms of the four branch
admittances. These can be converted to ABCD parameters for use in the
embedded subnetwork technique described in Section 4.2. A time delay
equalizer bridged-T network was discussed as an example. It was emphasized
that existing subroutines for RLC impedance computation could be called by
the bridged-T-component subrouline to minimize computer coding.

For T networks and more extensive subnetworks that are bridged, there
often is a need to find the internal voltages and currents, The approach above
does not provide this information and will not solve the larger problem in any
case. An efficient technique, which uses the ladder recursion scheme two extra
times to find the A and B chain parameters of the bridged subnetwork, was
described. These values, the bridging branch impedance, and the bridged
subnetwork’s known output voltage and current enable the simple calculation
of the bridging current. Thus the ladder recursion scheme may proceed
through the bridged subnetwork, calculating correct voltages and currents as
in the unbridged situation.

Network analysis that includes bridge subnetworks must be conducted with
the possibility that a null condition might occur. Therefore, division such as in
(4.40) should be protected by the addition of IE—9+j0 to the denominator.

4.5. Input and Transfer Network Responses

The methods described so far make it easy to obtain the input voltage and
current of a ladder network given the topological data and load power.
Several input and transfer response functions often required in practice will be
described. Quantities related to impedance and power will be defined first.
Then a definition of scattering parameters will be given as a basis for certain
wave response functions and for important applications later in this book.
Logarithms (log) in the following equations are with respect to base 10,

4.5.1. Impedance and Power Response Functions. Assume that ladder net-
work input voltage and current are available (see V| and I, in Figures 3.4 or
3.7, for example). Then the input impedance is

\s
Z,=—I—'=Rl+jx,. (4.41)
1

This calculation is made in Program B4-1 by lines 9955—-9985. Line 1381
detects that the input has been reached, because the component-type integer is
zero. If the next branch number is even, then the last processed branch is in
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+
@ E, R, ix, @ E, ix

Figure 4.15. Series and parallel impedance forms.

shunt (see Figures 4.3b and 4.3c). Then the voltage and current are in the
complex linear update (Table 4.1), so that lines 9970-9985 are correct for
impedance calculation. 1f the next branch is odd, then line 9965 in Program
B4-1 swaps the respective real and imaginary parts of the voltage and current;
otherwise, the calculation would have produced the admittance instead of the
impedance,

The parallel impedance form is often required when a lossless voltage
source exists and for various other reasons. The parallel-ohms form is much
more widely accepted than admittance mhos; the latter, when it is used
(primarily by microwave engineers), is often given in millimhos. The parailel
input impedance form is

R R2+X2 . (R2+X2)
=T XemTTx
where R, is the reciprocal conductance, and X, is the negative of the
reciprocal susceptance (see Figure 4.15).
It is well known that power P may be computed as the real part of the
product of sinusoidal voltage and conjugated current:

P= Re(VI*). (4.43)

(4.42)

Therefore, the power input to the network is
P =V, L, +Vl, (4.44)

Irtir

where subscripts r and i denote real and imaginary parts, respectively.
It is assumed that power delivered to the load impedance was an arbitrary
independent variable the user specified. Therefore, efficiency in dB loss is

P
n= 1010gm§ld13. (4.45)
L

Negative values of (445) imply an active network with power gain, ie.,
P,>P,.

4.5.2. Scattering Parameters. Two-port network equations have been writ-
ten in terms of ABCD (chain) parameters in Section 3.3.2 and in terms of both
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1 I Iz 2
Z, —C — it O
8y — 3 by |
+ + Linear +
E, Vi network Va Z
handiads —= |
zZ, K

Figure 4.16. Linecar network port scattering waves.

z and y open- and short-circuit parameters, respectively, in Section 3. 4 3. In
exactly the same way, the scattering parameter equations are

b; =52, +8x3,, (4.46)
b,=8,,a,+55a,. (4.47)
The variables labeled a, (p=1 or 2) in Figure 4.16 are called the incident

waves, and those labeled b, are the emerging waves. Kurokawa (1965) defined
the scattering variables in terms of the port voltages and currents:

V +Z71, . (4.48)
a,= .
2\/
—Z7*1
bp = _P_mu (4.49)

Ry

where p 15 1 or 2, corresponding to the ports shown in Figure 4.16. The waves
may also be interpreted in terms of signal flow graphs (see Hewlett—Packard,
1972),

Note the possibly complex, port-normalizing (reference) impedances Z7 in
(4.48) and (4.49); they may or may not be equal to the actual source and load
impedances. This subject will be treated in more detail in Section 7.1. It is seen
from (4.48), with p=1 and Z_=Z3}, that the numerator is equal to E_. Then,
the port-1 incident wave Is

V,+ 7201 E
a,= Zh__E . (4.50)
2Ry 2Ry
The squared magnitude of (4.50) is recognized as the maximum power
available from the Z, source, as defined by (3.45). This fact and the following
development show that the coefficients in (4.46) and ¢(4.47) have units that are

the square root of power.
The net real power incident on a port turns out to be

P, =la,[*~[b,|% (4.51)
This can be confirmed by substituting (4.48) and (4.49) into (4.51). The power
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identity in (4.43) results after some algebra, using the identities

|Z?=2Z*, 2ReZ=Z+2Z* (4.52)
The reflection coefficients looking into port p are defined by
Pp= ? . (4.53)
P
But definitions (4.48) and (4.49) in (4.53) yield
- Fhx
Pp= EZF;—_'_ZZD—; . (4.54)

It is important to note that this is essentially (3.46), which enabled a simple

calculation of power transfer from a complex source to a complex load.

Kurokawa (1965) discusses the differences in reflection of power waves and

traveling waves on transmission lines with real or complex Z;. In general,
traveling waves are not closely related to power.

Finally, the transducer function, S,,, is defined by (4.47):
IS _ b2
1=,

(4.55)

a,=0

The side condition that there be no reflection from the load is important in
itself; it requires that Z; =73, (Why?) Using (4.48) and (4.49) in (4.55) and
equating a, from (4.48) to zero yields the general transducer function

1+Z3 R}V,
S = -0 =5 T ZS=ZD. 4.56
Tz R; E ! (4-26)

4.5.3. Wave Response Functions. Scattering parameters normalized to com-
plex port impedances will be used throughout Chapter Seven; the more
familiar case of real port-normalizing impedances will be assumed. Also, the
source impedance will be assumed to be equal to the port-1 normalizing
resistance R,. Then, the input reflection coefficient from (4.54) is

Z]_Rl

pl=m’ (457)

which is the same as (3.48). When Z;, =Z, =R, +j0, (4.57) is equal to coeffi-
cient S, in (4.46). The reflection coefficient looking into port 2 is defined in a
similar way, and will be used in Section 6.7. A low reflection coelficient
magnitude indicates a high-quality impedance match as Z, approaches R,.
Three ways to express this condition are return loss, standing-wave ratio
{SWR), and mismatch loss.

Return loss is commonly used in microwave design; it is defined to be:

RL= —20log,g|p| dB. (4.58)
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The standing-wave ratio is the ratio of voltage or current maxima to minima
on uniform transmission lines, where a standing wave may exist as a result of
load reflection. It is defined as

1+ |p|
I=lol’
where the reflection magnitude is usually obtained from (4.57). However, if
(4.54) defines a gencral reflection coefficient, then (4.59) may be interpreted as
an arbitrary, real function of a complex variable. It is also a well-behaved
function that works well in network optimization. This will be discussed
further in Section 5.5.

Mismatch loss is the ratio of power delivered to power available at an
interface; it is simply (3.47) from Section 3.2.3, expressed in dB:

MIS= — 10log,o( 1 —|o}%) dB. (4.60)

The basis of networkssynthesis in Chapter Three was a lossless, two-port
network, The issue was thus the power transferred from the source, since it
had nowhere else to go but to the load impedance. The transducer function
for general linear two-port networks considers both mismatch loss and dissipa-
tive loss (efficiency) or network activity (gain}.

The transducer loss is the sum of mismatch loss (4.60) and efficiency loss
(4.45), Tt also may be computed in terms of the forward scattering transfer
parameter S,

SWR = (4.59)

TL= —20log,o|S- (4.61)

The expression for S,, in (4.56) allows a complex source and load if they are
equal to their respective port-normalizing impedances. The important situa-
tion when they are not 80 related is discussed in Section 7.1. As mentioned,
the more familiar case occurs with real terminations equal to their respective
port-normalizing resistances. Then (4.56) simplifies to

RT V, .
S, =2/ =5 = ifZYisrealand Z,=Z7, (4.62)
RY E,
which is simply a scaled ratio of the voltages shown in Figure 4.16. The reader
should remember the conditions that are attached to (4.62).

Finally, there is an extremely simple way to calculate (4.62) when using the
ladder recursion scheme from Section 4.1: just add on a series branch, namely
source resistance R,, at the network’s input terminal. Usually, the program is
made to pause at the input terminals so that some of the other responses
described above can be computed. When the recursion compleies one more
cycle, the source voltage E, is obtained. The angle of S,, is available immedi-

ately:
#, = —argE,. (4.63)

This is valid because the load current phase is the zero-degree reference and
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the load impedance is a resistance. Equation (4.62) shows that when the load
power is set equal to

|
PL = H{—?’ N (4.64)
then
TL=20log|E,. (4.65)

4.54. Conclusion to Network Responses. Some impedance and power re-
sponse functions were described. Scattering parameters were defined by two
linear, complex equations in the same style as previously used for ABCD, z,
and y parameters. The mathematics of scattering parameters is straightfor-
ward, but lack of familiarity with the general case makes its development
worthwhile. For instance, scattering parameters are often described for a
50-chm port reference impedance. This is the circumstance that has revolu-
tionized accurate, automatic measuring equipment for all kinds of networks
over extremely wide frequency ranges. However, there are some network
responses that are explained better in terms of scattering parameters with
some arbitrariness of port normalization, and this will be a necessity in
Chapter Seven, Various wave response functions were then defined, and an
efficient means for extending the ladder recursion analysis method for S,,
calculation was explained.

Singly terminated (lossless source) responses have not been mentioned
explicitly (e.g.. V,/V, in Figure 4.16). 1t is easy to extract these numbers from
a ladder network analysis algorithm and calculate the logarithm of that
magnitude. Unfortunately, the selectivity expression of interest typically is

ref

v
SEL =20log,, v
L

dB, (4.66)

where V  may be the input voltage at a midband frequency. This reference
voltage may be contingent upon a certain input current or power, ofr similar
load conditions. Then the excitation will have to be maintained at that level at
all response frequencies. This can be confusing when the analysis scheme
requires load power to be specified at every frequency. Experience has shown
that one should not approach these definitions carelessly. Renormalizing at
each frequency, by making the source excitation variable equal to unity, helps
to eliminate confusion.

Finally, most response functions have an associated angle that makes the
calculation of group time delay possible. Group delay, in seconds, is defined
to be

d
To=— . (4.67)
where angle ¢ is in radians. Time delay may be converted to degrees per
megahertz by multiplying (4.67) by 360E6; this is especially useful for oscilla-
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tor frequency stability calculations. Numerical differentiation will be discussed
in Section 4.7.2. It is the easiest way to compute time delay, but it trades
execution time for computer coding. Tellegen’s theorem (Section 4.7.3) pro-
vides a basis for computing exact time delay and its exact sensitivities, but this
particular application requires much more memory and coding. Therefore, it
is recommended that the angle be computed at a frequency perturbed (in-
creased) by 0.01% (a 1.0001 factor) and again at the desired frequency. The
difference between these two angles, in degrees, is used in the numerator of
the formula
__—h¢
To= G503 f,’

which gives the delay in reciprocal frequency units. Suppose that the fre-
quency of interest—f, in (4.68)—is 50 MHz. According to Program B4-1 in
Section 4.1.4, the frequency units would be input as 1E6; therefore, the time
delay would be in microseconds when calculated by (4.68). The only remain-
ing problem is the occasional 360-degree jump in the calculated angle that
might occur between the perturbed and desired frequencies. A simple program
test can prevent this.

(4.68)

4.6. Time Response From Frequency Response

For most industrial engineers, there has been a gap between academic
concepts and applied design and analysis. This section uses a desktop com-
puter to close that gap for the Fourier and convolution integrals. A means for
rapid steady-state frequency analysis of ladder networks has been developed
that requires very little code and avoids most trivial calculations, such as
complex multiplication by zeros and ones. This makes practical a method of
nurnerical evaluation of the Fourier integral and, subsequently, numerical
evaluation of the convolution integral, This enables the conversion of a
system’s band-limited frequency response to its impulse response in the time
domain. Then the convolution integral enables the response to any arbitrary
time excitation to be calculated in a reasonable amount of time, using a
desktop microcomputer. Complicated networks and dense time samples could
weaken this claim; the understanding of this process and its fundamental
simplicity may be reward enough for design engineers. Afler all, bigger and
faster computers are always available at some additional expense of time and
convenience,

This section begins with a review of the Fourier integral under the condi-
tions that the system impulse time response is a real function and causal, i.e.,
cannot anticipate the excitation. Then Simpson’s rule for numerical integra-
tion will be appiied, as previously discussed. Finally, the convolution integral
will also be evaluated by Simpson’s rule according to a related general
formula. This material follows Ley (1970), and the program has been adapted
t0 BASIC language from the original FORTRAN.
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4.6.1. Real Causal Fourier Integrals. The familiar Fourier integral
=1 (= oot
h(ty=_ f_wH(w)e de (4.69)

may produce values of h(t) that are complex and nonzero in negative time,
The system frequency response 1s H{w) and the corresponding time impulse
response is h{t). Those wishing to review its applications should see Blinchi-
koff and Zverev (1976). When h(t) must be real and also causal {zero in
negative time), (4.69) may be written as

h(ty=2 [ Rwycos wtdo, (4.70)

where R(w) is the real part of the system frequency response function H. In
practice, the integration is completed only to some finite frequency on the
assumption that H is band limited, e.g., is zero above some limiting frequency.

Example 4.4. Suppose that H(w) is the impedance of a parallel RC network,
i.e., the response function V/I. This could be calculated by an analysis
program in the general case. Here, use the equation .

1
Then the real part is
1

1+w?
Appendix B BASIC Program B4-2 calculates 25 values of R(w) from 0 to 12
radians in program lines 130-19Q. Clearly, (4.72) is a band-limited function.
Running Program B4-2 shows that the real part is only 0.0069 (21.6 dB loss) at
12 radians. Program lines 200-350 evaluate (4.70) for the impulse response;
particularly, lines 300-329 implement Simpson’s rule (2.32) for the numerical
integration required. Running Program B4-2 from the beginning shows the
frequency samples and then ‘the impulse response samples. They correspond
reasonably well with

R(w)= (4.72)

h(ty=e"", (4.73)

which is the exact impulse functiion corresponding 1o (4.71), the Laplace
transform pair. The BASIC function on line 115 is there simply to slow the
program output rate.

4.6.2. Numerical Convolution of Time Functions. The convolution integral is
defined by

F(t)= fo ‘h(t—7)F,(r) dr, (4.74)

where 7 is the dummy variable of integration, F, is the excitation function, and
F, is the system output function. The system impulse response is h(t). The case
of (4.73) is shown in Figure 4.17. Convolution involves folding, shifting,
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Figure 4.17. Graphical interpretation of the convolution integral for an exponential impulse
response. (a) Impulse response; (b) folding; () shifting; (d) driving function; {e} product to be
integrated. [From Ley, 1970.)
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multiplying, and integrating the proper functions. Figure 4.17a is the impulse
response function shown with values for + at 0, A7, and 2 A+, [t is folded by its
negative argument in Figure 4.17b, then shifted by the amount 2 A7 in Figure
4.17c. The unit-step excitation shown in Figure 4.17d (an arbitrary choice)
multiplies the shifted function according to (4.74), with the resulting integrand
in Figure 4.17e. This area is the output function F, at time t=2 Ar, the shift
interval.

The second application of Simpson’s rule is the convolution process ilius-
trated in Figure 4.17. Integration of Figure 4.17e uses the three samples

fo=h(2A7)F;(0),
fi=h(Ar)Fi(Ar), (4.75)
f,=h(0)F,(2Ar),
according to the integrand in (4.74). Then the integral estimate by (2.32) is
Fo(2ar)= 5T (f+41, +1,) (4.76)
This result ¢can be compared to a general expression by Ley (1970):
F(kAt)= %3(f0+4f, +2f,4 - +2f, _,+ 4, +1), (4.77)

where
f,=h{t—7)F(),
t=k Ar; k=2,4,6,..., (4.78)

T=nAT; n=012....k

The algorithm calls for a choice of k, the even number of integration intervals,
and letting n vary from 0 to k to obtain the output time response F_ (k Ar). The
reader is urged to write the algebraic expressions in (4.77) and (4.78) for k=2
to confirm the (4.76) case shown in Figure 4.17e.

Lines 480-620 in Program B4-2 accomplish this numerical convolution.
The unit-step excitation is computed in lines 410-430 and provides an
estimate of the exact step response

gy=1—ct. (4.79)

For engineering accuracy, about 100 frequency samples and 40-dB band
limiting are required.

4.6.3. Time Response Summary. Simpson’s rule for numerical integration
has been employed for both the Fourier and convolution integrals. The
Fourier integral can be evaluated over a finite range for band-limited response
functions. Furthermore, its integrand is the product of the system transfer
functions real part and the cosine function when the system has a real
impulse response that is zero in negative time.

It does not take long to compute and save 100 frequency response samples
for fairly complicated ladder networks. These are used to compute and save
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the corresponding impulse response time samples. Finally, the numerical
convolution integral can be evaluated for arbitrary time functions specified at
matching time samples. The memory requirements for practical problems
usually fit easily into desktop computers having 8-32 kilobytes of random-
access memory.,

The fast Fourier transform (FFT) must be mentioned before leaving this
topic. It is clearly superior to the above and is available as standard software
from several desktop computer manufacturers. Serious users of the frequency-
to-time-domain transform should consider special programs built around this
technique, which are more efficient by at least an order of magnitude. It was
not described because of its computational complexity.

4.7, Sensitivities

Sensitivity quantifies the relative change in a response function (Z) with
respect to a relative change in any one of several independent variables; f.e.,

. _ Az/z
o Ax /%

for small changes in the ksh variable x,. Often, Z is complex, and is evaluated
at some given frequency. In this case, the sensitivity is also a complex number.
For example, Z might be a ladder network input impedance, and x, might be
an inductance value in microhenrys. Alternatively, Z might be a time function
evaluated at some given time. Hopefully, a system being built will have
sensitivities with magnitudes less than unity, otherwise it might react badly to
component tolerances and to its environment.

For each response, there are as many sensitivity numbers at a frequency or
time value as there are variables in the problem. Applications include compo-
nent tolerances, optimization (Chapter Five), and large-change calculations,
e.g., network tuning. This section further defines real and complex sensitivi-
ties, relates them to partial derivatives, shows ways to obtain partial deriva-
tives approximately by finite differences and exactly by Tellegen’s theorem,
and provides several examples. Most of the discussion is limiled to the
frequency domain, as justified in Section 4.7.4. Programs A2-1 and B4-1 will
be used for calculations.

)

(4.80)

4.7.1. Sensitivity Relationships. The partial derivative operator abbreviation

d

Ak":a“;

(4.81)

will be used throughout. As the change in the variable, Ax,, approaches zero,
{4.80) approaches the common sensitivity definition

z X Z
E=7 o (4.82)
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which can be viewed as a normalized partial derivative. Recalling the deriva-
tive formula for natural logarithms (in), (4.82) can also be written as

z _ AnZ
oAdnx ]

(4.83)

which shows that the normalized derivatives are describing relative changes in
logarithmic space. Optimization (automatic component adjustment) in loga-
rithmic space often is better behaved because of the normalization of partial
derivatives that would otherwise be badly scaled (grossly different magni-
tudes).

Suppose that Z=|Z|e!. Then differentiation of Z in the right-hand term in
(4.82) follows the rule for differentiation of a product, namely d(uv)=vdu+
udv. 1t follows that

Z & B
which reduces to a useful ldenuty:
Sz =8%+08] . (4.85)

This says that when the complex sensitivity of a complex response function is
obtained, the real sensitivities of both the magnitude and angle (phase) are
immediately available.

First-order prediction of response behavior for small changes in several
independent variables may be derived by recalling the total differential

Table 4.5. Useful Identities for Partial Derivative Applications

|1 Z=U+jW Z¥=U—jW.
2, AZ= == |AZ]e’®.
3. AZ= AU +jAW.
4, AaV+ BD=a(AV)+ B(Al); a and # are scalars.
5. For Z=|Z|e#*:
Z*(AZ)
AlZ|= Re Z =|AZ|cos(f —¢),
(AZ) .
Agp=1Im 7 seconds. Multiply by 360E6 to get degrees /MHz.
6. AlZPP=2[UAUY + WEAW)|=2 Re[Z*(AZ)].
. 9Z, dZ, dZ, if x. is only in domain of Z
. — e —m s ¢ .
X, = 0Z, %, if x, is only in domain of Z;
lo
AloggU = g:o (AL).
9, log e =0.434 294 482,
R, +R,)’
10. Insertion-loss rali0='|sz,'|1( 1+Ra)

4R R,
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formula:
dZo= A ZAx, + A Z A%+ -« + A Z A%, . (4.86)

Dividing both sides by Z and placing x, /x, in each term on the right-hand
side yields

Ax,

4z gz & | gz 8%

Z ¢ 2 %,
This shows that the relative change in a (complex) response is approximately
the sum of relative signed changes of all independent variables weighted by
the (complex} signed sensitivity numbers. Table 4.5 provides some useful
identities for partial derivatives of complex variables.

(4.87)

+ o+ 87 "

n

4.7.2. Approximate Sensitivity. 1t is essential that the reader feel comfort-
able about partial derivatives, especially those that are complex, First-order
finite differences will be explained because it is a practical method and should
convince even the most apprehensive reader that partial derivatives are nice. It
is presumed that the connection between reai-function slope and derivative
can be recailed, particularly as it defines an ordinary real first derivative. The
kth variable x, has been discussed; a formal notation of the entire set of
variables needs to be introduced; it is called a column vector:

x=| . | (4.88)

Xn

It may be written in row form, using the transpose operator that swaps rows
and columns:

X=(X;, Xy, 0, Xy ot s Xy) - (4.89)

A convenient definition of a finite-difference approximation to a partial
derivative is now possible:

Z'm(x + Axk) - Z'm(x)
Ax, )

For instance, suppose that there is a ladder network with n L’s and C's. For
their nominal values residing in the vector x defined by (4.88), the input
impedance Z, (xX) is computed at a frequency that does not change. Now the
kth component x, is changed by a small amount, Ax,, and the slightly
different input impedance Z;,(x + Ax,) is calculated. These three numbers, two
being complex, are used in (490} to approximate the partial derivative. Tt
requires n+ 1 complete analyses of the ladder network to get all n partial

(4.90)

AZi=
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Table 4,6, First-Order Finite Differences for the Network in Example b in

Figure 4.3
Ax=x+A
k A AYZ, ATZ,
L 0.0001 —Q0.001799 4 j0.003402 —0.001800+ j0.003405
L 0.01 —0.001764 +30.003363 —0.001836 +j0.003445
C 0.0001 —0.001999 +j0.03691 —0.002000 +j0.03692
C 0.0l —0.001968 +j0.03651 —0.002032 +j0.03733

derivatives. How much is x, perturbed? Computers with 7 to 10 decimal-digit
mantissas require x, to be increased by about 0.01% (a 1.0001 factor). If it is
much less than that, the change in Z,, may fall off the end of the mantissa’s
digits, and no change is seen. If it is much more than that, this linear
approximation of slope is too crude. It is easier to talk about the latter
“truncation” problem in terms of the Taylor series, which will be discussed in
the next chapter.

The network in Example b in Figure 4.3 was analyzed by Program B4-1; its
input impedance was calculated for 0.01 and 1% changes in each variable,
namely L and C. The perturbation was tried as an increase and as a decrease.
The input impedances were employed in (4.90), which was evaluated using
Program A2-1. The results are shown in Table 4.6. These values differ from
exact results in the third significant figure.

4.7.3. Exact Partial Derivatives by Tellegen’s Theorem, There are several
exact means for finding derivatives of complex network functions. It will be
shown in Section 7.1 that the coefficients of bilinear functions, which have the
form of (2.1) or (4.18), can be determined by only three independent function
evaluations. Because the derivative of the bilinear function can be written
easily, its exact value is also available with respect to one of the n variables.
Fidler (1976) has given a means to obtain the exact partial derivatives of a
bilinear function with respect to n variables in just 2n+ 1 function evaluations,
However, Tellegen’s theorem enables the calculation of exact partial deriva-
tives of complex responses with respect to all n variables in just one or tweo
network analyses, depending on whether the response is at only one end of the
network or is a transfer function, respectively. This is a spectacular result, and
the comptiter memory requirements for variables and code are not too severe
for desktop computers. Branin (1973) and others have observed that the same
result is available algebraically with a slight savings in computation; so
Tellegen’s theorem is not really necessary. Even so, it is worth knowing for its
general enlightenment and compactness. Penfield et al. (1970) have neatly
derived 10] fundamental theorems in electrical engineering using Tellegen’s
theorem. They correctly claim that no circuit designer should be without it.
Tellegen’s theorem states that for any two entirely different (or identical)
linear or nonlinear networks (N and N) having the same branch topology and

|l
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obeying at least one Kirchhoff law, the respective branch voltage and current
sets (vectors) have null inner products; ie.,

Vi=0=V"L (4.91)

This also applies in time or frequency domains. The second network, N, is
called the adjoint network; it may or may not be different. First, observe that
an inner product is defined in terms of two vectors such as (4.88) and (4.89);
suppose that they are the n-element vectors x and y. Then the inner product of
x and y is

Xy=x,y,+ Xy, - +XY, - (4.92)

Example 4.5. Apply Tellegen’s theorem to the networks from Figure 4.3b
and c; they are reproduced in Figure 4,18b and c. The branch-4 current arrow
has been reversed so that each branch has its current entering its positive
voltage, consistent with each branch in the common topology shown in Figure
4.18a. All branch vcltage and current values are shown in Figure 4.18 as
found by Programs B4-1 and A2-1. Tellegen’s theorem says that

Vi=v i +V,L+Vv,+v,i=0 (4.93)

In fact, using Program A2-1, vTi=0.0085+ j0.0116, which is as close to zero
as might be expected for the digits carried. There are three more such inner
products that should be equal to zero: VL, V7§ and V7L Evaluate them using
the data from Figure 4.18. The reader should write a brief program that calls
Program A2-1 subroutines in order to calculate the inner products of complex
numbers; it is much easier, and a lot of time will be saved and errors avoided.

Penfield et al. (1970) generalize the Tellegen theorem statement to include
the conjugation and any linear operator; for the partial derivative operator
with respect to any variable

AVTi=0=V"AL ' (4.94)

Consider the network in Figure 4.18b to be its own adjoint network N and N.
The port input impedance is

v
Z,=—o, (4.95)
-1,
and its partial derivative with respect to L yields
—AV,=AZ, -1, (4.96)

where currents are the independent variables. The branch-2 equation in terms
of independent current I, is

V,=L-eL(d+jl), (4.97)
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Figure 4.18. Two different networks having the same topology. (a) General topology; (b) original
network N; {(¢) adjoint network N.
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and its derivative with respect to L is
AV, =1, w(d+jl). | (4.98)

Using the differentiation operator on the original network N, the left-hand
side of (4.94) is

AV T+ Av L+ AV, D+ AV, =0, (4.99)
and the right-hand side of (4.94) is
Vo AL+ V,- AL +V,- AL+ V,-AI,=0. (4.100)

Then, subtract (4.100) from (4.99), separate the pair of port terms from the
rest, and substitute (4.96) and (4.98):

s a4 D 0, . 0
AZ LI+ VAT, =m IJ—VJA(I;
+ Loo(d+i1)i,— V00 + 4071, - 0 AT (4.101)
All partial derivatives with respect to currents are zero because currents are
independent variables. Partial derivatives with respect to L of branches 1 and

3 are zero because neither branch contains the variable L. Hopefully, these
considerations have not hidden the simplicity of the result:

AZin= % ) (4.102)

4

where
g =w(d +j1)I3. (4.103)

This says that the exact partial derivative of input impedance with respect to L
(in henrys) is found by denormalizing the unit-source sensitivity term g,.
Similarly, the exact partial derivative of input impedance with respect to C (in
farads) in Figure 4.18b is

AZy, =%, (4.104)

where now
g.= —w(dc+jl)V§. (4.105)

Only one analysis at the given frequency is required to evaluate all currents
and voltages in (4.102)-(4.105). If these exact answers are to be compared
with the approximate values in Table 4.6, then the chain rule will have to be
used to account for units:

9Z _3Z aH
nH -~ 30 amH’ (4.106)

where the last term on the right is equal to IE—9.

Figure 4.19 contains the general excitation patterns that depend on the
selected response function. Transfer functions require two network analyses,
including one in the backward direction. Figure 4.19 also shows general
expressions for the unit-source coefficients that depend on the nature of the




Partial derivative expressions

Corresponding excitation patterns
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Figure 4.19, Tellegen excitation and unit sensitivities.
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branch immittance; these arc in matrix form and may not interest all readers.
They do reduce to (4.103) and (4.105) for the two-terminal L and C illustrated.
The interested reader is referred to Bandler and Seviora (1970).

4.7.4. Summary of Sensitivities. Sensitivity has been defined and written in
several equivalent forms. Several identities related to partial derivatives were
given in Table 4.5 because they are often required in the use of sensitivity
relationships. First-order finite differences were explained, so that the reader
could become more familiar with partial derivatives. It is also a simple way to
obtain reasonably accurate derivatives. Finite differencing reduces complexity
and saves computer program steps but runs much slower than some exact
methods.

" Tellegen’s theorem was explained using operator notation according to
Penfield et al. (1970). It applies in both time and frequency domains. The time
domain partial derivative calculations run a long time because network
analysis of a response requires numerical integration of state variable or
similar equations. Then the sensitivity calculations often require numerical
integration in backward time, using the stored impulse response. This is
feasible but perhaps overly ambitious for desktop microcomputers. The fre-
quency domain application of Tellegen’s theorem for obtaining exact partial
derivatives was explained. It boils down to obtaining the currents through
impedance components or voltages across admittance components. These
complex numbers are about all that is required to compute exact partial
derivatives for sensitivity or optimization purposes. No more than two net-
work analyses are required at each frequency to get the response sensitivity to
all variables. This is an amazing result!

Problems

4.1. Write the sequence of topological element-type codes for the “T”
interior of the bridged-T network in Figure 4.12, i.e., ignore L,. Use
type=2 for the inductor and type=3 for the capacitors. The answer
should be a string (sequence) of four positive or negative integers.

4.2. Write the topelogy code table for the following network:

Zy 0 0“)——e°'°'o—(zm 2 0

[ X1

.
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4.3.
44.

4.5.

4.6.

4.8,

Ladder Network Analysis

similar to Table 4.3. Assume that stub transmission lines are type 4 and
cascade transmission lines are type 5 (also, Z,; =50 ohms, Z,,=25
ohms, #=45°, each line has a 0.06-neper loss, and wy=2.9E10 radians).

Add level-1 and level-2 capability to the flowchart of Program B4-1.

Consider the network in Figure 4.1 using only branches Z,,Y,, Z,, Y.,
and Z,. Suppose that the following data apply at some frequency:

P =10W, Z,=30+]l5, Y,=0.02-0.0t,

Z,=150—]14, Y,=0.014j0.15, Z,=40+]65.
Construct the table of numbers in the format of Table 4.1. What is the
rms current through Z, and the rms voltage across Z,?

Show the L-section branch expressions (Figure 4.7) for a lossless
cascade transmission line.

Find open circuit parameters z,, and z,, for the lossless network in
Problem 4.2. Hints: Find z,; by definition; next, find chain parameter
C for the entire network by multiplying subnetwork chain parameter
matrices; then convert C to z,, by identity.

Given the two lossless transmission lines:

Use (4.18) and (4.22) to

{a) Express Z,(y), where y=tan#é.
(b} Express Z,(y).

(¢} Show that when Z,=R |, then

- +1
a=mn~l[(R+l+%) "} R=(§) _
2

Find V, when V_, =2 volts for the following network:

out

i2 52

25

<+
5
<+

o - O
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4.10.

4.12.

4.13.
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Solve by using (4.40) and by paralleling short-circuit-parameter matri-
ces. Compare the amount of work required for each method.

Given the following network:

ZD
Z, > 4
o | -C

Find Z,, when Z,= 50 ohms, §=130°, Z.=5+j12, and Z = 10—j3.

Consider the following two-port dissipative (lossy) network:

R, 1 2

AA-

—+ F

5h Py

Suppose that the 8 matrix is normalized to the terminating resistots.
Show why S,;=1/E, when P,=0.25/R,. What is the phase reference?

Derive an expression for the input reflection coefficient Sj, of the
network in the preceding problem when the load is an arbitrary
reflection coefficient, I', .

Consider the polynomial
f(x)=5x*+2x"+19x + 1.

Calculate its exact derivative expression, obtained by calculus, using
x=S5. Perturb x to the value 5.0005, and use the first-order finite
difference to estimate the same derivative.

Suppose that you have a complex numerical value for the reflection

coefficient in (4.57) and also a complex numerical value for its deriva-

tive with respect to the network variable x,.

(a) Give an expression for the partial derivative of the magnitude of
the reflection coefficient with respect to x,.
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4.14.

4.15,

4.16.

4.17.
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(b) Note the SWR definition in (4.59). Give an expression for the

partial derivative of SWR with respect to x, in terms of the
reflection coefficient and its derivative found n (a).

Consider the series dissipation resistance in an inductor:

| L wl/Q

e Y Y Y Y Y AMAA~————
Find the unit-source sensitivity gq using (4.4) and d=1/Q.

Find the unit-source semsitivities g, and g, for a dissipative cascade
transmission line.

Verify numerically the three Tellegen theory examples suggested below
Equation (4.93).

Again consider the network in Figure 4.1 using only elements Z;, Y,,
Z,, and Y, (not Z, this time). Suppose that at some frequency
P =10 W, Z,=30+j15, Y,=0.02-j0.01,
Z,=150-j10, and Y,=0.01+j0.15.
(a) Find the exact partial derivative of Z, =V, /I, with respect to
branch impedance Z, using Tellegan’s theorem.

(b) Find an approximate value for the same partial derivative by
first-order finite differences. Perturb Z, by 5—]l, i.c., increase Z,
to 155—j11 ohms.




Chapter Five

~ Gradient Optimization

This chapter shows how design engineers who can write a simple BASIC
language subroutine can also use a standard program to select automatically
the optimum set of variables for a great variety of mathematical problems,
especially for circuit design. The subject of optimization requires more “feel”
and art than any other in this book; so it is appropriate to begin by giving the
reader some general appreciation of what may and what may not be possible.
Intelligently applied optimization frequently provides betier answers with less
work than belabored, closed-form or approximation theory.

Design or operation of a system ideally involves three¢ steps. First, it is
necessary to identify the system’s variables and to know how they interact.
Second, a single measure of system effectiveness must be formuiated in terms
of those variables. Only then is the third and last step possible—the choice of
system variables that yield optimum effectiveness.

The casiest systems to model are described explicitly by algebraic equa-
tions, and these will be the basis of most examples here. But a prime
application is the ladder network simulated implicitly by the analysis methods
of Chapter Four, An optimizer can automatically adjust some or all compo-
nent values in networks to improve one or more responses sampled at a
number of frequencies. Engineers have always “tweaked” or tuned systems in
the laboratory in this way. However, there are compelling and increasingly
common technical and economic reasons for eliminating this practice when
possible. The synthesis methods in Chapter Three reveal their limited possibili-
ties. Parasitic elements, including dissipation, are usually not considered, and
there is no way to deal with element bounds that usually exist. Also, engineers
may be unable to assimilate the vast amount of information measurable on
systems or encountered during long mathematical procedures such as network
synthesis. Optimization often alleviates these difficulties and almost always
furnishes insight into how the system variables interact. Sensitivity was consid-

. ered at a fixed set of system values in Chapter Four. In optimization,
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dg d,
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Frequency
Figure 5.1. A sampled-difference error criterion.

sensitivity is computed at each such “point™ in variable space, and this point
moves along toward better sets of values.

Regardless of the means for designing and simulating a system, the second
step is finding a measure of effectiveness. It usually involves value judgment
and is either trivially simple or practically impossible to accomplish. Filter
effectiveness in the least-squared-error sense is simple: the differences (d,)
between desired and obtained filter response at each of several significant
excitation frequencies may be squared and summed to indicate effectiveness.
These differences are shown in Figure 5.1.

Aaron (1956) noted: “As with all models of performance, the shoe has to
be tried on each time an application comes along to see whether the fit is
tolerable; but, it is well known, in the Military Establishment for instance, that
a lot of ground can be covered in shoes that do not fit properly.” Such is the
case with the least-Pth error criteria, with P being equal to 2 or a larger even
integer.

The third step is optimization. The word optimum, meaning best, was
coined by the mathematician-philosopher Leibniz in 1710 and has an interest-
ing history dating back to ihe eighth century B.C. Figure 5.2 shows how
optimization might proceed for network problems. This amounts to adjusting
a certain number of system parameters vntil the performance satisfies a
preassigned requirement. Optimization is a successive approximation proce-
dure, an automated design trade-off, achieving the best in a rational manner.
Optimization amounts to handing the computer a set of input values and
having the program hand back a set of answers. The computer then automati-
cally re-inputs the adjusied data for many more such “runs” until some
defined performance goals have been obtained more closely. The performance
error function can be pictured as a surface over many dimensions, such as the
two shown in Figure 5.3. Then optimization is a search for a lower elevation
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Figure 5.2, Circuit optimization iteration.

on that surface. Facetiously, Hyde (1966) quotes Joseph Petzval as having said
in the 1800s that the optimal solution is the best one you have when the
money runs oui.

It should be mentioned that maximizing some function, say Q(x), is
equivalent to minimizing its negative, e.g., —Q(x); the sign just turns the
surface upside down, All subsequent discussion refers to minimization without
loss of generality.

Figure 5.3. A surface over two-variable space; an elliptic function. [From TABLES OF FUNC-
TIONS WITH FORMULAE AND CURVES by Dr. Evgene Jahnke and Fritz Emde, 1945,
Dover Publications, Inc., New York.]
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Sooner or later, discussions about optimization turn to the blind-man-on-a-
mountain analogy: how does he get down? It is surprisingly informative to
exercise the following system function on either hand-held or desktop comput-
ers. Program the objective (performance) function

Q=_P2*L4Q2*(2_2., ‘ (51)

P,=(9+ X, + X, +25*X, s X,— 36X, +50+ X, — 164)+2,  (5.2)

where

and )
Q=X *X | —4+X ,—3+X,—8)*2. (5.3)

The “*+” indicate multiplication in the BASIC language. Also program the
partial derivatives of the objective function Q with respect to the independent
variables X, and X,, respectively:

G, =P,+ 18+ (X,—2)+ Q,# 2 (X,—2), (5:4)
G,=P,+50% (X, +1)—Q, *3. (5.5)

These equations have been programmed in Appendix-A Program AS5-1 for
HP-67/97 calculators. The reader should try inputting several trial pairs of
X,,X; values to minimize Q. Use the derivatives G,,G, to guide your
strategy; a necessary condition for a minimum Q value is that both derivatives
be equal to zero. A good starting point might be x=(5,3)". Examine the
points (2, 1.99759808) and (5.84187,0.92000) and their immediate neighbor-
hoods. This function has three minima and one finite maximum. The need for
some background and a reasoned strategy should become evident.

Chapter Five begins with an elementary treatment of quadratic forms,
mathematical functions that are ellipsoids in multidimensional variable space.
This is shown to be the basis of the conjugate gradient search schemes. The
need for a sequence of searches in selected directions will then be clear. A
particular linear search, implemented by Fletcher (1972b), will be studied in
detail. This is an important part of the Fletcher—Reeves optimizer, which
requires less than 1900 bytes of memory. It will be discussed in detail and
several examples will be given. Network objective (performance error) func-
tions will be considered next, followed by effective methods for dealing with
all sorts of constraints, including variable (component value) bounds. Finally,
a brief contrast between gradient and direct-search methods will be drawn.
There are reasons for considering the latter, and several sources will be cited
for those who may wish to investigate.

5.1. Quadratic Forms and Ellipsoids

When a function is suitably near a minimum, such as shown in Figure 5.3,
such a function is approximately a paraboloid that has elliptical cross sections
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Figure 54. A paraboleid function over iwo-dimensional variable space.

(level curves; see Section 5.1.3). This is similar to the situation illustrated by
Figure 3.1 for the root finder. It is shown here in Figure 5.4 for the more usual
case where the local minimum value is not zero.

The two-dimensional case illustrates all important properties of the n-
dimensional case and will be used in all descriptions. However, it is important
to be comfortable using matrix algebra 1o describe the n-dimensional sets of
equations; otherwise, the huge amount of notation would be unmanageable. A
little practice with the following examples should overcome the handicap of
those not familiar with these slight extensions of the material in Chapter Two.

One central example will be employed to develop many important mathe-
matical and geometrical concepts. A list of some terms that will be of interest
is given in Table 5.1. The reader may wish to consult Aoki (1971) during or
after working through this chapter; his text is an excellent undergraduate
treatment of the topics in Table 5.1, and much more.

Table 5.1, List of Pertinent Matrix Algebra Terminology

Conic section Matrix Positive definiteness
Conjugate vectors Muitiply, pre, post Quadratic form
Eigenvalue Newton’s method Quadratic function
Eigenvector Norm Rotation of axes
Euclidean space Nonlinear function Saddle point
Gradient vector Nonlinear programming Subspace

Hessian matrix Orthogonal matrix Symmetric matrix
Inverse of matrix Orthogonal vectors Transpose

Jacobian matrix Parabolotd Taylor series

Unit matrix
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| 5.1.1. Quadratic Functions. A quadratic function of many variables is de-
. fined in matrix notation by
F(x)=c+b"x+ ix"Ax, (5-6)
‘ Matrix A is always real and symmetric {equal to its transpose). Consider what

this means for a specific two-dimensional function that will be used as a
central example:

F=612+(—60—132)x+1x"| 26 —104y 5.7

! ( )x 2"[—10 26 ¥ (>-7)
Expanding all terms, the equivalent, ordinary algebraic equation is

‘ F=612—-60x,—132x,+ (l3xf— 10x,%, + 13x§). (5.8)

The reader should be able to obtain (5.8) from (5.7) by applying the skills
obtained from Sections 2.2.1 and 4.7.2. The essential feature of a quadratic
function is that there are no variables that are raised higher than to the second
power and no products composed of more than two variables; ie., the
equation is of second degree.

Level curves are the loci on the variable space where the function value is
some constant value. Two level curves for (5.8) are shown in Figure 5.5 on the
X, X, variable space. Level curves in more than two dimensions are harder to
visualize, but it is useful to consider a three-variable space (for example, a

x4

Figure 5.5, Level curves for F=32.86 and F=292 in Equation (5.8).

S
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Figure 5.6, Level surface in three variables. A two-dimensional subspace also is shown. [From
Acton, 1970.]

quadratic density function). This might appear as in Figure 5.6. Any cutting
plane through Figure 5.6 would resemble Figure 5.5. Such reduced degrees of
freedom define a subspace, such as the inclined-plane subspace shown in
Figure 5.6. A subspace in Figure 5.5 would be a line. One reason subspaces
are significant is that many minimization algorithms search in an orderly
sequence of subspaces until the minimum is found.

The level curves for the central sample function that are plotted in Figure
5.5 will be studied in more detail. The next two sections deal with finding the
center of the loci and the orientation of their axes, respectively. In the process,
some concepts of major importance will emerge.

5.1.2.  Gradients and Minima. First recall real functions of real (single) var-
iables. A quadratic function is ‘
y(x)=c+bx+%ax2. (5.9)

|

The necessary condition for an extreme value or inflection point is that its first
derivative be equal to zero:

y{x)=b+ax=0, (5.10)
which produces the coordinate of the extreme value:
. X= T . . : (5.1 1)
The nature of the function at x is determined by examining the second
derivative: ' ‘ '
y'(X)=a. ' (5.12)
If a is strictly positive, (5.11) is the minimum point. If a=0, then (5.11) is an

inflection point, being neither a minimum nor a maximum. This familiar
analysis extends to multidimensional functions without substantial charnge.
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The matrix algebra rules for differentiation applied to (5.6) produce
g(x)=b+Ax, (5.13)

where g(x) is often written as VF(x), called grad F. Whichever symbol is used,
g is a vector, like x; g is the gradient of F. From the central example in (5.7),
the vector b and matrix A can be identified so that (5.13) can be written as:

—60 26 —10
= + ; 5.14
B(¥) [—132] [—10 26]" (>14)
Some readers may be more comfortable differentiating (5.8) with respect to
both x; and x,:

g, =V, F=26x, - 10x, - 60, (5.15)
g,=V,F=—10x, +26x,— 132. (5.16)

Appendix Program AS5-2 evaluates the function value and the gradient ele-
ments (derivatives) for this particular example. The reader is urged to use that
program in conjunction with Figure 5.5. Note that the gradient vectors are
always perpendicular to the level curves and point in the direction of steepest
ascent. :

Finding the minimum of an n-variable quadratic function requires setting
each of the n gradient components equal to zero. This means setting (5.13)
equal to vector zero; this is equivalent to setting both (5.15) and (5.16) to zero
for that particular example. When (5.13) equals zero, then

Af=—b. (5.17)
But the matrix inverse A~ ' is defined by the relationship
AT 'A=U, (5.18)

where the unit matrix U has all zero elements, except for I’s on the main
diagonal. A property of the unit matrix is that when it multiplies a vector, the
result is just that vector. Multiplying both sides of (5.17) by A~ yields the £
values where g(X)=0:

R=—A""p. (5.19)
Identifying b and A by comparing (5.13) with the example in (5.14), (5.19)
yields '
% 1 [26 10]] 60]_15
s === = s . 5.
[xz] 576[10 26][132] [7} (5-20)

where inverse matrix A~' was found by the three conceptual steps for finding
inverses: transpose, form the signed cofactors, and divide by the determinant
(see any book on matrix algebra, for instance, Noble, 1969), A glance at
Figure 5.5 shows that the center of the level curves is indeed at (5,7), the
vector from the origin to the center. The solution (5.19) is the translation of
the ellipses from the origin, as shown in Figure 5.7, The rotation of the ellipse
with respect to the major axes is discussed in the next section, as well as the
issue of whether (3.19) determines a true minimum function point.
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Figure 5.7. Translation of an ellipse. [From
Acton, 1970.]

5.1.3. Quadratic Forms and Graphics. The preceding section related the
coefficient matrix A of a set of linear equations to the quadratic function
defined by (5.6). The terms at the extreme right in (5.6) are known as the
quadratic form Q(x):

Qx)= xTAx. (5.21)

Matrix A was assumed to be a real, symmetric matrix; when A is two-
dimensional, the quadratic form is

Q(x)= xT[ ; ll; ]x= ax3 + 2kxx, + bx3. (5.22)

Equation (5.22) is an ellipse centered at the origin. Solving (5.22) for x,,
elliptical level curves for Q can be plotted by

—kx,* \/k2 i—b(axi—Q)
5 :

Appendix Program AS-3 uses key B to input valugs for a, b, and k that define
matrix A according to (5.22). Key C is used to input the ievel-curve function
value Q. Key A evaluates (5.23) upon entry of various x, values. The reader
can check Figure 5.5 with Program A5-2, assuming a displaced origin at (5, 7).
More important, (5.23) shows that the rotation of the ellipses results from the
presence of cross terms such as xx, in (5.22); if k=0 in (5.23) then the x,
points are symmetric about the x, axis.

The type of conic depends on the elements of A, namely, a, b, and k,
defined by (5.22) (see Figure 5.8). In general, any matrix A is said to be
positive definite if

(5.23)

X=

x"Ax>0 forall x=<0. (5.24)

For the two-dimensional case, a little thought shows that k?<ab in (5.22)
salisfies the positive-definite criterion. Thus the positive-definite matrix in the
quadratic form of (5.21) produces the ellipse in Figure 5.8a; a maximum
exists, analogous to the real-variable function’s second derivative test, as
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Figure 5.8. Quadratic-form conics, (a) Ellipse: (k?<ab; (b) parallel straight lines: k=ab; (c)
hyperbola: k2> ab. [From B. Noble, 1969.]

discussed previously. Students of the eigenvalue problem
Ax=Ax (3.25)

may be interested in knowing that the eigenvalues A are inversely proportional
to the squared length of the ellipses” axes, and the eigenvectors x give their
directions (see Noble, 1969).

Any matrix is said to be singular if its determinant is zero; this would
certainly be the case in (5.22) if k®=ab. Consider the parallel lines in Figure
5.8b in light of the linear equations defined by (5.13). Finally, there is the
indefinite matrix case when k” > ab in (5.22) associated with the hyperbola in
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Figure 5.9, A saddle point for a function of two variables. [From Murray, W. (1972). Numerical
Methods for Unconstrained Oprimization. New York: Academic, Reprinted with kind permission
from the Institute of Mathematics and Its Applications.]

Figure 5.8¢. This is the general situation when the quadratic form in (5.21)
may be positive or negative for all x. This produces a saddle point, as
illustrated in Figure 5.9. A saddle point occurs in function (5.1) at point
(2, 1.99759808), as readily determined using Program AS5-1 with 0.1% displace-
ments.

5.1.4. Taylor Series. The reader should recall Taylor series of reai variables.
An expansion of a function about the point x=a is

YO =¥(a) +y @)(x~a)+ 3y @(x—ay + o . (5.26)
It is important to define the difference,
Ax=x-—a, (5.27)

so that (5.26) reads:
y(@x)=y(a)+y'(a) Ax+1y"(a) Ax* + Ly @A (5.28)

Figure 5.10 shows the situation for the Taylor series representation of a real
variable. Notice the slope and the “neighborhood” at x=a, in which a
truncated Taylor series might be valid, i.e., when all derivative terms greater
than a certain order in (5.28) may be ignored. On the other hand, if the

yx}
yla)

Figure 5.10. Taylor series representation in x or Ax about the point x=a.
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function is known to be quadratic, as (5.9) for example, then y'"’(x) in (5.28)
will be zero anyhow. The reader should understand this single-variable case
before proceeding. The multivariable case is formulated in exactly the same
way.

The multivariable function in (5.6) can be expanded by a Taylor series
about point p, where the displacement from p is

Ax=x-p. (5.29)

The vector p might be the location of the blind man standing at p=(10, 10)¥ in
Figure 5.5. Then the Taylor series for a real function of the vector x is

F(Ax)=F(p)+g(p)'Ax+ 1Ax"H(p)Ax + h.o.t, (5.30)

where higher-order terms (h.o.t) are presumed to be insignificant. Matrix H is
known as the Hessian:

¥F  _F
A ax? 0x; 9%,
H= (3.31)
0’F IF
9%, X, ax?

By differentiating (5.13), it is seen that H=A for a quadratic function. It is
thus possible to expand the quadratic sample function in (5.7) about an
arbitrary point, say p= (10, 10)". The result in terms of (5.29) is '

F(Ax) =292+ (100, 28)Ax+%AxT[ 26 —10
—-10 26
where Ax, =x,— 10 and Ax,=x,— 10. This describes the function in Figure 5.5
with respect to point p. For quadratic functions, this is the same as shifting the
origin; the reader should replace x, by x;+ 10 and x, by x,+10 in (5.8) and
confirm that it is equivalent to (5.32).
Analogous to (3.13), the gradient of (5.30) 1s

VF(Ax)=g(p) + H(p)ax. (3.33)

]Ax, (5.32)

So the blind man on a quadratic mountain at point p (Figure 5.5) could
calculate where the minimum should be with respect to that point. In a
manner similar to (5.19), the step to the minimum is

A= —H(p) 'g(p)- (5.34)

Note that the second derivatives in H must be known. For the central sample
function used as an example, the step from point p=(10, 10)" to the minimum

18
o et 1 (26 10Y{ —100)_{ -5 3
ax=-H"g 576(10 26)( —28) (—3)' (>33)

See Figure 5.5 to confirm this step.
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5.1.5. Newton’s Method. Tt is convenient to digress at this point because
(5.34) is in fact Newton’s method for minimizing a function of many variables.
This has been used in Section 3.1.1 in the root finder; it will be used again in
Section 6.3 for broadband matching. The Newton, or Newton-Raphson
method as it is sometimes called, assumes that the current position (x value) is
close enough to the minimum so that the higher-order terms in (5.30) are not
significant. Another consequence of this assumption is that the partial deriva-
tives in H are nearly equal to the values in the quadratic matrix A term in
(5.13).

Newton's method is usually stated in a somewhat different way. It is said
that there are, for example, two functions: f,(x)=0 and [,(x}=0, generally
nonlinear. Newton’s method assumes that they are linear; then they corre-
spond exactly to (5.15) and (5.16), for example. If they were linear, then the
step from the current X position to the minimum, where f, =0=f{,, would look
like (5.34). The Hessian in (5.34} is a matrix of second partial derivatives of
F(x) from {5.6), but it is a matrix of first partial derivatives from g(x) in (5.14).
So the statement of Newton’s method usually is: given a vector of functions

f= [ f ]:o, (5.36)
f,
form the so-called Jacobian matrix of first partial derivatives:
af, of,
J= ¥y Bx 5.37
oo, of, | (5-37)
x %

The Jacobian corresponds to the Hessian in the development concerning F(x).
Then, an estimated step to the minimum is

Ax=-~J7'f. (5.38)

Comparison of (5.38) with (5.34) shows that J in (5.37) is analogous to H in
(5.31), and f in (5.36) is analogous to g in (5.13).

It is interesting to look back at Moore’s root-finder coordinate steps ((3.9)
and (3.10) in Section 3.1.1). In Newton’s terminology, f,=u, f,=v, and the
equivalence of the root-finder steps in the variable space to that in (5.38)
follows.

5.1.6. Summary of Quadratic Forms and Ellipsoids. This has been a concise
look at the matrix algebra crucial to gradient methods for nonlinear program-
ming. It is the foundation of the powerful conjugate gradient method to
follow. The subject has been treated by using a central, two-dimensional
example and its geometric interpretation. It generalizes to n dimensions, and
the fact that the matrix algebra was carried along with the example makes the




126 Gradient Optimization

i %

\

%4

Figure 5.11. The negative gradient and Newton
vectors of a quadratic function. [Reprinted with
permission of Macmiilan Publishing Co., Inc. from
Introduction to Optimization Technigues by M. Aoki.
Copyright © 1971 by Masanac Aoki.}

generalization more easy to follow. The reader should not miss this opportu-
nity to “see” what differential calculus has to say about multidimensional
functions, Taylor series representations, and the idea of linearization in the
case of Newton’s method. The concepts of single-variable functions were
stated so that this transition could be related to calculus that every engineer
should recall.

Newton’s method describes a change in each component of the variable
space, which converges to a minimum in just one step for quadratic functions
(see Figure 5.11). The Newton vector, or step, can proceed to the minimum
(the origin, as shown in Figure 5.11) in just one step. But what if the function
F(x) is not quadratic? Also, what if second partial derivatives are not known
or inconvenient to compute? Might not a sequence of moves in the direction
of steepest descent (negative gradient} lead to the minimum? In how many
steps? These are questions that will be considered next.

5.2. Conjugate Gradient Search

Gradient optimization methods assume the availability of partial derivatives.
Usually, finding first partial derivatives adds considerable complexity to the
programming task or slows program execution time, Second partial derivatives
are even less convenient to obtain. Fortunately, there are a number of search
methods that do not require second derivatives; the popular conjugate gradi-
ent methods belong to this class. Methods that require only function values
without any derivatives will be mentioned briefly in Section 5.7.

Almost all optimization methods select a sequence of directions leading to a
minimum (or maximum) function value. A minimum in any particular diréc-
tion is located by varying just one variable, usually some scalar that deter-
mines the distance from the last “turning™ point, and this procedure is called a
linear search. The linear algebra jargon and the special case of linear searches
on quadratic surfaces will be described. Several elementary search direction
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choices will be mentioned, especially the relaxation method (varying each
variable in turn) and the steepest descent strategy, which selects the steepest
slope direction at each turning point. After considering several more impor-
tant properties of quadratic functions, conjugate vectors and conjugate direc-
tion search methods will be defined. Finally, the Fletcher-Reeves conjugate
gradient search direction formula will be discussed with examples.

5.2.1. Linear Search. At the point in variable space (x) where a new search
direction (s) has been selected, some clear description of the next linear search
must be available. The common notation is

K =xitas,  i=12,.., (5.39)

where the superscript denotes that this is the ik linear search or iteration. The
search parameter is the single variable o;, which determines the distance of
x'*! from x'. For well-posed problems, there will be some optimum &; that
determines the lowest value of F(x) in the s’ direction; in that sense, the linear
search is concerned with a function of only a single variable, namely F(a;).

Consider the nonquadratic surface over two-variable space previously intro-
duced in (5.1)—(5.5). Suppose that the starting point x=(7,3)7 is selected,
where the gradient turns out to have the value g=(72080, 159976)". Since the
gradient is the set of coordinates describing the direction of maximum
function increase, a reasonable choice for a linear search might be to the
“southwest,” i.e., in search direction s=(— 1, — 1)', Table 5.2 summarizes a
set of moves in this direction according to (5.39) using Program A5-1, A graph
of this function of «; is shown in Figure 5.12. A new turning point is in the
vicinity of x=(5.25,1.25)", and a new search direction must be obtained,
preferably by a more effective procedure than illustrated. Some simple alterna-
tives are considered in the next section. A particular linear search strategy will
be considered in some detail in Section 5.3.

Before continuing, examples based on quadratic functions can be imple-
mented much easier if the linear search parameter a is obtained in closed form
for these cases. Consider the standard quadratic function defined by (5.6) and
write F(x'* ') by substituting (5.39):

F(x")y=c+b"(x'+as) +(x'+ f)z-,si)TA(xi +as). (5.40)

Table 5.2, Searching to the Southwest on (5.1} From x,=7, x,=3 Using (5.39)

o as, ' as, X X, F v,F V,F
0 0 0 7 3 160,016 72,080 159,976
1 -1 -1 6 2 20,740 20,704 43,212
2 -2 -2 5 | 1,972 —4,824 —8,764
1.5 - 1.5 ~1.5 55 1.5 1,740 5,170 10,400
.75 —-1.75 ~7.75 525 1.25 38 —462 —728
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Figure 5.12. A plot of the function in Equation (5.1) in the {—1, — 1)¥ direction from point
x=(1, )"

But {5.40) is just a function of the single variable « during the linear search.
To find the minimum in the search direction s, it is necessary to differentiate
F{«) in (5.40) with respect to @ and to equate this to zero. The result is:

-(5) ¢
(s) Asi

~ —
a,=

(5.41)

where g'=g(x’). This provides an exact value of the linear search scalar « to a
minimum from any point x' on a quadratic surface in an arbitrary search
direction §.

Example 5.1. Consider the central sample quadratic function {5.8) shown in
Figure 5.5. Suppose that a linear search is to begin in the negative gradient
direction from the point x'=(10, 10)". To find «; and then the minimum point
x'*!in that direction, (5.41) will require g' and the s'= —g' arbitrarily chosen
for this example. The quadratic function gradient vector was defined generally
by (5.13) and, for this example, by (5.15) and (5.16). Using Program AS5-2 for
x,=10 and x,=10, find g=(100,28)". Appendix Program AS5-4 solves real-
variable inner products as in the numerator of (5.41) and conjugate forms as
in the denominator of (5.41). The significance of the latter will be discussed in
Section 5.2.4. As previously noted, the matrix A is described for this example
function by a=b=26 and k= — 10. The sequence 26, ~ 10, and 26 is entered
into an HP-67 calculator with program AS5-4 running, and key B is pressed to
input thesédata. The sequence — 100, —28, — 100, and —28 is input using
key A. The (5.41) numerator inner product is found using key D {10784}, and
the (5.41) quadratic form is found using key E (224384). Then (5.41) yields
&,=0.048060. Program AS5-4 also evaluates (5.39). Input — 100, =28, 10, 10 by
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using key A. Then input the value above for & and press key C; x'*!
coordinates are: xb*!'=8.65432 in the X register, and x}"'=5.194 in the Y
register. Program AS-2 evaluates this as F'*'=F(x'*')=32.86. The reader
should plot this linear search on Figure 5.5. Note that the linear search
minimum occurs at the point of tangency to the level curve F=32.86. It is also
important to note that the search direction is always orthogonal to the
gradient at such points of tangency.

5.2.2. Elementary Search Schemes. Two obvious schemes for selecting
search directions will be discussed. First, there is a relaxation (univariant)
scheme by which the coordinate variables are adjusted in sequence, each one
obtaining & minimum function value in that coordinate direction. Figure 5.13
shows a typical case for two variabies. It is seen that the minima in each
coordinate direction are tangent to level curves and that the successive search
directions are orthogonal. The behavior in Figure 5.13 is called zigzagging. In
sharp valleys such a procedure can fail (hang up), as illustrated in Figure 5.14.
Univariant searches on quadratic surfaces without cross terms among the N
variables will succeed in exactly N linear searches (iterations), as seen for the
two-dimensional function in Figure 5.15.

Another search direction choice is the steepest-descent method Cauchy
described in 1847, Each linear search for a minimum is made in the negative-
gradient direction, as illustrated in Figure 5.16. Once the first search is made,
the result is similar to the univariant method. The underlying reason is that
the linear search directions are tangent to the level curves at the minimum

X2

-

Xq

Figure 5.13. Univariant search strategy on a nonquadratic function. [From Box et al., 1969.]
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Figure 5,14, Failure of the univariant search in a sharp valley. [From Beveridge and Schechter,
1970

point where the gradient is orthogonal. Zigzagging near a minimum in a
curving valley results in notoriously slow progress, because all linear search
directions are either orthogonal or parallel. An extreme case is shown in
Figure 5.17. What is needed is a search direction criterion that breaks this
trend and is adaptive in some sense to valleys. Conjugate gradient methods do
this and are discussed in Section 3.2.4.

08 +—

0.4 }—
*2

-0.4

Figure 5.15. Level curves of a quadratic function “without cross- terms. [From Beveridge and
Schechter, 1970.]
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Figure 5.16, Steepesi-descent search strategy on a nonquadratic function. [From Box et al,
1969.]
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Figure 5.17. A difficult situation for the steepest-descent strategy.

5.23. More Quadratic Function Properties. Before proceeding, it is useful to
examine three more properties of quadratic functions in N variables, i.e., those
structured as in (5.6). First, it is always possible to create N new variables that
are linear functions of the original ones so that all cross terms in the new
variables disappear. This means that all quadratic functions of N variables
can be minimized in exactly N steps in N suitable linear searches (see Figure
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5.15, for example). Second, all changes in components of variables are linearly
related to the corresponding changes of gradient components between the
corresponding points no matter where the two points in question may be
located on the functional surface. Thus the mapping of changes in variable
values of quadratic functions onto the gradient space 1s invariant. Third, it will
be shown that the altitude above the minimum value of 2 quadratic surface is
equal to a quadratic form composed of the gradient at the point in question
and the inverse of its constant Hessian. All of these concepts contribute to a
practical understanding of gradient optimization.

Quadratic forms were considered in Section 5.1.3, where it was shown that
they are equivalent to quadratic functions, except for a shift of origin to the
minimum point. It was also shown that quadratic forms define ellipsoids
whose axes are inclined with respect to the coordinate axes if there are cross.
terms among the variables. It was shown for the two-variable case that a
diagonal matrix (k=0} in the quadratic form (5.21) would not produce cross
terms; this is true for any number of variables, Therefore, an important issue
is how to rotate the coordinate axes to align them with the ellipsoidal axes, i.e.,
effect a change of variables. The motivation is to eliminate cross terms in
N-variable quadratic forms and thus show that the minimum can always be
found by no more than N linear searches (see Figure 5.15).

If the matrix in the quadratic form is A as in (5.21), then what is required is
a coordinate-transforming matrix P such that

PTAP=A, (542)

where P is a so-called orthogonal matrix, and A is a diagonal matrix. The
eigenvalue problem (5.25), which appears in nearly all branches of engineering
and physics, was mentioned in passing in Section 5.1.3. The eigenvectors of
matrix A are geometrically the directions of the related ellipsoid’s axes. The
columns of P can be composed of the eigenvectors of A to produce the result
in (5.42). Suppose that the quadratic form Q(x) in (5.21) is to be expressed as
Q(y). Then it happens that the change of variable is accomphshed by the
substitution

x=Py. (5.43)
This can be confirmed by substituting (5.43) into (5.21} and using (5.42):
Q)= (Py)"A(Py) =y Ay =Q(y), (5.44)

where Q(y) has no cross terms, because A is a diagonal matrix. The interested
reader is referred to Noble (1969) for details.

Example 5.2. Again working with the A matrix from the central example
(5.7), its eigenvalues turn out to be 36 and 16, and its eigenvectors are (1, — )T
and (1, 1)T. The important concept is that these eigenvectors can be used as
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the columns in matrix P; then (5.43) defines the substitutions
X =Y, +¥;, (5.45)
==Y 1Y¥,. (5.46)
Using these in (5.22) produces
Q(¥)=T72y,+32y,, (547)

so that the cross terms are indeed removed, and the minimum could be found
in no more than two linear searches.

It is straightforward to show that changes in the gradient vectors of a
quadratic function are mapped by a constant linear transformation to the
corresponding changes in the variable vectors. As Figure 5.18 illustrates,
points A and B in the x space have gradient values (perpendicular to their
level curve), and these gradient vectors can be plotted in their own space.
There may be more than one x with the same g. Apply the gradient expression
(5.13) of a quadratic function to points X' and x'*! and their corresponding
gradients g' and g'*!; the two equations may be subtracted to yield

("' ~g)=Ax %) (5:48)
Using A to indicate the differences and inverting (5.48), the mapping result is
Ax=A""Ag. : (5.49)

This result was anticipated by Newton’s step in (5.34), which went to a
minimum where g'*'=0 was required. The importance of (5.49) is that it
shows the invariance of that mapping, independent of locations on any
quadratic surface.

Finally, it is shown that the altitude above the minimum wvalue of a
quadratic surface at some point p is equal to a quadratic form composed of
the gradient at the point in question, g(p), and the inverse of its constant

X2 9z

X1

{a) (b

Figure 5.18. A mapping of variable space to gradient space. (@) Constant objective function
curves in the variable space; (b) corresponding loci and points in the gradient space. [From
Davidon, 1959.]
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Hessian, A~ . Consider the function in (5.30) and its gradient in (5.33) when
H=A. When this gradient is zero, Ax in (5.34) corresponds to the location of
the minimum value. Substituting this in (5.30) yields

F(p)—F(a%)=1g' (MA ™ 'g(p). (330)
This is the amount by which F(p) exceeds its minimum value.

The most popular optimization algorithm is the Fletcher—Powell method,
which was first described by Davidon (1959). It is also known as the variable
metric method, and it is worthwhile to observe that the latter name comes
directly from (5.50). Davidon noted that the matrix A~ in (5.50) associates a
squared length to any gradient. Therefore, he considered the inverse Hessian
matrix for any nonlinear function as its metric or measure of standard length.
His optimization method starts with a guess for H™', usually the unit matrix
U. This produces the steepest descent move according to (5.34). Following
each iteration, Davidon “updates™ the estimate of the inverse Hessian, so that
it is exact when 2 minimum’is finally found. In the interim, Davidon’s metric
varies, thus the name, There is also some statistical significance to the inverse
Hessian for least-squares analysis (see Davidon, 1959), ‘

Variable metric methods in N dimensions require the storage of N(N +1)/2
elements of the symmetric, estimated inverse Hessian matrix; so they are not
considered here for personal computers, although such methods converge
rapidly near minima. There are many variable metric algorithms, but Dixon
(1971) showed that most of these, which belong to a very large class of
algorithms, would produce equivalent results if the linear searches were
absolutely accurate. Instead, another kind of conjugate gradient algorithm will
be described, because it requires only 3N storage registers; it converges
rapidly to good engineering accuracy, but lacks the ultimate convergence
propertics of variable metric methods. It is the Fletcher—Reevés conjugate
gradient algorithm, which was originally suggested for very large problems
{e.g, 1000 variables) on large computers. It is very effective for many
problems (e.g., up to 25 variables) on desktop computers. The nature of the
conjugate gradient search direction is described next, followed by a descrip-
tion of the Fletcher- Reeves algorithm,

5.24. Fletcher—Reeves Conjugate Gradient Search Directions. Two vectors,
x and y, are said to be orthogonal (perpendicular) if their inner product is
zero, i.e., :

x"y=0=x"Uy, (5.51)
where the unit matrix has been introduced to emphasize the following con-
cept. The vectors are said to be conjugate if .

xTAy=0, {5.52)

where A is a positive-definite matrix, Conjugacy requires that the vectors are
not parallel. More remarkably, conjugate vectors relate to A-quadratic forms
as depicted in Figure 5.19. Just as illustrated for ellipsoids without cross terms,
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fix) = C,

0<C, <6,

fix) = x" Ax

A>0

x Minimize f{x) on L
x* Minimize f(x} in €2,

where L is a member of E?

Figure 5.19. Two A-conjugate vectors on a quadratic surface. [Reprinted with permission of
Macmillan Publishing Co., Int. from Intreduction to Optimization Techniques by M. Aoki,
Copyright © 1971 by Masanao Aoki.)

a sequence of N A-conjugate linear searches to minima will terminate at the
quadratic function minimum. That is why the two vectors in Figure 5.19 are
rqelated as shown; clearly, there are an infinite number of such pairs in
two-variable space. Like the previous ellipsoids without cross terms (Figure
5.15), each linear search must find the exact minimum in that direction.

Example 5.3. A negative-gradient line search from p=(10,10)7 to a mini-
mum was calculated for the quadratic function in Example 5.1. The minimum
in the direction s'=(—100, —28)" was found to be at x,=5.1940 and x,=
8.6543. The surface, depicted in Figure 5.5, has its global minimum at
x=(5,77; therefore the vector from the line-search minimum to the global
minimum must be in the direction s?=(—0.1940, —1.6543)F. The conjugate
form, as in (5.52), may be evaluated using Program AS5-4:

—0.1940, —1.6543)] 26 —10 [—100]=0.114¢0. 5.53
( 3)[—10 26 || —28 0 (>39)

Therefore, directions s' and s” are conjugate,

What has been illustrated is that conjugacy plus line search (to an exact
minimum) equals quadratic termination (no more than N searches to find the
minimum). It has been remarked that the sequence of “quasi-Newton” moves
in the variable metric scheme results in conjugate search directions (1o a
sequence of line minima}). How else might the sequence of conjugate search
directions be generated? Fletcher and Reeves (1964} show that the following
recursion generates a sequence of conjugate directions:

s"=—gj+BiSi_1; i=1,2,...,N, (554)
@'

R i=2,3,...,N. (5.55)
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The Fletcher—Reeves formula is quite simple. As is common practice, the first
search direction is the negative gradient. Then, each new search direction is a
linear combination of the current gradient and the last search direction; the
amount of the latter is scaled in proportion to the squared ratio of magnitudes
of the current and last gradients. Derivation of the 8, scale factor is given in
Appendix C. Only three vectors must be stored at a time: the x variables, the s
search direction, and the g gradient components.

Example 5.4. Example 5.1 was a line search in the negative-gradient direc-
tion. It will now be shown that Example 5.3 illustrated a second search
direction to the global minimum that happens to agree with the Fletcher—
Reeves formula. Program A5-2 shows that at the first turning point, x=
(5.1940,8.6543)", the gradient is g=(~ 11.4990,41.0718)". The last gradient at
point p=(10,10)" was (— 100, —28)". Equation (5.55) shows that 8,=0.1687;
thus (5.54) yields a new search direction: §?=(—5.3675, —45.7929T. A second
linear search in this direction would find that «,=0.0361, as in (5.39). Thus
a,s” = (~0.1940, — 1.6543)", as already found by other means in Example 5.3.

Convergence will not be achieved in just N linear searches on nonquadratic
surfaces. The Fletcher—Reeves policy is to periodically restart the search
direction sequence with the current negative gradient direction. An effective
choice is to generate N directions by (5.54) and then start over again with the
negative gradient. This has been justified experimentally by many researchers.

5.2.5. Summary of Conjugate Gradient Search. Linear searches have been
described, and three strategies for selecting their sequence of directions have
been discussed. The relaxation (one-at-a-time) method was shown not to be
generally effective; however, it is significant because it works well on ellipsoids
without cross-variable terms such as x x,, etc. The steepest-descent strategy is
effective far from a minimum but tends to zigzag badly in curved valleys. The
conjugate gradient method tends to follow curved valleys better, since it uses
prior gradient information to moderate zigzagging.

Several additional properties of quadratic functions were discussed to
clarify choices and introduce some concepts that are likely to be encountered
in the field of nonlinear programming. The concept of diagonalizing a
quadratic form, i.e., making a linear change of variables to obtain alignment
with the ellipsoidal axes, amounts to justification for the application of
A-conjugacy in search direction selection. It also shows the clear possibility
for quadratic termination: the sequence of N linear searches to exact minima
in N-variable space so that the global quadratic minimum is found. The
constant nature of the mapping of variable to gradient space for quadratic
functions was mentioned because of its close relationship to Newton’s method
and the variable metric search scheme. Davidon’s use of the inverse Hessian
matrix as a metric for gradients leads to a simple expression for quadratic
function elevation above the global minimum,. It is also the basis for naming
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the variable metric method, since Davidon (and later Fletcher and Powell)
publicized the idea of updating an estimate of the inverse Hessian matrix.

Finally, conjugate directions were defined in comparison to orthogonal
directions. The Davidon-Fletcher—Powell variable metric search directions
are A-conjugate, but the symmetric, inverse-Hessian matrix estimate requires
a substantial amount of memory to store. The Fletcher—Reeves method
requires memory for only 3N vectors and works nearly as well, except for final
convergence. The Fletcher—Reeves search algorithm works well for engineer-
ing accuracy in the memory space provided in desktop computers.

The mechanics of a linear search by Fletcher are discussed next, because of
the important assumption that each linear search is stopped at the exact
minimum in that direction.

5.3. Linear Search

Nearly ali gradient search methods require linear searches, i.e., line searches to
minima in a sequence of directions. The single, real variable in such searches
has been defined as « in (5.39). A value for a may be calculated according to
(5.41) when the surface is known to be a quadratic function in the general
form of (5.6). However important a quadratic model may be in formulating
search strategies, the usual surface is not at all quadratic except in the
immediate vicinity of local minima, so that linear searches must find the
minimum as a function of & by a comprehensive procedure.

Figure 5.20 illustrates a typical linear search profile. There ar¢ three stages
in the linear search for the optimum value &: (1) estimate the order of
magnitude of &; (2) establish bounds on the vicinity of the minimum; (3)
interpolate the value of « within those bounds.

First, the slope in the search direction (directional derivative) will be
defined, and an order of magnitude of a will be determined based on the
expected quadratic behavior of a near the minimum. The classical cubic
interpolation using two function values and two derivatives will be explained,
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Figure 5.20. Profile of linear search function F(a).
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and terminating criteria will be discussed. Finally, the linear search procedure
programmed by Fletcher and used in the following Fletcher—Reeves optimizer
will be described and illustrated by an example.

5.3.1. Slope in the Linear Search Direction. The components of the gradient
vector at any point p, namely g(p), indicate the rate of change of function
value in each coordinate direction. During linear searches, Figure 5.20 indi-
cates the need to have the function’s rate of change in some arbitrary direction
s. This may be obtained by recalling the Taylor series expansion about point
p, as given in (5.30). In this case, the Ax displacement is conveniently
expressed according to (5.39) as ts, where t is some real scalar similar to a. The
classical definition of a derivative is then:

F(oy=lim 0O F®)

iy = (559

However, the numerator of (5.56) may be replaced using (5.30). Only the
gradient term will remain, since all other higher-order terms will vanish in the
limit. For linear search purposes, the point p will be represented as p=x'+ as',
so that the directional derivative becomes:

F(a)=g(x +ag)'s. (5.57)
This provides the means for determining the slope at any point on the
function illustrated in Figure 5.20. This slope will be required for several

purposes, such as in estimating the gross magnitude of the first trial « value, as
discussed next.

5.3.2. Finding the Order of Magnitude of the First Step. The issue at the
turning point, where a new linear search begins, is the choice of the initial
value of & as employed in (5.39): should « =0.01 or a =10 be tried? Fletcher
(1972b) reported that extensive testing indicated that the rate of change of
function value with respect to iteration (linear search) number was fairly
constant, except when close to an optimum seolution. Thus he advocated the
assumption that F*!—Fi=F —F~! To develop this concept, he further
assumed quadratic behavior for F(a):

F(a)=ay+a,a +a,a’. (5.58)
The slope versus a according to (5.58) is
F{a})=a,+2a,a, (5.39)

and setting this to zero gives the value of & at the minimum:

—a,

&:

TR (5.60)
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Then, the minimum function value in this direction 1s

. at
F(a)‘_—"a.o"‘raz. (5.6])

It is now possible to form an estimate for the initial value of & when
initiating a new lincar search. The function decrease between the last and
current turning peint is F'~'—F'=F(0)—F(&), where the right-hand-side
function values are seen in Figure 520. Using (5.58)-(5.61), it may be
confirmed that
—aF'(0)
—s
But F'(0} is available from (5.57), so that Fletcher’s estimate for the first valoe
of a at a new turning point is

Frl-F= (5.62)

— 2(Fi7 1 Fl)
(g)s

In practice, the author has found that approximately a 10% decrease in

current function value can be expected during each linear search; therefore,

the numerator of (5.63) can be replaced by —0.2F(0). Note that the denomi-

nator is negative, since it is the directional slope at the turning point (origin in
Figure 5.20).

(5.63)

&=

5.3.3. Extrapolation, Bounding, and Interpolation. Having taken the first or
subsequent step in a linear search, where the new a=a«,, several possible
conditions may exist. If the slope is still negative and the function value
decreased, another step is appropriate. As seen in Figure 5.20, this could result
from toc short a step. More information is now available, particularly the
slopes at two points. Fletcher (1972b) linearly extrapolates these two slopes,
again assuming the quadratic behavior of the F(a) function. Figure 5.21
applies where the extrapolation of the slope to zero predicts the necessary

h Slope F'(a)

Gl ——— —

G1 = Current slope
G5 = Last slope

G5

Figure 5.21. Linear extrapolation of the a slope to zero.
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condition for a minimum. By similar triangles,

G5-G1 _%
G5 &’ (5:64)
The increase beyond the a step just taken is & —a,, so that
N - _ Gl
o—a = (X]Z, where Z-= —Glj—_—a . (565)

Fletcher limits the extrapolation to be no more than four times the prior step;
i.e., Z in (5.65) is limited to 4. The variable names employed correspond to the
program code to follow.

Figure 5.20 shows that a minimum has been bounded in « when either
F(a) >F' or when the slope is positive. Suppose that this occurs at a =A. There
are now four pieces of information: the two function values, F(0)=F and
F(A)=F9; and the two slopes F'(0)=G5 and F'(A)=GI1. These four items
enable the fit of a cubic function, which can interpolate the minimum between
the bounds. The cubic function approximates a flat spring fitted to the known
function values and slopes, provided that the slopes are small. Davidon (1959)
suggested the following formulation, and it has been widely applied since then.

Suppose that the fitting function has the form

h(a)=a,+a,a +a,e?+a;0°, (5.66)
Then, at a=A,

FO=F+G5-A+a\?+ad%, (5.67)

G1=G5+2a,A+3a,A% (5.68)

The last two equations can be solved for coefficients a, and a,:
JFS-TF)—A(2G5+G1)

a, Y (5.69)
2(F—F9)+AG5+G1)
a;= X . (5.70)
It is convenient to define the constant z as
3(F-F9)
z=———— "+ Gl +GS5, (5.71)

A

The cubic interpolation step in « is then obtained by differentiating (5.66) and
equating that to zero. The root of the resulting equation that is between a =0
and a=A is thus obtained after considerable algebra:

. Al—(Gl+W—z) 57

AW +GI-G5 (>-72)
where an additional defined constant is

W= (22~ G5xG1)'"", (5.73)

The forms of these equations are designed to minimize cancellation by
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subtraction of nearly equal quantities. As before, the variable names corre-
spond to those appearing in the following BASIC language optimizer pro-
gram.

Example 5.5. A problem from Dejka and McCall (1969) illustrates the cubic
fitting procedure. Given the function

F(x)=(x,—x3)" +(x,— )2, (5.74)

estimate the minimum along the line as, where s=(1, )T. Suppose that the
minimum is bounded between the poinis @ =0 and a = 1.5. The four pieces of
information can be obtained from (5.74): at x=(0,0)7, F(O)=F=1, and
g0=(-2,00"; at x=(1.5,1.57, F(1.5)=F9=0.812500 and g(1.5)=(5.5,
—1.5)", where g is the gradient vector. To get the slopes at a=0 and a= 1.5,
(5.57) is employed: F'(0)=G5=—2 and F'(1.5)=G1=4. Then (5.71) yiclds
z=2.3750, (5.73) yields W=3.693322, and (5.72) predicts that a minimum
within the bounds is at &=0.904071, where (5.74) yields F(X)=0.016723. By
inspection of (5.74) the true minimum is at & =1, where F(X}=0.

5.3.4. Fletcher's Linear Search Strategy. The three stages of linear searches
described above have been applied in the conjugate gradient optimizer Pro-
gram B5-1 in Appendix B. The general view of this Fletcher—Reeves optimizer
will be treated in Section 5.4. The emphasis here is on the linear search
strategy as programmed by Fletcher (1972b). A flowchart of this part of the
optimizer is shown in Appendix D, as modified for just one variable (line 860
was removed). The features of this chart will be discussed briefly, and an
example will be considered.

There are some initial calculations preceding reentry point 490 in Appendix
D, the last one estimating the first value of the linear search scalar & according
to (5.63). The step size according to (5.39) is Ax=as, and this is calculated
and tested for an absolute change of less than 0.00001, a stopping criterion.
Initially the convergence flag ICON would not be set, so that the algorithm
increments x from its value at the beginning of the linear search and then
recalculates the function and its gradient values at that point.

Fletcher’s algorithm then checks to see if the magnitude of the slope has
decreased by more than a factor of 10; if so, the linear search is terminated
rather than approach the minimum more closely. Otherwise, a test is made for
either of the two conditions that will initiate a cubic fit, namely a function
increase or positive slope, When either condition is detected, the program
branches to line 710, the last Ax step is withdrawn, and a new step length is
computed by cubic interpolation. The program then continues to reentry line
490 to take that chosen step.

The extrapolation based on the linear slope (quadratic function) assump-
tion is indicated in the flowchart in Appendix D when none of the three
preceding tests cause branching. The extrapolation factor is calculated accord-
ing 1o (5.65), and the program again returns to reentry line 490.
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Figure 5.22. Profile of the Fano filter squared-error function in Equation (5.75).

Example 5.6. A highly nonlinear, real function from Section 8.5 will be used
to illustrate the linear search algorithm previously described. A squared-error
function is: . ) :
. 2
sinh~ [ (sinh?0.8814N)(10°~ 1) /(107 1)]'/*
sinh™'(1.3)

F(N)= (3.7%)
A profile of this function is shown in Figure 5.22. Optimizer Program B5-1
requires a subroutipe starting at line 1000 to calculate the error function, in
this case (5.75). This BASIC language code is shown in Table 5.3. The
derivative of the quantity in the largest brackets in (5.75) is obtained by finite
differences in a manner similar to (4.90), as programmed in line 1040 of Table

Table 53. Subroutine for (5.75) in Optimizer Program B5-1

1000 REM FANO FILTER SQUARED-ERROR FUNCTION
1002 DEF FNS(X)=(EXP(X)— EXP(—X))/2

1004 DEF FNI(X)=LOG(X +SQR(X+X + 1)

1006 DEF FNQ(N)=N — (FNI((FNS(.8814 # N)*%2+335. I1)2+.5))"

/FNI(1.3) .

1010 Q=FNQ(X(1))}**2 -

1020 IF Y%=0THEN F=Q

1030 IF Y%=1 THEN F9=Q

1040 G(1)=(FNQ(1.0001=X(1)) - FNQ(X(1)))/(.0001 *X(]))

1045 G{1) = Z«FNQ(X(1)+G(1)

1050 RETURN
.9999 END

“The symbol ==* indicates exponentiation.
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5.3. The derivative of F(N) with respect to N follows by elementary calculus,
as programmed in line 1045. The reader should run the modified Program
B3-1, starting with several different values of variable N. Be sure 1o start once
with N=1.9, so that an undesired minimum is obtained, as shown in Figure
5.22. It is also useful to place diagnostic PRINT statements in the optimizer
program, using the Appendix D flowchart, so that the program decisions are
observable.

3.3.5. Summary of Linear Searches. There are three stages in the linear
search for a minimum in a particular direction: (1) estimate the order of
magnitude of the search scalar «; (2) establish bounds on the vicinity of the
minimum; (3) interpolate the value of a within these bounds. The function to
be minimized is usuvally not quadratic, so that linear searches must have
comprehensive features to handle the nonideal circumstances. However, basic
strategies are obtainable from some important, ideal assumptions.

The initial value of linear search scalar « is found by assuming a quadratic
linear search profile in variable a; that, coupled with the fact that the function
usually decreases about the same amount in each linear search, establishes a
reasonable first value for the a step. The minimum is considered bounded
when either the function value has increased or the slope is found positive
after the step is taken. If the step was so small that the slope is still negative,
then limited, linear extrapolation of the slope to zero is taken to lengthen the
initial step. Once bounded, cubic interpolation is used to locate more closely
the minimum in that direction. This process is repeated until convergence is
obtained.

The flowchart in Appendix D shows the linear search strategy in the
Fletcher—Reeves optimizer program. Tt was slightly modified for just one
variable to illustrate its behavior on a nonlinear, squared-error function of a
single variable. Fletcher terminates the linear search whenever the adjustment
is very small or when the magnitude of the slope in the direction of linear
search has been reduced by a factor larger than 0. The flowchart for
Fletcher’s linear search is applicable to the linear search in optimizer Program
B3-1. In fact, the linear search constitutes most of the program, the remainder
involving the choice of search directions, as discussed in Section 5.2.4, The
next topic will be the entire Fletcher—Reeves optimizer.

54. The Fletcher—Reeves Optimizer

The FORTRAN program written by Fleicher (1972b) some years after the
publication of the algorithm by Fletcher and Reeves (1964) has been trans-
lated to BASIC and appears in Appendix Program B5-1. A summary of the
Fletcher—Reeves strategy is followed by a discussion of the program listing, an
example network problem, and mention of potential scaling difficulties.
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5.4.1. Summary of Fletcher-Reeves Strategy. The unconstrained, nenlinear
programming problem is:

mxin Qx)=F(x;,%3...,Xn), (5.76)

where x is a vector composed of N variables. The process is easily visualized
by inspection of Figure 5.3. This objective function and its gradient VQ must
be added to the BASIC language computer code provided. The gradient is:

o (8F 3F  @F\"
The gradient may be described analytically, if available, or found numerically
by 0.01% finite differences. The user should consider an “awful warning”
concerning excessive numerical noise, such as might occur if a named variable
might inadvertently be declared an integer as opposed to a floating-point
number. The resulting discontinuous behavior of the objective function will
have a disastrous effect on partial derivatives obtained by finite differences.
Almost all gradient optimizer programs will appear unacceptably sluggish
under these circumstances.
Given an initial starting vector, x°, a sequence of linear (line) searches,
xtl=xi+ag', (5.78)
is performed in a calculated direction s in the variable a;. Each search
terminates when a minimum is approximated so that the directional derivative
is nearly zero:

F'(a)=(g*")s'=0, (5.79)

The comprehensive procedure to accomplish reasonably accurate line searches
on arbitrary functions of «; was discussed in Section 5.3.

The first linear search direction is the negative gradient (steepest descent),
i.e., with 8,=0 in the direction formula '

s=—g+B8s"; i=12,.. N ~(5.80)
This describes a sequence of directions calculated after estimating each linear

search minimum. The new search direction is simply the negative gradient
plus a fraction of the just-used search direction. The fraction is:

| g=0; p=—E . i35 N, (5.81)
Colg?

i

! where the squared-norm notation

‘ 1l 2 @) '(@) (5.82)

defines an inner product. It is seen from (5.80) that certain curvature informa-
tion is accumulated for influencing the choice of subsequent search directions.
This strategy was developed on the assumption of quadratic functions where

o
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convergence is obtained in exactly N linear searches. Because the objective
function is seldom quadratic in practice, (5.80) is restarted in the steepest
descent direction ( 8,=0) after every N iterations (linear searches).

An important program feature is the criteria for stopping the iterative
search for a minimum. This implementation by Fletcher stops when the
changes being made in every component of the x variable vector are less than
0.00001, or when 100 iterations (linear searches) have been performed, The
running time of the algorithm increases dramatically for even smaller changes;
engineering problems often allow even earlier termination. Perhaps a better
stopping criterion is the relative changes of variables. One advantage of
real-time computing is the ability of the user to manually intervene whenever
appropriate.

5.4.2. The BASIC Language Computer Program. Appendix Program BS-1
is a listing of Fletcher’s program VA®G8A as translated into BASIC from
FORTRAN, These 114 lines require only 1849 bytes in the Commodore PET
computer, and only 15 additional bytes are required for each optimization
variable. The program requires the user to define the objective function as
subroutine 1000. The particular objective function and the gradient defined in
lines 1000-1060 will be discussed in the next section. Unused BASIC names
are given in line 60. Each execution of the program requires the user to state
the number of variables, which should be consistent with the defined objective
function. Then the starting values of the variables are requested. That run-
time input is coded in lines 70145,

Some program control constants are set in lines 150-170; this is less flexible
than originally provided by Fletcher (1972b). The number of iterations is
limited to 100, the absolute change in each variable must be less than 0.00001
for convergence, and the first step length in each iteration is based on an
expected 10% decrease in function value.

The flowchart in Appendix D for a single-variable linear search is very
nearly applicable to the entire B5-1 program; the reader should generalize it
by reference to the complete program listing. The initial and subsequent
setting of search direction to steepest descent is made by lines 230-240. The
FOR-NEXT loop, to accomplish N searches before resetting to steepest
descent, spans lines 260-850. These directions are calculated in lines 330-400
according to (5.80) and (5.81). Having chosen a search direction, the slope in
that direction is computed by lines 410-440 according to (5.57). The linear
search occurs as discussed in Section 5.3, except that each variable is in-
creased by line 535 according to (5.78), and lines 850 and 860 implement
repeated sequences of N linear searches.

5.4.3. The Rosenbrock Example. Lootsma (1972, pp. 29, 67, 68, 74-88, 101,
120, 185} gives many standard nonlinear programming (NLP) test problems,
perhaps the most popular being the so-called Rosenbrock banana function,
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described by

Q=100(x,—x3)’ +(1 —x,)%. (5.83)

The gradient is
g = —400(x|x2—x3|)—2(1 —X), (5.84)
82=200(x, — 7). (5.85)

These equations are programmed in lines 1000-1060 in Program B5-1. There
is a required feature in this BASIC language conversion of the original
FORTRAN program (see lines 1020 and [030). The objective function must
have the name Q; these two lines then assign this value to either names F or
F9, depending on the value of integer flag Y%. This must be included in each
different objective function subroutine to replace the subroutine argument list
feature found in FORTRAN but missing in BASIC. The shape of this surface,
especially the long, curved valley, is illustrated in Figure 5.23.

X2

35 r

o

[N
[T T T T
mp_.-'oo

—1.0 -

Figure 5.23. Some level curves for the Rosenbrock function in Equation (5.83). [Reprinted with
permission of Macmillan Publishing Co., Inc. from Introduction to Optimization Technigues by
M. Acki. Copyright @ 197t by Masanao Aoki.]
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Table 5.4, Typical Output for the Rosenbrock Problem®

# VARIABLES, N=1?

2

INPUT STARTING VARTABLES X(I):

171 -
ITN=10 IFN=1 ITN=14 1FN =47
F = 400 F=8.44751143E — 03
1 X(1) G I X G(h
1 I 800 1 92560972 1.84971288
2 —1 — 400 2 85135558 — 107955505
ITN=1 IFN=5 ITN=15 IFN =49
F=132.3379952 F=5.85904863E — 03
I X G(I) I X(I) G(D)
1 102183049 21.1560238 i 923520252 — 0367466431
2 — 551091525  — 11230658 2 852575064 — 06291833
ITN=2 IFN=8 ITN=16 IFN =52
F=1.11719726 F=129751824E — 03
I X(i) G I X(I) G(l)
1 — 0564383475 —2.18894177 1 975016735 962065277
2 — L.B410067IE—04  — 673877548 2 948062727  —.518981593
ITN=73 IFN = I8 ITN=17 IFN =54
F =.393823649 F=6.76262365E — 04 :
i X0 G(Iy 1 X0 GI)
1 386114878 784104271 ! 974015938  — 0112750203
2 1360583 —2.60527968 2 948602602  —.0208891644
ITN=4 IFN=2I ITN=18 IFN =55
F = 349279705 F=23.53812794E — 05
1 X(1) Gl I XM G()
1 414709915 ~2.52994041 1 997877715 217552957
180178959 1.63892907 2 995204262 —.111134487
ITN=§ TFN =23 ITN=19 IFN =57
F= 334620229 F = 5.48555021E— 06
f X(I) G(Iy , 1 X G(D
1 422829231 — 500579577 1 997659736 - 9.54650997E — 04
2 74919157 — 77308031 2 995315613 - 1.86720026F — 03
ITN=6 TFN =26 ITN=20 IFN =59
F= 244148841 F= 7.56015734E — 09
I X(1) G(N i X G
1 542205182 111706106 I 1.00001798 3,43919836E — 03
2 275392712 —3.71874958 2 1.00002745  — 17014041 1E— 03
ITN=7 IFN=28 ITN= 21 IFN=61
F= 216721811 F=211894212E~ 10
| X(I) Gil) I X G(l)
I 534919786 ~ 490506925 | 1.00001434 5.58176544E — 06
2 284084414 — 410952665 2 1.00002915 1.18787284E — 05

“The output for iterations 8—13 has been omitted,

147
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The output for the Rosenbrock problem, starting at x;=1 and x,= —1, is
shown in Table 5.4 (see Figure 5.24). The data show that ITN =21 iterations
(linear search directions) and IFN =61 function and gradient evaluations are
required to locate the global minimum at x=(1,1)" to at least 0.00001
accuracy in each variable,

The reader should run this example to observe the effects of several
changes. Several new starting points should be tried. The accuracy set in line
160 can be reduced. The number of variables can be set to 20 instead of 2 by
inputting the latter number when asked and setting all but the first two
variables to an arbitrary number, e.g., 0. This will illustrate how much of the
computing time is in search overhead, because the full 20 variables will be
treated by the Fletcher—Reeves algorithm even though only the first two
determine the problem defined in subroutine 1000, It is informative to add the
statement 392 Z=0. This causes the search to be of steepest descent at all

X2

10— /:,;f

Optimum value of x
09— /

08|— /
- 07 e

0.6}— 4

§
05— 7
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I O T

~0.1 1 02 03 04 05 06 07 08 08 1.0 x
-0

—0.2

—0.3
04

-0.5
Steepest descent
—-0.6 —
07—
08—
08 |—

—1.0L_ Starting value of x

Figure 5.24. Trajectories in the x plane for the Fletcher—Reeves and steepest-descent algorithms.



The Fletcher — Reeves Optimizer 149

times. The trajectory is shown in Figure 5.24. It will not reach the minimum in
the specified 100-iteration limit; inputting GOTO150 will cause the program
to continue the searches. Delete temporary statement 392 and add 855
GOTO0260. This disables the policy of resetting to steepest descent after every
N iterations.

5.4.4. Scaling. The new user may construct a problem of his own design
only to find that it won’t optimize. The difficulty is often in the scaling of the
variables, 1.e., sensitivity. This is equivalent to partial derivatives; so the user
should be aware of a rule of thumb regarding units of the variables. In the
context of electrical network problems, suppose that the level curves in Figure
5.23 belong to the two variables in one of the L-section networks of Figure 4.3.
For the frequencies of interest, these network L and C design variables make
sense in units of nanohenrys and picofarads. A useful rule of thumb is: if any
variable is increased by unity, do solutions still make sense? Another symptom
is the gradient vector; the magnitude of its elements should be roughly equal
and about unity within a factor of 1000* ‘. But suppose that the inductance is
specified in microhenrys; then an increase from 0.4 to 1.4 microhenrys is a
much bigger jump than from 400 to 401 nanohenrys. What is at stake is seen
in Figure 5.23; a bad choice of variable units can squeeze the curved valleys
into razor-thin slits, so that the optimizer’s finite word length search is in
fundamental trouble.

An illustration of this effect is easily created using the Rosenbrock exam-
ple. One or more initial variable values input at the beginning are rescaled,
c.g., increased by a factor of 100. Then, at the beginning of subroutine 1000,
these variables are decreased by 100 and then increased again before returning
from that subroutine. Also, the corresponding derivatives must be decreased
by 100 before returning (an application of the chain rule from calculus). Upon
trying this, the effect on the gradient is immediately obvious-—the number of
function evaluations is increased by about half again. The reader is urged to
try this on the Rosenbrock function to observe scaling and its effect on search
difficulty.

5.4.5. Summary of the Fletcher—Reeves Program. The Fletcher—Reeves
search strategy has been reviewed and BASIC langnage Program B5-1 has
been described in the context of previously discussed topics. The Rosenbrock
two-variable, nonlinear problem was described, and a number of enlightening,
temporary program modifications were suggested. Also, the subject of scaling
of variables was mentioned; it is the foremost pitfall the new user is likely to
encounter when formulating his own objective function.

In addition to scaling, an “awful warning” was issued to be sure that only
smooth functions are modeled for gradient optimization. This is especially true
when the gradient vector is obtained by finite differences. Another warning
about gradients is that evaluation of analytical expressions should be checked
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by comparison with finite differences before even trying optimization. Failure
in optimization is commonly due to incorrectly formulated or programmed
gradients, so that the optimizer is working with bad information.

The great virtue of the Fletcher-Reeves algorithm is that its compulter
memory requirements are proportional to 3N, where there are N variables.
The Fletcher—Powell and other variable metric algorithms require a memory
proportional to N2 They all belong to the class of conjugate gradient algo-
rithms, but the variable metric algorithms, being quasi-Newton, converge
more rapidly when very near a minimum. This means that Fletcher-Reeves
Program B5-1 should be very satisfactory on small machines employed for
engineering applications requiring only moderate accuracy.

5.5. Network Objective Functions

The numerous test problems constructed by mathematicians, such as the
preceding Rosenbrock example, are enlightening and provide some measure
of effectiveness for various optimization algorithms. But what kind of objec-
tive functions are appropriate for automatic adjustment of design variables in
electrical networks? The following methods are easy to implement and have
an interesting resemblance to weighted-sample integration techniques (Section
2.3). The optimization process can also be viewed as a curve-fitting process.
However, as mentioned in Section 2.5, noalinear programming is often inef-
fective when compared to methods that are specifically formulated for certain
problems.

On the other hand, many network design requirements cannot be solved by
existing closed-form methods, as evident by the brief exposure to network
synthesis in Chapter Three. Also, the designer may not be aware of more
appropriate methods or may not have the time or inclination to implement
them. Then optimization of networks is worth trying, especially if there is an
approximate design basis to serve as a starting point for both insight and
values.

The following sections describe several important kinds of network objec-
tive functions and their gradients. An example using Fletcher—Reeves opti-
mizer Program B5-1 is given.

5.5.1. Integral Error Functions. Most cases of optimization in the frequency
or time domains amount to curve fitting, as seen in Figure 5.1. The error can
be defined as the square of the area between a desired function (the rectangle)
and the approximation function. This is expressed as

. Wz Wz
minE= [ ¢¥(x,0) do= fw | (R-G) dw, (5.86)

Wi

where the first integrand emphasizes its dependence on both the variables (x)
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and frequency. The second integrand might represent the difference between a
response function (R) and the goal function (G).

Since integration on digital computers is discrete anyhow, the measure of
goodness of fit can be a process of frequency sampling. The Euclidean norm
(inner product) mentioned in (5.82) applies here as well:

IEl=(S+e3+ -+, (5.87)

This might correspond to sampling at the ith frequency, where ¢; is the
difference between the response and the goal. The next section combines these
concepts in a form convenient for optimizing network response functions
sampled at several frequencies or times.

5.5.2. Discrete Objective Functions. A typical discrete objective function for
network response is shown in Figure 5.25, as described mathematically by

M
E(x, @)= 2, W(R,—G)", (5.88)

1=1
where P is an even integer (the Prh difference), R, is the response, G is the
goal, and W, is the weight factor at the itk frequency. None of these quantities
are complex. For example, if a network is to be adjusted so that an impedance
approximates some given impedance values at various frequencies, then an
approximate response might be SWR, according to {4.59) and (4.54). Compare
(5.88), with P=2 and W;=1, to (5.87). Also, (5.88) may be generalized to
account for more than one kind of response, R;,, by adding a second, nested
summation on k. Two responses might then be SWR and voltage, where the
weights W;, must equalize the scales for the two different kinds of responses.
In practice, only very few kinds of responses are successfully considered
simultaneously, and there is a good chance for a standoff (over consiraint), so

that optimization is ineffective.

A “satisfied-when-exceeded” feature can be included in a program for
(5.88), so that W,=0 is employed whenever R;>G;. This feature is useful

Least Pth:
min ¥ W R, — G, )"

Weight \ Goal

Response

-
w, (=5 wy w

Figure 5.25. Least-Prh error function with weighted frequency samples.
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Floating Pth:

. R
min| Xy .y +)€.tR‘, -Gt ——

W, = 1illustrated

wy [2 wy w

Figure 5.26. Least-Pth error function weighted relative to an “extra” floating variable providing
slack.

when amplitudes of the response exceed a certain level in filter stopbands; this
might be the case for Figure 5.1 if frequency samples 6-9 were required to be
equal to or greater than some positive number instead of the unlikely null
values illustrated. This approach does not cause discontinuous function behav-
ior, so that the derivatives are still those of a smooth function.

It is also possible to “float” the goal values in an objective function, as
illustrated in Figure 5.26. The floating goal requirement is encountered in time
delay equalization, where a constant delay is desirable without concern for its
absolute value. The function shown in Figure 5.26 is not as well behaved as
(5.88); so the user can expect to have some difficulty sélecting suitable
weights.

Figure 5.27 illustrates the minimax case similar to the curve-fitting result in
Section 2.4, The obijective function is the maximum difference or residual
among all samples. It is easy to program the computer to find what this is, but
this approach causes large, discontinuous changes in the function and is thus
unsuitable for gradient optimization. Suppose that each sampled difference in
Figure 5.25 is greater than unity, Then, as P is made larger and larger, the
main contribution to the total error will be the largest difference sample.
Temes and Zai (1969) have shown that the minimax (equal differences) case

Minimax:

min ‘ A W, (R, - G

R Max
T . i -
| I | s
w w; Wy
w

Figure 5.27. A minimax objective function obtained by a least-Pt# error function when P—co,
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occurs when P—oo, for suitable functions. It is interesting to think of this
process in terms of 1/P—0, because the Richardson extrapolation to zero
considered in Section 2.3.2 for Romberg integration is also applicable here.
Thus, the minimax conditions can be predicted without actually making P all
that large. The proper extrapolation variable and other important parameters
will not be treated here; satisfactory minimax results often can be obtained by
simply setting P=2, 10, and 30 in a sequence of minimizations. This point will
be expiored in the network optimization example in Section 5.5.4.

5.5.3. Objective Function Gradient. When finite differencing is used to ob-
tain partial derivatives, then the entire objective function—as in {5.88)—
should be employed in the difference functions. However, if partial derivatives
of the response function(s) R;, are available analytically or, more likely, by
application of Tellegen’s theorem, then (5.88) should be differentiated so that
the partial derivatives of the response function may be employed. Differenti-
ation of (5.88) with respect to x; produces

M
BE -1 9R;
=5 =P W(R-G)" ‘-EE : (5.89)

i i=1

Again, note that response R; is a real quantity; e.g., if it is SWR and
derivatives of Z,, are available, then identity (5) in Table 4.5 will be required
to express the derivative of R, needed in (5.89).

By the Tellegen method, partial derivatives of complex quantities are also
complex; thus 2N registers and additional computer coding will be required to
exploit this approach. Of course, the minimization time will be much less than
when using finite differences, because there will be no wasted calculations,
and the exact partial derivatives will speed convergence.

5.5.4. L-Section Optimization Example, The concepts in Chapter Five are
now brought together for a practical network optimization problem, which
will illustrate almost all fundamental techniques, The lowpass L section shown
in Figure 4.18b will be optimized to maich a frequency-dependent load
impedance to a resistive source impedance over a band of frequencies. Design
methods for this impedance matching problem will be considered in Chapter
Six.

Appendix-B Program B5-2 is composed of Fletcher-Reeves optimizer Pro-
gram B5-1 lines 150-940; lines numbered less than 150 input data, and lines
numbered greater than 940 form an error function and its partial derivatives
(gradient vector). The general process is flowcharted in Figure 5.28a. Also, the
function and gradient computation are shown in Figure 5.28b, and the
sampled-error-function formation is shown in Figure 5.28¢c.

A brief discussion of Program B5-2 code should reveal the simple details.
The L and C values (in henrys and farads) are input into X(1) and X(2) by
lines 100 and 110, respectively. Line 120.inputs the value of P, which should
initially be 2, After minimization, the program is sent to this line (by line 999)
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(a) 10 START Main program

laput M sample frequencies
and related data: goals,
weights, and frequency-
dependent data (Z, ;, etc.).

Input M starting-variable values.
Optimize variables.

STOP

1000 p Fix, w}, VF
| 2] (by finite differences}

| Caiculate and save F{x).

i

f——————foC=TtN
| } Calculate F? = Fix + Ax_).
F! - Fx)
oF _ o _ Te
| I Calculate ax, =g, = ax, .

1

Frequencies loop
‘ c!—-----——-———ForU=‘It<:;l’\c'|:

i |

{ Calculate impedance 2, (o, ).

: Calculate its SWR \|~ith respect to 1 ohm,
| E=E+(SWRI"; IP is an even integer.
l"— ——————— Next U

RETURN

Figure 5.28. Typical network optimization. (g) Overall; (b} function and gradient; (¢) sampled-
error function.

so that larger values of P may then be specified. The optimizer looks to
subroutine 1000 for its objective function (F or F9). Thus Program BS5-2
begins the calculation flowcharted in Figure 5.28b at line 1000. Line 1005 is
an SWR print control feature utilized in line 2165. More important, the
unperturbed function value is obtained by the GOSUB2100 at line 1010, and
perturbed values are obtained and used in the FOR-NEXT loop 1040-1090.
The flowchart in Figure 5.28c shows the sum of the Ptk errors obtained by
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Table 5.5. Some Lowpass L-Section Results for Z, =0.25+j0

SWR at Radian Frequency

P L C 0.8 1o 1.2
2 i i 3.1733 4.2656 7.0016
1.6471 04117 1.8626 1.1545 1.5670
10 1.6710 0.4192 1.8122 1.1040 1.6686
30 1.6903 0.4226 1.7817 1.0739 1.7338

subroutine 2100, which ends at line 2190. Line 2170 corresponds to the ith
term in (5.88), where the response R; is the standing-wave ratio (SW), weight
W, is fixed at unity, and goal G; is fixed at zero.

The standing-wave ratio SW is computed at each sample frequency by the
GOSUB3000 in line 2160. Subroutine 3000 calculates the input impedance of
the network in Figure 4.18b according to the easily obtained expression

[Re]+j[el+X ]
[1-wC(eL+X) ] +j[«CR ]

The SWR calculation is that defined by (4.59) and (4.57) when R ;=1 is
assumed. The four real and imaginary parts of (5.90) are assembled and
employed in lines 3010-3070. Note that this lowpass-network SWR function
assumes a unit source and is frequency normalized, so that units of henrys,
farads, and radians are appropriate. Also, note that network analysis Program
B4-1 could have been used for more general networks, especiaily since the
likely variables for optimization appear in the X(-) array in both B4-1 and
B5-2.

Table 5.5 shows some resulis obtained by starting L-section optimizer B5-2
at L=C=1 for P=2 and continuing, after sequential minimizations, with
P=10 and P=30. The load impedance was specified as 0.25+j0 ohms at each
of three sample frequencies, but arbitrary impedances at any number of
frequencies could have been employed. The SWR values shown were printed
by Program BS5-2, line 2165, when the variables were unperturbed (flag
variable C=0 set by line 1005). Note the tendency for equal SWR deviations
at the band edges for increasing values of P. According to (4.59), SWR can be
no less than unity, so that the squared error cannot be less than 3; it started at
77.29 and decreased to 7.26 in ITN=7 iterations (lincar searches) using
IFN =26 function evaluations (not counting the additional 52 perturbed
evaluations). Also, each of the 78 error function evaluations required network
analyses at three frequencies. It is easy to see why more efficient network
response and sensitivity calculations are essential when optimizing more than
just a few variables.

Z,= (5.90)

3.5.5. Summary of Network QObjective Functions and Optimization. The con-
cept of the area between desired and approximating functions over a range
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has been viewed as a measure of curve-fitting acceptability. Then the concept
of numerical integration as a weighted sampling of a difference function has
been applied to the formulation of a weighted, discrete error function over the
sample space, usually frequency or time. Several kinds of approximating
response functions may be treated in a common summation of sampled errors
if the weighting factors of each type function are selected to equalize error
contributions to a common scale.

Several variations of this method were mentioned. A “satisfied-when-
exceeded” rule applied to each sampled response ignores the contribution to
the error function when the response exceeds its goal. This technique is
especially useful in obtaining minimum stopband selectivity at the same time
that passband requirements are being fulfilled. The method does not upset the
continuous function requirement, which must be maintained for use with
gradient optimizers. A bias or “float” to a goal was described; it is imple-
mented as an added variable that is minimized along with the error function.
The third kind of error function is the minimax; it looks for the worst sampled
difference and minimizes it. However, the worst difference can jump from
sample to sample during adjustment of variables, causing gross discontinuities
in the objective function. This unacceptable behavior may be avoided by
using the original, weighted, least-Pth objective function in a sequence of
minimizations, with P=2 and greater even-integer values.

When derivatives of each sampled response are directly available, it is
useful to differentiate the weighted-difference summation analytically and
employ the sampled-response derivatives directly. Otherwise, finite differences
may be obtained using the weighted-difference summatjon directly for per-
turbed and the unperturbed sets of variables. It was emphasized that the error
function and its components are real functions. Any complex function and its
derivatives (e.g., input impedance) must be transformed by appropriate identi-
ties {such as those in Table 4.5).

Finally, a complete network optimization example was added to Fletcher—
Reeves optimizer Program B5-1. It can serve as a model for the general
technique, and flowcharts of major functions were furnished for this purpose.
The optimizer input section was modified to solicit values of sample frequen-
cies and corresponding frequency-dependent load impedances. The objective
subroutine 1000 was written for a lowpass, L-section network normalized to |
ohm and 1 radian; the two variables were L and C {(in henrys and farads,
respectively). A straightforward expression for input impedance was written
for this particular network; it was noted that incorporating ladder analysis
Program B4-1 for this purpose is not difficult. The input SWR was raised to
the Pt power and summed at each frequency to constitute an evenly
weighted error function with uniform goals of zero. Since SWR > 1, the
minimum possible objective function value is equal to the number of the
samples. It would also be easy to have frequency-dependent source imped-
ances. Then the important case of an interstage network connecting two
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transistors could be optimized, even accounting for gain slope versus fre-
quency.

Table 5.5 summarized some results that showed a 10:1 reduction in
squared error as well as the tendency toward minimax behavior for P= 10 and
P =30 minimizations. Tt is suggested that the stopping criterion in line 160
(0.00001) is probably smaller than need be. Engineering design usually does
not require this kind of accuracy, and the Fletcher—Reeves algorithm is known
to converge slowly near a minimum. Users might consider a value of E=0.01
or use of a 0.1% relative change-stopping criterion instead of the absolute
change criterion presently incorporated.

A common rule of thumb is that the number of samples should be at least
twice the number of variables. If there are too few samples, the function may
oscillate wildly between frequency samples while giving the illusion of a very
good fit of sampled response to goals. Which samples to take, how they are
weighted, which multiple response types are not conflicting, and many other
aspects of network optimization are more a matter of experience and insight
than science. This is also true of questions concerning how close to a
minimum must one start the variables and whether the minimum is global as
opposed to inferior local minima, which trap the search prematurely. In the
latter case, the usual advice is to try starting at a variety of points in the
variable space. As for starting reasonably near a solution, that is what the rest
of this book is all about. The main virtue of an optimizer is its ability to treat
significant second-order effects that are too difficult or inconvenient to treat
otherwise.

5.6. Constraints
The subject of constraints deals with the explicit or implicit relationships

among optimization variables (x). The most elementary constraints are upper
and/or lower bounds and linear dependence, such as

x; 20, (5.91)

k <x<k,, (5.92)
and

X;+x=ky. (5.93)

An implicit constraint is one that cannot be stated explicitly, e.g., the require-
ment that a calculated attenuation function have some specified value at a
stopband frequency. However, this exampie would correspond 10 (5.93) in that
the constraint is always active or “binding” and thus removes at least one
degree of freedom from the problem; this is typical of equality constraints.
Inequality constraints may not be binding in various subsets of the variable
space; this could be the case for the “satisfied-when-exceeded” performance
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constraint or those in (5.91) and (5.92). For both equality and inequality
constraints, points in the variable space where constraints are violated are said
to constitute an infeasible region.

The constrained optimization problem can be stated as follows:

minE(x) such that ¢(x)>0 and h(x)=0, (5.54)

where E 1s a function of both the variables (x) and the sample parameter (w).
Each component of vector ¢ constitutes one inequality constraint, such as
(5.91). Each component of vector h constitutes one equality constraint, such as

h,=x4x,-k,. (5.95)

An example of inequality constraints is shown in Figure 5.29. Note that the
unconstrained minimum s infinitely far out in the first quadrant, but the
feasible region causes this problem to have the identified optimum. If an
equality constraint were added, it might appear as a line locus in the feasible
region.

On small computers, bounds on variables are best incorporated by nonlin-
ear transformation of the variables. For example, letting the optimizer adjust x
in v=x> while computing the function with variable v will ensure a v that is
always positive. For other constraints, there are penalty functions that increase

—
——

D
////

Figure 5.29. An optimization problem with two inequality constrainis. Minimize —x;x, such
that —x;—x3+ 150 and %, +%,> 0. {[From Fiacco and McCormick, 1968.)
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the objective function when constraints are violated, i.¢.,, when the x vector is
in an infeasible region. The next sections will describe these techniques and
provide an evolving example of most of the concepts. A few network applica-
tions for constrained optimization will be suggested.

5.6.1. Simple Constraints. The easiest constraint to maintain is the equality
constraint x;=k. Just sel the partial derivative with respect to this variable
equal to zero. The reader may wish to try this by rewriting line 1050 in
Program B5-1, the Rosenbrock function: 1050 G(2)=0. When run, the start-
ing value of X(2) will never change because the optimizer sees no function
decrease in coordinate direction X(2). There are many times when such
constraints are temporarily useful, such as when a variable tends to go
through zero to negative values. The variable can be held at some value by
equating the derivative to zero.

An objective function used as an example throughout the rest of the
constraints discussion is

Q(x)=4x,+x2+l+L, (5.96)
X X%

where r is some fixed, real number, e.g., r=1. An objective subroutine to
implement (5.96) in the Fletcher-Reeves optimizer (Program B3-1) is shown in
Table 5.6, Note that the derivatives have been written in lines 1040 and 1050
using ** to indicate exponentiation. The function Q(x) in (5.96) is shown in
Figure 5.30. The reader should run the optimizer with this function, starting
from several points, such as x=(1,2)", (0.25,0.7)", and (0.25, 1.5)", Note that
in the first and second cases the program halted with an overflow error.
Asking the compuier for the values of x after this event reveals that the
optimizer search has wandered into the second and third quadrants, respec-
tively, where the function descends forever. If linear searches from the starting
point never leave quadrant 1, then the minimum at x=(0.5,1)7 is found
successfully,

Clearly, it is desirable that the variables be bounded positive; this is
sometimes necessary in network optimization also. A means for maintaining

Table 5.6. Objective Subroutine for (5.96) With r=1

1000 REM BARRIER FUNCTION EXAMPLE
1005 R=1

1010 Q=4+« X{1)+ X{Z)+ R/X(1)+ R /X(2)
1020 IF Y%=0 THEN F=Q

1030 IF Y%=1 THEN F9=(

1040 G(1)=4—R/X(1}%+2

1050 G(2)=1—-R/X(2)=2

1060 RETURN
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Figure 5.30. Level curves of Q(x) in Equation (5.96) when r=1.

variables positive is in the transformations

X =vx; (5.97)

for all N variables. This is performed inside the optimizer. The user inputs
(positive) values of x as before; the optimizer works with values of the square
root of x; and the objective function subroutine, also being outside the
optimizer, converts back to x again before making its calculations. So even
though the optimizer may make irs variables negative, there will be no
decrease in the objective function subroutine, and the optimizer will therefore
withdraw its variables to the first quadrant again. This is implemented for
(5.96) by using the code in Table 5.7 instead of that in Table 5.6. Lines
1006-1007 transform the internal variables x to the outside variables v:

v=x’ (5.98)

The inverse operation is accomplished in line 135. Since the derivative of
{5.98) is

N —2x, (5.99)

the chain rule vields

—5;-—-5&——5‘721( (5.100)
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Table 5.7. Objective Subroutine for (5.96) With Squared-Variable
Transformations

135 X(D)=SQR{X(I))
295 PRINT K; X(K)xX(K); G(K)/(2+X(K))
935 PRINT K; X(K)#X(K); G(K)/(2+X(K))
1000 REM BARRIER EXAMPLE (5.96) WITH SQUARED-
VARIABLE TRANSFORMATION
1005 R=1
1006 V1=X(1)*+2
1007 V2=X(2)#+2
1010 Q=&+ VI+V2+R/VI+R/V2
1020 IF Y%=0 THEN F=Q
1030 IF Y%= { THEN F9=Q
1040 G(1)=4—-R/Vi*s2
1050 G(2)=1—R/V2*=2
1052 G(1)=G(1)*2+X(1)
1054 G(2) =G{2}+2+X(2)
1060 RETURN

for each x and v component. This is employed in lines 1052-1054 to scale the
gradients for the optimizer's variable space, and in lines 295 and 935 to scale
the gradients to the outside world’s variable space. The program should now
be run for the three previous cases to note that the positive-variable con-
straints yield the correct optimum (Figure 5.30) from all starting points in the
first quadrant.

A number of bounding constraint transformations are shown in Table 5.8;
the first one is that employed above in (5.98). An interesting application of the
upper and fower bounds shown in Table 5.8 was suggested by Manaktala
(1972) and called “network pessimization.” Suppose that a certain lowpass
network was constructed with elements having + /— tolerances. At each

Table 5.8. Some Transformations to Impose Simple Constraints

on Variables

Constraint Transformation
vz0 v=x?
v>0 v=g*
V2 Vain V=Vain + x?
V2> Vnin V=V C"
~lgvgl v=sin X
O<vel v=sin®x
O<v<l v=e"/(1+e")
Vemin SVE Yinax V=Vnin + (Vmax - Vmin)sinz X, or

V= %(vmax + Vmin) + %(vmnx - Vmin)Sin X
Viin < ¥ < Vinax V=Vaint (Vmax - Vmin)ex/(l + ex)
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Figure 531. Worst-case variations for pessimization of two lowpass network designs. Lowpass
N =35 networks: 4, zeros in left- and right-half planes; &, zeros only in left-half plane. [Reprinted
with permission from Manaktala, 1972.)

frequency, there must be some adverse combination of tolerances that would
produce worst-case selectivity, both maximum and mintmum. This is shown in
Figure 5.31. Rather than employing the usual time-consuming Monte-Carlo
method, it was suggested that a constrained optimizer program couid find the
minimum and maximum selectivity at each frequency subject to the bounding
element tolerance ranges—truly a pessimization problem. The performance of
any network would then be contained inside the envelope shown in Figure
5.31.

3.6.2. Barrier Functions for Inequality Constraints. The complete con-
strained optimization problem was defined by (5.94). This section considers
the vector ¢ of inequality constraints that are generally nonlinear. It is
remarked in passing that a subset would consist of linear constraints of the
form

Ax—b>0. (5.101)

These boundaries are lines in 2-variable space, otherwise hyperplanes. Minimi-
zation with these constraints is like descending on the surface of Figure 5.3,
except that it has been placed in a restricting glass box; the descent should
conform to these glass walls, or hyperplanes, when encountered. The most
common means for doing this is to project linear search directions on such
constraining surfaces when encountered. This complicates linear search algo-
rithms and is beyond the scope of the present {reatment; the interested reader
is referred to Rosen’s projection method described by Hadley (1964, pp.
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315-325). For small computers, systems of constraints defined by (5.101) may
be treated by the following barrier technique.
A barrier function for generally nonlinear constraints in vector ¢ is:
M
: 1
min x)=E(x)+r ; r—0. 5.102
in Q) =E()+r 3 s (5.102)
The nature of a barrier function is seen by considering the following objective
function:

min E(x)=4x, +x,; X is positive. (5.103)

This function is shown in Figure 5.32. Clearly, the constrained oplimum is at
the origin, as indicated. The barrier function corresponding to (5.102} has
already been written; it is (5.96), for which figure 5,30 applies. Note that the
value r=1 produced a minimum at x=(0.5, 1)". The barrier is created by the
infinite contours of 1/x, and 1/x, or, in general, r/c, for the itk constraint
approaching zero, the edge of its feasible region.

The barrier function is employed in a sequence of unconstrained minimiza-
tions, each for a smaller value of parameter r in (5.102). (It can be shown
analytically that the limit at r=0 exists.} An expression for these minima can
be written for barrier function (5.96) by setting its partial derivatives equal to
zero:

a&_—— S S
3 1 % 0, (5.104)
aQ =1_1T
3 s % 0. (5.105)

Any particular minimum occurs at x, = yr /2 and x,=+r . Eliminating r shows

X2

\ Feasible region:
region;
% 0
%X, Z0

AR

Eixy=0 1+ 2 3 4 5 5 7 B
Constant-cost contaurs

Figure 532. Level curves of function E(x)=4x, +x,.
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Table 5.9. Additions to Table 5.7 to Implement SUMT

Delete line 1005 and add the following:

145 R=10

146 FOR Ji=1TO 20

147 R=R/10

148 PRINT sxtsdsenrrnhsx”

149 PRINT” %= R=":R,” cxx”
998 NEXT 11

that the trajectory of the sequence of minima in this case is simply x,=2x,, as
shown in Figure 5.30. In general, the trajectory is an analytic function of r,
Q(r). It is well behaved and its derivatives exist.

Fiacco and McCormick (1968} call this process the Sequential Uncon-
strained Mimimization Technique (SUMT). It is easy to demonstrate this
process for the example already programmed in this section. Table 5.9 lists the
one deletion and several additions to implement the sequence of uncon-
strained minimizations. When the program is run, an unconstrained minimiza-
tion with r= [ occurs first, then r is reduced by a factor of 10, and the process
1s repeated. The successive optima are on the trajectory described above and
depicted in Figure 5.30. The exact solution will be obtained in the limit as
r—{0. There is no need to arrive there computationaily. It is generally true that
a Richardson extrapolation to the limit in the parameter yr (as seen analyti-
cally) is valid on the trajectory function Q(r). (Recall the Richardson extrapo-
lation concept introduced in Section 2.3.2 in connection with Romberg
integration.) The reduction factor for r is not a critical parameter; values from
4 to 25 usually result in about the same total number of function evaluations
in progressing along the trajectory of successive minima.

5.6.3. Penalty Functions for Eguality Constraints. The vector h set of equal-
ity constraint functions in (5.94) can be enforced by compound functions of
the form -

minQ(x)=E(x) + L §Pj h2(x); 150, (5.106)
X Vr K=t

which add a penalty to the total objective function when each and every h,
constraint is not zero, Comparable to the SUMT method, there is a trajectory
function Q{r), where r is a sequence of decreasing values. As seen in (5.106),
smaller values of r add a larger penalty to unsatisfied constraints h,. In the
limit as r—0, the constraints must all be satisfied; ie., the unconstrained
optimizer has been forced to find the region of x space that is feasible, if it
exists. The starting values for variables (x) usually will be unfeasible, which is
the opposite of the barrier (inequality) constraint function.
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In fact, one application of penalty functions is to acquire feasibility for
inequality constraints. To do so for inequality constraint ¢, use the penalty
constraint function

hy(x)y={min[0, cx) ]}~ (5.107)
A little thought will show that this is exactly equivalent to the “satisfied-when-
exceeded” technigue discussed in Section 5.5.2. Tt is seen that the partial
derivatives of h, in (5.107) exist at the boundary of feasibility.

Penalty functions are usually better behaved in unconstrained optimization
than barrier functions. This is usually due to the mechanics of the linear
search process, where the infinite barrier may be overstepped by the necessar-
ily finite exploratory moves. A review of the example problem and its
treatment by transformation of variables in Section 5.6.1 supports this conclu-
sion.

5.6.4. Mixed Compound Function for All Constraints. Fiacco and McCor-
mick (1968) derived the necessary conditions for defining a combined barrier
and penalty function:

min F(x) = E(x)+rz c(x) E hi(x), (5.108)
j=1 ™
with derivatives
M e, /ox; P dh
dF _3E O 2 k
% ax, rzl 20 + - k§=]l hk(x)—a-;j-. (5.109)

One practical consideration in (5.108) is the choice of the starting value for r.
If it is too small, then the ¢, inequality constraint barriers will be too far away
and steep, so that the h, penalty functions will tend to dominate the obiective
E(x). Difficulties of the opposite nature exist if the initial r is too large. There
are fairly sophisticated means for selecting the initial r value, but one way that
at least leaves the objective E(x) somewhat in control has been satisfactory.
The value of E(x) and of each summation in (5.108) is obtained for the
contemplated starting point in variable (x) space. Then the first r value is
chosen so that the absolute value of barrier and penalty contributions is just
10% of the E(x) contribution to F(x, r). This procedure requires the solution of
a real quadralic equation.

Fiacco and McCormick (1968) also show why and how the Richardson
extrapolation to the limit operates. Using this exirapolation for all variables
often places the solution inside unfeasible regions. In short, there are some
programming complexities to be overcome in applying the Richardson e¢xtrap-
olation to barrier, penaity, and mixed functions. The good news is that
personal computer users operate in the loop with program execution. The
complicated program features required in a timeshare environment to avoid
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receiving big bills for unforeseen runaway programs are hardly necessary with
personal compuier applications,

5.6.5. Swmmary of Constraints. Unconsirained optimization will often pro-
duce negative variable values that have no physical meaning. Sometime
during function minimization, variables may become negative, but return to
positive values again at convergence. This is one reason why a trial problem
run without constraints is not a bad idea. The most elementary constraints are
bounds on e¢lements; these may prevent negative variable values or contain
variables within ranges such as component tolerance intervals, The squared or
trigonometric transformations of variables are often effective. An example of
the former was programmed in this chapter. Another type of constraint is a set
of linear inequalities, [t was noted that the projection method whereby the
minimization is conducted on surfaces bounded by the related hyperplanes
(“glass walls™) requires rather complicated techniques in linear searches, and
thus was not discussed further. Constraints are simply relationships among
variables. Those mentioned so far in this paragraph can be stated expiicitly.
There are many others that cannot be so stated and are therefore implicit
constraints,

" The barrier method for inequality constraints and the penalty method for
equality constraints (including the “satisfied-when-exceeded” constraint) were
described. Then the two methods were combined in one mixed compound
function. In these cases, the trajectory parameter r was introduced. Assign-
ment of a value to r enabled an unconstrained optimization to occur. A
sequence of choices for decreasing r values leads to the constrained solution,
the process being called the Sequential Unconstrained Minimization Tech-
nique (the well-known SUMT). A lot of computer time is consumed in the
process, and failure-proof extrapolation methods for predicting the Iimit
process without closely computing the limit are not easy to program. The
interested reader is referred to Gill and Murray (1974) and Lootsma (1972, pp.
313-347).

Despite some complexities, the reader should have knowledge of these
methods, because there are many special cases where some of these concepls
can be meaningfully applied. This is especially true for personal computing,
where an educated observer remains in the driver’s seat. Machine time is
prepaid, so that programs need not be constructed with the guaranteed
performance of robois in space—or limited expense accounts on computer
timeshare services.

5.7. Some Final Comments on Optimization
The methods in this chapter were selected because they are practical engineer-

ing tools and their explanation involves important mathematical concepts.
However, the reader should be aware of an entirely separate kind of optimiza-
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tion, known as direct search. Direct search methods explore the function
surface without benefit of gradient information and have the substantial
advantage that function smoothness (continuity) is not required. There are
many kinds of systematic direct search schemes, and almost all of them are
heuristic methods, developed more on the basis of intuition and experience
than on an extensive rational basis, They are often less automatic than
gradient methods, requiring a number of parameters to be set rather arbitrar-
ily. Tt should be recognized that the “operator-in-the-loop™ nature of personal
computers makes direct search more attractive than when used on remotely
engaged computer services.

There is at least one direct search method that requires only 3N memory
locations, as does the Fletcher~Reeves algorithm. That is the pattern search
algorithm of Hooke and Jeeves (1961). A FORTRAN code that can be
modified for this purpose has been given by Kuester and Mize (1973). Briefly,
function values are computed at a starting (base) point and at a small
displacement in one variable. If this is successful (reduced elevation), then a
small displacement in the next variable is tried. If this is also successful, the
base point is moved along a vector through the second successful point;
otherwise, another variable 1s tried. The strategy is that successful moves are
worth trying again. The interested reader can find a useful explanation of the
details in Beveridge and Schechter (1970).

Sadly, a strong warning must accompany all claims for optimization; it is,
after all, only the last step in engineering design. Some of its advocates have
the tendency to use it as an excuse for neglecting the first two steps:
identifying design variables and how they interact, and creating a measure of
effectiveness. The acronym GIGO is apt: garbage in, garbage out. Optimiza-
tion does stimulate good modeling of systems. Time and again it has been
found that, once optlimization problems have been suitably structured, the
solution {or lack of one) is then apparent almost by inspection. The author
believes that optimization (nonlinear programming) is a major circuit design
tool, in the same league with the programmable calcuiator/computer on
which it depends.

Problems

5.1, Shift the origin of the central sample function in (5.8) by the substitu-
tions X;¢x,+ 10 and x,<x,+10. Simplify the resulting equation and
compare it to the Taylor series expansion {5.32) about the point p=
(10,10)".

52. Show that the root-finder steps in (3.9) and (3.10) are identical to
Newton steps in (5.38). Hinr: Let f,=u, f;=v, x,=X, and x,=y.
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5.3.
5.4,

5.5,

5.6.

3.7

5.8.

5.9.

5.10.

5.1L

5.12.

Gradient Optimization
Use Programs AS-2 and AS5-4 in Appendix A to verify Table 5.2,
Verify in two-variable space that
(Ax)" =xTAT
even when A is not symmetric.

Evaluate by (5.41) the optimal step for the central sample function (5.8)
from p=(10, 10)" in direction s=(—1, —2)". Find x'*',g'*', and show

‘that the directional derivative (5.57) at x'*! is zero.

Make a table for the central sample function (5.8) at x7=(10, 10), (5, 3),
(—1, 1), and (5,7). Verify (5.48) and (5.50) using all these data.

Write 2 Taylor series expansion about the point x=(4,4)" using First
and second partial derivatives of the function
F(x)=ln(x,x2)+\/ﬂ+3\/x_2.

Mazke a table of Ax varying by = 0.2 about this point and showing the
percent difference between true function values and those estimated by
the Taylor series.

Examine the flowchart in Appendix D for the Fletcher—Reeves linear
search scheme; expand it to describe the entire Fleicher-Reeves algo-
rithm (Program B5-1).

What revised value of b would cause the minimum of the central
sample function (5.8) to be at x=(—3, —4)T?

Define a standard function as
F(x)=c+b"x+ 1x"Ax,
where

14 2
A=
]

and
e=500, b=(-94,-67)".
Is A positive definite? Why?

For the standard function in Problem 5.10:

(@) Find F, V\F=g, V,F=g,, and the slope in the direction s=
(1, —2)7, all at the point x=(3,7)".

(b) What is the value of the metric defined by (5.50) at x=(3, )"?

For the A matrix in Problem 5.10:

(a) Confirm that the eigenvalue problem (5.25) is satisfied by A, =15,
x'=(2,D7; and by A,=10, ¥’ =(—1,2)".



5.13.

5.14,

5.15.

5.16.

5.17.

5.18.

Problems 169

(b) Find the diagonal matrix A=PTAP/5, where P is a suitable
orthogonal matrix.

For the standard function in Problem 5.10:

(a) Write the matrix equation for the Taylor series in Ax about the
point p=(3,7’.

(b) Find the Ax step to the minimum F location from p; use matrix
calcnlations.

Given the two nonlinear functions
B (X . Xy) =X — X3%, — 52x, + 11x,+ 23,
Ex(Xy 2 Xy) = 51%, ~ X, X3 — 94X, + X3 + 325,

calculate by the Newton method the estimated Ax step to the minimum
F location from the coordinates x, =3 and x,=7.

For the standard function in Problem 5.10:

(a) Compute the Fletcher-Reeves linear searches to the location of
minimum F starting from x=(3,7)". Use (5.41) in all your linear
searches. Show all values of x, a, s, g, and § involved.

(b) Show numerically that your search directions are A-conjugate and
that the gradient at each turning point is orthogonal to the last
search direction.

Consider A in problem 5.10 and search directions s'=(1, —2)" and

=02, H%:

(a) Ares' and s® A-conjugate? Show work.

(b) Are s' and s’ orthogonal? Show work.

{¢) Explain the results in (a) and (b) in terms of minimizing quadratic
functions.

Given any two arbitrary functions f,(x;,x,)=0 and f,(x|,x,)=0 and
their partial derivatives, write a discrete, unweighted, least-squared-
error optimizer objective function and its gradient equations. These
should be in forms so that particular cases could be used in subroutine
1000 in optimizer Program B5-1 to find the solution of x; and x,.

Write the barrier function equation for the constrained minimization
problem in Figure 5.29.



Chapter Six

Impedance Matching

Impedance maiching is the design of a network or transducer so that a
terminating impedance is transformed exactly to a desired impedance at a
frequency, or is transformed approximately over a band of frequencies. Figure
6.1 shows the situation where load impedance Z, may be specified as some LC
subnetwork terminated by a resistance or by complex numbers associated with
arbitrary frequencies. The desired input impedance Z,, may be similarly
specified or may be contained in a neighborhood described as some maximum
standing-wave ratio (4.59). Section 9.6 will consider dissipative network trans-
formations; in this chapter only lossless, passive networks are considered.
Impedance transformation is usually desired for control of power transfer
from a finite impedance source, and is thus related to the same requirements
discussed in Chapter Three for doubly terminated filters. There is one impor-
tant difference: impedance matching usually is concerned with given terminat-
ing impedances that are complex, not simple resistances. This results i simple
restrictions for single-frequency transformations. There are complicated con-
straints when matching complex impedances over a band of frequencies.
These preblems will be considered in order of increasing generality.

Chapter Six begins with impedance matching at a single steady-state
frequency, first with two- and three-element networks composed of a combi-
nation of inductors and capacitors, and then with one or two cascaded
transmission lines. It is remarkable that these subjects are seldom treated in
modern electrical engineering curricula, even though they appear in almost all
pertinent texts and handbooks published before 1960. Practicing engineers
responsible for radio frequency circuit design invariably query prospective
employees about L, T, pi, and perhaps transmission line matching because it is
a matter of frequent concern. The treatment here includes tried and true
concepts, which will be extended to broadband matching and direct-coupled
filters (Chapter Eight) as well, especially the idea of the loaded Q of an
impedance. The Smith chart as a means of visualizing the maiching process
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Figure 6.1, The matching network problem.

will be discussed. An innovation is the use of hand-held computers to provide
data for plotting, greatly speeding the process and reducing eyestrain.

The rest of the chapter addresses impedance matching over a frequency
band, referred to as broadband matching, as opposed to the single-frequency
impedance matches, which are often useful over fairly narrow frequency
bands (or can be made so by optimization). It might be assumed that if a
fairly extensive network is designed for one central frequency in the band of
interest, then an optimizer should be able to start with these element values
and obtain the best possible match over the band. Unfortunately, this does
not work in most cases because of the large number of useless local minima in
the objective function’s surface. So theoretical methods are necessary, some
with major limitations that may be candidates for elimination by optimization
of the theoretical result. One limitation always present is the assumption of
lossless networks; dissipative effects usually will be compensated by optimiza-
tion.

The classical method for broadband impedance matching was thoroughly
described by R, M. Fano (1950). He extended Bode’s integral matching
limitation for RC load networks to load networks composed of any number of
I.C elements terminated in a resistance. The theory becomes too complicated
for more than three load reactance elements, The closed formulas by Levy
{1964) presented here enable the consideration of a single RLC load branch.
He accounts for three types of sources: resistive, a single RLC source branch,
and lossless (singly terminated) sources. The subject is invariably presented as
the lowpass case; i.e., loads are parallel RC or series RL, and the frequency
band begins at dc. Practical applications usually require pass bands above de,
which are obtained by a simple network transformation, and the loads are
RLC, as mentioned. Thus the development requires consideration of the
transformation that changes the network from lowpass to bandpass. Another
feature of classical lowpass theory is that the source resistance is dependent,
Usually, the designer must use a particular source resistance. In the case of
bandpass networks, Norton transformations enable the replacement of all-L
or all-C pairs (L sections) by three-element sections of like kind. An arbitrary
impedance transformation within a limited range is possible, and there are no
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frequency effects. Norton transformations are also a part of the Fano theory
in réduction to practice.

A recent application of Fano’s integral limitation enables optimal matching
of load impedances consisting of a C paralleling a series LR or an L in series
with a parallel CR using a lowpass network configuration. The Cottee and
Joines (1979) method is described. It employs numerical integration (Section
2.3) and synthesis (Chapter Three). The results are often desirable in practice,
and the analysis helps clarify Fano’s integral limitations, This is called a
pseudobandpass technique, wherein lowpass networks are employed to match
over a pass band.

All of the broadband-matching concepts mentioned so far require that the
physical load be related to a hypothetical lumped-element terminating net-
work. This subject is called load classification and is mentioned only briefly in
this chapter. Carlin (1977) presented a new method for designing lossless
matching networks; this method utilizes directly experimental load impedance
data sampled at arbitrary frequencies. The arithmetic is well conditioned, so
that the required optimization step works well in nearly all cases. Also, the
technique is especially well suited for producing arbitrarily shaped power
transfer functions versus frequency. This has special application in microwave
amplifier network design, where it can compensate for the approximate 6
dB/octave roll-off of transistor gain above the critical frequency. These extra
considerations are treated in the optimization step, so that it is equally easy to
accommodate amplifier noise figure, stability, or other constraints that can be
formulated in impedance terms. Carlin’s method is based on a very practical
application of the Hilbert transform, which relates reactance frequency behav-
1or to resistance behavior. A separate program for this aspect is provided. The
final steps in Carlin’s methoed require fitting a rational polynomial (Section
2.5) and synthesis (Chapter Three).

As in other chapters, there are many personal computer programs fur-
nished. Both programs and concepts are useful design teols for the practicing
radio frequency engineer. The ladder network analysis procedures of Chapter
Four will be useful for verifying designs produced in this chapter. It is
assumed that the reader can write a simple program to convert reactances at a
given frequency to L and C values and vice versa.

6.1. Narrow-Band L, T, and Pi Networks

The four reactance configurations considered for the network in Figure 6.1 are
shown in Figure 6.2. There are several important conventions adopted. First,
the lossless inductors and capacitors are shown as reactances at the one design
frequency. Second, an inductor is implied if the reactance is positive, and a
capacitor is implied if the reactance is negative. Third, the basic design
relationships assume a match from simple load resistance R, to input resis-
tance R;. The two L sections in Figure 6.2 have fundamental constraints on
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Figure 6.2. Four lumpe-d-element reactance configurations.

the direction of resistance match, as indicated; i.e., a type-A L section can
only decrease the resistance level, Finally, the transfer phase is defined as the
angle by which current I, lags I, in Figure 6.1. For resistive Z, and Z,, this is
the same as the phase lag of V, with respect to V. The phase angles of type-A
and type-B L sections are dependent, assuming that the R, and R, termina-
tions are independent. However, the phase is also independent for the T and
pi sections shown in Figure 6.2 within the range indicated.

It has been remarked that the phase is not of interest in many cases;
however, i1 is a convenient parameter and represents a degree of freedom for
T and pi networks. (The phase sign is a degree of freedom for L sections.) It is
also noted that L, T, and pi sections may be designed by the H-Q2 method
deseribed in Section 6.1.3 without consideration of phase. The reader is
expected to adopt the techniques most useful for his purpose.

This topic will be developed by first considering the interface impedances
resulting from the use of a lossless network, especially the relationship between
Z, and Z, and between Z; and Z, in Figure 6.1. Then the basic case for T and
pi network matching from resistance R, and R, will be given. The L sections
will be special cases of these, in which branch X, in Figure 6.2 is removed. To
accommodate complex source and load impedances, series-to-parallel imped-
ance conversions and the opposite case will be developed. Also, the impedance
of paralleled impedances will be discussed. These conversions adapt complex
terminations to the prior analysis for resistive transformations. Finally, the
role of graphic procedures—especiaily the Smith chart—will be considered in
some detail. Programs are provided.

6.1.1. Lossless Network Interface Impedances, There is an important imped-
ance concept associated with maximum power transfer by a lossless network
of any type. Consider the power transferred from the source to the network in
Figure 6.1. According to the analysis in Section 3.2.3, maximum available
power (P,)) is transferred when Z,=Z*. For lossless networks, the maximum
available power must arrive undiminished at the load end of the network,
where the Thevenin impedance looking back into the network is Z,. At the
load port, then, there must be an equivalent Thevenin source providing the
same maximum available power; therefore, Z,=Z;. In fact, the matched,
iossless network can be cut at any interface and a conjugate match will exist;
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i.e., the pertinent generalized reflection coefficient magnitude (3.46) must be
zero at every interface, If there is a mismatch anywhere, then the pertinent
reflection coefficients at every interface must all have the same magnitude,
since the actual and available power are the same everywhere.

The most elementary application occurs when only resistances are antici-
pated at the lossless network terminals in Figure 6.1. Then Z,=R,=Z, implies
that Z,=R,=Z,. Especially, it is common 1o talk about resnstlve terminations
where the 51mple fact that Z, =R, would not necessarily imply that Z,=R,.
This small nuance arises in Section 6.1.4 when matching from a complex load
to a possibly complex source.

6.1.2. Real Source and Real Load. The reactance equations for T and pi
networks are given in Table 6.1, along with the modifications for the L
sections. T-section matching relationships will be verified; the pi-section
relationships can be verified similarly.
Consider Figure 6.3. Define
Z,=R,+jX,. (6.9)

Replacing X; in (6.9) with its T-section expression (6.5) from Table 6.1 yields

0= jsin g8 (6.19)
If I,=1+j0 in Figure 6.3, then V' =7, and
Z
L=—+1 (6:11)
X,
Table 6.1. T, Pi, and L Reactance Equations
T Pi
YRR, — R, cos B i
X, =1t PP 6y X =RR,— M E (62)
sm ,8 RzCOS ,8* ’R]Rz
VR R i
Xym - — 63) X,=R,R,n8 (6.4)
sin f§ ,'_‘—'R‘RI
vR;R; —R,cos f8 i
Xypm 2 2P 68 Xy=RR,— B (6.6)
sin '8 R|COS ﬁ—VRle
: i ={: =+ -1 E - -1 :R-—{ -
For LA: use T with X,=0; f=*cos tan i 6.7y
RZ 1il

For LB: use pt with X,—>00; 8 as above, with R, and R, exchanged. (6.8)
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Figure 6.3. Network for T-section analysis.

Then, placing (6.10) and (6.3) from Table 6.1 in (6.11) gives an expression for
the input current:

I =1/5 ¢h (6.12)

= [t s, (6.13)

where £ is the angle by which 1, lags I;.
1t is now easy to verify the input impedance:

Z,=jX, + T (6.14)
1

Using (6.10} and (6.1} from Table 6.1 in (6.14), a little algebra shows that
Z,=R,, as required. For a type-A L section, setting X,==0 in (6.5) provides

Table 6.2. Sample Problem Data for Appendix Program B6-1°

Case R] Rz ﬁ Xl X2 X3
LA 25 50 45 25 ~50 —
LA 25 50 —45 —25 50 —
LB 50 25 45 —50 25 —
LB 50 25 —45 50 —25 —

T 50 50 120 86.60 —50.74 86.60
T 50 50 ~120 —86.60 57.74 —86.60
T 50 50 90 50 —50 50
Pi 100 25 150 —17.45 25 -9.15
Pi 100 25 -150 17.45 —25 9.15
Pi 100 25 90 —50 50 —50
Pi 23 100 90 - 50 50 —50

“Values are in ochms and lagging degrees.
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the phase angle expression (6.7); the latter also displays the requirement that
R, <R;.

The relationships in Table 6.1 have been programmed in BASIC language
Program B6-1 (listed in Appendix B together with a flowchart). Table 6.2
contains sample data for program verification and illustration.

Example 6,1, Match a load impedance of 6+ j0 ohms to an input impedance
of 25+j0 chms using L sections. The solutions are shown in Figure 6.4. The
required equations appear in Table 6.1. A type-B L section is required, since
R,<R,. The phase must have a magnitude of 60.67 degrees. Choosing a
lagging phase (8= +60.67) yields the configuration in Figure 6.4a, and the
leading phase ( 8= —60.67) yields the configuration in Figure 6.4b.

+)10.68 2 —j10.88 &
Y, ]
1
r——D —
2540 0 25+0 02
T—j14.05ﬂ éﬁﬂ +j14.05 §2 éﬁﬂ
{a) th)

Figure 64. Two L sections that match 6 ohms to 25 ghms. (a) Lagging phase; (b) leading phase.

6.1.3. Series-Parallel Impedance Conversions. This section deals with the
equivalence at one frequency shown in Figure 6.5. At first glance, it may seem
awkward to avoid the impedance-admittance convention by calling the recip-
rocal conductance and negative reciprocal susceptance “parallel ohms.” How-
ever, there is a strong tendency to approach problems in familiar units, so that
a practical range of values is recognizable as opposed to blind numerical
procedures. The need to convert between forms arises when the matching
network’s series input or output branch faces a parallel impedance termination
or vice versa. Then the conversion in Figure 6.5 enables a combination of
series (of parallel) reactances in the termination and the network branch. The

O O

Figure 6.5. Two impedance forms that are equivalent at a frequency.
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concept facilitates complex matching (Section 6.1.4) based on the resistive
matching described in Section 6.1.2.

Convenient equations are derived by considering the equivalence of admit-
tance and impedance forms:

o1 R, .. =X
Y=G+jB=--= + ; 6.15
PR TR (1)
where Z =R +jX,. An important definition is
X _ Ry
Q=== 6.16
R, X ©19
Then (6.15) shows that
R,=R(1+Q?%, (6.17)

thus the name “1+ Q?” method. The conversion procedure is to solve (6.16)
for the appropriate Q and (6.17) for the appropriate R. Then the unused Q
relation from (6.16) leads to the unknown reactance X. On hand-held calcula-
tors it 1s tempting to program the conversion in (6.15) using built-in rectangu-
lar-to-polar functions. However, they execute much more slowly than the Q
relationships. Program AG6-1 in Appendix A performs these calculations on
function keys A and B using only interchange operations in the four-register
stack. The Q concept will be of major importance in this chapter and in
Chapter Eight.

Example 6.2. Suppose that the series impedance 6+j12 ohms is required in
the parallel form shown in Figure 6.5. Following the data input convention (X
before R) given with Program A6-1 listing, key A produces R =30 in the X
register and X, = + 15 (inductive as required) in the Y register. Key B changes
the form back to series again.

Another useful relationship is the inverse of (6.17):

Q=-\/%3—1 . (6.18)

An alternative to the equations in Table 6.1 is to design L, T, and pi networks
by a sequence of 1+Q? conversions. Example 6.1 could have been worked
using (6.18) to find that Q=1.7795, Then (6.16) shows that X = + 10.68 and
X,= +14.05. This type-B L section could have been extended by a type-A L
section to form a T network. In this approach, the internal parallel resistance
level replaces the transfer phase as the arbitrary parameter. An extension of
(6.18) involves the L-section branch reactance ranges necessary to match a
load impedance of bounded standing-wave ratio (SWR) to a desired source
resistance. For the load SWR §,, defined with respect to a nominal load
resistance R,, the values of the L-section branch Q are bounded by the
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Figure 6.6. Two reactances in parallel and their equivalent reactance.

/R
max . _ Pazl_
min Q= VST - (6.19)

The Q of the output branch is related to the fixed, nominal load resistance R,.
The extreme values of the two L-section branch reactances do not occur at the
same particular load impedance. Derivation of (6.19) is easier to visualize after
discussion of the Smith chart in Section 6.1.5.

Combining two reactances in series requires simple addition, Retaining the
convenience of calculation in ohms, combining two reactances in parallel
requires the relationship

extreme values

X = %2 X 6.20

XX, T+X/X;C (6.20)

This 1s shown in Figure 6.6. Another common requirement is the calculation

of one of the paralleled reactances (e.g., X, in Figure 6.6) so that the

combination with a given X, produces the given equivalent X, The relation-
ship can be obtained from (6.20) and put in that functional form as well:

(=X
I (-X)/XC

X, {6.21)
Since the functional forms of (6.20) and (6.21) are identical, programming the
functions requires only one algorithm, except for a sign change for reactance
X,. Keys C and D in Program A6-1 evaluate (6.20) and (6.21), respectively,
These simple functions are surprisingly useful in practice.

Example 6.3. Referring to Figure 6.6, suppose that X,= —30, and X,=75
ohms. Entering these into Program A6-1 and pressing key C yields X= —350
ohms. Conversely, entering first X= — 50, then X, = —30, and pressing key D
yields X,=75 ohms.

6.1.4. Complex Sources and/or Complex Loads. The simplicity of the
matching relationships discussed so far hides the muliiplicity of solutions that
may or may not exist in particular cases. The general case of matching a
complex load impedance to a source with complex generator impedance will
illustrate the subtleties often encountered.
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Z
Figure 6.7. Problem for Example 6.4 considering both kinds of L-section networks.

in

Example 6,4, Consider the matching problem illustrated in Figure 6.7, where
Z,=20—;10 ohms and Z; =6+]I2 ohms, and both types of L sections are to
be used. The parallel equivalent of the source is 25|| —j50, where the symbol |
will be used to mean in parallel with. The type-B L section will thus require
solutions from a 6-ohin resistance to a 25-ohm resistance, as obtained in
Example 6.1 (X, =+ 14.05 and X,= ¥ 10.68 ohms reactance; see Figure 6.2).
To minimize confusion, the reactances inside the type-B matching network
will be designated X, and X,,, as shown in Figure 6.8. The load was given in
series form, and its reactance can become a part of the hypothetical matching
clement X,, as shown in Figure 6.8. Then X, = —1.32 ohms by subtraction.
Use Program A6-1 to find X, : enter — 14.05, then —50, and press key D. This
evaluates (6.21) and yields X, = —19.54 ohms. As a check, convert the load
mesh, 6+j10.68 ohms, to parallel form (25.01]]j14.05). Then combine paraliel
reactances j14.05|| —j19.54, using key C, to obtain the equivalent +;50.01
ohms. Figure 6.8 shows that this reactance will be canceled by the source
reaclance, leaving a match to the 25-ohm parallel resistance in the source.
Note that the matching network actually used is composed of two capacitors;

iX, +j12
A

X,

q) 25 —jB0 iX, RY

7 .

X, +1068 —10.68

X, -1405 +14.05

X, - 132 —2268 !
X, —1954 +1097 |
Xip 50 50

R, 25 25

inp
Figure 6.8. Solutions for a type-B L-section in Example 6.4.
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Figure 6.9. Solutions for a type-A L-section in Example 6.4.

given a particular frequency, their reactances could be changed to farads. The
second solution column in Figure 6.8 is obtained by the same procedure.

The type-A L-section solutions are obtained by the analysis recorded in
Figure 6.9. The parallel form of the load is required, as obtained in Example
6.2, because the L section ends with a shunt element. Key D is again used to
evaluate (6.21), to obtain X, = —23.204 ochms. The rest of this and the second
solution are obtained as previously described.

Note that a conjugate match exists at any interface in'Figures 6.8 and 6.9,
Also, there is no reason to assume that all L-section solutions must exist. The
problem in Example 6.4 required a type-A section to decrease the resistance
level, and vice versa for type B. T and pi networks may also be used, and they
have an extra degree of freedom. Note in Figure 6.7 that phase § is related to
terminal currents. Because of the series-to-parallel conversions employed,
Figures 6.8 and 6.9 show that phase angle £ does not apply to any of the four
solutions obtained. This is often the case when there are complex termina-
tions.

6.1.5. Graphic Methods. Terman (1943) presented comprehensive design
graphs for L, T, and pi networks using the phase parameter. The use of
computer programs may not be the last word in design technique; the trends
evident in graphic data contribute greatly to problem insight and are hlghly
recommended.

Probably the single most valuable tool in impedance matching is the Smith
chart. It is useful in its conventional form in this chapter; it will be applied
with much more generality in the next chapter. The Smith chart is the bilinear
map of the right-half impedance plane into the unit circle of the reflection
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plane, Normalizing impedances to resistance R,, reflection coefficient (4.57) is
rewritten as the bilinear function

_Z/R;-1
P=Z/R+1° \

The mapping is illustrated in Figure 6.10. Lines of constant resistance map
into closed circles of constant, normalized resistance in the Smith chart, and
lines of constant reactance map into circular arcs of constant, normalized
reactance. On a Smith chart with its center normalized to impedance 1+j0
ohms (or mhos) according to (6.22), any complex number has its inverse
appear symmetrically about the origin; i.e., given a point Z/R,, the point
Y X R, appears on the opposite radial at the same radius, where Y=1/Z. An
easily read surnmary of Smith chart properties has been given by Fisk (1970).

The first result of Example 6.1 is plotted in Figure 6.10. The normalized
reactance (X,/R,=10.68/25=0.43) amounts to a displacement of +0.43
along the normalized constant resistance circle (6/25=0.24). Then, since the
X, matching reactance is a shunt element, the impedance point is converted to
an admittance point by reflection about the origin, as shown in Figure 6.10.
This point is necessarily on the normalized unit circle passing through the
center of the chart {the center representing R, =25+ j0 chms). Now the Smith
chart is considered an admittance chart instead of an impedance chart. Thus
the displacement due to X, = —14.05 ohms is considered a normalized sus-
ceptance of +1/14.05x25= +1.78 mhas, which carries the transformation to
the chart center, as required. The reader should plot the second solution of

(6.22)

h ix z
Constant X
]
|
|
I
I
%—_
Ry R4 R
Canstant R

e
I T T T T T T

1.0 08 06 04 D2 0 02 04 06 08 1.0

Figure 6,10. The ordinary Smith chart (the unit reflection coefficient circle) on the left is a map
of the right-half Z plane on the right.
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Example 6.1, which involves negative reactance and susceptance travel on the
Smith chart. Negative travel is toward the bottom haif of the chart instead of
toward the top half (positive half-plane).

It is strongly recommended that the reader write a small program to
accomplish the calculation of (6.22) and its inverse, so that Smith chart
plotting is simply a matter of locating rectangular and/or polar computed -
numbers, Cases involving complex sources may be treated as in the analysis
above and in Example 6.4, However, a more general treatment will be offered
in the next chapter, where the chart center can represent a complex number.
Many engineers associate the Smith chart with transmission line solutions; this
will be shown in Section 6.2.

6.1.6. Summary of L, T, and Pi Matching. The topic of L, T, and pi
matching began with a comment on the fact that lossless matching networks
exhibit conjugate impedance matches at every interface because of conserva-
tion of power. Then, functionally similar equations were given and verified for
solving T and pi resistive matching network problems in terms of the current-
transfer-angle parameter, The two possible L-section configurations were
treated as special cases of the T and pi configurations when the output branch
was omitted. A small BASIC language program was provided to calculate
element reactance at an assumed frequency.

Series-to-parallel impedance conversions and parallel combination of reac-
tances were described in order to always work with impedances as opposed to
mixed impedance/admittance units. The former strategy has been found
superior because engineers more readily recognize practical ranges of elements
in a single unit of measure. A hand-held computer program was provided for
these simple relationships, and examples were worked. These tools are vital
parts of the complete set of solutions obtained for an example that involves
both complex load and complex source, utilizing L-section matching networks,

Finally, a brief comment was provided on the value of graphic visualiza-
tions in general and the Smith chart in particular. A much more general
treatment of the Smith chart will be furnished in the next chapter.

6.2. Lossless Uniform Transmission Lines

The matching network in these sections will consist of a lossless, uniform
transmission line, as shown in Figure 6.11. The load impedance Z, and the
desired input impedance Z, are given; the unknowns are the real transmission
line characteristic impedance Z, and electrical length 8.

An expression for the input impedance Z, will be derived from Chapter
Four equations. A related reflection equation will be derived for relationship
to the Smith chart. The lossless case will then be examined to produce
solutions for a complex source and a complex load. A more simple result will
be obtained for the case of a real source and complex load; this will result in a
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Figure 6.11. The transmission line-matching problem.

convenient graphic design aid for trend analysis. Finally, two important
techniques vor matching real loads to real sources will be discussed. The
inverter (90-degree ling) will be a main feature in Chapter Eight.

6.2.1. Input Impedance and Reflection Coefficient. The input impedance of
any two-port network was given in terms of its ABCD (chain} parameters in
bilinear Equation (4.18). The ABCD parameters for uniform, dissipative
transmission lines were given in (4.13)-(4.15). It is quite casy to show that
these lead to the following expression for Z, in Figure 6,11:

Zy(Zy+ Zytanh yf)
'" (Zy+Z,tanhyp) '

(6.23)

where vyl =NP+j#; i.e, [ is the transmission line length and NP is the loss in
nepers for this length.

It is useful to retain the dissipative factor in order to show the general
applicability of the Smith chart as a transmission line model. The reflection
coefficient in (6.22) can be normalized to Z, instead of R and then solved for
Z,/Z,:

Z,/Zy—1 Z, _1+4p
=5 —7 O 5 =-——.
Z,/Zy+ 1 Zy, 1-p

A similar expression relates Z,/Z, and p,. The expressions for Z,/Z,, Z,/Z,,
and the identity

(6.24)

et —e—

tanh '}’E = W (6.25)

can be substituted into (6.23) to identify the reflection relationship
P =pze_2YE=P26_2NPe_j20- (6.26)

The Smith chart in Figure 6.10 was described as the reflection plane.
Certainly, load impedance Z, corresponds to a point p, on the Smith chart. In
polar form, the p, angle traditionally is measured counterclockwise from the
real p axis in Figure 6.10. When Z, terminates a {ransmission line of length ¢
as in Figure 6.11, the input reflection coefficient corresponding to impedance
Z, is computed by (6.26). It shows that the angular length of the line is
measured from the p, radial in a clockwise direction with twice the angular
units on the chart plane. For dissipative (lossy) transmission lines, the Smith
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chart locus from p, to p, is plotted with a radius that decays with the angle by
the —2NP exponential term in (6.26); i.e., it spirals inward.

Example 6.5. Consider the lossless (NP =0) transmission line in Figure 6.11,
terminated by Z, =40+ j30 ohms. Suppose that the characteristic impedance is
50 ohms. By (6.24), p,=10.3333 /90°; this is plotted in Figure 6.12, By (6.26),
a 45-degree line rotates p, clockwise by 90 chart degrees to locate input p,; a
90-degree line rotates p, clockwise by 180 chart degrees to locate p,,. By
(6.24), p,,=0.3333 /0° corresponds to Z,=100+j0 ohms; similarly, p,,=
0.3333 /—90° corresponds to Z,;=40-—j30 ohms. If dissipation loss NP had
not been zero, the radius of 0.3333 would have decreased with rotation,

Further considerations will involve only lossless transmission lines; so it is
useful to equate yf=j# in (6.23). This reduces to the input impedance
expression for a lossless transmission line:

Z,+jyZ,
Z=25—=, 6.27
1 0 ZD +Jyzz ( )
where definition (4.22) 1s repeated:
y=tan#. (6.28)

=
(T O O O T (T T A O A

10 08 06 04 02 0 0204 06 08 10

Figure 6.12, Lossless transmission line rotation on a Smith chart for Example 6.3.
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This has been programmed efficiently in Program A6-2; given a value of
Z,=R,+jX,, the sequence X,, R,, # degrees, and the real number Z; are
entered in the stack. Then pressing key A evaluates the input impedance
Z,=R,+jX,, where R isin the X register and X, is in the Y register. The two
cases in Example 6.5 are easily confirmed by this program.

6.2.2. Complex Sources and Complex Leads. Jasik (1961} and Milligan
(1976) have given expressions for finding the Z; and the length of a transmis-
sion line that transform complex Z, to complex input Z, impedances. Day
(1975) has described a Smith chart method, which will not be considered here.
Moving the denominator of (6.27) to the left side and equating real and
imaginary parts, respectively, yields the desired expressions. The real part 1s

R\ Z,—RyX, =X, yR;=ZR,. (6.29)

The imaginary part is
YRRy =X, X, — Z)=Zy(X,— X)). (6.30)

Equation (6.29) yields
y=2q9, (6.31)

where
R,—-R,

TCRX XK,
From (6.31) and (6.28), the electrical length of the required transmission line is
#=tan~'(Z). (6.33)

Substitution of (6.31) for y in (6.30) produces an expression for Z;; further
elimination of q, using (6.32) and some algebra, yields the characteristic
impedance of the required transmission line:

/2
R IZzIZ—Rz(ZJZ)'
A e e 10 6.34

0 ( R,~R, (6-34)

(6.32)

when R,# R, and the square root exits.

These relationships have been included in Program A6-2 on key B. The
desired X,, R,, X, and R, sequence is entered in the stack. Pressing key B
provides Z, in register X and # degrees in register Y if a solution exists.
Otherwise, an error indication is displayed when the HP-67/97 attempts to
compute the square root of a negative number.

Example 6.6, Specifying Z,=10+j20 and Z,=30-j40 ohms requires a
matching line with Z,=22.36 ohms and # =65.91 degrees; this can be checked
using the input impedance calculation on key A. If Z, is changed to 10+j30
with the same Z,, no match is possible, However, Z, can first be rotated by 45
degrees on a 50-ohm line; key A shows the resulting impedance to be
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100+j150. Using this as a new Z, load will produce the required Z, (using
Z,=101.77 ohms and #=94.01 degrees). Thus two cascaded lines can match
10+4j30 to 30—j40 ohms.

6.2.3. Real Sources and Complex Loads. The case in Figure 6.11, when Z,is
real and Z, remains complex, reduces to a Smith chart design aid that is useful
for visualizing ranges of solutions. A Smith chart such as in Figure 6.12 is
considered normalized to the desired input resistance R, (X, =0 is assumed).
Load impedance Z, is similarly normalized to R,:

Z, R, X, :
—ﬁ—l——ﬁ—l+]i~:——r+3x. (635}

Then (6.31) reduces to

(6.36)

f=tan"! -——-—(I_I)ZJR'
x *

Figure 6.13. Smith chart for tansmission fine matching of complex loads normalized to a
destred real input impedance. [From Jasik, 1961.]
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and (6.34) can be written as

2 3 .
(T{Z—‘l’) =r— ]"_r. (6.37)

It is useful to plot loci of constant # and constant Z,/R, from (6.36) and
(6.37) on the normalized Z, plane, i.e., on an r+jx Smith chart grid. Jasik
(1961) has done so, as shown in Figure 6.13. This Smith chart is oriented
differently from that in Figure 6.12 (90 degrees clockwise), so that the negative
half-plane is on the left. Also, the chart perimeter scale for rotation from the
load toward the generator is in £/A—the fraction of a wavelength (360
degrees)}—and the electrical length of the transmission line, (6.39), is similarly
labeled. Feasible solutions must be within either of the two circular areas.

Example 6.7. Suppose that an impedance of 15—j35 ohms must be matched
to 50+j0 chms. Normalizing Z, and the Smith chart to R, =50 ohms gives
r+jx=0.3—j0.7; this is plotted on the left side of Figure 6.13 at the intersec-
tion of the two circular coordinates. The corresponding wavelength scale reads
0.398. Using a compass, this point is rotated clockwise until it is within either
circular area. Suppose that the initial point is rotated at that radius to the
point corresponding to a wavelength scale reading of 0.474; this is the point
also corresponding to Z,/R,=04 and £/A=0325 as shown. Thus, the 50-
ohm line rotation must be (0.474-0.398) X 360=27.36 degrees, Then the chart
indicates that impedance (0.2—j0.16) can be matched by a 0.4 X 50=20-ohm
transmission line that is (.325X360=117 degrees long. This network is shown
in Figure 6.14; there is an infinite number of other feasible solutions.

——G) 202 117° H 50 £ 27.36°

— .
5040 0 1535 2

Figure 6.14, One transmission line network that solves Example 6.7.

6.2.4. Real-to-Real Transmission Line Matches. There are two transmission
line-matching cases that deserve special mention. The most important is a
lossless, 90-degree line called an impedance inverter, As 8—90 degrees, (6.28)
shows that y—=>ec. Also, (6.27) then shows that the input impedance of a
90-degree line is

Z,=22, (6.38)

A 90-degree line is equivalent to 0.25 wavelengths, or half a Smith chart
rotation, as shown in Figure 6.13. Although (6.38) is true whether or not Z, is




188 Impedance Maiching

6° 8°
> Z -
R, +j0 :—>Z' 4 R,
f

Figure 6.15. Two lossless cascaded transmission lines that match load R, to generator R ; they
have the same length and Z, values of R, and R, as shown.

real, Figure 6.12 shows that Z, =0.5 when Z,=2 and Z,=1. One easy means
for matching two resistances is to use a 90-degree line having a characteristic
impedance that is their geometric mean. Inverters have a much more impor-
tant role in direct-coupled filter design, as explained in Chapter Eight.

A useful real-to-real transmission line—matching network that is less than
60 degrees long was described by Bramham (1961) and considered in Problem
4.7. It is shown in Figure 6.15. As discussed in Section 6.1.1, conjugate
impedances exist at any interface in lossless networks, specifically as shown by
Z and Z* in Figure 6.15. The solution for the common line lengths, obtained
by another method in Problem 4.7, can be addressed by this principle. Equate
the impedance looking left from the middle of Figure 6.15 to the conjugate of
the impedance looking to the right:

Ry(R;+jyR;) _ Ri(R,-jyRy)

- = - 6.39
R, +JyR, R,—jyR, ( )
The result of cross-multiplying is
—2_R*—1
= , 6.40
Y TR (6.40)
where R=R,/R,. Long division of the right-hand side yields the final design
relation:
_ 0 l - |/2
f=tan [(R+l+ R) J (6.41)
Because of symmetry in (6.41),
R2 *1
R= (R_|) . (6.42)

Key D in Program A6-2 evaluates (6.4]1) given a value of R. For small R,
analysis shows that the SWR slope versus frequency is only about 15% greater
than for the longer 90-degree matching line (inverter). It is easy to use (6.41)
to show that # < 30 degrees, and this occurs for R—1 (see Przedpelski, 1980).

Example 6.8. Suppose that a 50-chm coaxial cable must be matched to a
75-ohm coaxial cable; i.e.,, a 50- to 75-ohm resistive match is required over
some narrow band of frequencies. According to Figure 6.15, the input line

o -
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segment should have Z;=50 ohms and the output sggment should have
Z,=75 ohms. Evaluation of (6.41) using Program A6-2, key D shows that
each line should be 29.33 degrees long at the specified frequency.

6.2.5. Summary of Transmission Line Matching. The dissipative transmis-
sion line ABCD parameters presented in Chapter Four were employed to
show how a clockwise spiral locus on a Smith chart models the input
impedance or reflection coefficient of a terminated transmission line as a
function of line length. Also, the same function was obtained for lossless lines.

Transformations of load to input impedance when at least one is complex
are not always possible with a single line segment. Exampies for both complex
and real source impedances show that it is possible to rotate a given complex
impedance until it can be transformed to the specified resistance by a second
transmission line segment. The process was graphically illustrated for real-
source situations.

Finally, the 90-degree line transformer (inverter) was mentioned with
respect to its Smith chart behavior and importance in direct-coupled filters
{Chapter Eight). Then a simple two-segment transmission line—matching net-
work was described that is less than 60 degrees long and matches resistances
over narrow frequency bands. Its derivation emphasized the fact that
matched, doubly terminated lossless networks of any kind exhibit conjugate
impedance matches at any interface. Computer Program A6-1 was provided
to evaluate these important lossless transmission line relationships,

6.3. Fano’s Broadband-Matching Limitations

Fano (1950) described a complete theory for the design of optimal {owpass
matching networks when the load impedance could be specified as that of
some LC subnetwork terminated by a resistance (see Z, in Figure 6.1).
Previously, Bode had given the gain-bandwidth-maiching restriction for load
impedances consisting of a series LR or parallel CR. The next three topics
presented here will involve the most practical of these load networks. They are
shown in Figure 6.16 in lowpass form.

Y Y
—_— —
Zy 2z, |
% 1 rC, %1

(a) (b}

ik

Figure 6.16. Lowpass load impedance forms having two reactances. (a) Series resistance; (b)
parailel resistance.
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Although Fano’s theory is usually presented in lowpass form, with a
passband from dc to some edge frequency (e.g., 1 radian) as a matter of
convenience, most practical applications relate to a given pass band between
specified frequencies well above d¢. Sections 6.5 and 6.6 will include more
details of mappings of the lowpass frequency range to an arbitrary bandpass
frequency domain. However, it is useful to display the most common band-
pass load networks that may be derived directly from the lowpass prototypes
shown in Figure 6.16. (The matching network changes in exactly the same
way).

Comparison of Figures 6.16 and 6.17 shows that shunt capacitors are
replaced by shunt resonators (tanks) and series inductors are replaced by
series resonators. For a passband from w, to w, and a geometric band-center
frequency wp=yww, , the passband fractional width w=(w,~w;}/w, mainly
determines the bandpass-load element values. For example, C{=C, /w and L
resonates C} at band-center frequency w,. In most cases, the bandpass-load
network model is found and iranslated to its comparable lowpass form for
matching network design. Further reference to one- or two-reactance loads
will always relate to the lowpass prototype networks in Figure 6.16.

Suppose that the physical problem is matching a short whip antenna to
50+3;0 ohms over a freguency band. Resonating the {capacitive) antenna at
band-center frequency by adding a series inductance often makes the resulting
frequency behavior correspond approximately to a series resonator, ie., the
load network in Figure 6.174 without the C5-L} resonator. If the physical load
impedance to be matched is the input to a more sophisticated antenna, the
network model probably wiil be substantially more complicated.

The initial task of deciding which resistively terminated LC network
corresponds to the physical load is called load classification. The load data
may determine the rational polynomial associated with Figures 6.16 or 6,17
using the method in Section 2.5, Or, an optimizer might be used to repeatedly
analyze a network configuration in order to adjust element values to match
the known frequency behavior of the load, There have been many sophisti-

L c L c,

— '[c‘ L 1 —_— i’ L %1
22 ‘[ 2 2 ? Zz Al gl >

(a) {6)

Figwe 6.17. Bandpass load impedance forms having two resonators. (a) Series resistance; (&)
parallel resistance. ‘
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(ol Log!

F

: 2]
Figure 6.18. Matching networks with load elements gy, g,, and perhaps g, for (a) odd n and ()
even n,

cated schemes for load classification. However, it is possible to develop a
useful intuition for load models by accumulating experience in Smith chart
impedance sketching. Load classification will not be discussed further; for
Fano’s method, it is assumed that the problem begins with one of the four
load networks in Figures 6.16 and 6.17. Carlin’s method (Section 6.7) is a
means for largely avoiding the load classification problem,

The prototype lowpass matching network will have elements numbered
from the load resistance back toward the source, as shown in Figure 6.18.
Results for the load configuration in Figure 6.16a will be the same, except that
L., C, and L,, C, are interchanged, respectively.

This section will present and discuss Fano's gain-bandwith integral limita-
tions for the loads in Figure 6.16. First the ultimate limitation for the case of
an infinite matching network terminated by a single-reaciance load will be
described, then a Chebyshev approximation of finite degree will be developed.
The single degree of freedom will be identified and used to express an optimal
matching relationship. Finally, the Newton-Raphson solution of the transcen-
dental function related to a single-reactance load will be solved, and the
optimal matching network performance will be summarized graphically as
computed by an included BASIC program.

6.3.1. Fane’s Gain-Bandwidth-Integral Limitations. It has been mentioned in
several places that the impedances looking left and right at any interface in
lossless, matched, doubly terminated networks are conjugate. For mismatched
networks with resistive terminations at each end, any interface presents an
equivalent Thevenin generator looking toward the source and its equivalent
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load impedance looking toward the load. This circumstance exactly fits the
discussion of power transfer from a complex source to a complex load in
Section 3.2.3. In Figure 6.18, the reflection coefficient p, is defined with
respect {o resistance gy, and p is defined with respect to g, ,. For lossless
networks, the power available at the source is also available at the load. From
Section 3.2.3,

lel = |pol, , (6:43)

where
_ ZiiBnis
Z'm+ Ena1

Clearly, a good impedance match occurs when Z; is nearly equal to the
generator resistance g, ; this is precisely stated as the minimum [p|. Over a
frequency band, a good impedance match would be obtained by minimizing
the maximum {p|. This is shown in Figure 6.19.

Fano (1950) stated the theoretical limitation for load networks represent-
able as resistively terminated LC networks, such as in Figure 6.16. Their
lowpass form is

(84, in ohms). (6.44)

o, ] 7
In—dw=— 6.45
fO |P] g ( )

for single-reactance loads, and

2 1)
ln—d - = 6.46
f, e g des (gz 3 (646)

for two-reactance loads. Note that the integrand is essentially the return loss
in (4.58). The interpretation for the gain-bandwidth limitation described by
(6.45) is illustrated in Figure 6.19 for the bandpass case: the reflection
magnitude may be low (good match) over a narrow band or higher (poor
match) over a wider band. Fano noted that in no event should the reflection
magnitude in the band be zero, as is commonly the case with filters. Making
1/]p|] very large at any point in the pass band necessanly reduces the
bandwidth because of the inefficient use of the areas in the integrals above,

Case 1:
Narrow
band

Case 2:

band

Reflection coefficient
magnitude, 'p|

!

i

I

1
0 BN W, Wy Wy Wy
Radian frequency, w

Figure 6.19. Constant gain-bandwidth tradeoffs for a good match over a narrow bandwidth
(case 1) and a poor match over a wide bandwidth (case 2). {From Matthaei et al., 1964.]
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Figure 6.20. An ideal reflection function for optimal match over a frequency band.

Ideally, the bandpass reflection coefficient function p should be in the form
of the rectangular box illustrated in Figure 6.20. The box function can be
fitted exactly using a polynomial of infinite degree, corresponding io a
network having an infinite number of elements. For this upper limit, it is
useful to evaluate (6.45) as applicable to a single-reactance load. For a
constant reflection value of |p,,.} from @ 10 w, and unity {complete reflec-
tion) elsewhere, the result for matching networks of great complexity is

1 T
wy— o in—— €= 6.47
(@it T RC (64)
The least possible |p,,,] is thus

mi|p, . |=€"%, (6.48)
where the decrement 8 is the main matching parameter:

5 4 L _ Qew 1
w, —w; weg R QL wQ,

(6.49)

This definition is suitable for both bandpass and lowpass cases. For bandpass

networks, wy= yw,u, , the geometric mean frequency. It is convenient to label

the first fraction in (6.49) the “Q” of the bandwidth. For lowpass networks,

wo=w, (the upper band edge) and w, =0, so that Qpw = 1. In both bandpass

and lowpass cases, the second fraction in (6.49) is clearly a parallel Q, as

previously defined by (6.16). A common alternate parameter for Qg is the
fractional bandwidth w:

Wy Wy

=2 71 6,50

W=t (650)

It is convenient to express the least possible standing-wave ratio (SWR) in
these terms using (4.59):

. _ e+
min SWRmax_- ;‘;’_——T . (65 l)
Program A6-3 in Appendix A calculates (6.51) using (6.48); this is available
-on key A,
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Example 6.9. What is the least possible input standing-wave ratio over a 50%
bandwidth for a matching network terminated by a load with Q, =3? Enter 3
and then 50 into the HP-67 stack in Program A6-3; key A evaluates {(6.48) and
(6.51) to vield min§,,=1.28: L.
6.3.2. A Chebyshev Approximation of the Ideal Response. The fact that there
is a finite amount of reflection over a band, as illustrated in Figure 6.20, is
equivalent to a certain amount of transducer loss, as described by (3.49) in
Section 3.2.3. The standard lowpass approximation to box-shaped losses of
this sort is illustrated in Figure 6.21. Compare this to the bandpass shapes in
Figures 6.19. The function that corresponds to Figure 6.21 (passband edge at 1
radian) is

H(w))*=1+K*+ £*T(w), (6.52)
where T,(w) is the Chebyshev function of the first kind described in Section
2.4.1. This is similar to the Chebyshev responses synthesized according to
Problems 3.16 and 3.17 (Chapter Three), except for the “flat-loss™ term K>

Because of the gain-bandwidth integral limitation, the main interest is in
the related reflection coefficient. Equations (3.49) and (6.52) yield

. (K/ e)* + Ti(w)
lel= (1+K /e + T2 (w)

(6:53)

It is a reasonably straightforward process to obtain an expression for the
s-plane poles and zeros of (6.53), considering its squared-magnitude form,
p(s)p( —s), according to (3.50) (see the similar derivation in Guillemin, 1957,
pp. 596-598). The s-plane poles of {(6.53) are

sinh[iaij (m+~)], n is even;
5=

T
n (6.54)
sinh[ia:tj%m], nis odd,

TH(w) 12

1+K? +¢?

1+K?

Y

Figure 6.21. A Chebyshev approximation to a lowpass transducer function with flat loss.
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where m is an integer. A useful identity is (4.16), which reduces the computa-
tions to an evaluation of real sine and cosine functions. The process of
expressing the roots results in the defining equations for two important
positive parameters, a and b:

. 1+ K?
smhz(na)= T , (6.55)

sinh?(nb) = (%)2 (6.56)

The zeros of the reflection coefficient in (6.53) are given by (6.54), with b
substituted for a. With (6.55) and (6.56) substituted into {6.53), useful expres-
sions are obtained for |p|,,, 8nd |p|min. corresponding to T%(w) values 1 and 0,
respectively:

_ coshnb 6
‘plmax COSh na ’ ( 57)
__ sinhnb
1Plmin = sinhna ’ (6.58)

The poles and zeros of p(s} are available from (6.54); these are significant
because p(s)=e(s)/f(s) and p(s)=1 according to (3.52)-(3.55) in Section 3.2.4.
Choosing —a in (6.54) locates the required left-half-plane poles for e(s). Fano
showed that choosing only left-half-plane zeros for p by using —b in (6.54) in
place of *a maximizes the broadband match for ladder networks.

It is now clearly possible to synthesize the network; this could be started
from either end. Usually, synthesis is not necessary. However, there is a
crucial relationship involving loads with a single reactance (g, in Figure 6.18).
This relationship turns out to be

26,51’11% =sinha—sinhb, (6.59)
where the connection to g, is through the decrement (6.49),

So far there is one degree of freedom remaining: given the bandwidth and
load Q, (6.59) relates parameters a and b; one of them can be chosen
arbitrarily. Then the flat loss and ripple in Figure 6.21 are determined by
(6.55) and (6.56). Other orders of parameter selection for using the available
degree of freedom are possible.

6.3.3. Optimally Matching a Single-Reacrance Load. The objective is to use
the one degree of freedom that is available for single-reactance lowpass loads
(RC or RL) to mintmize the maximum reflection coefficient (6.57) over the
band. The constraint is the relationship in (6.59), and the variables are
parameters a and b. The number of elements (n) in the networks of Figure
6.18 includes the load reactance g,. Following Levy (1964), this minimization
is determined analytically by employing a Lagrange multiplier, as described in
many calculus textbooks.
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The functional multiplier A is defined as
b=Aa, (6.60)
and this is substituted in the |p|,., expression (6.57). Differentiating the

resulting expression with respect to parameter a and sethng this to zero, as
necessary for a minimum, yields

_ tanhna
tanhnb (6.61)
Similar substitution of (6.60) into (6.59), followed by differentiation, yields
_cosha : '
" coshb’ (6.62)

Now A may be eliminated from (6.60) and (6.61) to produce the necessary
condition for minimum |p|_,,:

cosha coshb ’

which is still subject to the constraint in (6.59). Note that the integral
limitation in (6.45) was not used directly in this case; however, it does indicate
that the minimum must exist. :

Simultaneous solution of (6.59) and (6.63) produces the values of parame-
ters a and b; thus the ripple parameter ¢ and flat-loss parameter K are
obtained according to (6.55) and (6.56). The selectivity expression (6.52) is
then known, and all matching network elements may be found, as shown in
Section 6.4.1. The two equations to be solved are transcendental and thus
nonlinear. Newton’s method from Section 5.1.5 will be applied.

Equations {6.59) and (6.63), respectively, define the functions

tanhna _ tanhnb (6.63)

f (2,b)=sinha—sinhb—28 sin% (6.64)
and
f,(a,by=h(a)—h(h), (6.65)
where the defined function h with dummy variable x is
= lanh nx
h(x) oshx - {6.66)

Solutions are obtained by determining the values of a and b that make
f,=0=f,. The Jacobian matrix requires expressions for the partial derivatives
of f, and f, with respect to a and b. It is helpful to employ the derivative
expression for (6.66):

n — (sinh nx)(cosh nx){sinh x) /(cosh x)

(cosh? nx)(cosh x)

b (x)= (6.67)

Estimated changes in variables a and b to approach a solution are obtained
according to (5.37) and (5.38).
Starting values of a and b for the Newton-Raphson method are especially
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important in obtaining Fano’s optimal solution. Good estimates are
. - -0, =W
a=sinh ‘[6(1.76 06 4 1)sm2—n] (6.68)

and
b=sinh"[8(l.78 o6 ])sin:,z-"-;-l-] (6.69)

for b greater than zero. These were obtained by the author by studying the
optimal-solution graphs of Green (1954, pp. 66—69). They will always satisfy
the constraints in (6.59) or {6.65). The estimate of the solution for f, in (6.65) is
usually close enough for engineering work without iterative refinement. This is
an important observation when using programmable hand-held calculators.

Program B6-2 in Appendix B implements the Newton—Raphson iterative
procedure just described. It is a small BASIC program, and usually converges
reliably. For very large values of Q and/or bandwidth, a damping factor of
0.5 in both variable steps (lines 480 and 490) may be necessary to obtain
convergence.

Example 6.10. Example 6.9 considered an infinite matching network. Pro-
gram B6-2 may be used to obtain optimal matching solutions for finite
lowpass matching networks. What range of SWR occurs over a 50% passband
for Q, =3 and degree n=3, 5, 8, and 50? Running Program B6-2 produces the
performance data in Table 6.3, as illustrated in Figure 6.22.

Table 6.3. SWR Ripple Over a 50% Passband for Networks of
Varying Degrees Terminated by Q, =3

Qv %BW* n Min SWR Max SWR
3 50 3 1.3833 1.5486
3 50 5 1.3343 1.4006
3 50 8 1.3095 1.3385
3 50 50 1.2828 1.2840
“BW =bandwidth.

SWR ——=

Figure 6.22. Lowpass response showing pass-
band SWR ripple.
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Figure 6.23. SWR /reflection limitations versus decrement of a lowpass or bandpass matching
network of degree n.

A graph that plots SWR (and equivalent reflection magnitude) versus
decrement (6.49) for various network degrees (n) is a useful design tool. This is
easily obtained from Programs B6-2 and A6-3 (see Figure 6.23). Recall that an
n=1 network is the load itself (Figure 6.18); n=2 represents a single matching
element in a lowpass network, and clearly this is the greatest single improve-
ment possible. The data in Example 6.10 and Figure 6.23 show the rapidly
diminishing return for increasing the total network degree to greater than n=5
or 8.

6.3.4. Summary of Fano'’s Broadband-Marching Limitations. Fano (1950)
published a complete analysis of ideal, lumped-element matching networks
that were terminated by load subnetworks of similar structure and ended in a
resistance. The usual theoretical extensions of his results have been for
lowpass networks, but the common application has been for bandpass cases.
There is a simple correspondence between lowpass and bandpass networks
that is useful to have in mind during development of the subject; it was
introduced here, but its details will be described in Section 6.5. Fano's
approach does not deal with the task of load classification, the process of
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identifying which lowpass LC network terminated by a resistor corresponds to
the physical load being matched. It was suggested that the methods described
in Section 2.5 and Chapter Five were applicable; here, it is assumed that the
Fano load network is known. For practical applications, his lowpass network
structures are terminated by no more than a series L, followed by a parallel
RC or a paraliel C, followed by a series RL, i.e, one- or two-reactance
lowpass loads. i

Fano's bandwidth limitations apply to lossless, doubly terminated net-
works; i.e., they have resistors on both ends, Then the magnitude of the
generalized reflection coefficient in Section 3.2.3 must be constant at a
particular frequency at all network interfaces, especially at their input and
output ports. Certainly, a small input reflection coefficient magnitude corre-
sponds to a good input impedance match, Fano showed that the integral over
all real frequencies of the return loss is equal to simple functions of the load
components, The ideal reflection coefficient behavior would be some small
constant value over the frequency band of interest, and unity (complete
reflection) at all other frequencies. Then the integration of this constant
provides a simple estimate of the best-possible matching using an infinitely
complicated matching network (given the one- or two-reactance-load net-
work). The classical load parameter was defined as the load decrement; it is
the ratio Qgw/Qp, where Qpy is the geometric-mean bandpass frequency
divided by the bandwidth, and @, is the series X/R or parallel R/X at the
band mean frequency. For the lowpass case, the decrement is equal to 1/Q,,
computed at the band-edge frequency.

An equal-ripple approximation to the ideal “box” shape for the reflection
frequency function is obtainable as a Chebyshev function; it was defined as a
transducer function and converted into a reflection function according to
Section 3.2.3. The expression for the s-plane poles and zeros of the rational
reflection function was given in terms of the two defined parameters a and b.
The maximum and minimum values of the reflection magnitude were derived
from the equal-ripple Chebyshev function. Because the poles and zeros of the
reflection coefficient were available, it was noted that matching network
synthesis was possible. However, for the present application, this was men-
tioned only to justify the first stage of such a synthesis, which could produce
an algebraic expression for the first load reactance. This expression is a
constraint on the reflection relationship, which still leaves one degree of
freedom in the matching analysis.

One application for the single degree of freedom of single-reactance loads is
to minimize the maximum passband reflection coefficient magpitude while
satisfying the load reactance constraint. One function was obtained by using a
Lagrange multiplier to minimize analytically the maximum reflection magni-
tude; the constraint was a second function. Then Newton’s method was
applied to solve the two nonlinear functions for the values of parameters a
and b. Expressions for their starting values were given; these are sufficiently
close to a solution so that the Newton iteration may be dispensed with when
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only hand-held computers are available. BASIC language Program B6-2 was
provided to determine optimal matching performance. A comprehensive
graph of SWR /reflection versus load decrement for varying network degrees
was obtained. It is clear that the number of lowpass network components,
inciuding the single-reactance load, should not exceed about eight, because of
rapidly diminishing returns. There are other ways to use the single degree of
freedom available for single-reactance loads. These will be exploited in Sec-
tions 6.4.2, 6.4.3, and 6.6.

6.4. Network Elements for Three Source Conditions

The network LC-element values wiil be determined in this section by recursive
formulas. Three types of sources will be considered (see Figure 6.18). First, the
resistive source consisting of g, , will be considered, as originally assumed;
the first matching network element is then g,. Second, a single-Teactance
source, consisting of both g ., and g, will be specified so that the first
matching network element will be g, _,. Finally, an ideal current source will
be considered. In all of these cases, the load wili have a single reactance,
namely g, in Figure 6.18.

The poles and zeros of the reflection coefficient have been given as
functions of design parameters a and b (see (6.54)). It was noted that the
synthesis of the network element values by the methods described in Chapter
Three is straightforward but tedious. However, Green (1954) carried out
detailed calculations for cases of low degree and guessed an expression for
element values of networks of any degree. It has since been discovered that
Takahasi published a complete derivation and proof of general results in
Japanese in 1951; the interested reader is referred to Weinberg and Slepian
(1960). The closed formulas for element values are easily evaluated once the
singte degree of freedom is assigned; i.e., parameters a and b are chosen.

6.4.1. Resistive Source Optimally Matched to a Single-Reactance Load, A
resistive source optimally matched to a single-reactance load is illustrated in
Figure 6.18, where the source real part is g, ; the matching network includes
g, through g,, and the load consists of g, and gy=1. For the lowpass network
in Figure 6.18 with a passband edge at 1 radian, (6.49) and (6.59) yield

_ sin @
. gi=2 sinha—sinhb’ (6.70)
where angle # is
6= (6.71)

Parameters a and b are found approximately, from (6.68) and (6.69), or
exactly, by the Newton-Raphson iterative procedure in Section 6.3.3.
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Green’s recursive element formula is
4sinf(2r—1)8]sin[ (2r+1)8) /g,

= ‘ _ . (6.72)
sinh®a +sinh”b+sin“(2rd )—2sinha-sinh b- cos(2r#)

Brsi

for r=1,2,...,n— 1. The source series resistance or shunt conductance shown
in Figure 6.18 is
_2 sinf
o1 = g Sinha+snhb (6.73)

Note that the source resistance or conductance is dependent. This must be
accepted in lowpass networks, but Section 6.5 will show how to provide for
fairly arbitrary source resistance levels in corresponding bandpass networks.

Program B6-3 in Appendix B contains Newton’s method (Program B6-2)
without the print statemenis; it also performs the prototype clement calcula-
tions in (6.70)-(6.73).

Example 6,11, Find the prototype element values for an n=3 network that
optimally matches a load impedance with Q; =3 over a 50% bandwidth. The
SWR ripple is shown in Table 6.3. Also, as a result of the Newton—Raphson
iterative solution, a=0.8730 and b=0.3163. Program B6-3 continues to com-
pute g, =1.5, g,=0.8817, g,=1.0561, and g,=0.7229. According to Figure
6.18, when n is odd, the g, value is the necessary source resistance. Also,
note that g, is simply the inverse load decrement according to (6.49).

6.4.2. Complex Source and Complex Load. For a complex source and
complex load, the given load decrement is 8,=1/g;. From (6.59),
_ sinha—sinhb

% 2sind (6:74)
where # is given by (6.71). The source is now assumed to have a single
reactance as well as a resistance. This is another way to assign the single
degree of freedom identified in Section 6.3.2. Figure 6.18 shows that the
source decrement is

1
é,= . 6.75
" gngn+l ( )

However, using (6.73), the source decrement can also be expressed as

_ sinha+sinhb
81.1 - -.l—zsi.rﬁ_— . ) (6.76)

Given the source and load decrements, simultaneous solution of (6.74) and
{(6.76) for a and b is possible:

sintha=(8, + &,)sind, 6.77)
sithb= (8, —8)sin8. (6.78)
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Since sinh is an odd function and parameter b must be positive, (6.78) requires
that § > 8,. The prototype g, recursion (6.72) was presented as starting at the
go=1-ohm end of the network; for this complex source/load case, the 1-ohm
end must be the lower decrement end, whether it is the load or the source.

The design procedure is to solve (6.77) and (6.78) and use these values in
(6.70)—(6.72) to obtain the element values; start with g, equal to the reciprocal
of the lesser decrement. The ending real element is again dependent and given
by (6.73) or by rewriting (6.75):

—— ?ng , (6.79)
using the greater decrement for §,. The central (n —2) elements in Figure 6.18
constitute the matching network. The prototype elements are numbered as
shown in Figure 6.18 if the load decrement is less than the source decrement;
i.e., the 1-ohm end belongs to the lower decrement. If the source decrement is
less than the load decrement, then the source is normalized to 1 ochm and the
g. values from (6.72}) are generated from the source end to the load end.

Example 6,12. Suppose that both source and load terminations included
shunt capacitors with decrements of 1.35 and 1.25, respectively. Find the
lowest-order matching network and its range of passband SWR. Figure 6.18
shows that only odd-degree networks can have shunt capacitors at both ends.
Choosing n=3, (6.77) and (6.78) yield sinh a=1.300 and sinh b= 0.050. Since
load reactance g, is a reciprocal decrement, g, =0.8. Using (6.72), g, =1.0514
and g,=0.7585. By (6.79), the source resistance is g,=0.9766 ohms. The SWR
ranges from 1.0240 to 1.1726 according to (6.57), (6.58), and (4.59).

The networks discussed in this section incorporate single-reactance sources
and loads exactly. However, they may not have the least possible SWR .
when both given decrements are less than the source decrement oblained by
the optimal network in the preceding section. When this is the case, the
“optimal™ g, reactance or susceptance may be increased (as part of the
matching network) and thereby decrease the decrement to the higher of the
given values (see (6.75)). Therefore, given two values for source and load
decrement, the lesser of the two should be used first in Program B6-3. The
resulting source decrement should then be computed by (6.75); if it is greater
than the given decrements, the “optimal” network should be used, with g,
increased as described.

Example 6.13. The lesser of the two decrements in Example 6.12 was 1.25,
which is equivalent to load decrement g,=0.8. Using Program B6-3 (with
n=3, Q_=0.8, and BW=100%, according to (6.49)), obtain g, =08, g,=
0.9484, g,=0.6424, and g,=0.9211. By (6.75), §,=1.6900, which is greater
than the 1.35 decrement given. In fact, (6.75) shows that a 1.35 decrement
corresponds to a g; value of 0.8042 for g,=0.9211. Therefore, the best solution

(- S N
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Figure 6.24. A network solution for Example 6.13 where decrement padding is applicable.

is not that in Example 6.12. If g; is padded by adding a matching network
shunt capacitor equal to 0.8042-0.6424=0.1618 farads, then the SWR ripple
(from Program B6-3) will be between 1.0856 and 1.1535, which is better than
the solution in Example 6.12. This network is shown in Figure 6.24.

6.4.3. Reactive Source and Complex Load, Referring to Figure 6.18a, source
resistance g, , ,—> oo implies an ideal current source excitation by conversion to
the Norton form. Conversely, it may be concluded from Figure 6.18b that
source conductance g, ,—0 implies an ideal voltage source excitation by
conversion to the Thevenin form. However, g,, , in Figure 6.18 is dependent,
and g, is independent. Therefore, it is convenient to reverse the ends of the
network so that g, is adjacent to the scurce. Consider the resullant ideal
current source shown in Figure 6.25. The infinite source impedance in parallel
with g, causes decrement §, to approach zero, corresponding with infinite Q.
By (6.74), parameters a and b must be equal. The power available from the
source is infinite. However, application of (6.52), (6.55), and (6.56) yiclds

P
P:: =¢oth?na. (6.80)

Recursion (6.72) still applies, conveniently converted to the equivalent form
4sin[ 2r—1)8]sin[ 2r+ 1)8] /g,
2(sinh®a)(1 —cos 2r8 ) + sin” 2rf

(6.81)
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Figure 6.25. A lowpass network for a reactive current source.
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which may be processed using decreasing subscripts: r=n—1,...,1. The g
starting value comes from (6.73), with g, =1, and (6.76):
sind
= : 6.
Bn™ Sinha (6.82)

The design procedure requires that parameter a be determined from either
power variation (6.80) or load reactance (6.82). Then (6.81) determines all
element values, including the dependent g,. Often, g, is also specified; the
problem has no solution if the calculated g, is not at least as large. By the
duality principle, this method may be extended to the zero-impedance (ideal
voltage) source or load problem.

Example 6.14. Consider the singly terminated network in Figure 6.25 for
n=5. Suppose that g,=0.8 and g;=1/8,=0.59. By (6.82), sinha=0.5238.
Then (6.81) yields g,=1.2668, g,=1.5743, g,=1.6014, and g,=1.3868. The
computed g, is greater than the given g, by 0.5868 farads. This shunt padding
clement is placed at the matching network’s input in a manner similar to the
arrangement in Figure 6.24. The power variation will be 1.03: 1, or 0.11 dB,
according to (6.80).

6.4.4. Summary of Broadband Matching Under Three Source Conditions,
The topic of load impedances consisting of one resistor and one reactance has
been considered. The sources considered had just one resistor, or an addi-
tional reactance, or a reactance and no resistance. The source condition
determined the relationship of parameters a and b. They were found by
Fano’s transcendental optimal equation, from specified termination decre-
ments, or by equating them so that one decrement was zero. Lowpass
prototype element values were obtained for each case by a well-known
recursive relationship that avoids network synthesis. This is sometimes called
“direct design,” since closed forms determine element values.

Program B6-2, which iterated Fano’s transcendental solution, was extended
by adding the prototype element recursive equation. The dependent source
resistance was also calculated. Programs for sources incorporating a single
reactance would be quite similar; any one of these would fit in a conventional,
hand-held, programmable calculator. The only complexity arises from the
order in which prototype elements must be calculated. The resistive source
case works from load to source; the load reactance is g,. The single-reactance-
source case works from the end with the lesser decrement associated with g,
The singly terminated (ideal or lossless source} case works from load to
source, but the prototype element g is always the load reactance, so that the
elements are computed in the order of descending subscripts; the source
reactance is dependent. The last two cases involve the possibility that the
source reactance may need to be increased to obtain the best solution. This is
accomplished by increasing the g, value (by making part of g, the input
clement in the matching network).
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All three source conditions occur at least as commonly in the bandpass
situation, These lowpass results will be extended to bandpass situations in the
following section.

6.5. Bandpass Netwerk Transformations

There are standard means for directly transforming lowpass networks to
bandpass networks by simple operations performed element by element, as
indicated in the introduction to Section 6.3. This will be formalized here. For
standardization and numerical conditioning, many network designs are intro-
duced with at least a 1-ohm termination and band-edge or band-center
frequency of 1 radian or, occasionally, 1 hertz. Therefore, both impedance
level and frequency scaling are commonly required. These will be provided in
a simple, hand-held calculator program.

Finally, the resulting bandpass networks obtamcd from lowpass prototypes
require different source and load resistance levels. This is especially true when
broadband-matching techniques have left the design with a dependent low-
pass generator resistance that is invariably not suitable. There is 2 method for
replacing L sections of inductors or of capacitors in bandpass network
structures with pi or T networks of the same component type. These Norton
transformations introduce an arbitrary impedance-level change within limits,
and are frequency independent. This is the means to change bandpass source
and load impedance levels as well as to affect useful changes in impedance
level and geometry within the network itself. These techniques will be de-
scribed and two programs for HP-67 /97 hand-held calculators will be pro-
vided.

6.5.1. Lowpass-to-Bandpass Transformations. A lowpass prototype response
and a related bandpass response are shown in Figure 6.26. The responses may
have flat loss in the passband, similar to Figures 6.20 and 6.21. The most
common transformation for lumped-element networks empioys the mapping

w o
—QBW(;; - -;), (6.83)
where the inverse fractional bandwidth is '
o 6.84
Quw= 5 (6.84)
and the band’s geometric-center frequency is
Wy = VoW, . (6.85)

Instead of Qgw. two forms of the fractional bandwidth are often useful:

w=r 120 (6.86)
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Figure 6.26. A lowpass prototype response (2) and a corresponding bandpass response (5).

The inverse relationship is also required:

w 2
Z=5 ey )

A standard lowpass filter prototype is shown in Figure 6.27. The g; values
are identified with their corresponding L’ and C’ values. The primes show the
relationship to the normalized lowpass frequency scale «’, shown in Figure
6.26. The frequency transformation in (6.83) describes the network in Figure
6.28 with behavior in the w frequency variable. The conversion of the lowpass
network with l-radian band edge to the bandpass network is quite easy, All
bandpass shunt-branch mhos are obtained using

wCi= —— =2, (6.88)

(6.89)

B
Gn+1 =
On+1

Figure 6.27. A lowpass prototype filter.
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Figure 6.28. A synchronously tuned bandpass filter.

The bandpass filter is called synchronous because all resonators are tuned
(resonant) at the same frequency, namely w, according to (6.85).

Example 6.15. Consider the problem of finding the n=3 normalized band-
pass matching network in Figure 6.29, where a load consisting of a 20-ohm
resistor in parallel with an 11-pF capacitor is to be matched to 50 ohms over a
band from 575 to 1000 MHz. The solution is obtained by finding the optimal
Fano lowpass network and then transforming this to the corresponding
bandpass network. From (6.85), the band geometric-mean frequency is 758.29
MHz; at this frequency, (6.16) yields the load Q, =1.0482. By (6.86), BW
= 100w =156.05%. These values for n, Q;, and BW are entered in Program
B6-3. The results are shown in the normalized lowpass network in Figure 6.30.
The lowpass prototype passband-edge frequency is 1 radian, as shown in
Figure 6.26. This will be the geometric-mean frequency of the normalized
bandpass network. Equations (6.88) and (6.89) enable the susceptance and

50 0

A
+ Bandpass J_

matching

11 pF
network T P
L__

Figure 6.29. A single-reactance-load matching problem.
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Figure 6.30. Fano optimal lowpass network for Example 6.15.
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Figure 6.31. Normalized bandpass network for Example 6.15.

reactance of each bandpass network element to be found using the frac-
tional bandwidth w=0.5603. Since these chms and mhos are at =1 radian,
the values found are also the element values in farads and henrys. The
normalized bandpass network is shown in Figure 6.31. By (6.87), its passband
extends from 0.7583 to 1.3188, with a geometric-mean band center of 1
radian,

6.5.2. Frequency and Impedance Scaling. The problem posed in Figure 6.29
was not completely solved in Example 6.15 because the bandpass network
must be denormalized; i.e., the passband must be centered at 758.29 MHz,
and the source resistance must be 50 ohms. These are simple matters of
frequency and impedance scaling.

Frequency scaling is based on maintaining the prototype reactances and
susceptances of inductances and capacitances, respectively, at some new
frequency. Recalling that X; =wl and Bi=wC, frequency scaling to a higher
frequency requires the inverse scaling of both L and C values.

Impedance scaling is based on changing the resistance and reactance values
throughout the neiwork. Resistances are increased by the desired impedance
scaling factor. Recalling that X; =«wL and X.=—1/(«C), increasing the
impedance level requires increasing the inductances and decreasing the ca-
pacitances by the same impedance-scaling factor. Program A6-3 in Appendix
A conveniently performs all the simple but crucial scaling operations that
convert a lowpass prototype network into the final bandpass network.

Example 6.16. Program A6-3 can be used to go directly from the lowpass
prototype network in Figure 6.30 (Example 6.15) to the scaled bandpass
network. As the program documentation indicates, values for passband fre-
quencies f, and f, in hertz (Figure 6.26) and the required impedance-level
factor are entered into the stack. Thus 1000E6, 575E6, and (50/0.9667)=
51.722 are entered, and key B is pressed. The passband geometric-mean-center
frequency (758.29 MHz) is obtained. The program stores this, the fractional
bandwidth w, and the resistance ratio that will get the source resistance up to
the desired 50 ohms. Now each prototype g, value is entered for the series
elements (key C) and shunt elements (key D); these evaluate (6.89) and (6.88),
respectively, Keys C and D also perform the frequency and impedance scaling
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Figure 6.32. Unnormalized bandpass network for Example 6.15.

previously described. Entering g,=0.5046 and pressing key D yields the value
of the scaled bandpass input shunt (C=3.6534 pF); pressing key E displays its
resonating shunt (L= 12058 nH). Similarly, key C is used with g, and key D
again with g;. The load resistor is 51.722 ohms. The load still is not in the
originally specified RC values, because the dependent Fano source resistance
has yet to be compensated. The resulting scaled bandpass network is shown in
Figure 6.32.

6.5.3. Norton Transformations. Example 6.16 in the previous section
showed that there is a need for introducing an ideal transformer somewhere in
the matching network to provide independence of input and output imped-
ance levels. An easy way to see how this might be accomplished is to derive
one case from the set of Norton transformations.

Consider the two networks and the expressions for their open-circuit
impedance parameters shown in Figure 6.33. The objective is to equate the
sets of z parameters and thus be able to replace the left-hand network with the
right-hand network. A case in point is seen in Figure 6.31. There are two
adjacent inductors. Incorporating an ideal transformer immediately to their
right (and impedance scaling to the right of that) would create a subsection

1 l1 L1 \n |2 2 1 |1 L, Lc |2 2
P Y ——i—C
+ + + +
v, Lz v, Vv, . Ly Vy
O —_— -0
zy; = sk, zy =5l + Ly}
Ty = Y L v
2T 7|, . =snl, In = 7 =sly =22
141, =0 Iy Iy = b
Vi
2= T =
12 I, I =0 snl,
2 =sn?{Ly + L) 2y =l + L}

Figure 6.33. Inductive Norton transformation from a type-B L section (left) to a T section
(right).
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identical to the left-hand side of Figure 6.33. It could then be replaced by its
equivalent T network.

For the T network in Figure 6.33, the z parameters may be obtained as
functions of the complex frequency s by applying the open-circuit-parameter
definitions discussed in Section 3.4.3. The same may be said for the L section
in Figure 6.33 if one recalls the rules for the ideal transformer: the current
entering the right side increases by turns the ratio n, the voltage on the right
appears decreased by n on the left, and the impedance looking in from the
right is n® times greater than that terminating the left side. These rules lead to
the L-section and transformer-combination z parameters shown in Figure
6.33. Then, equating like z parameters for the L section and the T section
leads to the following relationships:

Ly=nL,, (6.90)
| | Ly=Ly(l—-n), (6.91)
L.=n*L,+L,)—nL,. (6.92)

Also, there are upper and lower bounds on the turns ratio n, which correspond

| Table 6.4, Summary of Norton Transformations

. I:n . I: -
‘ o__l_ X, o—iX, n o ;x,—l_ X o—rtxh—[——o
X, % or X, > % to iX, or iX, iX,
z n'z z n?z n?z n?z

‘ Equations (s = series, p=parallel):
From type-A L to

‘ T Pi
(nL)
L,=L.+L,—nl, Li‘:"ﬁ:_]
Ly=nL, L,=nL,
(nLy)(nL,)
L.=(nL —1 =
‘ o=l )Xn—1) L= =L,
’ I 14D
‘ <n<{l+ L—P).

From type-B L to T and pi, use the equations above, but
1. First replace n<-1/n.
2. Multiply all answers by the given n’.
3. Reverse answer order, e.g., use L for L,.
4. (1+L/L) '<n<l.

Note: Ly=X, and L.,=X where both X values are positive numbers. For vapacitors,
input X=1/C and convert output by replacing C—1/C.

-
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to L,=0 and L =0, respectively. Thus n must be chosen in the closed range

L\~
Hi}) <n<l, (6.93)

Note that when L, =0 (n=1), the T section degenerates into the L section. All
possible results for transformations of this type appear in Table 6.4.

Program A6-4 in Appendix A performs all of the preceding calculations for
all possible cases in only 80 steps. Compare the operations in Table 6.4 with
the L-section matching operations in Figure 6.2. The former are frequency
independent and involve only one type of reactance (L or C) at a time,
whereas the latter are mixed L and C cases valid only at a single frequency.

Example 6.17, Complete the broadband-matching problem posed in Exam-
ple 6.15 by replacing the capacitive type-B L section in Figure 6.32 by a pi of
capacitors, Use Program A6-4 by entering 1/3.6534 and 1/2.6548 into the
HP-67/97 stack and pressing key A. Then select the type-B-to-pi case by
pressing key B. The result is the allowable extreme value of n® farthest from
unity, in this case G.1771. It is determined from Figures 6.29 and 6.32 that
n?=20/51722=0.3867 is required, and it is within the allowable range.
Entering 0.3867 and pressing the R/S “continue™ key produces the first value
of reciprocal C in the X register, namely 1/C,=0.4905, or C,=2.0389. The Y
register contains 1/C,=0.2342, or C,=4.2693. Similarly, the Z register in the
stack contains 1/C.=0.3852, or C ,=2.5963. The network to the right of the
capacitive type-B L section in Figure 6.32 must be an impedance scaled down
by the factor 0.3867, as previously mentioned. Doing this completes the final
design shown in Figure 6.34. Observe that the total requirements stated in
Example 6.15 and shown in Figure 6.29 have been fulfilled.
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Figure 6.34, Final broadband design for Example 6.15 following the Norton transformation.
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6.5.4. Summary of Bandpass Network Transformations. -The standard geo-
metric frequency mapping from lowpass o bandpass response was stated, and
the easily remembered design rules for network element conversions were
stated. The main parameter is the fractional bandwidth w. The resulting
bandpass networks were created by converting all lowpass shunt C’s into
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bandpass shunt resonators and by converting all lowpass series L’s into
bandpass series resonators. The shunt C’s and series L’s were inversely scaled
by w. The resulting bandpass filter is called synchronous because all of its
resonators are tuned to the same geometric band-center frequency w,.

Frequency and impedance-leve! scaling were shown to relate to simple
reactance and susceptance concepts. To maintain the same X and B levels
for increased reference frequency, all L’s and C’s must be decreased by the
frequency change factor. To maintain the same X, and X, reactance levels for
impedance level increase, L’s must be increased and C’s must be decreased by
the impedance-level change factor. The simple but powerful hand-held calcu-
lator Program A6-3 was provided to perform lowpass-to-bandpass conver-
sions, frequency scaling, and impedance scaling—all in one quick operation.

Finally, Norton transformations were derived in one case and summarized
compactly for all cases. This enabled the introduction of an ideal transformer
in a bandpass network adjacent to an L section of two L’s or two C’s. This
subsection may then be replaced by a T or pi section of like-kind elements,
eliminating the ideal transformer without changing the frequency response.
All of these transformation techniques were illustrated by a broadband-
matching example. Another application of Norton transformations is to alter a
network topology in order to make element values more reasonable or to
avoid parasitic effects. For example, the high impedance that occurs where the
series L. and C join in Figure 6.31 is often upset by stray capacitance to
ground. The incorporated Norton transformer resulted in a topology that does
not have such a high impedance point (see Figure 6.34),

6.6. Pseudobandpass Matching Networks

Section 6.1 described the means for designing lumped-element matching L
sections at a given frequency. A cascade of such sections could be assembled
to match a load resistance 0 some source resistance, e.g., an even-degree
lowpass network such as in Figure 6.35. The transducer loss would be zero at
the L-section design frequency, e.g., 1 radian. By (3.49), the dc transducer loss
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Figure 6.35. An even-degree lowpass matching network.
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Figure 6.36. A lowpass network transducer function with mismaich at de.

of the network in Figure 6.35 would be

(l—l-r)2
r

The transducer function of frequency might appear as in Figure 6.36, espe-
cially if some of the sections were designed for different frequencies in the
vicinity of 1 radian.

The network in Figure 6.35 can be viewed as an impedance transformer
with resistance ratio r; its response in Figure 6.36 indicates that the transfor-
mation might be valid over a band of frequencies., Also, the two-reactance
load indicated in Figure 6.35 coincides with that previously considered in
Figure 6.16a. This section deals with the topic of broadband impedance
matching by a lowpass network structure over a frequency band above dc,
thus the name pseudobandpass impedance matching. Designing individual L
sections and then optimizing their response over a band will usually fail
because of useless local minima. However, a recent procedure by Cotlee and
Joines (1979) achieves the desired result.

A frequency transformation that maps a lowpass response into the response
in Figure 6.36 will be described. The Fano gain-bandwidth integrals will be
evaluated numerically by a BASIC language program so that two-reactance
loads can be matched when possible. Finally, the required network synthesis
procedure will be described. Norton transformers are not required, since both
load and source resistances remain independent. In fact, Norton transformers
could not be embedded in the lowpass networks considered. (why?) The
penalty in this method is that the number of lowpass LC elements is twice that
of an ordinary prototype network.

(H(w="0)|"= (694)

6.6.1. A Pseudobandpass Frequency Transformation, The Chebyshev equal-
ripple transducer function with flat loss, previously considered in (6.52), is
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repeated here using identities (2.34) and (2.35). The lowpass prototype fre-
quency variable will be " and the degree will be n":

|H(w')[*=1+K>+ &’ cos’(n’cos ™' ) (6.95)
for w' <1, and
IH(w'))* =1 +K*+ e? cosh’(n’ cosh ™' &) (6.96)

for o' > 1. These equations define the passband and stopband, respectively, in
Figure 6.21. Substituting the following frequency-mapping function into {6.95)
and (6.96) produces the response in Figure 6.36:

1.2
=2 A“’O , (697
where the defined constants are
2 2
- wb_wa
A= 7 (6.98)
2+ 2
wo= ]2 S b (6.99)

(See Figure 6.36, which is plotted in terms of the frequency variable w.)
Although the defined constant w; is shown, the band-center frequency is taken
as the arithmetic average,

_ w, +wy,
m_ 2 ]
and is scaled so that w_, = 1. The relative bandwidth is defined with respect to

W'

w

(6.100)

Wy, — &
b
W=

2, (6.101)

@

Note that both Cottee parameters, w, and w, differ from the parameters with
the same names discussed earlier in this chapter.

With (6.97) substituted, the transducer function of w, defined by (6.95) and
(6.96), is a double mapping of the conventional (") function shown in Figure
6.21; it maps into Figure 6.36 from w, to 0 and from «, to infinity. It is easy to
confirm the mappings of w—>«w’ for passband edge frequencies w,>1 and
w,— ~ 1, the & image of «'— + 1. The nature of this mapping is such that the
conventional lowpass prototype filter having n’ reactive elements corresponds
to a new filter having n=2n’ elements, giving the response in Figure 6.36. It
will be important to keep track of the complex frequency domains s and s,
corresponding to degrees n” and n and frequency domains «’ and «, respec-
tively.

6.6.2. Evaluation of Gain-Bandwidith Integrals. Fano’s gain-bandwidth inte-
grals were given in (6.45) and (6.46) for one- and two-reactance lowpass loads,
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respectively. An expression for the magnitude of the Chebyshev reflection
coefficient was given in (6.53). Thus numerical integration by Romberg
Program B2-3, described in Section 2.3, is not difficult. The proper integrand
for pseudobandpass networks is

. —]n\/1+K2+E cosz{(n/Z)cos"[(wz—wg)/A]}

ol K2+820052{(1'1/2)(305”[(wz—wg)/A]} (6.102)
in the pass band and
]ni=1n\/T+K2+€ coshz{(n/z ycosh ™~ [(w wf,)/AF 6103
lonf K’+¢? coshz{(n/Z)cosh [(w ——wé)/A”

in the stopband, The values of constants K and e will be required; they can be
determined as follows.

Assume that the resistance ratio, r=R,/R,, and the maximum passband
ripple, L, . in Figure 6.36, are¢ given, where

Loy = 1010g,0(1+ K>+ £%) dB. (6.104)
Then (6.94) and (6.96) may be equated for w=20:
(1+1)°
Pt 1+¥K2+&%-EC, (6.105)
where defined constant EC 1s
3 i 1 wj
EC=cosh (—2—cosh 7\—) (6.106)

Exponentiating both sides of (6.104) enables its simultaneous solution with
(6.105) for the ripple factor:
108/ 10 (14 1) /41

el= TEC : (6.107)

The flat-loss facior is now available from (6.104):
K2=10bw/10 _ s2_ 1, (6.108)

The only other issue to be resolved before numerically integrating (6.102)
and (6.103) is the upper limit of integration. It is well known that the
asymptote for the high-frequency attenuation in Figure 6.36 is 6n dB/octave;
here the octaves arc taken as multiples of passband width above w,. The
reflection coefficient should be essentially 1 when the attenuation is at least 60
dB. Program B6-4 in Appendix B includes the earlier Romberg integration
routine and makes these calculations, including the upper limit of integration
in line 250.
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Example 6.18, Suppose that the load depicted in Figure 6.35 must be
matched over the band from 0.75 to 1.25, where g,=1.571 farads, g,=0.3142
henrys, R,=0.25, and R,=1 ohm. Can the load be matched by an n=4
network? Evaluating the right side of Fano’s integrals (6.45) and (6.46) yields
values of 2.00 and 3.78, respectively. Program B6-4 is used with these data and
the trial values of L_,,, the maximum passband ripple. It can be found that
e =0.0924 dB gives the required integral value of 2.00. Using this L__,
value and the same program for the two-reactance case, Romberg integration
finds the integral value 1o be 1.82. Since this is less than 3.78, the given load
can be matched by an n=4 network, because the effective value of g, can be
increased (padded) easily enough. Note that (6.46) shows that increasing g,
can decrease the required integral value to that computed.

6.6.3. Network Synthesis Procedure. Having determined the Chebyshev pa-
rameters K and ¢, the first synthesis step is to compute the reflection poles and
zeros of the conventional Chebyshev filter in the s plane according to
(6.54)—(6.56). The poles and zeros in the mapped s plane are obtained from an
expression resulting from (6.97):

s=jAs —w] . (6.109)

Only the left-half-plane poles are used in assembling the reflection coefficient
root factors. In the synthesis terminology of Section 3.2.4, the numerator of
p(s) is the polynomial f(s), the denominator polynomial is e(s), and p(s}=1 in
this case, since there are no finite zeros of transmission. The network synthesis
may then proceed as described in Chapter Three,

Example 6.19. Continue the calculation began in Exampie 6.18. The s'-plane

pole locations from (6.54)—(6.56) and the s-plane pole and zero locations from

Table 6.5. Poles and Zeros for Psendobandpass
Example 6.19

In the prototype s’ plane
p'=*1.579=j1.730
z'= +0.3838 +0.3047
In the double-mapped s plane
p'=*+02787+j1.4158 and
+0.5549+j0.7114
z'=%0.0795%+31.2134 and
*0.1169+j0.8211
s-plane polynomials:
f(s) =5 +0.3927s* + 2.204s* + 0.4551s + 1.017
e(s)=s*+ 1.668s +3.5155% + 2.765s + 1.695

p(s)=1
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Figure 6.37. Synthesized lumped-element maiching network for Examples 6,18 and 6.19. [From
Cottee, R. M., and Joines, W. T., IEEE Trans. Circuits Syst., Vol. CAS-26, No. 35, p. 321, May
1979. © 1979 IEEE.)

(6.109) arc shown in Table 6.5. The synthesized network is shown in Figure
6.37. Note that the load inductance is a part of the total g, element.

6.6.4. Summary of Pseudobandpass Matching. The narrow bandpass re-
sponse of matching L sections suggested the use of lowpass networks (cas-
caded L sections) for broadband matching with resistance transformation. A
quadratic frequency mapping function doubled the number of network ele-
ments while providing the appropriate correlation between the conventional
Chebyshev lowpass, flat-loss function and the pseudobandpass function.

Numerical integration over the frequency axis determined the broadband
load-reactance functional values. In practice, the two load-reactance values
are given, and trial evaluation of the one-reactance Fano integral determines
the flat-loss and ripple factors. Then a solution exists if the two-reactance
Fano integral value is less than the corresponding load function requires, If
not, a greater number of elements (n) is assumed, and the process repeated.

When the values of conventional Chebyshev constants are found accept-
able, the pole/zero locations in the conventional §” plane are computed by
formula. The quadratic frequency-mapping function then transforms these n’
values into n=2n’ new values. Selection of left-half-plane poles and zeros
enables the construction of the Feldikeller polynomials, and thus network
synthesis can proceed.

Cottee and Joines (1979) concede that the integration step can be avoided
by proceeding with trial synthesis, However, they claim that the integration
approach allows restrictions to be visualized; to that end, they inciude a dozen
design charts. More significantly, their article further considers distributed
(transmission line} matching networks terminated by a lumped-element load.
The transmission line elements are commensurate—all having the same length
—so that a resistively terminated network response would have harmonic
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passbands extending to infinity on the frequency scale. This does not preclude
Fano integration to a finite limit when the load consists of lumped elements
that truncate (i.e., band limit) the response.

6.7. Carlin’s Broadband-Matching Method

Figure 6.1 pictured the environment for broadband impedance matching: load
impedance Z, must be transformed by the network to some desired Z;,
function of frequency. The quality of the match was indicated by a low
magnitude of the reflection coefficient p,, versus frequency. The difference
between designing filters and broadband-matching networks is the frequency
dependence of load impedance Z,; it is a resistor in filter design. By Fano’s
classical method, Z, was assumed to represent the input impedance of an LC
subnetwork terminated by a resistance. For practical results, the lowpass
model of the load impedance must not consist of more than one or two
reactances and an end resistor, as shown in Figure 6.16.

Given some arbitrary physical load impedance modeled by impedance data
measured at several frequencies, the first—and often difficuli—task in apply-
ing Fano’s method is to classify the actual load, i.e., fit it to the most
appropriate lumped-element lowpass model. For loads with bandpass behav-
ior, this usually requires identification of a synchronous bandpass subnetwork
and then its corresponding lowpass prototype. Furthermore, the power trans-
fer of the classical method is constant over the band; however, a sloped or
other-shaped response often is required.

Fano’s method depends on the fact that the magnitudes of the generalized
reflection coefficients in (3.46) at any interface in a lossless, doubly terminated
network are all equal at a frequency. In fact, his reflection coefficients are
conventional, since they are located adjacent to the resistive terminations.
Carlin (1977) noted that |p,| is equal to lp,| in Figure 6.1. His greater
contribution was in noting that a piecewise linear approximation to R, the
real part of Z =R +jX,, enables a simple computation of X, using the
Hilbert transform. Furthermore, he showed that power transfer in terms of
generalized p, is at most a quadratic function of the R, piecewise linear function
variables. Thus a nonlinear optimization program will usually succeed in
obtaining power transfer and/or several other impedance-dependent objec-
tives by a piecewise fit of R, the real part of Z . The Gewertz method for
finding a resistively terminated lowpass network, given the real part of its
input impedance, was described in Section 3.5. By Carlin’s method, such a
network would be the required matching network in Figure 6.1, where the
source impedance would be the terminating resistance,

This topic will begin by describing the basis for BASIC language
program for finding-the imaginary part of a minimum-reactance impedance
function from z piecewise linear representation of its real part. The
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power transfer function will then be derived, and its derivatives will be
obtained with respect to the piecewise linear fit parameters. An objective
function for the Fletcher—Reeves optimizer (Section 5.4) will be furnished in
another BASIC language program. Finally, utilization of the optimal piecewise
linear fit to the required Z real part to synthesize the matching network will
be described. Actually, this last step has been covered completely in Sections
2.5 and 3.5, so that only the counection between these procedures and Carlin’s
method is required.

6.7.1. Piccewise Hilbert Transform. Blinchikoff and Zverev (1976, p. 76)
give the well-known Hilbert transform that determines the reactance function
from a given resistance function:

f +o ROY) 4 (6.110)

coyw

There is a similar function for the inverse transform. Bode (1945, p. 318) gives
a more useful form for analysis on linear frequency scales:
yte + @

1 f=dR
X(wy=1 f bl e

A restriction on these Hilbert transforms is that the function (impedance in
this case) must have minimum reactance. Restrictions on transfer functions
are similar. Guillemin (1957, p. 301) shows that the phase lag will be least for
any transfer function magnitude if its zeros are restricted to the left-half plane.
The poles are similarly restricted for passive networks. Such functions are thus
called minimum phase; in general, they are associaled with ladder (single
signal path) networks that do not contain delay equalizer (bridge) sections.

In this case, it is convenient to presume that the equation R (w)= Re(Z) in
Figure 6.1 has the piecewise lingar form

(dy. (6.111)

n
R (w)= kzorka.k(w), (6.112)
where the normalized linear interpolation functien is

0 for w<w,_,,
Ly
a, = ;k___‘_‘,k___‘ for o\ <w<w, (6.113)

1 for wrw,

and a,=1. This linear interpolation function is easily visualized according to
Figure 6.38. The overall form of R, is illustrated in Figure 6.39. Since this
form of resistance (R,) will be integrated according to (6.111), it must assume
a zero value, beginning at some finite frequency. Therefore, an arbitrary but
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0

Wy Wy

Figure 6.38. Linear interpolation between sample points according to Equation (6.113).

c

useful choice for the necessary dependent excursion is

L=— > r. (6.114)
k=0
Using (6.112) in (6.111), the reactance at some frequency w is

n
| reoda, |y+w
X(w)= I~ —In [———dy. 6.115
@= 207 ) & y=e|¥ 11)

The crux of Carlin’s method is a broadly applicable linear combination of the
excursions 1, that expresses the reactance function corresponding to (6.112):

n

X (@)= zork by (). (6.116)

The reactance contributions, b, are

y+w
y—w
Note that the narrow limits of integration result from the single segment of a,

in Figure 6.38 having a nonzero slope. The integral in (6.117) has a simple,
closed-form evaluation, as given by Bode (1945, p. 319). Therefore, a final

by(w)=—L7 L :’illn

W =@y

ldy.- (6.117)

256 ii*—j—
20 —— oY
15—
Rq o
1.0 — ra
06—
—\T
r3 {dependent)
o | I 1 }
Q 0.5 1.0 1.5 2.0

&3]

Figure 6.39. A piecewise linear representation of R, with excursion variables r,.
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expression for the kth reactance contribution is:

_ B(w, 0, ) — B(w, w,_,)

by (=) ) (6.118)
where b,=0, and the defined function B(w, &) is f
B(w. @) =3 (X+ DIn(X+ 1)+ (X~ DI |X-1|-2X n X],
=0 if ©=0, (6.119)
=2, X#1, X0 (6.120)

w

This remarkable result is easily applied: first, construct a band-limited, piece-
wise linear representation of the resistance function; second, calculate the r,
resistance excursions; third, compute the b, reactance contributions for the
desired frequency. The impedance at frequency w then is

n

Z,= kEﬂrk(ak +jby), (6.121)
using (6.113) with ag=1 and (6.118)-(6.120) with b,=0. These equations have
been coded in BASIC in Program B6-5, (Appendix B), making the last
excursion dependent according to (6.114). This computation is equally well
suited to hand-heid computers.

Example 6.20. The impedance looking into terminals 2—2' of the lowpass
network in Figure 3.8 can be computed at any frequency using Program B4-1.
As a test of the Hilbert transform method, the resistance-versus-frequency
curve can be fitted using straight-line segments. Program B6-5 can then be
used to compute the related reactance for comparison to the known values
from the analysis. Table 6.6 tabulates the input data for Program B6-5 in the
first three columns. The program output at these frequencies appears in
columns 4 and 5, and columns 6 and 7 show the impedance values obtained

Table 6.6. Hilbert Transform Data for Example 6.20

Pgm B6-5 Pgm B4-1

k Iy w R, Xq R, Xq

0 22 0 22 0 22 0

1 00544 0.1 2.1456 —~0.3094 2.1465 —0.3208
2 -—0.8484 07 1.2972 - 12311 1.2972 —1.2051
3 —-0.1676 038 1.1296 ~1.3435 11296 —1.3321
4 -07079 1. 0.4217 ~1.3412 04217 — 13444
5 —02579 i3 0.1638 —1.1118 0.1638 —1.0992,
6 -—-0.1205 [.6 0.0433 —-0.8362 0.0433 —0.8138
7 —0.0433 20 0 —-0.6165 0.0102 —0.6028
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Figure 6.40. R-X graph for the Hilbert transform in Example 6.20.

by analysis in Program B4-1. Also, impedances at frequencies other than the
breakpoints may be computed. Figure 6.40 is a graph of these data.

The Hilbert transform calculation works equally: well for minimum-phase
transfer functions such as

H(w)=|H(w)|e'. (6.122)

The appropriate rectangular form for data from an arithmetic frequency scale
is:

In H{w) = In|H{w)| +j#4, (6.123)

where the angle # is in radians.

6.7.2. Gain Objective Function With Derivatives. Carlin and Komiak (1979)
describe a general gain function, which is the inverse transducer function. At
the output interface in Figure 6.1, (3.46) and (3.47) yield

P, 4RR
:(zz,zq)=—li= —, (6.124)

where the denominator term is

A=(R,+R )’ +(X,+ X)) (6.125)
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Note that gain function t is at most quadratic in r, because Z_ is linear inr, according to
(6.121}. A squared-error objective function is

where the vector of variables is

MZ

E(r,w)= > ei(r w), (6.126)
u=1

 ETE200 J% SNUPNS J L (6.127)

and dependent r, is computed by (6.114), A well-conditioned error function
(residual} at each sample frequency is

| unw) B
ehw,)= 2@ 1, {6.128)

where g, < I is the arbitrary gain goal (target) value at sample frequency w,.
The sample frequencies need not coincide with the piecewise linear breakpoint
frequencies. These relationships enable the calculation of the objective func-

tion in (6.126).

Minimization of the objective function in (6.126) requires its derivatives
with respect to the variables in (6.127). Numerical differentiation (finite
differencing) is usually unsuitable. Analytically,

MZ
BE_ 3 g (6.129)
a1,

u=1

Note that t in (6.124) is a function of both R and X, and these are functions
of the r, excursions. Thus the classical chain rule for partial derivatives yields

aeu_ 1| a1 aRq ot 8Xq

for use in (6.129). It is a simple matter to write the following derivatives of t

from (6.124):

A-2R (R, +R,)

a

E‘R—q“‘RZ A2 ’ (6-131)
Ot 4R [ 2R (X, + X, ) [ /A2 (6.132)
ax, 2 R ‘ '

Finally, the derivatives of R, and X, are required in (6.130). Applying the
constraint (6.114) to {(6.112) pertinent to this formulation yields

so that

n—1

R, = > n(a,—a,), (6.133)
k=0
3R,
—a,—a,. (6.134)

ar
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From (6.116),

ax
—2=b,—b

. (6.135)

n

6.7.3. Optimization of the Piecewise Resistance Fanction. The preceding ob-
jective function has been incorporated in the Fletcher—Reeves optimizer in
Program BS5-1. The result is Program B6-6 in Appendix B. The input section
through program line 140 loads the breakpoint data required for the Hilbert
transform calculation of reactance from resistance, as in Program B6-5. All
but the last resistance excursion become the optimizer variables. The objective
function and its gradient are assembled by subroutine 1000 in lines 1000-
1260; this requires appeal to subroutine 3000 at every sample frequency to
compute Z =R, +jX,. Lines 3020-3040 set constraint (6.114), and lines
3050-3250 perform the Hilbert transform calculations as in Program B6-5.

Example 6.21. Input the data in Table 6.7 into Program B6-6 to obtain the
optimum resistance excursions for a gain of 1.0 at the four sample frequencies.
The program output is shown in Table 6.8.

The optimized excursions are ry=2.2754, r,= —1.0603, r,= —1.1167, and
{constrained) excursion r,= —0.0984. Inspection of Figures 6.1 and 3.8 shows
that r, is the eventual generator resistance. If it is desirable to hold this at a
certain value, e.g., 2.5 ohms in this case, then all that is necessary is to add the
statement “1225 G(1)=0" to Program B6-6. A rerun of Example 6.2]1 shows
how the zero gradient holds the first optimization varjable at its initial value.
The choice of starting excursion values is somewhat arbitrary. Carlin (1977)
suggests assuming reactance cancellation and setting the residuals to sustain
the dc gain at the in-band breakpoints.

6.7.4. Rational Approximation and Synthesis. At this point in Carlin’s
broadband-matching method, an optimal piecewise linear representation of R,
is known, The remaining task is to realize a network that provides this
behavior. This is clearly the subject treated in Section 3.5. The Gewertz
method considered there began with a rational function of input resistance in
the form of (3.94), or (3.98) in particular. It is always in powers of w* or the
equivalent powers of s?, since resistance is an even function of frequency. The
next step in Carlin’s method is to fit such a rational function to the piecewise
linear representation. This can be accomplished by the method in Section 2.5.

A table of impedance versus frequency and the form of the desired rational
polynomial were required in Section 2.5. In the Carlin method, the table of
data is created from the piecewise linear resistance function by (1) using
symmetric positive and negative frequencies for the even resistance function
and by (2) using zero reactance values at every sample. A typical data set is
given in Table 6.9. The data in Table 6.9 can be input into Program B2-5 to
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Table 6.7. Input to Program B6-6 for Example 6.21
w? Rz Xz 2. kb Ty [
0.1 2.15 0.31 | 0 2.5 0
0.5 1.58 [.o1 { I | 0.75
0.9 0.89 1.42 1 2 -1 1.25
1.0 0.65 1.42 1 3 -05 2.0
aNumber of measured Z, values is 4.
®Number of breakpoints, including w=0, is 4.
Table 6.8. Program B6-6 Outpnt for Example 6.21°
ITN=0 IFN=I ITN=29 IFN =89
F=2.6976186E—03 F= 1.22678987E — 08
1 X(n G() I X(N G()
1 2.5 0269056668 1 227720383 1.81803783E— 0B
2 -1 0252870452 2 —1.0625151  ~2.06528716E—-08
3 -1 8.41058789E—03 3 —1.1159194 - 1.01505479E—08
ITN=1 IFN=5 ITN=130 IFN=9i
F=461174131E-05 F=12233111E-08
1 X{I) Gy I XM G(D)
] 2.38714539 1.59244045E — 03 1 2.27546837 4.50758795E - 08
2 —1.10606537 1.54801777E-03 2 —-1.06031197 3.71783939E - 08
3 —1.03527783 6.7775074E - 04 3 —1.11666244 5.39050241E - 09
ITN=2 IFN=19 ITN=31 IFN =53
F = 8.30478937E - 07 F=1.22313988E—-08
I XD G(1) 1 XD G()
1 235241762 6.60273984E - 05 I 227542275 6.41003251E-10
2 - 1.13975746 6.48530284E - 05 2 —1.0603496 —1.27783317E-09
3 — 1.04982374 4.22180638E - 05 3 —1.11666789 —2.9785856E 10
ITN=3 IFN =32 ITN=32 [FN=95
=1.79326026E — 07 F=1.22313053E—-08
1 X(1) G(I) I X1 G
i 2.34265967 3.17542868E — 06 1 2.27541404 3.72293618E-09
2 - 1.14933634 1.223805397E— 06 2 —1.06033326 [.83188975E - 09
3 —1.05596202 6.9709696E — 06 3 —1.11666406 7.022927719E - 10
ITN=4 IFN =37 ITN= 33 IFN=99
F= 1.57306571E~07 F=1.22313053E—-08
1 X(D) G 1 X G
1 2.34014065 —3.03374459E - 06 1 2.27541404 3.72293618E—-09
2 — 1.15031054 —5.53521328E—-06 2 — 106033326 1.83188975E—-G%
3 —1.06149199 2.40726355E-06 3 —1.11666406 7.02292779E - 10

9The output for iterations 5-28 has been omitted.
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Table 6.9. Typical Carlin Piecewise Resistance
Data for Fitting Program B2-5

w? R, W R,
-1.5 0.0835 0.05 2.1728
- 1.0 0.6577 0.10 2.1456
—-0.5 1.5800 .15 2.0749
-0.3 1.8628 0.30 1.8628
—0.15 2.0749 0.50 1.5800
—0.10 2,1456 1.0 0.6577
—0.05 2.1728 1.5 0.0835

0.0 2.2000

“X,=0 for all w.

obtain the Levy (1959) coefficients for an appropriate lowpass rational polyno-
mial having a constant numerator and a sixth-degree denominator. The
pertinent linear system of equations may be solved by Program B2-1. The
rational polynomial coefficients of s for the data in Table 6.9 are: a,=2.1819,
by=1, by =0, by=~2.0505, b;=0, b,=—2.7689, b;=0, and b,= —3.0330.
Note that the even input data produce the required even fitting function. This
polynomial is the basis for the Gewertz procedure in Section 3.5.1, which finds
the Z (s)=Zg, . impedance function looking into the matching network from
the load interface (see Figure 6.1).

The last Carlin step is to synthesize the Zg, . input impedance function
obtained by the Gewertz method. This has been described in Sections 3.5.3
and 3.4, The result will be a network like that shown in Figure 3.8; it is similar
to an example given by Carlin (1977). Carlin and Komiak (1979) also give a
rule of thumb for estimating the required complexity of the rational pelyno-
mial used to fit the optimal piecewise linear resistance function; this deter-
mines the matching network complexity as well.

6.7.5. Summary of Carlin’s Broadband-Matching Method. Carlin identified
at least three important concepts applicable to the broadband-matching
problem, First, a piecewise linear representation of a resistance function can
be used in a closed-form application of the Hilbert transform to find the
corresponding reactance function, assuming minimum phase. The excursions
in the piecewise linear representation occur as coefficients in a linear combina-
tion of easily computed resistance and reactance contributions. The technique
is equally valuable for computing the transfer angle given a piecewise linear fit
of transfer magnitude.

Second, the generalized gain function at the load interface is at most a
quadratic function of the resistance excursion variables. If a classical least-
squared-error solution were employed, a standard quadratic program would
suffice. The gain function is well conditioned in any event.
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Third, an objective function for optimizing the resistance excursions need
not be limited to gain; it might be noise figure, noise measure, or any other
function that can be formulated in terms of impedances or admittances.
Equally important, an arbitrary goal/target function may be employed so that
sloped gain functions may be matched. Like most applications of nonlinear
programming (optimization), there are several choices to be made from
experience rather than by analysis.

The optimali piecewise linear resistance function must be fitted with an even
rational polynomial, so that a matching network may be synthesized. The
Gewertz method then provides the input impedance polynomial for the
network at the load interface. Standard network synthesis techniques will
produce the LC element values.

There are two features of Carlin’s broadband-matching method that distin-
guish it from Fano’s classical method. The discrete load impedance versus
frequency data set does not have to be identified with a resistively terminated
LC load network; i.e., load classification is not required. Also, the well-
conditioned optimization process allows sloped-gain or other arbitrary fit of
the objective function. Fano’s method has been adapted by Mellor (1975) to
obtain similar results at the expense of considerable ad hoc procedures.
Network synthesis is required in these and other methods which are more
versatile than the direct design-matching method in Section 6.4,

Problems

6.1. Find four different lossless, lumped-element L-section matching net-
works that transform a load impedance of 36—j324 ohms to match a
50+j0 generator impedance.

6.2. Conjugately match a 6+j25-ohm load impedance to a 7+j20-ohm
generator using only capacitors in an L section. Obtain two different
solutions,

6.3. Plota2:1 SWR load-locus circle on a Smith chart, and explain why
Equation (6.19) is true.

6.4. A T section is composed of the two types of L sections.

(a) Write an expression for the parallel resistance level across the
shunt reactance (X, ) as a function of the T section’s terminating
resistances and transfer phase angle.

(b) A conjugately matched T section delivers 1 watt from a 50-chm’
source to a 21-ohm load with a lagging current transfer phase of
155 degrees. What is the rms voltage across the shunt reactance?




6.6.

6.7.

6.8.

6.9.
6.10.

6.11.

6.12.

6.13.

6.14,

6.15.

Impedance Matching

{a) Can a single, lossless transmission line transform 6425 ohms to
7320 ohms? If so, give its Z, and 6.

(b) What is the input impedance of a lossless, 50-ohm transmission
line 45 degrees long and terminated by a 6 +j25-ohm load?

{c) Can the input impedance from (b) be transformed to 7—j20 ohms
by a single lossless transmission line? If so, give its Z, and 8.

Rotate load impedance Z,=100—j150 ohms on & 50-ohm transmission
line that is 45 degrees long.

(a) What is the input impedance if the line is lossless?

(b) What is the input impedance if this length of line has a uniform
dissipation of 0.25 nepers?

Suppose that Z=R +j0 ohms. Show that SWR with respect to 1 ohm is
RforR>1andis 1/R for R< 1,

A two-reactance Joad (an L section with g, g,, and a 1-ohm resistance)
terminates an infinitely complicated bandpass matching network
driven by a resistive source. Give an algebraic (containing no integrals)
expression for an equality constraint and an inequality constraint on
the minimum possible input reflection loss, In(1/|p|). The band of
interest is w, to w,.

Prove Equations (6.48) and (6.51).

For a 100% bandwidth, what is the greatest Q, that can be matched
with an SWR 2:1?

Derive Equations (6.57) and (6.58).
Derive Equations (6.61) and (6.62).

Find the minimum possible decrement of a single-reactance load for
optimal broadband match when In|p|=10""*.

Estimate Fano’s optimal matching solution using Equations (6.68) and
(6.69); do not iterate.

(a) Find the optimal lowpass network that contains two reactances
and maltches a 2-farad capacitor in parallel with a 1-chm resistor
over the frequency range 0 to 1 radians.

(b) What is the generator resistance?
{c) What is the range of SWR in the pass band?
(d) What is the transducer loss at dc (in dB)?

Evaluate Equations (6.68) and (6.69) for parameters a and b when
N=3, Q. =3, and the bandwidth is 50%.



6.16.

6.17.
6.18.

6.19.

6.20.

6.21.
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Program Equation (6.72) on a hand-held or desktop computer. Start
with g, =1.5000, 0.7229, and 1.9683. Compute g -g ., and compare the
three sequences resulting from the three starting points. Compare the
sequences from r=1ton—1 and from r=n-1 to 1.

Derive Equation (6.87).

Transform the lowpass network in Figure 3.8 (Chapter Three) to a
bandpass network that is driven by a 50-ohm generator; obtain the
20% bandwidth geometrically centered at 70 MHz, Assume that the
passband edges correspond to 1 radian on the lowpass network.

(2) What are the bandpass edge frequencies?

{(b) Give all network clement values and units,

Instead of the capacitive L section indicated in Figure 6.32, replace an
inductive Norton L section with an inductive T section to obtain an
11-ohm load resistance whiie retaining the 50-ohm generator resistance.
Show all element values in your final network,

A resistance function versus a linear frequency scale has the form of a

straight line from 1 ohm at dc to 0 ohms at 1 radian; it is zero at

frequencies greater than 1 radian.

(a) What is the impedance of the associated minimum-reactance
function at 0.5 radians? '

(b) What is the partial derivative of this impedance with respect to
excursion 1, at 0.5 radians?

A minimum-reactance impedance function has a piecewise linear real
part. This resistance is a constant 2 ohms from 0 to 1.5 radians and a
linear function from 1.5 to 2.0 radians. The resistance is zero at all
frequencies equal to or greater than 2 radians. Find the reactance at 0.5
and }.75 radians.




Chapter Seven

Linear Amplifier Design
Tools

This chapter establishes a basis for many modern ampiifier design relation-
ships, especially those related to generalized Smith charts and their bilinear
functions. Impedance and power relationships will be investigated in detail.
The linear two-port network will be analyzed in terms of Z, Y, and §
parameters, as indicated in Figure 7.1. The network may or may not be
reciprocal, i.e., y,; may not be equal to y,,. The simplifying unilateral
assumption that y, =0 will be considered only at the end of this chapter. The
stability of such networks will be studied. Thus some of these results will be
applicable to oscillator design. Further applications of this chapter will appear
in Section 9.5, which deals with load effects on passive networks, especially
dissipative filters.

Impedance mapping will be the main analytic and computational tool. This
technique establishes the position of a small Smith chart image of a branch- or
port-terminating impedance plane embedded in a network impedance, admit-
tance, or scattering response plane, For example, all possible values of
transducer gain S, as a function of a network branch impedance are easily
visualized and calculated. The generalized Smith chart is normalized to a
complex number; it will be crucial to the impedance mapping concept.

This chapter begins with the definition of bilinear functions and several
methods for determining their three coefficients from a set of characterizing
data, The generalized Smith chart bilinear form that maps the right-half plane
onto a unit circle will be studied next. Some useful shortcuts and special
features in its application will be considered. The bilinear theorem that relates
all Z, Y, and S network functions will be derived by obtaining the three-port
to two-port reduction formulas. The impedance-mapping relationship will
then be derived, including the conversion of bilinear coefficients to the
mapping displacement and orientation coefficients,

230
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Figure 7.1, A linear two-port network.

Linvill’s two-port impedance and power geometric models will be derived
for both visualization and subsequent analysis. The per-unit voltage (or
current} output power parabola of revolution on its mapped Smith chart base
appears in the input immittance plane. Input power per input voliage (or
current) is a wedge-shaped surface in the input plane. Thus several gain
relationships are easy to see and are the basis for special mathematical
development. Finally, the most important computational results will be ob-
tained in terms of scattering parameters. According to current practice, these
parameters are usually measured with respect to 50-ohm resistive termina-
tions. A major development tool will be their renormalization to arbitrary,
complex impedances. This enables direct consideration of linear, active net-
works between complex source and complex load; impedance, power, and
stability issues are readily considered from that basis. The last subject in this
chapter is the specialization of the scattering results to the unilateral case
when §,,=0. The resulting simplifications allow easier comprehension of some
power relationships, although the approximation is often unsatisfactory in
practice and unnecessary in the presence of personal computing tools.

T7.1. Bilinear Transformations

Almost all complex functions of complex variables associated with linear
networks are bilinear, as originally expressed in (2.1):

4,2+ a,

WAz

A

Bilinear functions are sometimes called linear fractional transformations
(LFT). Dependent function w and independent function Z are usually imped-
ance, admittance, and scattering parameters, 1.e., elements of their respective
Z, Y, and S mairices that characterize the linear and generally nonreciprocal
network. For example, (6.23) expresses the input impedance of a dissipative,
uniform transmission line in a bilinear form as a function of the terminating
load impedance. These functions are called bilinear because they are linear



232 Linear Amplifier Design Tools

functions of both w and Z, as seen in an equivalent expression for {7.1):
Za,+a,—wZa,=w. )

In this section, two means for determining the three a, coefficients in (7.1}
from characterizing data will be derived. One is easy, fast, and less accurate
than the somewhat more complicated, slower, and more accurate second
method. A third method for averaging excess, noisy data is mentioned. The
generalized Smith chart, normalized to a complex impedance, is described and
several useful shortcuts are mentioned.

7.1.1. Determining Bilinear Coefficients. The first and most elementary
method works well in numerical practice if ‘at least six decimal digits are
carried throughout. It is derived by considering three special values of inde-
pendent variable Z in (7.1), namely, the triple (0, 1, o0} and the corresponding
dependent w values (w,, w,,w_). When Z=0, (7.1) yields

a,=w,. (7.3)
When Z— o0, (7.1) yields '

a,=w_a,. 74
The required value for a, is obtained by letting Z=1+j0 in (7.1) and
substituting (7.3) and (7.4):

Wp— W,

a3 = m . (7.5)

Infinity 1s suitably represented by Z = E9+ 30 in hand-held calculators. A set
of consistent data and coefficients is given in Table 7.1,

A slower procedure, which is less vulnerable to poor numerical condi-

tioning, assumes less extreme values for the independent Z triple. Choose

the arbitrary Z triple (Z,,Z,,Z,) with the corresponding dependent triple

Table 7.1. A Set of Bilinear Function Data
and the Resulting Coefiicients

i Zi W,

1 0 0.1800 /-23.0°
2 1E9 04285 /-550°
3 1 0.5588 /—26.89°

a,=05998 /75.0075°
2,=0.1800 /—23.0°
a;=1.3998 /130.0075°
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(w,,w,, wy). Then (7.2) yields three equations in the three a; unknowns:
Za,ta,—w,Za;=w,,
Zatay—wla,=w,, (7:6)
Zyay+a, —wilsa; =w;.
Sol\;'ing the middle equation for a,, gives
a,=a,P+w,—a,Z,, (7.7
where a new constant has been defined:
P,=Zw;, i=1,2,0r3. (7.8)

Then a, may be eliminated from the first and last equations in (7.6); the result,
in matrix form, is
a;]_
M)

M= (Z,-2,) (P,—Py) ‘ (1.10)
(Z:—Z;) (P,—Py)

(W3~ W)

(W) —w,) } (1.9)

where matrix M is

In order to apply Cramer’s rule to solve for a, and a,, the determinant of M is
written as

detM=2Z,D,,+Z,D,,+Z,Dy,, (7.11)
where another defined constant is
D;=P—F;. (7.12)

Thus Cramer’s rule yields
A= w1 Dy +wo D5 + w30,
! detM ’
_Zy(wa—wy) HZy(w, —wy) Zy(wr—w))
A detM ’

and a, is computed by (7.7).

Program A7-1 in Appendix A performs these computations in 206 steps
that run 3 minutes on the HP-67/97. The program is based on the polar
four-function complex operations from Program A2-1. The complex numbers
are stored in polar form, the magnitude in primary registers and the angle (in
degrees) in the corresponding secondary registers. (Calculators without this
feature may be programmed with registers similarly paired, with address
numbers differing by some constant, e.g., 10). Program A7-]1 is based on a
programming technique worth remembering for use on small computers. The
known sequence of register addresses has been packed into three registers and
removed in a sequence of one or two digits. An explanation is based on the

(7.13)

(7.14)
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Table 7.2. Register Assignments and Address Sequences for Bilinear Coefficient

Program A7-1
RO R1 R2 R3 R4 R5 R6 R7 R8? R9
(DetM)™! Z w, Z, Wy Z; w3 D;; Dy D,
a 4 a3
Register C Register D Register E
For DetM 56 8348140 1285 810 48128560
For a, 56834827 12856847 34812867°

Fora;: 6419 2639 and42 35 ¢
Fora,: 349873848

“R8 used for scratch during det M and a, calculations.
¢ Add digits 1 7 by +0.00000017.

register assignments and sequences in Table 7.2. For example, consider the a,
computation from (7.14) according to the register address sequence shown in
Table 7.2. Register 6 (the primary and secondary pair) contains complex w,,
and register 4, containing w,, is subtracted from that; the result is multiplied
by Z, from register 1. and this is summed into the register-9 pair. Digit pairs
are required when incorporating the P, values defined in (7.8). The a, calcula-
tion according to (7.7) requires the sequence shown in Table 7.2; there,
P,=Z,w, from registers 3 and 4, and this is multiplied by a, from register 9,
and so on. Table 7.3 contains a consistent set of data to test program
operation.

There are also means for determining the bilinear coefficients in (7.1) when
the (Z;,w;) data are noisy and i>3, as occurs for measured data pairs. In this
case, the data pairs require weighting. Suppose that one measured w value is a
moderately large impedance and another is a very small impedance. If the
measurement error is related in any fixed way to ohms, then the latter value is
much less reliable than the former. Kajfez has developed a reasonable weight-
ing scheme in light of the bilinear functions involved. His computation can be

Table 7.3. A Set of Bilinear Function Coefficient Data for Program A7-1

i Z

1 01 /30° 01732 /—7.8675° 0.0173 /22.1325° 06 /[75°
2 05 Jeo° 0.4473 /129.505°  (0.2237 /189.505° 0.18 /-23°
3

1.1 /=10° 05099 /—30.324° 05609 /-40324° 14 /130°

Wi P, a;

D,,=02406 /104056°, D,,=0.7256 /153.3009°
D,;,=0.5531 /—419136°, detM=04627 /10.4030°
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accomplished easily on desktop computers; the interested reader is referred to
Kajfez (1975).

7.1.2. Generalized Smith Chart. Using methods described by Churchill
(1960, pp. 76-77), it is a straightforward matter to show that every bilinear
transformation of the closed right-half Z plane onto a closed unit circle must
have the form

a (7.15)

where 8 is real and Re(Z)>0. The last requirement is especially emphasized.
The exponential term merely rotates the unit-circle image and will henceforth
be dropped. The generalized Smith chart maps impedances according to

_Z-Z, Z-iX-R,
P Z3Zr T 75X +R,

where Z=R +jX and Z =R +)X,. Clearly, (7.16) could be normalized to R
by division in the numerator and denominator in the fashion of the ordinary
Smith chart relationship given previously in (6.22). The obvious remaining
difference is the term jX_. A little thought shows that it may be combined into
a new reactance component (X —X,) instead of the usual X component. The
generalized Smith chart then represents the ordinary chart with center Z, and
constant reactance lines (X —X_). One practical application concerns power
transfer from a complex source to a complex load, as discussed in Section
3.23. Thus (7.16) is exactly comparable to (3.46). Note that whether Z,
appears in the numerator or in the denominator is a matter of arbitrary
definition. It is convenient here to represent the chart center as Z.

It is also important to define the generalized reflection coefficient in
admittance form, as follows:

(7.16)

= YC—Y
PTYREY
The generalized Smith chart no longer allows substitution of Z=1/Y in order

to change from an impedance to an admittance basis. This does not change
{7.16) into (7.17) unless Z_=1/Y_ is real.

(7.17)

Example 7.1, Consider a complex source connected directly to a complex
load, as in Figure 3.3 in Section 3.2.3. Suppose that Z_,=25—j50 ohms and Z,
is defined as causing a 2 : 1 standing-wave ratio (SWR) on a 50-ohm transmis-
sion line. What is the range of power delivered to the load relative to the
power available from the source? The solution will be obtained graphically
here and analytically in Section 9.5. The procedure will be to select three or
more impedance points on a 2: 1 SWR circle from a Smith chart normalized
to 50 ohms. Then these points will be plotted on a generalized Smith chart
normalized to the conjugate of the source impedance in accordance with the
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Table 7.4. Impedance Data for 2: 1 SWR Renormalized for
Example 7.1

Z2:1SWR Z wrt? 25 0hms  Z wrt 25450 chms
100+j0 4+j0 4—j2
25470 140 1-j2
42.5+j32.5 1.70+4}1.30 1.70—30.70
42.5-132.5 1.70—1.30 1.70—3.30

“With respect to.

generalized reflection coefficient in (3.46). Thus the reflection magnitude
extreme values can be determined graphically and applied in (3.47) to find the
answer. In this case, the complex normalizing impedance is Z_,=25+)50 ohms.
Four convenient 2:1 SWR impedance points with respect to 50 ohms are
shown in Table 7.4 unnormalized, normalized wrt 25 ohms, and normalized
wrt 25+j50 ohms. These points are plotted on the generalized Smith chart
normalized to Z_,=50+j0 and Z,=25+350 in Figure 7.2, and the required

Lo o by b b b by b by o

1.0 08 0.6 0.4 0.2 0 0.2 04 06 08 1.0

Figure 7.2, Generalized Smith chart with Z_ =25+ j50 ohms and a 2: 1 SWR circle with respect
ta 50 ohms.
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circle locus through them has been sketched. The complex reflection coeffi-
cient magnitude ranges from about 0.36 to 0.80. Therefore, (3.47) shows that
the load power varies from about 0.36 to 0.87 of the maximum available
SOUTCE pOWET.

Since the Smith chart transformations map unique points on a one-to-one
basis, it can be concluded that (7.16) maps the left-half Z plane into the region
outside the unit reflection circle in the p plane. There is a convenient
interpretation that avoids having to plot in this region, which is off the Smith
chart. Consider the conventional reflection coefficient

1 (r—1)+jx

—z—1_
P (r+D+jx (7.18)
Inverting (7.18) and replacing r<-(—r) yields
r—D+j(—x
1_ = D+i(—x) (1.19)

P (c+h+j(—x)°

Comparison of the last two equations reveals that they are the same, except
that plotting 1/p* requires the constant resistance lines to read as their
negatives. Note that the (—x) terms in (7.19) correctly correspond to the +x
terms in (7.18) because 1/p* results in an offsetting sign change for z. Again,
left-half-plane normalizing Z values corresponding to |p|>>1 can be repre-
sented directly on the Smith chart by plotting 1/p* and reading the reactance
values normally and the resistance values as their negatives.

7.1.3.  Summary of Bilinear Transformations. The general form for the stan-
dard bilinear (or linear fractional) transformation contains three complex
coefficients. Two methods were described for determining these coefficients
given three independent and dependent data pairs. The fast and easy method
assumes that the independent Z values are all real; 0, 1, and oc. These can be
used with their corresponding dependent w values. In most practical prob-
lems, the poor numerical conditioning is tolerable if at least six decimal digits
are carried in the elementary calculations, The second method is slower and
more accurate, because it allows the selection of three arbitrary, complex
values of Z. Computer Program A7-1 was provided for the latter method. A
third method was identified in the literature; it applies to cases where a
surplus of noisy data pairs are used to find the bilinear coefficients. These
must be averaged in a special way. Such a method has been published, and is
quite suitable for desktop personal computers.

Generalized Smith charts were shown to result from the unique bilinear
transformation that maps the right-half Z plane onto the reflection unit circle.
It was emphasized that the complex normalizing impedance that appears as
the chart center must have a strictly positive real part. It was also shown thata
comparable admittance bilinear form exists to define an admittance general-
ized Smith chart. However, simple substitution of Z=1/Y does not convert
the chart representation from impedance to admittance, as was the case for
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real normalizing impedances. It was remarked that left-half-plane impedances
are represented in the reflection plane region outside the unit circle and thus
off the Smith chart. However, plotting 1/p* for these impedances, where
|o| > 1, enables the use of the Smith chart in a fairly normal way. The
resistance loci must be read as the negative of their usual values and the
reactance loci are read normally.

7.2. Impedance Mapping

Impedance mapping is a method that allows a peek into the complex plane
associated with any Z, Y, or S response parameter. What one is able to “see”
there is a2 small, rotated, generalized Smith chart representing the entire
impedance, admittance, or scattering plane of any network branch. Even more
generally, the impedance-mapping formulation enables the restatement of any
bilinear function into a form having a complex translation constant and a
complex factor that scales and rotates the generalized Smith chart’s unique
bilinear form (7.16). Impedance mapping is very valuable for visualization,
analysis, and computation.

In this section, a linear three-port network will be characterized by its
scattering parameters and one port terminated by a fixed reflection coeffi-
cient. The equivalent two-port parameters will be derived. This has value in
ladder network analysis when a terminated three-port circulator appears in
cascade. An HP-67/97 program is provided for this transformation. More
generally, this result proves the important bilinear theorem, which states that
every Z, Y, or § response of a linear network is a bilinear function of any
branch impedance, admittance, or scattering parameter, in any mixed associa-
tion. For example, response S;, must be a bilinear function of any branch
impedance, say Z;. This has many practical applications in neutralization,
oscillator, filter, and amplifier design.

Finally, the impedance-mapping relationships will be derived, and a hand-
held computer program will be furnished. Many exampies will be provided to
illustrate these principles and applications.

7.2.1. Three-Port to Two-Port Conversion. Two-port scattering parameters
were considered in Section 4.5.2; the defining system of lincar equations was
given in (4.46) and (4.47). In general, such systems for any number of ports
may be described in matrix notation as

b=8a. (7.20)
This notation for three-port networks stands for
by=s;a;,+sp8, 45,8,
by =88, + 55,8, + 8,543, (7.21)
by=8;,8; + 53,2, + 55325 .

Three-port scattering parameters will be lower-case s;;, and two-port parame-

ij?*
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1 3

[ RNV S JUROS S——Y
3y ——r < a,
b, [s,1

S ]'2
Figure 7.3. A linear, three-port network with scaltering parameters 8-

ters will be upper-case §; (see the related network in Figure 7.3). Port 2 is
constrained by the reflection coefficient I', so that

a2= r2b2 . (7.22)
Making this substitution in (7.21} yields
b, =52, +5,,;b, + 545, (7.23)
by 8,8, +85,5b, + 55084, (7.24)
by=s5y,a, +5510%b, + 55423, (7.25)
Solving (7.24) for b, yields
8218 82385
=220 7S 7.2
i 5521 (7.26)
Substituting (7.26) into (7.23) and (7.25) yields
$y58 $,8
by s+ T2 s+ ), 7.7
U T /Ty sy, S W V] T (727
8,,8 §918
b =a(s +—£L)+a(s +—23—32-—). 7.28
PN A/T, sy NPT, =5y, (72%)

The equivalent two-port parameters are immediately available by compari-
son with the original set of two-port equations:

81251 812523
Su=syFri | Sy=s e,
11 11 1/r2_522 13 i3 1/1‘2—322

8428, 832823 (7-29)
Su=syt—————,  Sy;=syt———.
31 31 1/1‘!2_522 a3 33 1/1*2_522

In this case the two ports of interest are ports [ and 3. Also note that as I',—0,
5;—»s;, as required.

Program A7-2 in Appendix A for the HP-67 /97 evaluates the equations in
(7.29). The nine three-port scattering parameters are input first. The program
then converts any given port-2 terminating impedance (Z,) to the reflection
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coefficient T, with respect t¢ 50 ohms and finds the equivalent two-port
parameters.

Example 7,2. Consider the three-port scattering matrix

0862 /—63° 0800 /160° 0236 /75.3°
S;=|0.050 /20° 0.500 /—60° 0300 /-—98° (7.30)
2344 /129° 0400 /100° 0708 /—16.1°
Load these polar data into Program A7-2 by pressing keys fa and responding
to the row /column subscripts displayed. Write these data on a magnetic card

for later use. Now terminate port 2 (Figure 7.3) with a resistor of 200 /Q°
ohms by pressing 0, “enter,” 200, and key A. The results are

S, =08435 /—6432°,  5,;=03847 /63.03°,
S, =2.3561 /128.8°, S,,=0.7890 /—5.99°.

Since port 2 is normalized to 50 ohms, inputiing this value will show that
S;=s;, as expected.

(731)

ij?
The ladder analysis method from Section 4.2 can incorporate cascaded
three-port networks having the third port terminated. It is only necessary to

evaluate equations (7.29) and convert the scattering parameters into ABCD
parameters.

7.2.2, The Bilinear Theorem. According to Penfield et al. {1970), the bilinear
theorem states that any Z, Y, or S response of a linear network is a bilinear
function of any network branch impedance, admittance, or scattering parame-
ter. The response and branch types can be mixed. This is evident from the
preceding three-port to two-port conversion results, as will now be shown.

Problem 4.11 asked for the input reflection coefficient in terms of the
two-port scattering parameters and an arbitrary load (port-2) reflection coeffi-
cient. Figure 4.16 might represent such a network. As in the analysis leading
to (3.101) for input impedance, the input reflection parameter is

5128, - Ty —8)+(+8y)
1/T,— S, Ty(—8Sy)+1
where the two-port scattering parameter matrix determinant is
A=S|.IS22_512S2! . ’ (7.33)

The bilinear theorem can be confirmed by comparison of (7.32) and
equations {7.29). Each of the latter have the same bilinear form as seen in the
former, at least for reflection parameters. But it is well known that a bilinear
function of a bilinear function is itself bilinear. For example, suppose that
output port-2 reflection coefficient is

=8+ 3 (7'32)

7=
S T

(7.34)
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Iy 1 3 I3
Zs P BT a—
Ay - -« 93
+ + +
E, v, v, 'y
r) “— b, by ——m
Sh
Figure 7.4. Grounded-emitter transistor two-port network,
where normalized z,=27,/R,. Substituting this into {7.32) yields
, _azyta,
§ =_t*_ 2 ‘ 7.35
Uagz,+ 1 (7:5)
where the bilinear coefficients are
S”_A S1]+A 1_822
a,= Ay = ——0o, a,= . 7.36
=735, T T1ss, =193, (7-36)

Thus the bilinear function (7.32) of the bilinear function (7.34) is shown to be
bilinear, as in (7.35) with coefficients (7.36).

Consider the transistor in Figure 7.4. The emitter inductor is unavoidable at
high frequencies. The reverse transducer gain s, was given in (7.31) when
emitter impedance Z,=200+)0; it was S,3=0.3847 /63.03°. For perfect
neutralization, S,,=0. Setting S,;=0 in the (7.29) expression yields the re-
quired port-2 termination:

_ 33 7
f2 S13822 7 812523 -( 7

Example 7.3. Use the three-port scattering parameters in (7.30) for the
transistor in Figure 74. Assume a 50-ohm port normalization. Evaluating
(737}, perfect neutralization occurs when [',=1.3055 /164.94°. Since the
required magnitude is greater than unity, Re(Z,} would be negative. There-
fore, consider setting T', equal to 1.0 /164.94°; using the RTN,R /S feature in
Program A7-2 converts I', to an inductor with a reactance of +j6.6093 ohms.
Then keys A and D show that §,;=0.0450 /98.46°. Thus a 6.6-ohm inductive
emitter reactance produces much better neutralization than does a 200-ohm
resistance ([S;5]=0.3847) or a 50-ohm resistance (|S;|=0.236),

7.23. Mapping. Mapping is the most important single concept and tool in
Chapter Seven. The classical analysis of bilinear functions according to
Churchill (1960, p. 74) is to express (7.1) in the form of (2.2) in order to show
that the bilinear functions amount to linear transformations and inversions.
Linear transformations such as in the denominator of (7.1) do not change the
-shape of curves in the Z plane. Churchill {1960, p. 69) shows that inversions

T B
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~:

Imw

Re w
Figure 7.5. The bilinear transformation w=T+ Rp.

(Y=1/Z) always map circles and lines into circles and lines. For bilinear
transformations in linear networks, there is 2 much more useful decomposition
of the standard bilinear form in (7.1); this is
Z2-Z,

In (7.38), T locates the center of the branch-image circle, the magnitude of R
scales its size, and the angle of R determines its rotation with respect to the
w-plane coordinate system. The branch-image Smith chart has a complex
normalizing impedance (Z.), as explained in Section 7.1.2. This is illustrated in
Figure 7.5,

The significance of (7.38) and Figure 7.5 stems from the bilinear theorem in
Section 7.2.2. The small, rotated Smith chart represents the entire right-half
plane .of any linear network branch impedance, admittance, or scattering
parameter. The w plane represents the network’s response function, expressed
as a scattering, impedance, or admittance parameter. So the w plane might be
the Z;, plane, the Y plane, the S|, plane, etc. The small branch-image circie
may or may nol fall within the w-plane unit circle, should that be a scattering
parameter and therefore relevant.

It is not difficult to find expressions for the complex constants T, R, and
Z.. These relationships are obtained by putting (7.38) into the form of (7.1)
and comparing the coefficients of Z. Thus (7.38) becomes

3 Z[(T+ R)/Z:‘]+ [T—R(ZC/Z:)]

= Z(1/Z5+1 (739)
It is seen that
=1
Z.= 2t (7.40)
and
a;
=_1_T. 7.
a3 T (7.41)
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The right-hand constant expression in the numerator of (7.39) can be equated
to a,; then substitution of (7.41) yields
a,al+a,; 4a,ay+a
1= Ren, ~ aytay (742)
These results will be used to develop many important relationships that would
be difficult to formulate otherwise. They are also useful computationally, as
will now be shown.

Program A7-3 in Appendix A evaluates the bilinear coefficients in (7.35),
using (7.36) and the given two-port scattering parameters, It also continues by
evaluating the mapping coefficients in (7.40)—(7.42); this is accomplished by
steps 081-180. In addition to the polar, complex four functions {from Program
A2-1) on keys B, C, and D, key E computes the generalized reflection
coefficient (7.16). The result will be the Smith chart image of a normalized
load impedance plane as it appears in the input reflection plane 57,.

et ——————+—+
1.0 [vR:] 0.6 0.4 0.2 0.0 0.2 04 0.6 08 1.0
Figure 7.6. A map of the normalized load plane into the S}, plane for transistor Example 7.4.
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Example 7.4. Suppose that a transistor’s two-port scattering parameters
normalized to 50 ohms are

g=[047 [161° 0.101 /54° 43
237 /51° 047 [=71°) '

Key a in Program A7-3 solicits the input of these values. Pressing key A then
computes T=0.6070 /165.89°, R=0.3072 /55.63°, and Z ,=0.8516+j0.9715,
which is normalized to 50 ohms. (The bilinear coefficients may be recovered
from registers 7-9 using primary and secondary pairing: a,=0.4471 /184.72°,
a,=0.3147 /178.32°, and a,=07740 /48.76°) The load impedance point
Z, =25+j75 ohms in the Smith chart-image circle can be converted to
generalized, polar reflection coefficient form using key E: fill the stack with
0.9715, 0.8516, 1.5, and 0.5. The last two values correspond to the stated load
reactance and resistance normalized to 50 ohms. Key E then produces p=
0.4374 /102.28°. These results are shown in Figure 7.6. The values of T, R,
and p with respect to Z_ for the given normalized z, are evident in relation to -
the scale and angles involved. Note that the input resistance is positive for all
possible load values. (Why?)

Example 7.5. Consider the equivalent two-port scattering parameters ob-
tained in Example 7.2 by reduction of the three-port network in Figure 7.3
with port-2 termination Z,=200+j0 ohms. The two-port parameters in (7.31)
can be input into Program A7-3. The port-3 to port-1 mapping coefficients are
T=2.1024 /—128.54°, R=2.4012 /107.86° and Z_=3.5755+j4.1174 (still
normalized to 50 ohms as formulated). The input reflection plane S}, is shown

X,y =1165

Port 3 loxd image

X, = 2069

Figure 7.7. A map of the normalized load plane into the S}, plane for the three-port to two-port
data from Examples 7.2 and 7.5.
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in Figure 7.7; the smaller Smith chart is the S}, unit circle and the larger one is
the port-3 load-plane image. It is clear that there is a large region of the Z,
load plane that causes negative port-1 resistance. This situation is a function
of the port-2 termination, which is Z, =200 4-j0 ohms in this case.

Example 7.6. Consider the pi network shown in Figure 7.8. The capacitive
reactances at the frequency of interest are —350 ohms. The bilinear coef-
ficients, related to the scattering transfer function S,, as a function of
the middle-branch impedance Z,, are easily found using Z,=0, 1E9+30, and
1+j0 ohms and calculating the corresponding S,; values by Program
B4-1. The S,, values are 0.707107 /—45.000010°, SE—8 /—90.000018°,
and 0.700071 /—45.567277°, respectively. Then (7.3)—(7.5) yield the bilin-
ear coefficients a,=7.07E—10 /—45.0026°, a,=0.7071 /—45.0° and a,
=0.014] /44.9975°. Finally, (7.40)-(7.42) yield the mapping coefficients

50 2

W 1 Z

) ‘]L —j50 —i50 =

Figure 7.8. A pi network for mapping the Z; plane into the S;, transducer function plane in
Example 7.6.

50 §2

m +
T

-ttt
16 08 06 04 02 00 02 04 06 08 1.0
Figure 7.9. A pi-network series-branch plane mapped into the 5, response plane.
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T=04977 /8573727, R=04977 /90.2628°, and Z.=49.9932+j49.53670
ohms. These results are shown in Figure 7.9. An application might be tuning
the network by varying a reactance in the series branch.

7.2.4. Summary of Impedance Mapping. The linear, three-port network was
characterized by its scattering parameters; a set of equivalent two-port param-
eters was then obtained. Besides applications in ladder analysis, the resuits
clearly show the bilinear effect of any network branch on network response.
This is true because any two-port network branch may be *brought out” as a
third port. Hand-held computer Program A7-2 was provided to make the
three-port to two-port reduction calculations.

Although the three-port to two-port reduction showed the bilinear effect of
branch scattering parameters on scattering responses, it was necessary to show
that bilinear functions of bilinear functions are bilinear; this was illustrated.
The bilinear theorem was thus proved. This thecrem states that every Z, Y, or
S response of a linear network is a bilinear function of any branch impedance,
admittance, or scattering parameter, in any mixed association. A neutraliza-
tion example was worked. The bilinear theorem has a lot to do with feedback
analysis, especially when applied in conjunction with mapping. For example,
transistor shunt feedback is easily analyzed by this technique.

1t was noted that the standard bilinear form may be decomposed in several
different ways. For network behavior, it is especially useful to mold it into a
form having a complex constant for translation added to an ortentation factor
that multiplies the generalized Smith chart function. In this way, the effect of
all possible values of a branch impedance on a network response may be
visualized. Since bilinear transformations map circles and lines into circles and
lines in mixed association, certain critical branch loci can be visualized in the
response plane for subsequent analysis. Hand-held computer Program A7-3
was provided to convert two-port scattering parameters into bilinear coeffi-
cients that relate normalized load impedance to input reflection. In addition,
the mapping coefficients were calculated. Three examples of this technique
were provided, and Smith charts illustrated the results.

7.3. Two-Port Impedance and Power Models i
The development in this section will be in terms of admittance parameters.
One reason for this is that a recently defined power gain is developed in these
terms. Impedance could have been used just as readily for the general aspects;
in fact, most equations in this section can be expressed using impedance
parameters by simpiy replacing all the y’s and Y’s by z’s and Z’s, respectively,
and exchanging V’s and I's. Ironically, there has been a great emphasis on
scattering parameter relationships, and almost all recent design aids involve
these parameters. However, many crucial concepts are more readily seen in
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the impedance or admittance planes; the conversion of expressions using these
parameters to those using scattering parameters in no way changes the
phenomena. Therefore, this section will utilize admittance parameters, and
Figure 7.1 will apply. Section 7.4 will utilize scattering parameters.

The mapping concept plays a critical role in avoiding a tangle of complex
algebra that can only obscure significant results. Its embodiment of the
generalized Smith chart is important, because the normalized power delivered
by a complex source or at the output terminals of any linear two-port network
happens to be a parabola of revolution (paraboloid) having the Smith chart as
its base. When that Smith chart is mapped into the input plane, the inclined
plane that represents input power intersects with the paraboloid of output
power. Then efficiency (output power divided by input power} is easy to
visualize, as is the point of maximum efficiency, where the plane is tangent to
the paraboloid. Thus impedance and power relationships that are far from
obvious may be visualized easily.

7.3.1. Output Power Paraboloid. Power transfer from a complex source to a
complex load was considered in Section 3.2.3. The load power, normalized to
the source power available, was expressed in (3.47):

P

PL =1—|al% (7.44)

as

This has the form of a parabola,
y=1-x% (745)

where x is the radius corresponding to a constant reflection magnitude, ie.,
constant normalized output power.

To extend these results to the output port of a linear two-port network,
consider the model in Figure 7.10; it is consistent with the defining admittance
parameter equations, (3.79) and (3.80), in Section 3.4.3. For constant V=1,
an equivalent Norton source at output port 2-2' has the available power

P .= |YZ1|2 (7.46)
al = ] .
425,
1 || 2 l2
N VoVia "
. . ik G iB
C) iB, G Vv, o iby P22 922 Vy t e
V1 ¥
7 !

Figure 7.10. An admittance parameter model consistent with defining equations.
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Figure 7.11. OQutput power paraboloid over a y%, Smith chart when V,=1.

which clearly occurs when Y, =y%,. The nomenclature
¥ =&;+jb; Viandj(where V means “for all”) (7.47)

will be employed consistently. The pertinent load reflection coefficient, ac-
cording to (7.17), will be

_ yh—YL
2 yntY,

‘ (7.48)

’ Thus, for V,=1 volt, the Linvill and Gibbons (1961) geometric model of |

’ normalized output power is the paraboloid shown in Figurc 7.11. The P, ‘
plane will be derived in the next section.

} 7.3.2. Input Admittance Plane. Section 7.2.3 showed how the load plane
could be mapped into the input plane. The development here is similar to that
for the scattering parameters in Section 7.2.2. It begins by writing the input
admittance as a function of load admittance, analogous 1o (3.101) for impe-
dances:

Yu¥i2

LA 7.49
Yt ¥, (749)

Yin=yll_
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This may be put in the bilinear form

Y, +
ke (7.50)
a,Y, +1
where the coefficients are
1=-¥"1-", az‘—""é" 33=“]—3 A=y ¥u—¥a¥iz- (7.51)
Y2 Yz Y22
Mapping takes a form similar to (7.38):
Yc_ YL
Ym—-T+RY: v, (7.52)

The mapping coefficients are again obtained from (7.40)-(7.42), except that
the sign of R in (7.41) must be reversed because of the reversed positions of Z_
and Y_ in the Smith chart definition. The results are

2 —_
T= _%v_y.%éf_z_ﬁz, (7:53)
_ T ¥YaYu _ : 4
R_-———_rexp[_](w+ 921+9,2)], (7.54)
2g5
Y. =ys,. (7.55)

The 6 in (7.54) are the angles of y;,. The input admittance when Y, =y}, is
identical to the Cartesian coordinates of the T vector, From {7.49) or (7.33),

Ym(yEZ) = KlRl —jBMs » (756)

where R is from (7.54). The stability factor K will be one of the most
important constants in following developments:

2811822~ Re(¥21¥Y12)

K= 7.57
[¥21¥12] { )
The negative input susceptance is also defined for later use:
Im
Byy= ~ by, 4 —mo2n2) (7.58)
28y,

The input admittance plane geometry is completed by recognizing the input
power inclined plane, assuming V,=1:

P =Gy, (7.59)

The paraboloid and inciined plane in Figure 7.11 thus appear in the input
admittance plane, as shown in Figures 7.12 and 7.13. The angles 4,, and §,,
are the arguments of y,, and y,,, respectively. It is easy to see from Figure
7.13 that the stability factor K is greater than 1; otherwise there would be a
region in the Y, and a,, planes where G;, would be less than zero, ie., the
two-port network would be unstable.
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Power
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Figure 7.12. Two-port power surfaces over the input admittance plane when V= I.
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Figure 7.13. Input admittance plane showing the oriented Smith chart,

7.3.3. Maximum Efficiency. For this section and for Section 7.3.5, it will be
convenient 1o solve a minor geometry problem clearly related to the preceding
development. Consider Figure 7.14. The difference h is the added power.
Differentiating it with respect to x and equating the result to zerg shows where
h is maximum:

(x—by= =25 (7.60)

ao

Intersections 4, and 7, in Figure 7.14 are points where the efficiency (power
out divided by power in} is unity. Any other line through the origin is related
by P=nx, where n may be less than or greater than unity. Given some value
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P=1nx
P=x
PBD-‘-__
m
h M2
£ 2
P=h_i1 -{’L%bi |
T
x —-b
i)
L
8] b hte

Figure 7.14. A geometry problem related to two-port power.

of n, the two intersections of such a line and the parabola are easily found
using the quadratic formula

1| o ar?\* o,
(x-—b)=~2~ P * T —4 bP —f . (7.61)

The extreme value of ), % in Figure 7.14, is at the point of tangency shown,
Note that the tangent point can exist only if b>>r, as illustrated in Figure 7.14,
or if b<C —r when the parabola is on the negative axis. This tangency occurs
when the radical vanishes in (7.61). A second application of the quadratic

formula yields
— 2 —
f= 2Pa0—b———- “;rl , (7.62)

and no solution exists if b? < r’. The corresponding coordinate is

(£—b)=~(b~yb*~1*). (7.63)

The point of tangency between the plane and the parabola yields an
expression for the maximum efficiency of a linear two-port network. Using
(7.46) and (7.54) in (7.62) and Figures 7.13 and 7.14, the y-parameter maxi-

mum-cfficiency expression is
(K~yK?-1}). (7.64)

J2t
Y2

Mmax =

The stability factor K was defined in (7.57). The input admittance correspond-
ing to the maximum efficlency may be found by using (7.63), (7.54), and
Figure 7.13:

Yin("max) = '!zzzg;fl VK2 -1 _'jBMs . (?‘65)
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The negative input susceptance B,,, was defined in (7.58). Given a network
characterized by short-circuit y or other parameters, it is important to realize
that the efficiency is a function of only the load and not the source.

Example 7.7. Consider the transistor y parameters

¥y =13.008E-3 /2946°, y;=14000E-3 /—61.26°,

¥y =34.4637E~3 /-90.26°, y5»,=5.0772E-3 /86.31°.
What are the stability factor and maximum possibie efficiency? From (7.57),
K=1.03253. From (7.64), 9,,.,= 19.088, or a 12.81-dB gain. Since K >1, the

transistor is stable for all possible right-half-plane loads (see also Example 7.10
in Section 7.4.3).

(7.66)

7.3.4. Conjugate Terminations. Roberts (1946) developed the concept of
conjugate-image impedances. This is the condition in which a linear two-port
netwaork is conjugately matched at both ports. The development is worthwhile,
because it will be shown that the load impedance thus defined results in
maximum efficiency. Then, if the generator impedance is selected as the
conjugate of the corresponding input impedance, the maximum efficiency is
also the maximum transducer gain, i.e., maximum P /P,,. '
Referring to Figure 7.15, if

Yin=Y:ds and YQ=YKJL i (767)
then (7.49) yields
VoY=t Yu )Y~ Yis). (7.68)

Note that Y, may be expressed in terms of the source admittance by using
(7.49) with subscripts 1 and 2 interchanged, Thus

Ya¥z= (Yu + Y (Y22 — Y- (7.69)
The last two expressions for y,y,, may be equated. The real parts yield
Gy, G
M ML g (7.70)
gu En
1 b R Iz 2
Ying - O
+ + Linear netwack +
E, v, Z,Y,or8 v, YL
parameiers
i *} .
Y Yo
s = By 1B, Yo = G *+iBus

Figure 7.15. Conjugate-image admiilances Y, =Y and Y =Yg .
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and the imaginary parts yield
b+ By, _ byt By _

f,. 7.71
En Exn (775
Therefore, the terminations must be
Yume=gnb+i(—by,;+8,4), (1.72)
and
Yur =g +3(— by +guf). (7.73)
To find the #, and &, functions, substitute the last two equations into (7.69):
Y2JYJ2=gngzz[(1 "Brz_eiz) +j295]- (7.14)
Clearly, the imaginary part of (7.74) is
Im(y31¥12)
y=———. 7.75
28182 (712)
The real part of (7.74) yields
Re Im?
g2=1- (Y21Y12) _ (Y21¥12) (1.76)

11822 (2g |822)2 .

The following expression for #, can be shown to be equivalent to (7.76) by
substituting the definition of K from {7.57). A concise expression for 8, is

— |Y21Ynzh‘K2‘1

9, 7.77
281182 ( )
The conjugate-image admittances thus are
. Im(y,¥12) .
Yu: =818, +j| ~by, Er =gl +iBy,. (7.78)
222
. Im{y;viz)
Ya =820, +] [—bzz‘*'r ) (7.79)

where £, and By, are defined by (7.77) and (7.58), respectively. Now it is seen
that (7.65) and (7.78) are conjugates. The conclusion is that the load admit-
tance that enables a conjugate-image match is also the load admittance that
causes the maximum possible efficiency. It is again stated that the maximum
possible efficiency is independent of the actual source admittance. However, it
is common practice to assume the source admittance Yy, so that the maxi-
mum possible efficiency is also the maximum possible transducer gain. Also, it
is repeated that n_,, has no meaning unless |K|> 1.

Finally, it is noted that loci of constant efficiency in the a,, plane are an
eccentric family of circles. These may be visualized as the intersections of
inclined planes and the paraboloid in Figures 7.11 and 7.14 projected onto the
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a5, plane. However, a generalized reflection coefficient normalized to (7.79)
will produce a concentric farily of constant-efficiency circles when projected
on the different map of the load admittance plane.

7.3.5. Maximum Added Power. Kotzebue (1976, 1979) has described a
method for maximizing the two-port added power for a fixed value of the
input port independent variable, e.g., V,. It has been observed that high-
frequency, bipelar junction transistors tend to saturate at their input, while no
such clipping is observable at their output. The assumption of constant V| in
the preceding development enables the extension of the linear design approach
to some nonlinear cases, where the so-called large-signal parameters are more
appropriate. Kotzebue also argues in favor of the maximum added power
approach for the common situation where K < 1, and the transistor is poten-
tially unstable.

The added power when V| is constant is shown as h in Figure 7.14. The
location of the maximum added power was given by (7.60). Figure 7.13, (7.46),
and (7.54) enable the expression of the a,, reflection coefficient at the point of
the maximum added power:

*x
_Y

o (7.80)

Ay

The corresponding power delivered to the load is available using (3.47) and
(7.46):

- |Y2!]2“'|.Yi2f2

PL 4g,,

(7.81)

Solving (7.48) for Y and using (7.80), the load admittance that produces the
maximum added power is

28,521

Y, = —ypt o222
- Yo Yatyh

(7.82)
It is interesting that as the reverse parameter y;,—>0, Y, =y%.

Kotzebue calis the efficiency when the added power is maximized the
“maximally efficient gain.” Its expression requires the input power, which is
simply G;, for V, =1 voit. The input admittance for Y, in (7.82) is obtained
by using (7.49):

e yaY+1yil
Yo=yn T 2gn (7.83)
Then its real part yields the input power
K _ 2
P =G, = Y2i¥ia — 12 , (7.84)

28y
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where stability factor K is defined by (7.57). The maximally efficient gain is
thus \

- |Y21/Yu|2’}
ME 2(KIY21/Y12|_1)‘

Kotzebue makes the usual assumption that the source is chosen as the
conjugate of the input impedance with the unique Y, in (7.82) in place; then
the efficiency is the same as the transducer gain. It is helpful to note that
[¥21/¥121 =1851/8)5|. Since K <1 precludes obtaining the maximum possible
efficiency, note that the maximally efficient gain is finite for a nonzero
denominator in (7.85). The condition for avoiding an infinite Gy 1s that

Yiz Si;

val |Sa

Most practical transistors will satisfy (7.86), so that Gy, will be finite even
when K < 1.

Program A7-4 for the HP-67 /97 hand-held calculator computes the essen-
tial relationships previously given, It also computes the overall stability factor
K’

(7.85)

K>

: (7.86)

_ 2(G,+ 80 NGy +82) — Re(y1¥12)
(2112 '

Comparison with {7.57) shows that the overall stability factor takes into
account the additional damping effect of the source and load conductances.
These are seen at the ports in Figure 7.10. The overail stability factor is
significant, because bounded source and load admittances may ensure stabil-
ity for a transistor that otherwise might be unstable,

’

(7.87)

Example 7.8. Exercise Program A7-4 using the following short-circuit param-
eters taken from 4-GHz transistor data:

yo[l064E—3 /8213°  0.8603E—3 /—88.68° (1.88)
3454E—3 /—-16.68° 4549FE—3 /34.64° ’ ’

These are input individually into Program A7-4 using key a in the manner
described in Appendix A. In this case, the transistor is only conditionally
stable, since K=0.6317; Gy,g=15.19 dB, and the ioad and source reflection
coefficients are 0.6869 /16.34° and 0.8532 /71.92°, respectively. These reflec-
tion coefficients for the load and source correspond to Y =3.786-)2.771 and
Y, =2.415—j14.399 millimhos. With these terminations in place, the overall
stability factor (7.87) is K'=2.2237. A model of the transistor employing the
conjugate terminations is useful for developing matching networks. This is
shown in Figure 7.16. The conjugate of the source impedance is 11.35—367.68
chms; the model’s series input representation is based on the impedance at 4
GHz. Similarly, the conjugate of the load impedance is 264.13]] —j360.95
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0.59
o——‘ = l O
1.4 % 264 0.1
Lo L -0

pF and ohms

Figure 7.16. Transistor model at 4 GHz based on maximally efficient gain terminations.

parallel ohms, as shown. Kotzebue argues that this model is more accurate
than a model obtained only from §,, and S,, for the input and output
branches, respectively. (See also another example of maximally efficient gain
included in Example 7.11 and Figure 7.21.)

7.3.6, Summary of Two-Port Impedance and Power Models. A remarkably
compact overview of geometric models for linear network behavior is avail-
able by the use of mapping concepts. The generalized Smith chart was shown
to constitute the base of a parabola of revolution that is the analog of the
linear two-port output power normalized to the power available at the output
port. The y-parameter model of a two-port network that utilizes two controlled
current sourées (Figure 7.10) has available output power that is a function of
V, and two y parameters. Thus it is easy to visualize how the output power per
unit V, behaves with respect to any load admittance and its corresponding
generalized reflection coefficient.

The mapping concept enables the location, orientation, and scaling of the
generalized Smith chart in the two-port network’s input admitiance plane.
Location of the load reflection disk completely inside the positive G;, plane
ensures stability; otherwise, all or part of the possible load admittance region
might cause negative input conductance. The stability factor was defined and
used as a valuable yardstick to indicate the amount of stability margin in
various cases, ie., K> 1. Because input power per unit V, is just a plane
inclined in the G, direction, there is an easily visualized relationship between
load and input impedances and efficiency.

The maximum possible efficiency and the maximum added power condi-
tions were examined. The unique load admittances and corresponding input
admittances were obtained for each case. Standard practice specifies a conju-
gate match at the input port so that efficiency and transducer gain are
identical. In fact, a separate development showed that simultaneous conjugate
matches at both ports required exactly the load admittance that produces
maximum efficiency. In all situations, it is important to remember that
efficiency is not a function of source impedance.

Kotzebue's maximally efficient gain was defined as the effictency when the
added power is maximized. It can be interpreted as maximizing the two-port
activity. It was also shown to be finite in most cases where the stability is only
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conditional, i.e., when K < 1. An example was worked using Program A7-4 in
Appendix A. It calculated the stability factor, maximally efficient gain, both
terminations, and the overall stability factor, which includes the damping
conductances of these terminations. A transistor model for the input and
output branches was derived from the conjugate termination immittances.
This provides a starting point for matching network problems.

Developments in this section were written in terms of admittances, al-
though the same development in impedance terms essentially requires only a
change in labels. Many of the concepts introduced are more casily visualized
in these parameters than in scattering paraméters, Ironically, most recent
computer design aids are based on scattering parameters because this is the
most effective way to characterize physical systems accurately. The next
section develops very flexible gain relationships in terms of scattering parame-
ters. All of these concepts are valid in any standard set of characterizing
parameters, and conversion from one set to another is simply a matter of
running existing short computer programs.

7.4. Bilateral Scattering Stability and Gain

The scattering parameters introduced in Section 4.5.2 are easier to measure
than other network-characterizing sets, e.g., open-circuit z and short-circuit y
parameters. It is customary to normalize measured scattering parameters to
50+j0 ohms. The measuring process then requires port termination by 50-
ohm resistors, which can be obtained with considerable accuracy at even very
high frequency. Conversely, it is exiremely difficult to obtain an open or short
circuit at high frequencies. Therefore, the network will now be viewed as
illustrated in Figure 7.17,

It will be essential to renormalize the scattering parameter set from one
normalizing impedance at each port to other values. This will usually amount
to changing a port’s normalizing impedance Z; from Z;,=50+j0 ohms to some
new value, Z. The original set will be designated §, and the new set §'. The
reflection coefficients of the new terminating impedances with respect to the
original ones will be r; and r,, as shown in Figure 7.17. This renormalization
will provide comprehensive expressions for network behavior between com-
plex sources and complex loads.

i 2
2 | —
+ — Network with § - —}
a, normalized to Z} at az h
b, port 1 and normalized b, 2
|-> —— to Zj at port 2 ’-i_o__l
[ v 2

Sy
Figure 7.17. A two-port network with scattering notation,
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This section begins with the general relationship for converting from one
set of port normalizing impedances to another set. This will provide the basis
for almost all further development. Then stability will be restated in scattering
parameter terminology. The stability factor is equivalent to that previously
formulated in y parameters; here, stability circles will be located on input and

~ output reflection planes.

Several gain expressions previously defined will be put in scattering termi-
nology, and several more gains will be defined. In particular, loci of arbitrary
gain values will be defined for use when stability is conditional or uncondi-
tional.

A number of examples will be worked. However, no programs are provided
for this section. They are so common for every major personal computer,
desktop and hand-held, that there is little reason for duplication. The empha-
sis here will be on the origin of the expressions that are commonly employed
in current scattering analysis of linear networks. Applications include oscilla-
tor as well as amplifier design. Since there are a number of recurring complex
constants required throughout this development, they are collected in Appen-
dix E. The equations will be referenced as (E.xx), where xx is the equation
number.

7.4.1. Changing S-Parameter Port Normalization. Referring to Figure 7.17,
suppose that the scattering matrix 8 is defined for port 1, normalized to Z,,
and port 2, normalized to Z,. Port normalization was described in Section
4.5.2. Even though the Z; constants may be complex, they are usually 50+ j0
ohms, as obtained by automatic measuring equipment, and the following is
casier to understand in this context. Suppose that the port normalizing
impedances are to be changed from Z,; to Z{, resulting in the new scattering
matrix §’. The new scattering matrix has been related to the original one by

‘Kurckawa (1965); his derivation is too general for the present discussion. The

transformation is
S'=A"(S—R*)(U-RS)™'a*. (7.89)
Matrices A, R, and U (the unit matrix) are diagonal, and the * superscript is
the conjugate operator. The diagonal elements in matrix R are
Z-Z,
ri= Z:+Zl* 3 (7.90)
and the diagonal elements in matrix A are

1—r*
A= V=i (7.91)

1

‘where i=1,2. Clearly, (7.90) defines the port reflection coefficient r; of the
mnew normalizing constant, commonly with respect to 50 ohms. Thus r; and r,

will be called the source and load coefficients, respectively.
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Although (7.89) is valid for any number of ports, this development will
apply only to two-port networks. It is not difficult to use (7.90) and (7.9]) in
(7.89) to obtain the four expressions for the S parameters. They are:

| A} [(] —1‘2822)(5”—r;")+rZSuSz,]

Sh=—7 , 7.92
! A [(1—TJS]])(l_rzszz)_rlr2S12S2!] (7.92)
* S(1-r)?
Si= o Al Inl) , (7.93)
Ay [(l“rlsn)(l ‘rzszz)“rlrzslzszl]
A® S, (1~}
Sh=—%" L~ lel) : (7.94)
A, [(l =081 - rlszz)_rlr2812521]
, _ A2 [(1 —rlS“)(Sn—-r;)+rlSuS21] (7.95)

2 A, L =181)(1=585) ~ 11138585 |

These relationships have important analytical and computational applica-
‘ tions. For example, if r,=0, then (7.92) reduces to (7.32), the input reflection

coefficient of a two-port network characterized by 50-ohm scattering parame-
i ters and terminated by an arbitrary reflection load referenced to 50 ohms.
‘ Also, if the network is operated between complex source Z) and complex load
Z;, then the forward transducer function is exactly (7.94). Referring to Figure
7.17, the forward power relationship is

P, 2

P

as

b,

Gy=|SyP=
=S5 al

(7.96)

Load terminations that cause instability will cause |87,| in (7.92) to exceed
unity, and this boundary can be located by that relationship; a similar
statement can be made for generator r; regions that effect the output port,

There is at least one application where normalizing constants Z, would not
be 50+ j0 ohms. There are advantages to an analysis where Z, in {7.90) would
be the conjugate-image impedances. This usually requires two applications of
(7.89), the first one being from a 50+j0 normalization to Zy,, and Z,, as
defined for admittances in Section 7.3.4. This will be discussed further in
Section 7.4.3. :

7.4.2, Stability. The load-image circle in the input admittance plane was
described in Section 7.3.2, where it was easy to see that G,, <0 was entirely
possible, depending on the network’s characterizing parameter values at that
frequency. The geometry showed that the input power was negative in that
region. Taking this to mean instability, a similar analysis will be obtained for
scattering characterization. Woods (1976) has shown that a necessary and
sufficient condition for unconditional stability is that |S},] <1 when |rj< L
His simple criterion for unconditional stability of a linear two-port device,
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such as a single-chip transistor, is
K>1, [al <1, (7.97)

where stability factor K is defined by Eguation (E.2}, and A by Equation (E.1)
in Appendix E. These criteria are not sufficient for cascaded amplifiers or
active devices embedded in reactive networks, because there may be local
instability.

When the network is not unconditionally stable, the regions in the termina-
tion planes can be located by imposing the unit reflection magnitude con-
straint at the opposite port, Consider the fixed source r, and locate the values
of load r, where |S{,|=1. Note that r, is a generalized reflection coefficient, as
described in Section 7.1.2. An important requirement is that the real part of
the normalizing constant be strictly positive. There are no other requirements,
so that it is possible to assume that r, is normalized to an arbitrary, positive-
real generator impedance. Then r,=0, and it will still be true that |S]|=1
locates the r, stability boundary. This is a simplifying argument which
supports the conclusion that the stability region in the r, plane is independent
of 1,.

It has been mentioned that r; =0 in (7.92) yields (7.32), where I'; =r; in the
present analysis. Solving this for r, yields

S'n - Sn
= . . 7.98
2 llszz"A ( )
Now 8§/, is within a unit circle if
# Z,_ 1
n= Z-!-_l (7'99)

for a hypothetical Z, which is introduced so that impedance mapping may be
employed. This is illustrated in Figure 7.18. Substituting (7.99) into (7.98),

= 2L 2 (7.100)
2T aZ+1 ’
51y image
Hypothetical
Z plane
.z
8 .
plane *Z
- ———— -
LT S /Z__%
a2+ Z+

Figure 7.18. The r;, 8}, and hypothetical Z planes for deriving the stability region.
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where the bilinear coefficiénits are
5,,—1 S, +1 A-S,,
=—, A= ——, ay;= .
A8y, A+85,, A+S,,
Now r, corresponds to w in the standard mapping form, (7.38) in Section
7.2.3. From (7.42),
_ (Su+ 1)(A* -8H)+ (S — IA* +5)

(7.101)

a,

" AR5, B rS)(E ) (719
Further complex algebra reduces this to
83, —§,,A*
T=-2_"1_. (7.103)
ISxnl*— 4]

Since only the magnitude of mapping coefficient R will be of interest, (7.41)
will be rewritten in the form
3.3 al - 3.233
_.—R= —— .
) a} as+a} (7.104)
Substitution of (7.101} yields
25 p _ A4S (~8,8y)
a3 (A+8y) |S,,/*— AP

(7.105)

The stability circles have been located in the r, plane, as illustrated in
Figure 7.18. Their center is located by mapping coefficient T in (7.103); this is
the complex constant expressed by Equation (E.16). The radius of the stability
circle is the magnitude of (7.105); this is (E.18). An entirely similar analysis
that locates the stability circle in the input (r|) plane is based on assuming that
r,=0 and setting |S5,] equal to 1, using (7.95). The same result is obtained,
except for interchanging subscripts. The location and radius are given by
(E.15) and (E.17).

Bodway (1967) discussed the six possible locations for the stability circle in
a port’s reflection plane, as shown in Figure 7.19. In cach case, the small
Smith chart represents the port reflection plane r,. For discussion, suppose
that the stability circles are in the output plane and the Smith charts represent
the r, output termination plane. Then their interior represents passive termina-
tions having R, >0. In the left-hand cases (a—c), the port origin is not
enclosed by the stability circle; therefore, the device is stable outside the
stability circle, corresponding to positive input resistance. In the right-hand
cases (d-f), the origin is enclosed by the stability circle; therefore, the device
is stable inside the stability circle, especially for the positive R, that results
from Z; =50+ j0 chms.

In the next section, device power efficiency (or gain) n will be defined in
(7.108) as the ratio of power delivered to the load divided by the input power
delivered by the source. Amplifiers are usually designed so that both load
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Figure 7.19. Six possible stability
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power and input power are positive, corresponding to positive R and positive

R,,, respectively. Regions having positive or negative n are shown in Figure

7.19 by superscripts. Note that the region outside the Smith chart in Figure
‘ 7.19b represents power going into both input and output ports, since Ry <0
‘ and R, >0. Figure 7.19c¢ represents a backward amplifier within the small

stability circle, because both R, and R are negative. The shaded areas
\ represent loci where 7 is negative and R, <0 when R >>0; this does not occur
in Figure 7.19¢, f, where the device is unconditionally stable.

The Smith chart origins usually represent 50+ 0 ohms; the system must be
stable for 50-ohm terminations in order to be measurable. When the stability
circle does not enclose the origin of the termination’s Smith chart (r), it
defines a region of negative-real network terminal impedance (Z;, or Z,), as
shown in Figure 7.19a—c. For example, Figure 7.19¢ shows that only certain
negative-real load impedances could produce negative-real input impedances.
Conversely, when the stability circle does enclose the origin of the termina-
tion’s Smith chart (r,), it defines a region of positive-real network terminal
impedance (Z;, or Z,), as shown in Figure 7.194-f. For example, Figure 7.19f
shows that any load with reflection magnitude just slightly greater than unity
will cause negative-real input impedance. It is interesting to note that con-
Jjugate-image matching is always possible for unconditionally stable networks,
but this may or may not be possible for conditionally stable networks,

Example 7.9. Suppose that the device scattering parameters have been mea-
sured on a 50-chm system and found to be

g |0385 /=552 0045 /90° (7.106)
2.7 /78° 0.89 /—26.5° 1 )

Using (E.2), stability factor K=0.909, so that the stability circles are of
interest. Using (E.15)—(E.18), the output plane stability circle is centered at
r,=1.178 /29.88°, with radius p,=0.193; the input plane stability circle is
centered at r,,=8.372 /—57.6° with radius p,,=9.271. These circles are
plotted in Figure 7.21, in the following section.

7.4.3. Bilateral Gains and Terminations. There are several useful gain ex-
pressions applicable to Figure 7.17 that are available from the renormalized
scattering parameters in (7.92)~(7.95). Transducer gain Gy has been defined in
(7.96). Some simplification of the magnitude of (7.94) is avaijlable:

582,[2(1 - ‘rl(z)(l - ‘T2|2)

=18~ l'2522“"1\1'2'5'2 .

Gr=|8;,)*= (7.107)

Using (4.51), it is easy to show that the efficiency may be expressed as

IS54/* '
g= 2 (7.108)
-8y
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It can be shown that this reduces to
N=8uL,, (7.109)
where g, in (E.14) is the maximum 50-ohm transducer gain, and g, is defined
as:
L=t

(1~ iS,,lz) +|r,)’D, — 2 Re(r,Cy) -

8= (7.110)

The maximum possible efficiency from (7.64) is similarly expressed in scatter-
ing notation by (E.11), because

Yu
¥12

The power availabie at output terminals 2-2' in Figure 7.17 relative to the
power available from the source is the available power gain:

S,
Sl2

: (7.111)

GA=__—_\S'2'|2 =802 5 (7.112)
1 |85l
where g, 18 defined as:
1-|r)?
g = (7.113)

(1- ISHIZ) +1r,1’D, -2 Re(r,C)) .

Conjugate-image matching occurs when the source and load reflection
coefficients are given by (E.12) and (E.13), These may be derived by solving
the pair of equations obtained by setting the magnitudes of (7.92) and (7.95)
to zero. Another approach is to convert the conjugate-image admittance
expressions in (7.78) and (7.79). Load reflection coefficient ry, from (E.13)
results in maximum efficiency, (E.11). Maximum gain is obtained when the
source reflection coefficient is r,;, from (E.12):

G

It was remarked in Section 7.3.4 that generalized reflection coefficients
normalized to conjugate-image immittances map constant-efficiency loci onto
concentric circles on the generalized Smith charis. It can be shown that
equations (7.110) and (7.112) define the related eccentric family of constant g,
and g, circles on the r, and r, reflection planes, respectively. Bodway (1967)
gives the centers of such circles,

= & *
Toi_(]+ngi)Cj , (7.115)

max= Mmax When 1=y, (7.114)

with radius

1/2
N (I —2K|S;5, g+ Islzsulzgi)
- [+Dg

Pai (7.116)

for the r; planes, where i=1,2, These are valid for K < 1 as well as for K> 1.
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The value of g is always the desired gain divided by the maximum 50-chm
transducer gain |S,,|>. In decibels, g; is the gain with respect 1o gain g, For
g,— oo, location (7.115} and radius (7.116) approach the stability circle in the r;
plane.

Example 7.10. Suppose that the 50-ohm measured transistor data are:

. 0277 /—59° 0078 /93° (7.117)
192 /64° 0.848 /—31°| ’

This is equivalent to the y-parameter data in (7.66) (Example 7.7 in Section
7.3.3), where it was found that K =1.033 and 7, = 19.088 dB. The maximum
50-0hm transducer gain is g,=3.686, or 5.666 dB, according to (E.14). To
locate the 10-dB efficiency circle in the 1, reflection plane, caleulate g,=10—
5.666=4.334 dB. Then (7.115) locates the center at 0.781 /33.85°, and (7.116)
fixes the radius at 0.214. This is shown in Figure 7.20. The 10-dB efficiency

+1

=

r, for 10 dB
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r

TR WA T TR SN SIS SH N—— 1
L S

i
| ZEnaE Saman Bk S LA

1.0 08 0.6 0. 0.2 00 ' 0.2 0.4 08 0.
Figure 7.20. Smith chart for Example 7.10.




266  Linear Amplifier Design Tools

circle is shown along with ry; and ry,,, according to (E.13) and (E.12). Any

load may be selected on the 10-dB circle. Choose the one nearest the center; it
| is 0.567 /33.85°. Usually, it is the 10-dB transducer gain locus that is desired;
| therefore, the source must be the conjugate of the input reflection coefficient.
: From (7.32), the input reflection coefficient for the selected load is
| 0.276 /—~93.33°. The source reflection must be the conjugate of this value,
and it is obtained by impedance matching, as discussed in Chapter Six. It is
aiso plotted in Figure 7.20.

Example 7.11. Use the scattering data from (7.106) for the conditionally
' stable device considered in stability Example 7.9. Plot the 12-dB gain circle.
! The maximum 50-chm transducer gain is g,=7.290 by (E.14). Therefore, since
| 12 dB corresponds to 15.849, g,=15.849/7.290=2.174. Then (7.113) locates

| / Input stability circle
I

+1

Output
stability

X=+05 circle

1.0 8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 08 1.0
Figure 7.21. Smith chart for Example 7.11.
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the 12-dB circle centered at 0.681 /29.88° with radius 0.324 from (7.116). This
is shown in Figure 7.21. The stability circles from Example 7.9 in Section 7.4.2
are also piotted; it is necessary to select a load on the 12-dB efficiency circle
that is in the stable region. Again, arbitrarily selecting the load nearest the
center, 0.357 /29.88°, the input reflection, by (7.32), is 0.373 /-—-64.46°, and
the source reflection must be the conjugate of this (see Figure 7.21) if the
plotted circle is to represent forward transducer gain. Note that the source
reflection is outside the input plane stability circle, so that stable operation is
assured. Also, the maximally efficient gain source and load reflection coeffi-
cients (I', and I',) are plotted in Figure 7.21. For this device, Gy g=15.26 dB,
according to Section 7.3.5 and Program A7-4.

7.4.4. Summary of Scattering Stability and Gain. 1t was noted that numer-
ous programs on readily available small computers exist for scattering stability
and gain calculations, It is most important to know the territory. This section
has explained the origins of the important scattering relationships for bilateral
(8,7 0) networks, which apply to most real devices.

Various significant gain expressions have been identified and several under-
lying assumptions have been noted. For example, the use of efficiency as
forward transducer gain can occur only when the source is chosen to be the
conjugate of the input impedance with a selected load in place. Conjugate-
image reflection terminations were given, the load reflection enabling the
maximum possible efficiency. It was remarked that concentric circles of
constant efficiency may be plotted on generalized Smith charts normalized to
the conjugate-image impedances; the interested reader is referred to Bodway
(1967).

Arbitrary efficiency and gain loci turn cut to be eccentric families of circles
on the r; and r, termination Smith charts. Expressions for calculating the
location of their centers and their radii were given along with several exam-
ples. Similar families for circles of maximally efficient gain (Section 7.3.5) are
available in the work of Kotzebue (1976). The most general expression for
forward transducer gain was given in (7.94); it may be used without any major
assumptions.

7.5. Unilateral Scattering Gain

The bilateral gain equations in Section 7.4 are greatly simplified if it is
assumed that the device is unilateral, i.e., S;;,=0. Also, stability can no longer
be considered, because the stability factor, K in (E.2), is no longer defined. A
single scalar estimate of validity for this assumption can be calculated to
determine the relevance of unilateral analysis. Furthermore, the conceptual-
ization of the entire design process is considerably simplified. However, many
high-frequency transistors have substantial S, reverse transducer gain. Read-
ily available computers eliminate the advantage of algebraic simplicity. How-
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ever, the easier visualization of design factors is still a decided advantage of
unilateral design, when it is valid.

7.5.1. Transducer Gain Simplification. Setting S,, equal to zero in trans-
ducer gain G in (7.107) yields

Gry =888 - (7.118)
where
g =——]-q-_|—r1'—2— (7.119)
LS
and
1~ |,
gL= “—_}Z—Sl—z\; (7.120)

Recall that the maximum 50-ohm transducer gain g, is defined in (E.14). The
maximum unilateral gain occurs when the denominators in g, and g, are
minimal. For |S;] <1, this occurs when r,=8?, where i=1,2. Thus the maxi-
mum unilateral transducer gain is

GTumax = Buimax Bo BLmax » (7. 12 I)

where g..... and g, ... are defined in (E.5) and (E.6), respectively.

The block diagram depicting the factors in (7.118) and (7.121) will be
considered in Section 7.5.3. However, it is appropriate to note that both g,
and g; .. in (E5) and (E.6) have the form of (3.49). Each expression
constitutes a subtransducer block gain, since [S;|<<l and [S,,|<<1 were
assumed.

7.5.2.  Unilateral Figure of Merit. Before attempting to utilize the preceding
approximation, it is feasible to define a validity factor, or figure of merit, for
the unilateral assumption. Bodway (1967) compared the true value of trans-
_ducer gain Gy and the unilateral approximation Gy ,. From (7.107) and
{7.118)—(7.120), the gain expressions are related by

_ Smn 7122
T =xp’ (7.122)
where
118,58,
X= . 7.123
(l—rIS“)(l—rzszz) ( )
The ratio of true to unilateral gain is bounded by
1 Gy 1
< < . 7.124
N+KE  Cro =P (7129
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The maximum value of |x| when |S;| < 1 leads to the unilateral figure of merit
u:
__ISullSliSusal
|1 _|511|2| 11 _lszzﬂ

(1.125)

Therefore, the ratio of true to maximum unilateral transducer gain is bounded
as follows:

1 < Gy < 1
(l + u)2 GTumax (l - ll)2

(7.126)

For example, if u=0.1, the ratto of true to approximate transducer gain is
bounded between 0.83 and 1.23. Clearly, u must be much less than 0.1 for the
unilateral scattering analysis to produce valid results,

7.5.3.  Unilateral Gain Circles. A block diagram interpretation of unilateral
gain (7.118)—(7.121) is useful. This is shown in Figure 7.22. The active device’s
50-ohm maximum transducer gain (g,) is the middle block. Once the device
and its bias conditions are established, the middle block is invariant. The
left-hand block corresponds to the g, term in (7.118) and (7.119); it is the
mismatch between the device’s §,, and the source reflection coefficient r,. The
load block denotes a similar interpretation. Corresponding to developments
leading to maximum unilateral transducer gain (7.121), conjugate matches at
the device interfaces maximize power transfer, i.e., when r, =38}, and r,=58%.

Both the g, and g; blocks in Figure 7.22 may provide gain, even though
they represent passive matching components. This is true because a mismatch
(reflection) loss exists between r; and §,,; the matching network makes up
some of this loss, and is a relative gain in this sense. The output network
functions similarly.

Families of constant-gain circles may be obtained by setting g and g; to
fixed values and solving for r, and r, in (7.119) and (7.120), respectively. For
input gain circles, the centers are located by

_ AN
Ty = ——
=18, (1 - &)

-
Gy } 9p r—) l—A 9 Z,
I
S

| E—
2 M2

(7.127)

Figure 7.22. Unilateral gain block diagram according to (7.121).
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with radius

_ Vi-& (1-18uP)
s Pu-gy)

where §.=2,/8.ma,- LOcations of output gain circles have similar forms and
involve normalized g; and S,,.

When |S,,|> 1, plot [(8;,)”')* on a Smith chart, using dotted lines for the
locus versus frequency. The values may be interpreted as explained in Section
7.1.2. The locations and radii of constant-gain circles are given by (7.127) and
(7.128), except that —oo <g, <0 and maximum gain g, is infinite at
r;=(S;,)”". Similar relationships apply in the output reflection plane.

(7.128)

Example 7.12. A transistor operated at 4 GHz has the following scattering
parameters measured with respect to 50 chms:

S=[O.SI /154° 009 /26° ] (7.129)

1.4 /22° 0.60 /—58°

Obtain the unilateral design parameters and plot families of input and output
gain circles for gains of 0, 0.5, and 1 dB. By (7.125), the unilateral figure of

[T I O A I I A T O B O Y A

10 08 06 04 02 0 02 04 086 08 140
Figure 7.23. Families of input and output unilateral gain circles for Example 7.12.
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merit is u=0.08; by (7.126), the ratio of true to maximum unilateral gain is
‘bounded between 0.86 and 1.18 (not dB). Input, device, and output gains by
(E.5), (E.14), and (E.6) are 1.31, 2.92, and 1.94 dB, respectively. Therefore, the
maximum unilateral transducer gain is 6.17 dB, obtainable when r, =S¥, and
r,=38%,. According to (7.126), the actual transducer gain Gy is bounded
between 5.51 and 6.89 dB. The families of circles are shown in Figure 7.23.
Note that the 0-dB circles always pass through the chart center. Also, the
centers of all input circles lie on the radial to S}, and the same is true for
output circles and S%,. The center of the input 0.5-dB circle is 0.44 from the
Smith chart center, and its radius is 0.32.

.54, Summary of Unilateral Scattering Gain. Considerable numerical and
conceptual simplification is available in unilateral amplifier design when the
assumption is valid. The unilateral figure of merit helps make this judgment
and provides bounds on the true value of transducer gain.

The optimal matching conditions are the source and load terminations of
St and 8%,, respectively, Once device bias has been established, its 5;, gain
term is an invariant factor in the unilateral gain formula. Two other factors
represent input and output mismatch. Even less-than-optimal matches can still
produce gain relative te the mismatch between 50 ohms and the input or
output scattering parameters.

The trend toward readily available computers and maximum required
performance reduces the attractiveness of the unilateral design technique.
However, there are certain conceptual advantages to recommend it, at least as
a first step in amplifier design.

Problems

7.1.  Program coefficient equations {7.3)-(7.5) on a hand-held or desktop
personal computer. Use the subroutines in Program A2-1 of Appen-
dix A.

7.2, Verify the values of a;, where i=1,2,3, in Table 7.1.

7.3. Find the impedance corresponding to reflection coefficient §,,=
2.2 /~153° by plotting on a Smith chart and by computation. Assume
that §,, is normalized to { ohm.

7.4. Consider the input impedance Z,, of the pi network in Figure 7.8. For
Z;=1+j0 ohms, Z, =10.315823 —j20.242819 ohms.
(a) Find the bilinear coefficients of Z, as a function of Z,.
(b) Use this bilinear relation to show that Z, =50+ j0 when Z,=j50
ohms.
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1.5.

7.6.

1.7.

7.8.

79.
7.10.
T.11.

7.12,

7.13.

7.14.
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(c) Find the impedance-mapping parameters T, R, and Z_for Z;,, as a
function of Z;.
(d) Sketch the Z;-image circle in the cartesian Z; plane.

(e) Label the resistance locus for R;=25 ohms and the loci for
X;=50, 75, and 100 ohms, where Z;=R, +jX,.

Find the value of T, that will make §,, equal zero in (7.29) for the
50-ohm § data in (7.30). Is it possible to have a 50+j0 Thevenin-
generator output impedance at port 3 by terminating port 2 with a
passive element and port 1 with a 50-ohm resistance? Why?

When V,=1, y,,=(4.549E—3)—j34.69 and y,,=(34.54E—3)—j16.68
mhos. Find the power delivered to the load Y =0.01 —j0.01 mhos.

Obtain the equivalent circuit model for open-circuit z parameters
analogous to Figure 7.10. What is the maximum available power, P,
at the output terminals?

In Figure 7.6, what value of X, allows R, to vary over a wide range
without causing R, to change very much? Why?

Verify Equation (7.51).

Show that Re(T)=K-|R|.

Use Equations (7.62), (7.48) and (7.54) to verify the n,,, expression in
Equation (7.64).

Prove Equations (7.108) and (7.112); in the latter, note that P, and a,
are independent (b, is dependent). '

An HP GaAs FET transistor has the following S parameters at 12

GHz, measured with respect to 50 ohms: §;,=0.714 /—124° S ,=

0.073 /39°, 8, =1.112 /69 and S,,=0.627 /—57°.

(a) Evaluate Equations (E.1)-(E.20) in Appendix E; where appropri-
ate, state whether your answer is numeric or in dB.

(b) Is the device unconditionally stable? Why?

(¢) What load impedance (in ohms) produces the maximum possible
efficiency?

(d) Give three source impedances that can be used with this load
impedance so that maximum possible efficiency will be obtained.

(e) What is the efficiency when the added power is maximized?

Derive Equations (7.56) and (7.58).



Chapter Eight

Direct-Coupled Filters

Direct-coupled filters are the most common narrow-band networks in radio
frequency engineering. They may be found in very low frequency through
microwave applications, often in such different forms as to appear totally
unrelated. A large amount of design information exists, the formal basis
usually being attributed to Dishal (1949) and Cohn (1957), The design method
presented here evolved over the last three decades and is based on the
“lpaded-Q” concept discussed in Section 6.1.3. It is unique to the extent that
loaded Q’s of internal resonators are treated as design parameters. It precisely
accounts for midband impedance matching and dissipative loss. For passband
widths of less than 20%, it provides an accurate estimate of stopband selectiv-
ity and an approximation of ideal passband response shapes. Unlike synthesis
methods, the loaded-Q design technique enables adjustment of surplus param-
eters, so that bounds on practical component values may be accommodated.

Practical, direct-coupled filters evolve from an ideal prototype network,
shown in Figure 8.1. It is a lumped-element representation. although several

%—4 The two-port network »]

Figure 8.1, The direct-coupled-filter prototype network,
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Figure 8.2, A four-resonator filter with two traps and one L section.

transformations will be given for incorporating distributed {transmission line)
elements, The parallel LC resonators (tank circuits) appearing between each
network node and ground are coupled by the inverters shown in Figure 8.1.
Ideal inverters are lossless, frequency-independent, 90-degree transmission
lines. They are assumed io have characteristic impedances and electrical
lengths that are frequency independent. Practical inverter networks usually
have one of these ideal properties, and the other one is well behaved, with
effects that are easily predicted. The entire prototype network impedance level
may be elevated by transformers or L sections at one or both ends of the
network, so that element values may be located within a suitable range. As far
as prototype calculations are concerned, the source and load terminations are
simply resistances R, and Ry, respectively.

An example of a practical, direct-coupled network appears in Figure 8.2.
The four resonators connected between each node and ground are evident
enough, but comparison with the prototype network in Figure 8.1 shows that
the inverters have been realized in different ways. The two inverters, between
nodes T and I and nodes I and TII, are antiresonant “trap” subnetworks that
cause zeros of transmission at the corresponding frequencies. Also, the source
has been connected by an L section; it could have been connected directly or
by a transformer.

The response of the network in Figure 8.2 could be that shown in Figure
8.3, The rigid limitations of classical network approximation and synthesis
have been relaxed by accepting reasonable first-order approximations of ideal
response shapes, which are both arbitrary and unobtainable using real ele-
ments. Therefore, fairly general selectivity specifications, as shown by the
barriers in Figure 8.3, may be satisfied by direct-coupled filters, which have
great flexibility in both form and component ranges.

This chapter begins with the definition of the prototype network and its
main components: resonators and ideal inverters. The selectivity mechanism
will be derived, and resonator loaded-Q and inverter impedance parameters
will be identified. Next, inductive and capacitive inverters will be introduced,
and their impedance-matching and selectivity effects will be identified. Ap-
proximate selectivity relationships will be developed so that interactions
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Figure 83. Typical direct-coupled-filter selectivity specification and response.

among the several design parameters will be obvious. A practical network will
be designed to llustrate these fundamental concepts.

Detailed consideration will be given to practical inverters and resonators.
Resonator developments include dissipation and the equivalence between
lumped and distributed components. A general basis for analyzing any in-
verter subnetwork will be presented, and the trap inverter will be analyzed to
show why it increases selectivity without increasing midband loss. End (ter-
minal) coupling by both L sections and transformers provides a vital degree of
design freedom for elevating filter impedance levels and thus relieving compo-
nent restrictions; these techniques will be described.

The selectivity behavior in and near the passband is called the response
shape and is completely determined by the distribution of loaded-Q values
among the resonators in the (ideal) prototype network (Figure 8.1). Four
unique shapes will be discussed in detail. The first three are related:
Chebyshev (overcoupled), Butterworth (maximally fiat), and Fano (un-
dercoupled). The minimum-loss or equal-Q shape will also be considered,
because it is practical, simple, and instructive. Useful formulas for predicting
the required number of resonators for various passband and stopband selectiv-
ity specifications will be furnished. These are well known for all but the Fano
(undercoupled) response; it has several valuable characteristics, including
good pulse response.

Limitations of this approximate, direct-coupled design technique will be
made explicit; it will be shown that they do not eliminate most practical
applications. Certain readily available sensitivity relationships will be noted.
Also, the well-known tuning procedure for these synchronous filters will be
described. Finally, a detailed design procedure, based on a flowchart, will be
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defined. The required equations have been tabulated, and a particular design
example will be related to the pertinent equations. The possibility of further
design adjustment using optimization (Section 5.5.4) will be discussed.

8.1. Prototype Network

The lossless network in Figure 8.1 will be considered in this section. The
admittance of the resonators appearing from each node to ground will be
important for further analysis, and the conductance contributed to end
resonators by the load—and perhaps the source—will be included. The
impedance-transforming properties of the ideal inverter will be derived from
lossless transmission line equations. These developments provide a basis for
ABCD chain parameter analysis of the two-port prototype network. it will be
shown that there is a recurrence pattern among the parameters as more
inverters and resonators are added. Thus, quite general selectivity expressions
are available without resorting to numerical analysis of each case.

8.1.1. Prototype Resonators. Each resonator in a prototype network, such as
Figure 8.1, takes the form shown in Figure 8.4. For purposes of the loaded-Q
definition, conductance Gy represents the parallel resistance seen toward the
load, as presented by that part of the network at the tank resonance frequency.
All resonators will be resonant at the geometric midband frequency, and the
impedance seen toward the load from each resonator will be real at this
frequency, In the case of the Nth (output) resonator, the parallel resistance is
in fact the load resistance Ry indicated in Figure 8.1. The resonator
admittance in Figure 8.4 is

Yx =Gk +iweCkF, (8.1
where
%)
F=% _ 19 872
o (82)

CK LK ? GKK
I: - Figure B4. The Kti shunt resonator (tank)

with its real or hypothetical resistive load at the
tune frequency.
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and w, is the midband geometric mean frequency according to (6.85) in
Section 6.5.1. It is easy to obtain a similar expression for a series LC network
and then to recognize the significance of the lowpass-to-bandpass transforma-
tion considered in (6.83). The importance of the bandpass frequency variable
F in (8.2) cannot be overemphasized; it will occur in nearly every selectivity
expression for direct-coupled filters.

The main parameter is the loaded Q of the K¢h resonator:

R
QLK= XKKK ] (8.3)

where Ry =1/Gy - For 1 volt across the resonator in Figure 8.4, it is easy to
see that Q is the reactive power divided by the real power. The reactive power
is stored in the resonator, and the real power is that which proceeds toward
the load as delivered to Gyx. The nodal parallel reactance Xg in (8.3) is
determined at the midband geometric mean frequency wy:

1
XK = wOCK = woLK . (8.4)

These definitions are consistent with those in Section 6.1.3. This is singly
terminated loaded ; it does not comsider any resistive loading-—real or
through the intervening circuit—that occurs on the source side of the resona-
tor. Finally, (8.1) may be put in terms of the loaded Q:

Yy =Gy (1 +iQ.«F)- (8.5)

The ABCD chain parameters were defined in Section 4.2.1. The ABCD
parameters for the K¢ resonator in Figure 8.4 are

A B 1 0
T"z(c:z Dt)=(YK 1) ()

These will be used in conjunction with those of the inverters to obtain
expressions for the overall ABCD matrix of the prototype network in Figure
8.1

8.1.2. Ideal Inverters, The hypothetical lossless transmission line segments
in Figure 8.1 are defined to have frequency-independent characteristic imped-
ance Z,; and a constant quarter-wave length, where the jj subscripts denote
the adjacent nodes that they connect. These are variously called impedance or
admittance inverters because they invert impedances according to (6.38),
which is repeated:

2
Z5;

in T _Z: . (87)

This is shown in Figure &.5.
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Figure 85. An ideal inverter,

It is easy to show why this impedance-inverting behavior occurs. Using the
transmission line ABCD parameters from (4.13)—(4.15} for the lossless case
yields

0 1Z
le__:( J ou),

Yo O

where Y;=1/Z,;. Then bilinear function (4.18), for input impedance as a
function of load impedance, yields (8.7). As previously indicated in connec-
tion with Figure 8.4, the resonator and inverter designs are established at the
midband frequency, where the impedance terminating each resonator is real.
Thus, at the midband design frequency w,, the inverter impedance is simply

Zy; = VRiiRjj s (8.9

where the inverter connects the i#h node and the jth (i+ 1) riode. This is
illustrated for a two-resonator prototype network in Figure 8.6. Note that (8.9)
is the means for selecting inverter impedance Zy;; however, (8.7) is still valid
at any frequency, not just .

The impedance-inverting action of (8.7) causes a given circuit seen through
an inverter to look like the dual of that circuit. In particular, the center
resonator and the two adjacent inverters in Figure 8.1 have the same transmis-
sion characteristics as a series LC resonator. Thus the network in Figure 8.1
with ideal inverters has exactly the same transmission characteristics as the
classical bandpass fitter in Figure 6.31, assuming compatible choices of

(8.8)

RH
| ! 1

L

,LYl Zona ,[ Y, g AP

3 i

2 '

Figure 8.6. A two-resonator prototype network showing inverter terminations.

fn
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element values, This equivalence is further developed in the work of Matthaei
et al. (1964, pp. 144--149); it will also be apparent from the development in the
next section.

8.1.3. Prototype Network Selectivity. According to (4.9), the ABCD (T)
matrix of an entire ladder network can be obtained by multiplying the ABCD
matrices of the component subnetworks in order. For example, (8.6) and (8.8)
may be applied for the N=2 (two-resonator) network in Figure 8.6. The result
is

JZy,Y, o,
JYiZoisYs+iYor jY 2y, |

If another inverter maitrix and resonator matrix are appended to (8.10), the T
matrix for the N =23 prototype network corresponding to Figure 8.1 may be
obtained. Only the resulting C clement is of interest:
C==YY:Y3Zo1:Zoz3 = Y3Y 012223 = Y1 Z01: Y03 - (8.11)
Similarly, the C element for N=4is
==Y\ Y, Y3 Y Zo12:Z003Z03a— 5 Y1 Y2 Zo12Zo2s Yoa

_jY1Y4Z()|2Y0232034 _jY3Y4Y01220232034 =1 Yo12Z023Y 034 - (8-'12)
There are 52 terms in the C element of the T matrix for N=35. The need for
only the C clement is explained next, followed by the identification of the
transfer function’s complex polynomial in frequency variable F, defined in
(8.2).

Assume that the terminals of the overall two-port network are located as
shown in Figure 8.1; i.e., the load resistance and the source shunt resistance (if
it exists) are included inside the network as parts of the terminal resonators.
Thus output current I =0. Then the ABCD-defining equation (4.8) shows
that 1, /Vy=C. The loss function of interest is

Vi(wo)

T= (8.10)

L{w)= VN(—_w)“ . (8.13)
Since I {«)=1,(wy), it follows that the desired loss function is equivalent to
C(w)
L(w)= Ty (8.14)

Therefore, only the chain parameter C of an N-resonator filter is required for
the loss function.

A general expression for the loss function may be deduced by considering
the N=3 case in (8.11). Assume that the source includes a nonzero conduc-
tance. From (8.1), there will be two resonator admittance terms that have both
real and imaginary parts, namely Y, and Y,. Resonator admittance Y,
=jF/X,. The first term in (8.11) wiil produce frequency variable jF with
exponents 3 and 2, The second and third terms in (8.11) will produce
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frequency variable jF with exponents | and 0. When w=1w,, F=0, and thus
C{w,) is a real number. Clearly, the N=3 loss function has the form

o3 2 .
L(w)= iF) +U2(]F)U:-U|(_]F)+U0. ®.15)

This confirms that the prototype network in Figure 8.1 can produce the exact
polynomial response function of the classical bandpass network in Figure
6.31, because (8.13) is the manifestation of the classical lowpass-to-bandpass
mapping in (6.83).

The expressions for chain parameter C, such as (8.11) and (8.12), may be
converted to the loaded-Q parameter using definitions (8.3), (8.4}, and (8.9).
For example, the (8.15) loss function for N=3 is

L=14[(F)"QuiQuoQus + (F)*(Qu2Qus+QuQua)

+—(jF)(QL3+QL2+QLI)+2]' (8.16)
Similarly, the N=2 loss function is
L=4[0F)QuiQu+ (F)(Qui+Qu2)+2]- (8.17)

The important conclusion is that prototype network selectivity is a function of
only loaded-Q values. This allows the arbitrary choice of parallel resistance
levels throughout the direct-coupled filter to accommodate convenient ele-
ment values.

15 /
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Figure 8.7. Standard semilogarithmic selectivity plot with passband normalization.
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8.1.4.  Prototype Selectivity Graphs. The N loaded-Q values may be chosen
arbitrarily, but an orderly procedure, based on standard response shapes, will
be described in Section 8.5. In those cases, passband edge frequencies with an
associated loss value will be defined. Suppose that these are labeled F and L,
according to (8.2) and 20log,, of the magnitude of (8.14), respectively. (The
Fj parameter was called w in Chapter Six.) The geometric symmetry of (8.2)
provides arithmetic symmetry on a semilogarithmic plot, as shown in Figure
8.7. Note especially the relationship of the normalized frequency f/f, and the
normalized fractional frequency F/F,. For example, the indicated Fz and L,
parameters might be defined for L,=3 dB or for a 4.5-dB pass-bandwidth loss
value, whichever is appropriate. Any two frequencies, f, and f,, at the same
loss value have geometric symmetry with equal arithmetic displacements on
the semilogarithmetic plot in Figure 8.7.

A convenient Bode breakpoint analysis results from considering the asymp-
totic behavior of (8.16) and (8.17), as illustrated in Figure 8.8. Since (8.16) and
(8.17) are typical for any number of N resonators, consider the behavior of
20log,q|L| for large F when the NtA-degree term dominates:

L= —6+20log,,11Q x + N20loglF| dB for large F. (8.18)

The IT notation indicates a product of Q; factors, i.e., Q Q- Qpy. Also,
(8.2) approaches linearity in f /{, for large f or F, where f=w /2. Clearly, the
breakpoint location on the dB loss axis in Figure 8.8 is set by the first two
terms in (8.18), and the 6N dB/octave slope is set by the third term. It is
useful in the following deveiopments to normaiize all Q, . values to the output
resonator load Q, Q. The definition of the normalized loaded Q is thus

= QLK
Qu==K,  K=1,2,....N, (8.19)
LN
L (dB)
100 —
Slope 6N
dB/octave
Pivot  7q
point
N20 log O,
N VR "
2010g 10 20log 1Q,
k=1 'FB k=1
{Fixed by choice
FUNA R _L of shape, 1.;, N}
l I 3 R !
0.3 0.5 inlfe 1 fa/teh 2 4 .

Figure 8.8. Breakpoint graph for ideal inverters.
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Then, the loaded-Q product may be written as

HQLK = QENHQLK . (8‘20)

This is also shown as segments of the breakpoint displacement in Figure 8.8.
An important denormalizing equation also resuits from (8.20):

1Q « )UN
Q¢

For ideal response shapes, such as maximally flat or equal ripple, there will
be two dependent constants and a set of normalized loaded-Q values that
result from choosing N resonators and an L, passband loss level. These
constants are the products Q nFg and I1Qqx. Choosing a value of the
fractional passband width F4 determines a particular value of Q, y, using the
former constant. However, it is seen from (8.18) or Figure 8.8 that choosing a
stopband loss value (L dB) determines the loaded-Q product and, conse-
quently, Q. by (8.21). Clearly, selectivity scaling may be determined by
either passband width or by stopband selectivity, but not by both.

Finally, a review of the collection of terms leading to (8.16) and (8.17) will
reveal that the —6-dB term (201log0.5) in (8.18) is due to nonzero source
conductance (see R, in Figure 8.1). Therefore, sources shall be considered
lossy or lossless (ideal current source). In the latter case, there is no —6-dB
term in breakpoint loss expression (8.18).

QLN=( (8.21)

8.1.5. Summary of Prototype Network. A prototype direct-coupled filter
network is composed of [ossless resonators separated by inverters and termi-
nated by a load resistance, and possibly by a source resistance. The inverters
are lossless, quarter-wave transmission lines having a frequency-independent
electrical length and a characteristic impedance. All resonators are tuned to
the passband geometric center frequency and see a real impedance looking
toward the load. The resonator’s singly loaded Q is the parallel resistance
divided by either the inductive or capacitive resonator reactance. The charac-
teristic impedance of the inverter, Zy;, 1s the geometric mean of its input and
output resistance values at the band-center (tune) frequency.

An expression for direct-coupled filter selectivity may be obtained by
forming the product of all ABCD chain matrices for the resonators and
inverters. The resonator frequency function F appears in a polynomial for the
filter loss function. Therefore, the prototype direct-coupled filter may have
exactly the same selectivity as classical bandpass filters obtained from lowpass
prototypes by geometric frequency mapping (Section 6,5.1). The coefficients
in these polynomials can be reduced to functions of only the loaded Q.
Therefore, the loaded Q uniquely determines selectivity and leaves arbitrary
the choices of resonator parallel resistance values. It is this flexibility that
accommodates bounds on practical filter components.

For large values of F, the N¢i-degree term in the selectivity polynomial
dominates. Then the logarithm of the loaded-Q product locates a breakpoint
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in the selectivity semilogarithmic graph, and the asymptotes have a 6N
dB/octave slope versus normalized frequency. It is convenient to normalize
resonator loaded-Q values to the output loaded-Q value. It was noted that
four standard passband shapes will be analyzed; in each case, the choice of
the number of resonators and the passband-edge loss value determine the
normalized loaded-Q values (a distribution) and two constants: Qp\F, and
T1Q, ¢ . It was concluded that either passband width or stopband loss can be
independently specified, but not both.

Shunt parallel LC resonators have been considered. The same development
applies for the case of series LC resonators separated by inverters.

8.2. Designing with L and C lnverters

The most important physical inverters are pi networks of inductors or capaci-
tors having negative components in the shunt branches. It will be shown that
these correspond exactly to quarter-wave (90-degree) transmission lines at all
frequencies. However, the characteristic impedances of inductive and capaci-
tive inverters are linearly or inversely proportional to frequency, respectively.
The stopband selectivity estimate can be easily adjusted for that frequency
dependence, but it will produce a first-order distortion of the passband shape,
which increases with passband width.

The inverter properties of L and C pi networks will be derived, and simple
design rules will be obtained for selectivity adjustment and absorption of
negative elements into adjacent positive elements. The consequent changes in
the breakpoint analysis will be noted, and a practical direct-coupled filter will
be designed.

8.2.1. Simple L and C Inverters. Simple L and C inverters are shown in
Figure 8.9. The ABCD matrix for these pi networks may be obtained by
premultiplying the matrix result in (4.10) by an additional shunt-branch
ABCD matrix; the result is:

1+ZY Z
T=lvya+zy) 1+zv| (8-22)
L, &
- Lu _L‘I lﬁc‘i J' ._Cu
(a) 7 1)

Figure 89. Simple L (a) and C () Inverters.
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For the L inverter, Z=jwL;; and Y= —1/jwL;. Then (8.22) and the ABCD
matrix for a lossless transmission line (Section 4.3.1) may be compared 1o
show that the L inverter is 90 degrees long at all frequencies and that Zy;=wL.
A similar conclusion may be obtained for the C inverter, except that it is —90
degrees long at all frequencies, and Zy;=1/(wC). This is a remarkable result.
The Z, of L and C inverters is equal to the reactance of the top (coupling)
element at tune frequency w,. The design procedure is thus quite elementary:
the tune frequency reactance level of the L or C inverter branches is equal to
the geometric mean of the parallel resistances on either side of the inverter.

How are the negative elements obtained? Replace the ideal inverter in
Figure 8.1 with the capacitive inverter in Figure 8.94. Clearly, the negative
shunt C’s in the inverters may be absorbed by the adjacent resonator shunt
C's. 1t turns out that the resonator shunt C’s are always larger than the
inverter branch C’s in all practical cases. Inductive inverters arc absorbed in a
similar manner.

8.2.2, Magnetically Coupled Inverters. 1t is easily shown that a transformer
contains the inductive inverter in Figure 8.94. Van Valkenburg (1960, p. 304)
gives various equivalent networks for transformers; the relevant cases are
shown in Figure 8.10. Figure 8.10a and b represents familiar forms, where

LL—-M

L]2=“‘_ M" —

and mutual-coupling M may be positive or negative, depending on the
winding orientation. Figure 8.10c shows the shunt inductances divided to

(8.23)

LI'Z

(b} (e)

Figure 8.10. Transformer equivalent circuits. (a) Physical transformer; (&) pi equivalent nei-
work; (¢) pt with divided shunt branches; {#) inductive pi inverter replaced by quarter-wave
transmission line.

]
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reveal the inductive inverter equivalent to that in Figure 8.10h. The inverter
Zy=wLy,. _ )

Figure 8.104 is slightly less general. It assumes that no other inductance is
connected to nodes 1 and 2 and that each node is parallel resonated by
capacitors. In this special case, (8.9) can be used to show that

Ryl, Ryl  (wli)’LlL,

QuiQu2= = . 8.24
MR wpLliaM wpl ;M (woLm)zM"‘ (324)
But the coefficient of flux-linkage coupling is defined to be
K,=-—_. (8.25)
LL

Therefore, when Figure 8.10d applies,
K= ——t (8.26)

\‘QL!QLZ .

There are many filters involving more than two resonators where (8.26) is
valid; otherwise, the coupling coefficient may still be calculated using Figure
8.10¢ and (8.25).

8.23. An Accurate Stopband Selectivity Estimate. 'The asymptotic behavior
of loss function (8.14) is easily modified to account for the Z; frequency
dependence. Consider the role of the Z’s in (8.11) and (8.12) for N=3 and
N =4, respectively. In all cases, the Z, terms are factors in the coefficient of
the Nth-degree JF frequency variable. The necessary modification to (8.18) for
the upper stop band is

= —6+ 201og ITQ, . + N20log|F| + (NMI— NCI)20 logfi dB, (8.27)
0

where L > 20 dB or f/f;> 1.2 ensure the validity of the estimate. NMI stands
for the number of magnetic inverters, and NCI stands for the number of
capacitive inverters. Figure 8.11 illustrates how the prototype selectivity in
Figure 8.8 is affected when there are two more inductive than capacitive
inverters present. According to (8.27), it is possible to make NMI equal to
NCI, so that there is no inverter selectivity tilt in the stop band. However, a
certain amount of passband distortion will remain, even in that case. It will be
more severe for wider passband widths and for response shapes having ripple.

Program A8-1 in Appendix A computes (8.27) in a very flexible fashion. If
all but one variable in (8.27) are given, the remaining variable will be
calculated. Frequencies f/f; and F are found implicitly by secant search; all
others can be solved explicitly. As indicated in the program documentation,
the loaded-Q product may be input directly or calculated from the sequence
of individual resonator loaded-Q values input one at a time.
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Figure 8.11. Breakpoint graph for a surplus of two inductive inverters,

Example 8.1. Suppose that a doubly terminated, direct-coupled filter will
have resonators with loaded Q’s of 15, 5, and 4. Two inductive inverters will
be used. What will the second-harmonic attenuation be? To obtain the
answer, N=13 is entered, and key A is pressed. Next, Key B is pressed, and
prompting message “I” is displayed; 15 is entered, and R/S is pressed.
Prompting message “2" is displayed, and Q,,=5 is input. Similarly, Q,,=4 is
input, with the loaded-Q product 300 being the last display obtained. Inverter
counts 2 and 0 are entered into registers Y and X for NMI and NCI,
respectively, and key fe is pressed. Doubly terminated key fb is pressed. The
second-harmonic frequency (f/f,=2) is entered, and key D pressed. Finally,
key E is pressed, and L=66.15 dB loss is obtained.

At what frequency will 60 dB be obtained? Enter 60 and press key E, then
press key D. After time for iteration, the answer f /f,=1.81 is displayed.

Suppose 75 dB is now required at the second harmonic; what loaded-Q
product is required? Enter 75 and press key E; enter 2 and press key D. Then,
press key C and obtain TIQ, , =831.12. Pressing key fc shows that the mean
Q. is 9.40 (ie., 831.12=9.40°).

For a loaded-Q product of 600, how many resonators are required to obtain
a 75-dB loss at the second harmonic? Enter 600 and press key C; then press
key A and obtain N=13.8. Enter the next-higher integer (4), press key A, then
key E; this shows that four resonators would provide a 75.69-dB loss at the
second harmonic.

There are endless “what-ifs” in this design process; Program A8-1 js a great
help in making optimal design trade-offs.

8.2.4. A Design Example. The following example illustrates all major con-
siderations in direct-coupled filter design. The other techniques that follow
only alter these primary relationships by various approximations.
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Suppose that the following requirements are given: A three-resonator filter
is to be excited by a lossy, 50-ohm source and terminated by a 100-ohm
resistor. The filter is to be tuned to 50 MHz, and 60-dB attenuation is required
at 90 MHz, using an approximate, maximally flat response shape for the pass
band. Inductance values are limited to the range 20-300 nH. Find ali
component values.

It can be seen from (8.27) that using two inductive inverters will reduce the
loaded-Q product and therefore the reactive power in the resonators (and
dissipative loss and sensitivity, considered later). Figure 8.12 shows the proto-
type and evolving topologies. The distribution of loaded-Q values for the
maximally flat passband response shape will be shown to be 1,2, 1 in Section
8.5.2. The fractional frequency corresponding to f/f;=90/50=18 is F=
1.2444, Using Program A8-1 to evaluate (8.27), the loaded-Q product must be
319.5424. Using (8.21), Q;=54263; thus Q; ,=5.4263 and Q,=10.8529
according to (8.19).

Converting the inductance limits into reactance at a tune frequency of 50

Ry =50 Ry =78
50 | f e n
+ + I
v, v, G Wo L Zoa | Gy Wo Ly Zoas | Cu ) Ly %Rm
Q,, =54264 C—— o -108529 0,,=54264 1000
(al
Xz 2812372 oo X;,=866025
Y
ot .
Chms MEART] Mz
— —
10.8461 8.6596 Inductance 23.4097

oo |<_v ———>{<————90———>-|

—_ Y .
Ly
Zlﬂ E 10
N rT : "L o7

le)
Figure 8.12. A three-resonator example using two inductive inverters. Element values are in
ohms. () Prototype inverters between resonators; (b) substitution of inductive inverters; (c) final
network elements from combined positive and negative elements.
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MHez, it is found that these reactances must be in the range 6.2832-94.2478
ohms. The synchronous resonator reactances are calculated next using (8.3).
Thus X;=9.2141 and X;;,= 18.4283 ohms. The value of R,, shown in Figure
8.12a does not effect selectivity; trying R,,=75 ohms yields X;,=6.9106
ohms, which is within limits. However, it is still necessary to be sure that the
inverter reactances are within limits. Using (8.9), X, |;=+v50-75 =61.2372 and
X 23 =+v75:100 =86.6025 ohms, which are within limits. A new trial value of
R,, would be necessary if any of these three inductive reactances were oul of
the allowable range. The circuit reactances are shown in Figure 8.12b.

It is now necessary to absorb the negative reactances. This is conveniently
accomplished by Program A6-1, using key C. The final reactance values are
indicated in Figure 8.125. There is a very convenient rule illustrated in Figure
8.12b: all the L's touching a node must resonate all the C’s touching that
node. This is eastly seen, because the two inverter branches touching a node
cancel when in parallel, i.e., when adjacent nodes are grounded. The final
element notation is shown in Figure 8.12c¢. The rule says that L, and L,, in
parallel will resonate C,. Similarly, L,,, L,, and L., in parallel will resonate
C,. Designs should always be checked to ensure that this rule is satisfied.

Table 8.1. Element Values and Data for the Design Example in
Figure 8.12 and for Analysis Program B4-1

Units: Frequency Inductance Capacitance
1E6 IE-9 IE—-12
Load (ohms): Resistance Reactance
100 0

Power in load = 1 /4R, = 0.005 watts

Topology: Type Value Q Remarks
3 172.73 0 C,pF
-2 74.52 0 L, nH
2 275.66 0 L,y
3 460.61 0 C,
-2 27.25 0 L,
2 194.92 0 L,
2 34.52 0 L,
-3 345.46 0 C,
! 50.00 0 R

Note: Q=0 implies an infinite Q value.

At 50 MHz, Z,,=49.9994 +j0.0752 ohms.

At 90 MHz, [8;|=60.11 dB.

There is a loss of 3 dB at 45.0 and 54.3 MHz (18.81% bandwidth).
. The ideal, maximally flat case has 3 dB at 45.6 and 54.82 MHz
(18.43%).
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Note the difference in L, and L;. The nomenclature is significant; hence-
forth, only prototype (synchronous resonator) reactances will have roman
subscripts. Table 8.1 shows the final element values for the band-center
frequency of 50 MHz. It is in the format for running analysis Program B4-1
(Section 4.1.4). Several results are provided in Table 8.1. The 90-degree nodal
phase relationship shown in Figure 8,12¢ was also confirmed.

8.2.5. Summary of Designing With Simple L and C Inverters. The ABCD
chain matrix for a pi arrangement of L’s or C’s was obtained for the case
where both shunt branches were negative elements. Comparison with the
ABCD matrix of a lossless, 90-degree transmission line revealed that these pi
inverters are 90 degrees long at all frequencies and have characteristic im-
pedances (Z,) that are proportional or inversely proportional to frequency for
L and C inverters, respectively. It was also shown that the magnetic trans-
former equivalent circuit incorporates an inductive inverter with shunt induc-
tances left over on each side. When these shunt inductances constitute the
total synchronous nodal inductances, then the coupling coefficient K (flux
linkage) between windings is (Q,Q,;) " '/* between the coupled nodes.

The prototype asymptotic selectivity estimate that was connected with a
breakpoint graph in Section 8.1.4 was modified to account for inverter
frequency dependence. It turned out that each inductive inverter added 6
dB/octave to the upper stopband slope and subtracted that amount in the
lower stop band. Also, capacitive inverters affected the slope in the opposite
manner. This comprehensive estimate of stopband selectivity is valid for
frequencies greater than 1.2f;, (geometrically symmetric about the tune fre-
quency) or for losses greater than about 20 dB. Program AS8-1 was furnished
to make the selectivity estimate from any set of dependent variables in order
to find the remaining variable. An extended example of program utilization
was included.

Finally, a complete design example for a three-resonator filter was fur-
nished. It contained all the major steps in direct-coupled filter design; subse-
quent refinements will not alter this fundamental procedure. Design success
was confirmed by analysis using Program B4-1; the desired selectivity and
impedance match were obtained. The choice of loaded-Q distribution in the
ratios 1,2, 1 anticipated the maximally flat response described in Section 8.5.
However, any arbitrary loaded-Q distribution could have been used without
affecting the selectivity and impedance-matching outcome. Similarly, an arbi-
trary choice of resistance level within the filter provided acceptable e¢lement
values, It was shown in Section 8.1.3 that such choices of resistance levels (and
related inverter impedances) do not affect the selectivity or response shape.

A rule was provided for checking any basic direct-coupled design: all the
L’s and Cs touching a node should resonate. This check and the use of an
analysis program justify carrying about five significant figures in calculations,
even though such accuracy has little meaning in the real world of physical
components. Otherwise, numerical or procedural mistakes are very easy to
overlook.
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It was noted that classical bandpass filters, like that in Figure 6.31 (Section
6.5.1), may be modified by employing one capacitive and one inductive
Norton transformer (Section 6.5.3), so that a filter having a direct-coupled
appearance is abtained. Even though it appears to have been obtained using
one L and one C inverter, the design 1s not direct coupled because it violates
the node-resonance rule. However, such Norton transformer applications are
possible for odd N, and there is no passband or stopband distortion in these
cases.

8.3. General Inverters, Resonators, and End Couplings

Design of practical filters requires substantial departure from the ideal case.
Inverters may be realized as apertures in waveguide walls, resonators may
depart from lumped-element frequency behavior and dissipate energy, and
acceptable impedance levels for these may require end couplings.

This section develops the fact that all lossless passive networks contain an
inverter with some residual admittances that must become parts of adjacent
resonators, The trap top-coupling network will be developed from this princi-
ple, and its remarkable ability to improve stopband selectivity will be demon-
strated.

It will be shown that resonator dissipation affects tune frequency input
impedance much more than inverter dissipation. An expression for input
impedance with dissipation will be derived, and a means for compensating for
the change will be described. A reasonable amount of dissipation will not
seriously affect the stopband attenuation estimate (8.27), because it has
offsetting effects. It will also be shown that any resonant two-terminal network
may be viewed as an ideal resonator to a first-order approximation, namely
with the same resonance frequency and slope versus frequency as the lumped
prototype.

End couplings can be L sections, radio frequency (rf) transformers, or
direct connections to terminating resistors. Dissipation wiil be considered for
I. sections in a treatment that is only a slight extension of Section 6.1, The rf
transformer may be realized as actual windings. However, the resonator is
often a coaxial or waveguide cavity, and the transformer 1s just a wire loop
that provides coupling to the magnetic field in the cavity. A basis for these
more general situations will be provided.

8.3.1. Inverters in Admittance Parameters. An equivalent circuit for the
defining admittance parameters was given in Section 7.3.1 (Figure 7.10). The
defining equations in (3.79) and (3.80) for short-circuit y parameters show that
the equivalent circuit in Figure 8.13 is valid for the reciprocal case where
Yo=Y

Equating Z= —1/y,, and Y=y,, in (8.22) shows that the inverter charac-
teristic admittance, Y,, is Yo=B when y, =]B, i, when y,, is an imaginary
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Figure 8.13. A reciprocal short-circuit-parameter equivalent circuit when y;;=y,,. The dashed
lines enclose the inverter portion of the network.

number. A sufficient condition for y,, being an imaginary number is that the
network be lossless. In that case, the maximum possible efficiency is unity,
and (7.64) shows that stability factor K= 1. Then the definition of K in (7.57)
reveals that K=1 when g,,=0=g,, and y,;;=jB, thus proving the sufficient
condition.

Note that susceptances y,; and y,, in Figure 8.13 become part of the
synchronous reactance in their respective resonators, as seen from the particu-
lar case in Figure 8.12b. The frequency behavior of the resulting resonators
will be equated to the ideal LC resonator in Section 8.3.4.

Example 8.2, Identify the inverter in a 30-degree length of a 100-chm lossless
transmission line, and resonate each end to make a direct-coupled filter
between the 50-ohm terminations. The ABCD parameters of a transmission
line in (4.13)-(4.15) can be converted to y parameters according to (3.86);
v, = —jYscotd, and y,, = +jY,/sin 8. Therefore, inverter Y, =Y, /siné and
half of each resonator must be composed of admittance —jY,cotd. Figure
8.14 shows the equivalent circuit in impedance terms. The equivalent of a
shorted-stub transmission line at each end of the inverter must be resonated to
make a direct-coupled filter. In this example, Z,,, =50 ohms, and the shunt
reactances associated with y,, and y,, are +j57.74 ohms. Capacitors on either
end having the negative of the latter value are required, as shown in Figure
8.15, Programs A6-1 and A6-2 may be used to confirm the impedances noted
in Figure 8.15. It can be shown that the voltages across the capacitors have a

______________ -

; lr Zyy = Zg sind I

G ; f) v e | 2
i \ J |
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O I - - —0
| at wy |
A

Figure 8.14. An equivalent circuit for a lossless transmission line having Z, ohms and # length.




292 Direct-Coupled Filters

_'L _{ ) =100 %2, 30° , 1 N
1 r > 1

680+j0 501i57.74 28.87 —j24.74
Figure 8.15. A direct-coupled filter using a short length of transmission line.

90-degree phase difference. Also, if the load resistor is changed to 25 chms,
the input impedance becomes 100+ j0 ochms. (Why?)

8.3.2. Trap Inverters. Consider the trap inverter shown in Figure 8.16. If the
trap is resonant above the passband-center frequency (i.e., w, > w), then the
trap will appear to be an inductance at tune frequency w, where the inverter
design is accomplished. The susceptance of a parallel LC network resonant at
w, 15 available from (8.1} and (8.2):

w
B(w)=wnC(::°—n — :;1), (8.28)
and w,=1/yLC . The trap suSceptance at w=wy is thus
B(wp) = c(— ~ ) (8.29)
n Lo

and the adjacent resonators must absorb this equivalent negative inductance,
as explained in Section 8.2.4.

A useful conversion of (8.28) is obtained by using the frequency term
within the parentheses in (8.29) to both multiply and divide (8.28). After some
algebraic manipulation, (8.28) can be restated as:

B(e)= —wor{(%%%?ﬂ (830)

Figure 8.16. Trap inverter producing a transmission zero at w,.
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It is important to interpret the three factors in (8.30), The first two terms
have been extracted in the form typical of the simple capacitive inverter
described in Section 8.2.1: B(wg) is an inverter Y, and (w/w,) is the linear
frequency behavior of capacitive susceptance. Therefore, (8.30) was written
with @ >, in mind, when the trap appears capacitive.

The analysis in Section 8.1.3 showed that the Z, of each inverter was a
factor in the coefficient of the highest-degree frequency term in the response
polynomial [see (8.10)-(8.12)]. The first two terms in {8.30) produce exactly
the effect of a simple capacitive inverter. The effect of the third term in (8.30)
is to increase the breakpoint of the asymptote for stopband selectivity by
20log of its inverse (inverting from admittance to impedance).

The numerator and denominator of the third term are both positive when
w>w, and w, >w,. Thus the third term is unity when

w, 37—1/2

An analysis of the third term in (8.30) in light of (8.31) reveals that the trap
increases selectivity above the trap frequency, except for the case where
@, /wy<y2, when the benefitting frequencies must be less than (8.31). It is
usually desirable to set the trap resonance quite close to the upper passband-
edge frequency; so the latter restriction imposed by (8.31) will apply. How-
ever, a trap resonance close to the pass band severely aggravates the dissipa-
tive effects on the passband edge.

This analysis for @, > w, and w >, leads to the following rule: classify the
trap as a simple C inverter in {8.27), and increase the loss estimate by *

(w /‘*’0) -1
l—(wn/m)

When w,/w,<y2 , (8.32) is negative when the frequency is greater than (8.31).
A similar analysis for w, <w, and @ <w, leads to the rule: classify the trap as
a simple L inverter in (8.27) and increase the loss estimate in (8.27) by

(”0/ n) -1
1_(“" /wn)

Figure 8.17 shows the breakpoint boost provided by (8.32). Note that the
trap appears inductive between w, and w, and capacitive above w,. The
consequent change of 12 dB/octave in the asymptote slope is shown in Figure
8.17. The increase in the breakpoint due to (8.32) or (8.33) can be used to
reduce the loaded-Q product while oblaining the same stopband loss at one
particular frequency. This reduces resonator reactive power and thus dissipa-
tion loss, as described in Section 8.3.3.

There are several caveats regarding traps. The trap null frequency should
be no closer to the passband edge than absolutely necessary; this rounds the

(831) -

(8.32)

20log (8.33)
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Figure 8.17. Breakpoint boost due to an upper stopband trap.

passband edge in dissipative networks. Selectivity between the null frequency
and the passband cannot be guaranteed, because the trap null is extremely
sensitive. In fact, the “shelf” indicated in Figure 8.17 is the only loss specifica-
tion that a trap should be expected to fulfill. A reciprocal pole factor can be fit
to the loss curve around a trap pole of attenuation, and the shelf loss value
can be estimated. The analysis is beyond the scope of this introduction;
however, Appendix G contains the necessary equations.

Example 8.3. A three-resonator design was accomplished in Section 8.2.4
and shown in Figure 8.12. Change L,, to an 80-MHz trap by adding C,4 in
parallel with L,; between nodes II and III. The loss at 90 MHz is still of
interest; it was 60 dB before. However, the trap will look capacitive above 80
MHz, not inductive as before. Therefore, the NMI-NCI factor is now 0
instead of 2, which is a 10.21-dB reduction from the filter having ‘two
inductive inverters. However, (8.32) is equal to 17.42 dB; so there is a net gain
of 7.21 dB as a result of changing the inductor to an 80-MHz trap. This means
that the attenuation at 90 MHz would increase to 67.21 dB for the same
loaded-Q product of 319.58; analysis showed that the actual attenuation was
68.84 dB. This response curve is plotted in Figure 8.17, The passband
distortion due to nonideal inverters caused 3-dB frequencies of 44.90 and
53.77 MHz for an 18.05% passband width. Compare this to the data in Table
8.1. Another option is to reduce the loaded-Q product by a factor of 2.29
(reduce each resonator Q by 32%) and keep the 60-dB attenuation at 90 MHz.
The value of trap C,; is obtained from (8.29) where B(wy)= —1/y75-100.
The fractional frequency part within the parenthesis in (8.29) is —0.9750;
therefore, trap C,, susceptance at the trap null frequency is 1/84.4374 mhos.
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Using w,, C;,=23.5611 pF; its resonating inductor value is L,,=167.9829
nH. Note that no other value of the network in Figure 8.12 was changed.

(Why?)

8.3.3. Dissipation Effects. It will be shown that the only dissipation that
matters is in the resonators; the effect of the inverter dissipation is an order of
magnitude lower. The power loss atiributable to each resonator may be
expressed in a very simple relationship. Figure 8.4 showed a resonator with a
hypothetical (or real) conductance across it to represent the real power going
toward the load. Figure 8.18 shows the same resonator with the unavoidable
dissipation conductance Gy ,. Loaded-Q definition (8.3) will be retained as the
ratio of parallel resistance to parallel reactance without losses.
The unloaded @ of the Kth resonator is defined as

B
ke XxGOkd
where the sign of the reactance is ignored. The efficiency in (4.45) was the

ratio of load power to input power; in terms of the power dissipated, Py, the
efficiency of the K th resonator, is

(8.34)

_ Pyq
m=1- 52 (8.35)

Assume that V=1 in Figure 8.18 without loss of generality. Then Py =Gy,
and P, =Gy +Ggy. Using (8.3) and (8.34), (8.35) becomes

1
=1— . 8.36
T TrQu/ Qi (29
Thus, the common expression for the K¢h resonator efficiency is
m=1- % for Qu>Qik- (8:37)
uk

The overall efficiency of the total direct-coupled filter is just the product of
each resonator’s efficiency. For example, the efficiency of the filter in Figure
8.12¢ when all inductors have unloaded Q’s of 100 is 0.9835 dB using the three
factors as in (8.36). Network analysis shows that the actual efficiency is 0.9420
dB.

Figure 8.18. A dissipative resonator with conductance Gy, related to its unloaded-Q
factor (Qui).
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Figure 8.19. An N =3 dissipative, direct-coupled filter at tune frequency w,.

Figure 8.12a shows that the network at the tune frequency has the form
shown in Figure 8.19, because all the resonators are parallel resonant. Inverter
relationship (8.9) in its admittance form enables the expression of the input
conductance:

GGy
Ga+GGy3/(G3a+ Gy3)

G, =G4+ (8.38)
The input conductance of the lossless network is G,,. Divide both sides of
(8.38) by G,,, and introduce G, and G;; so as not to disturb the equality; this
yields

G G,,G,,/G,G

Sy 1G2,/G1,Gy, _ (839
G Gn Gu G1G3/GyGa

G22 GSd/G33 + G33/G33

The left-hand side is inverted to express a resistance ratio, and the loaded and
unloaded Q’s of (8.3) and (8.34) are incorporated. The result is the continued
fraction

R, (lossless) O, + 1 (8.40)
R omeor Rt 2 Py , .
Rip(lossy) " " 4 ,+1/(Qpy+1)
which always ends with 1. The relative Q, Q, . is defined as
A QLK
=, 8.41
QLK Qu]( ( )

The continued fraction expansion in (8.41) will be computed by a recursive
procedure in Section 8.6. In general, the direct-coupled-filter input resistance
tends to change very little as a result of dissipation when there is an even
number of resonators. This is due to the “seesaw’ effect that each inverter has
on its load and input resistances [see (8.7)]. When the inverter’s load resistance
increases, the inverter input resistance decreases, and vice versa. Whatever the
change from the desired input resistance, it may be restored simply by
changing some inverter Z, value {top-coupling reactance). It is also possible to
restore the match by adjusting the input end coupling, when it is employed as
desired in Section 8.3.5.

To compare the effect of dissipation on resonators and inverters, consider
the dissipative resonator in Figure 8.18. At tune frequency w,, the input
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conductance of the Kk resonator is

GKd+GKK='GKK(]+_QQLK ) (8.42)

On the other hand, the magnitude of a dissipative inverter coupling compo-
nent is

2
u

- P 0.5
R, +iX,|=X; 1+—=xu(1+63)_ (8.43)

The last term results from the standard approximation for the square root of a
binomial just slightly greater than unity. Ciearly, the inverter dissipation
disturbance is an order of magnitude less than that in resonators, and this is
easily confirmed in practice.

There is a remarkable happenstance concerning the effect of dissipation on
stopband selectivity. It turns out in almost every case that the selectivity
estimate (8.27) is essentially unaffected by dissipation. What happens is that
the selectivity of a lossless network, which is all due to input mismatch
reflection, as described in Chapter Three, is replaced by a sum of reflection
and efficiency loss that is nearly the same. For example, setting each inductor
Q, equal to 100 in the network in Figure 8.12¢ produces a 90-MHz loss of
60.13 dB, instead of the lossless network value of 60.12 dB. But the former is
the sum of the 25,77-dB mismatch loss in (4.60) and the 34.36-dB efficiency
loss in (4.45). This phenomenon can almost always be expected to occur, thus
increasing the utility of the selectivity estimate in (8.27).

8.3.4. Equivalent Resonators. The susceptance of the Kth resonator shown
in Figure 8.4 can be determined from (8.1) and (8.2):

By(w) =m(,c,<(wiO - %) = w,CycF. (8.44)

Differentiating this with respect to w and then setling w=w, yields an
expression for C,. in terms of its slope:

_14Bg

Kea ™ 3 "de

C (8.45)

w=uwy

This is called Cy,, because resonators may be employed that are far more
complex than simple LC branches. They may still be used as resonators if (1)
they are parallel resonant at wg, and (2) their slope at w=w, is available for
use in (8.45). In that situation, there is a first-order correlation between the
real resonator and the equivalent C in the lumped-element prototype network,
namely (8.45). First-order correlation means that the first two terms in Taylor
series (5.26) are known: the constant (zero) and the first derivative (slope).

It is not unusual to encounter discrepancies in the measured resonance
bandwidth and the tune frequency reactance of resonated inductors. Often the
explanation may be traced to (8.45), where the slope of the resonator does not
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Figure 8.20. A capacitively loaded, short-circuited transmission line (a)} and its eguivalent
lumped-element resonator (5).

conform to that of the lumped model. Helical resonators are especially subject
to this discrepancy because they are coils having approximately 84 degrees
electrical length with a small resonating capacitance. The slope equivalence of
resonated transmission line segments is often a useful parameter.

Consider the resonated, short-circuited transmission line and its equivalent
lumped-element resonator in Figure 8.20. To establish the slope equivalence of
C, and Cy,,, the transmission line resonator susceptance may be written as

B(w)=wC, —Y,cotd, (8.46)
where the electrical length is .
=t (8.47)

v

The transmission line velocity is v, and the physical length is {. At resonance,
B{wy)=0, and

woCy =Y cotf,. (8.48‘)

After differentiating (8.46) with respect to w, setting w=w,, and replacing C,
using (8.48), the transmission line resonator slope at the tune frequency is

B
dw

Y 8 :
=—O(c0t80+ > ) (8.49)

w Wy sin“ 8,

where 8, is the electrical length in radians at tune frequency wj,.

There are a number of applications where C,—0 and §,—>=/2 in Figure
8.20. For example, interdigital filters are described by Matthaei et al. (1964).
The 90-degree resonators also have a slope equivalence to lumped-element
resonators. From (8.45) and (8.49), the equivalent prototype resonator suscep-
tance is

wCxeq= Yo (8.50)

AL
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Note that the resonator loaded Q computed on this basis will be useful as a
passband parameter, but not for determining dissipation. (The equivalent
parallel resistance due to transmission line loss may be obtained as described
in Section 4.3.2.) The 90-degree resonators have repeating passbands at odd
harmonics of the tune frequency, because of periodic resonances.

The capacitive loading of the short-circuited transmission lines in Figure
8.204a spaces the recurring resonances in a nonperiodic manner. Suppose that
B(wg)=0=B(w,); from (8-46) and (8.47),

Y, e fw,

0 o
C—k=w0tanw‘;—=wltan7. (8.51)
Therefore, a second resonance at w, is related to tune frequency w, by
w tan#d
‘ L =0. (8.52)

W B tan[(wl/wo)ﬂo]

This transcendental equation may be solved by secant search. For example,
when the resonator is 45 degrees long at the tune frequency ), then w,=
4.2915w,. Resonators may be as short as 10 degrees, which increases the
second resgnance to about 17.5 times the tune frequency resenance. Inciden-
tally, a useful relationship of transmission line length in free space is

= _If
o= 3 8] degrees, (8.33)

where ¢ is in inches and f is in MHz. A graph of (8.52) solutions is shown in
Figure 8.21.

20 ! -I
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Figure 8.21. Frequency ratios of recurring pass bands versus short-circuited resonator length at
the tune frequency.
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The ratic of the two capacitors (and related loaded Q’s) in Figure 8.20,
based on slope equivalence at the tune frequency, may be found from (8.48)
and (8.49):

9 -
Cieq/Ci=0.5+ ET;(); : (8.54)
For example, when 8,=7/4, C¢.,/C, =1.285. The loaded Q of the resonators
in Figure B.20 is proportional to the resonating capacitors. Therefore, the
effective loaded Q that determines passband behavior is 28.5% greater than
the apparent loaded Q determined by tune frequency reactance in (8.3). It will
be shown that the increased loaded Q decreases the passband width.

Example 8.4, Design an N=3 combline filter using capacitive coupling
between nodes and 45-degree resonators. Make the effective loaded-Q values
and resistance levels equal to those in Figure 8.12. The desired circuit
arrangement is shown in Figure 8.22.

The effective loaded-Q values will be 1.285 times the values on a reactance
basis, as previously noted for 45-degree resonators. Dividing the Q values in
Figure 8.12 by 1.285 yields Q,=4.2229=Q, ; and Q,,= 8.4458. Synchronous
node reactance Xy =Ry, /Q, , so that R,; =50, R,,=75, and R;,=100 lead
to X;=11.8403, X, =8.8801, and X;;=23.6805 ohms, respectively. The short-
ed-stub input impedance is jZ,tan#, so that Zg = X,. when § =45 degrees. At
50 MHz, the corresponding synchronous capacitances are: C;=268.84, C;;
=358.45, and C,;;=134.42 pF. The values of X,, and X,; are the same as
shown in Figure 8.12, so that C,,=51.98 and C,;=36.76 pF. There are two
negative inverter capacitances to subtract from C/;, and only one each from
C; and Cyy. The resulting topology code (corresponding to the analysis
scheme in Chapter Four) for the combline filter in Figure 8.22 is shown in
Table 8.2.

The analysis at 50 MHz showed that the lossless network was tuned to
Z, =50.0125+j0.0073 ohms. The 3-dB loss frequencies were 46.05 and 55.55
MHz; this is an 18.78% bandwidth, compared 1o the ideal, maximally flat
3-dB bandwidth of 18.43%.

Clearly, Z,, and Z,, are impractically low because the physical range of
transmission line characteristic impedances is about 20-120 ohms. Parallel

Cy2 Coa 1

JL
I

1l
| Zy l 2o Zo3
509 T=G =, = C, 1009%

8y d, B

Al

Figure 8.22. A combline filter using two capacitive inverters,
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Table 8.2. Analysis Topology Code for the
Combline Filter in Figure 8.22 (Example 8.4)°

Type Value Name
4 23.68 Zos
314.16E6 45.00 wy and
-3 97.66 G
3 36.76 Cys
4 . 8.8801 Zy
314.16E6 45.00 wg and G,
-3 269.72 C;
3 31.98 Ciz
4 11.8403 Zy,
114.16E6 45.00 wp and &,
-3 216.36 C,

2Units: ohms, pF, and nH.

resistance R,, is completely arbitrary; setting R,, equal to 600 ohms increases
Zgy, to 71.04 ohms. Changing all capacitances for this circumstance and
analyzing the network confirmed that the selectivity was indeed independent
of R,,. (Try it.) However, it turned out that C,;=13 pF, which is near the
minimum practical capacitance range. The trade-offs in this procedure are
quite vistble. The solution for the unacceptably low value of Z,, appears in
Section 8.3.5.

Slope equivalence (8.45) is a means for estimating passband behavior, and
(8.52) estimates spurious passband frequencies for capacitively loaded, short-
circuited transmission line resonators. Stopband selectivity estimate (8.27) may
be applied to the loaded-line case if the Cg,/C, ratio in Figure 8.20 is
determined for equal prototype and actual resonator susceptance at a given
stopband frequency. Replace Cy by Cy., in (8.44) and equate this to (8.46).
Substitution of (4.27) and (8.48) yields the requirement for equal stopband
susceptances for Figure 8.20:

CKeq @ tan 90 i
G [ wo tan(fgw/wy) |F (8.55)

For the second harmonic, this reduces to
CKeq = 1+ tanze
G 37

by use of a trigonometric identity from Dwight (1961, p. 83).

The second-harmonic selectivity of the combline filter in Example 8.4 may
be estimated using (8.56). Since the loaded Q is proportional to the resonator
capacitance, (8.56) is found to equal $ when 8,=45 degrees. The loaded-Q

w=12u,, (8.56)
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product based on the reactances in Example 8.4 was 150.6130; the effective
Q. of each resonator is one-third more than that in its effect on the second-
harmonic selectivity. Thus the loaded-Q product must be increased by 2.3704,
or 7.4963 dB, before applying selectivity estimate (8.27); in this case, there are
two capacitive inverters and no inductive inverters. Program A8-1 evaluates
(8.27) to estimate a 43.58-dB second-harmonic attenuation. Analysis of the
combline filter in Figure 8.22 by using values from Table 8.2 yields an actual
attenuation of 43.18 dB at the second harmonic (100 MHz).

8.3.5. End Coupling, The combline filter in Example 8.4 was left with an
input resonator having an extremely low Z,. Increasing the parallel resistance
at node I from 50 to 150 would triple Z,, to the acceptable value of 35.52
ohms. A transformer can be placed between the source and node I if the first
resonator incorporates the equivalent parallel inductance it presents (see
Figure 8.1). The required coupling coefficient is

K XX [ (R )2

- +|—
R.Ry X,

where X, and X, are the primary and secondary reactances at w, (see Figure

8.10a). The positive, parallel inductance to be combined into the adjacent
resohator is

, (8.57)

__ Ru
! Rll/xs"Rg/Xp '

where K>« 1 has been assumed.

An alternative means for increasing the end-node parallel resistance is the
use of an L section from Section 6.1.2. Any element adjacent to the resonator
must become a part of it. However, in this case and in the case of the
transformer, the rule that “all L’s and C’s touching a node must resonate”
applies only before these coupling sections are combined into the end resona-
tor(s). Element dissipation effects have been considered in Section 8.3.3, where
the input resistance disturbance was quantified. It may be offset by the input
L section, which also may have dissipative elements, especially inductors. 1t is
straightforward to account for the Q, of the top-coupling inductor L, in
Figure 8.2. The design relationships for Q> 1 are

X (8.58)

1/2

R, —2R,
+ , (8.59)

R, —-2R,\?
°TT,

Rg(R”—Rg)+ (—2(}_
Ry
[Rll/(Rg+X31/Qu)_ 1]1/2 ’

where X, is the top-coupling inductor reactance, and X, parailels C;. As
before, this coupling may be used on either end or on both ends of the filter.

(8.60)

p1=
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The selectivity effects of end coupling are similar to those of inverters.
When the resistance transformations are 10 or greater (e.g., R,;>10R,), then
the end coupling affects selectivity approximation (8.27) like inverters of the
same kind. Lesser resistance ratios produce effects of less than 6 dB/octave. A
good interpolation formula is included in Appendix G. Its derivation is
beyond the scope of the present treatment. Educated guesses between 0 and 6
dB/octave are often satisfactory.

8.3.6. Summary of Inverters, Resonators, and End Couplings. Every lossless,
reciprocal network contains an inverter; it was identified in terms of its
short-circuit y parameters. Inverter Z,=1/]y,, and y,, and y,, must be
incorporated in adjacent resonators. Inverters affect stopband attenuation
according to the logarithm of the ratio of Z, values at stopband and tune
frequencies; so the original breakpoint attenuation estimate may be used for
any kind of inverter. The trap inverter is particularly useful because it
provides equivalent selectivity with reduced loaded ’s. This effect was
expressed as an added term in the selectivity estimate.

One reason for using minimum loaded-Q values is their direct effect on
dissipative loss. The efficiency of each resonator at the tune frequency was
shown to be a simple function of the loaded-to-unloaded-Q ratio; the product
of all such efficiencies is the overall filter efficiency. The tune frequency model
of a dissipative, direct-coupled filter is just a set of parallel resistances
separated by ideal inverters. The input resistance was shown to be a continued
fraction, and that provided an expression for the ratio of input resistances
with and without dissipation. The change due to dissipation tends to be
greater for an odd number of resonators, but it can be corrected by adjusting
the inverter or end-coupling transformation ratios. It was also shown that
inverter dissipation effects were an order of magnitude less than resonator
effects, and could be safely ignored. An example emphasized the fortuitous
effect of dissipation on stopband selectivity: the lossless estimate is still quite
accurate because it is usually about equal to the combination of input
mismatch loss and efficiency loss in the presence of dissipative elements.

Almost any two-terminal network can be used as a resonator if it is
resonant at the tune frequency and has either an acceptable tune frequency
slope or stopband susceptance. The equivalent lumped-element, prototype
resonator capacitance turned out to be equal to one-half of the resonator stope
versus frequency at w,. The capacitively loaded, short-circuited transmission
line resonator was examined in terms of both its tune frequency slope and
stopband susceptance equivalence to the prototype resonator. The equivalence
was expressed in terms of the ratio of the lumped resonator Ck,, to the actual
loading C, across the transmission line stub. This is the same as the ratio of
the equivalent loaded Q to the apparent loaded Q. This type of stub is used in
combline filters. Example 8.4 utilized three such resonators, which were
capacitively coupled.
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Unloaded, 90-degree shorted stubs are used in interdigital filters; their
slope equivalence was obtained. In that case, the passband reoccurred at odd
harmonics of the tune frequency. It was shown that shortening the line by
capacitive loading produces nonperiodic passband reoccurrences that are far
removed from the tune frequency for short stubs. A graph of this effect was
furnished.

The combline filter in example 8.4 produced two stub Z; values that were
impractically low. The interior node’s parallel resistance can be raised to
increase the resonator Z, without affecting the selectivity. The need for end
coupling to raise the input (and /or output) node’s parallel resistance level was
made evident. Both the transformer and the L-section end couplings were
described; the latter included an inductor unloaded @, in the matching
formulas provided. The viewpoint for properly combining the end-coupling
reactance with the resonator was discussed. Also, the effect on selectivity was
described as being similar to the effect on the same type of inverters,
especially when the end-coupling resistance ratio exceeded 10: 1. An example
of end-coupling design is included in Section 8.6.

84. Four Important Passband Shapes

It was shown in Section 8.1.3 that the selectivity function of the prototype
network was a functien of only the resonator loaded-Q values. When inverters
have some frequency dependence in the Z, or & parameters, some distortion
occurs, but it may be negligible for bandwidths of less than 20%. The
stopband effects of inverter Z are easily anticipated in terms of asymptote tilt
in a simple breakpoint analysis. This section concentrates on the loaded-Q
distribution. Although loaded-Q values may be selected arbitrarily, it is often
useful to have closed formulas for passband characteristics, even if they are
only approximately realized by the network.

Four response shapes will be considered; the first three belong to a closely
related family based on elliptic loci in the complex frequency plane. These are
the Chebyshev (equal-ripple or overcoupled), Butterworth {maximally flat or
critically coupled), and Fano (undercoupled) shapes. Fano’s undercoupled
response shape is not related to his broadband-matching method in Chapter
Six: it was suggested in connection with video amplifier design. The fourth
shape results from choosing all loaded-Q wvalues to be equal. The resonator
efficiency relationship from Section 8.3.3 will show that this produces mini-
mum loss when given a loaded-Q product, i.e., fixed stopband attenuation. It
also produces a network having minimum sensitivity, and serves as a simple
norm for all other cases.

Transducer functions were described in Section 3.2.4, and their zeros were
identified as the natural frequencies of resistively terminated LC networks.
The problem set for Chapter Three included both Chebyshev and Butterworth
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Figure 8.23. A family of bandpass-filter transducer zeros.

polynomials. The zeros of these functions lie on ellipses and a related circle,
respectively, as shown in Figure 8.23. Note that the lowpass-to-bandpass-
frequency transformation of (6.83) has been assumed. The frequency variable
is now F, from (8.2}, normalized to a given fractional passband width (6.86),
here called Fj in accordance with Figure 8.7. Butterworth transducer zeros lie
on the circle, and Chebyshev zeros lie on the vertical ellipse. The elliptic loci
may be found from (6.54), but these relationships will be reformulated here.
The horizontal ellipse contains the roots of the Fano undercoupled function,
which is quite useful but not well known.

This section will include a discussion of each type of response; the first
three will be compared. Equations for estimating the number of resonators
required for certain selectivity specifications, as well as loaded-Q product and
breakpoint analysis information, will be given. The means for tabulating
loaded-Q distributions and two normalizing constants will be described.
Limited tables and selectivity curves will be provided; it is anticipated that
small-computer programs will be written as required. A comprehensive tabula- -
tion of design equations is provided in Appendix G.

8.4.1, The Chebyshey Overcoupled Response Shape. The Chebyshev re-
sponse shape is defined by

L(f)= 101og,0(1 + ezT,{,Fi) dB, (8.61)
P
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Figure 8.24. Overcoupled breakpoint plot: N=4, L,=1dB, F,=0.1.

where

e=(104/ 10— 1)/ (8.62)
and L, is shown in Figure 8.24. Chebyshev functions of the first kind (Ty)
were defined by (2.34) in the passband and by (2.35) in the stopband. As
illustrated in Figure 8.24, Chebyshev bandpass functions have N valleys and
N —1 peaks located according to

- =cos(td),  1=1,2...,2N-1, (8.63)
B

where § =27 /N, as previously defined in (6.71). There is a response valley at
fy for odd values of N and a peak at f, for values of N, as shown in Figure
8.24. Direct-coupled Chebyshev networks having an even number of resona-
tors are mismatched at the tune frequency, thus the peak at f; in Figure 8.24,
The parameter g, in Equation ((G.10) (Appendix G) is greater than unity
for even values of N. Choices of parallel resistances and inverters should be
made using Ry decreased by dividing the given Ryy by gy, (. After the
design is complete, the given value of Ry terminating the network will
produce the correct input impedance mismatch.

Chebyshev response (8.6!) can be solved for the number of resonators
required for given stopband loss L, at fractional frequency F_ and comparable
passband values (L, and F):

Ne cosh_l[(loo'”‘f’— 1)/(]00.11_,_ 1)11/2 | (8.64)
cosh™'(F,/F,)
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There is often a need to locate other points at F=TF, on the curve in Figure
8.24 given the loss value L,. This may be accomplished by using

Fx
Fo= cosh[ (1/N)cosh™!(t/¢) ] ’ (8.6%)

where a new parameter, similar to ¢ in (8.62), is

t=(10/10-1)"/? (8.66)

Example 8.5a. Suppose that the Chebyshev passband ripple is L,=0.1 dB
over bandwidth F,=0.15, and the stopband loss is L;=30 dB at F,=0.195.
Find N and, using the next higher integer, find the frequencies where L=3
dB. Solving (8.64) yields N =7.9668. Using N=8 in (8.65) yields F,=0.158.
Summarizing, when N=8 there is a 0.1-dB ripple over the 15% passhand
width, 3 dB at the edges of a 15.8% bandwidth, and 30 dB at the edges of a
19.5% bandwidth.

The 2N zeros of the Chebyshev function in (8.61) are shown on the vertical
ellipse in Figure 8.23, where the dimensioning parameter is

1 .. -11
a= ﬁsmh ‘;. (8.67)

The location r, +ji,, of the m¢h zero is

r, =FgSysin(2m—1)8, (8.68)
in=FzySy+1 cos(2m—1)6, (8.69)
and
sinh (1
Sy= sinh—N(—/B) . (8.70)

In these equations, m= I,Q,...,N/2 when N is even, and m=1,2,...,
{(N+1)/2 when N is odd. Using N left-half-plane factors to create a polyno-
mial in (F/F)) results in forms like (8.15). Green (1954) tabulated the
coefficient expressions through N=5 and guessed the recursive relationships
for the general case. The coefficients of like powers of jF were compared, and
a general relationship for successive element values was obtained. The latter
result is equivalent to (6.72). In the present case, (8.16) and (8.17) showed that
loaded-Q parameters could be identified. The recursion for loaded-Q values
for the Chebyshev overcoupled case is given in Appendix G. A typical set of
values is shown in Table 8.3 for lossless and lossy sources (see Figure 8.1).
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Table 8.3. Overcoupled Q,, Values for N=3

L, {dB) Qu [o]%: 0w Q. Product QuLF,
Lossless Source

0.01 2.542 2427 1.0 6.169 0.3146
0.10 2.112 2.106 1.0 4.449 0.5158
02 1.939 1.937 1.0 3.756 0.6138
0.5 1.687 1.629 1.0 2.748 0.7981
1.0 1.491 1.318 1.0 1.965 1.012
20 1.307 -0.940 1.0 1.229 1.355
3.0 1.213 G6.7011 1.0 0.8501 [.674
6.0 1.087 0.3201 1.0 0.3479 2.708
9.5 1.035 0.1371 1.0 0.1420 4.296

¢ Lossy Source
0.01 1.0 1.5420 1.0 1.542 0.6292
0.1 1.0 1.1120 1.0 1.1120 1.0320
0.2 1.0 0.9389 1.0 0.9389 1.2280
0.5 1.0 0.6870 1.0 0.6870 1.5960
1.0 1.0 0.4913 1.0 04913 2.0240
20 1.0 03072 1.0 0.3072 2711
3.0 1.0 02125 1.0 0.2125 3.3450
6.0 1.0 0.0870 1.0 0.0870 5.4150
9.5 1.0 0.0355 1.0 0.0355 8.5910

Example 8.5b. Reconsider the specifications in Section 8£.2.4 for the
Chebyshev overcoupled shape (with perfect inverters): the N =3 lossy-source
filter is tuned to 50 MHz, and a 60-dB attenuation is required at 90 MHz.
Find the loaded-QQ values and the passband width if the passband ripple is to
be 0.2 dB. First find output resonator Q;; (8.18) shows that the loaded-Q
product must be 1035,32. Then (8.21) and the normalized loaded-Q product of
0.9389 from Table 8.3 yield Q,,=10.3312. Therefore, Q,,=0.9389 % 10.3312
=9.7000, and Q;;=10.3312. Since Q. F,,=1.2280, F;,=0.1189; ie., the
0.2-dB-ripple passband width is 11.89%.

8.4.2. The Butterworth Maximally Flat Response Shape. The Butterworth
response shape is defined by

L(f) =10 logio

o F AN -
1+e (T?;) JdB, 8.71)
e was defined in (8.62), and L, is shown in Figure 8.25. Butterworth response
Equation (8.71) can be solved for the number of resonators required for the
given stopband loss L at fractional frequency F, and comparable values of L,
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Figure 8.25. Maximally flat breakpoint plot: N=4, L =1 dB, F,=0.1.

and F:
Jog[(lOo"L’— 1)/(100.1LP___ ])]
= 21og(F,/F,)

To locate other points at F=F, on the curve in Figure 8.25, given the loss
value L,, use

(8.72)

F

S 8.73
ECTO &)

where q was given in (8.66).

Example 8.6. Suppose that the Butterworth defined passband edge is L =0.1
dB at bandwidth F,=0.15, and the stopband loss is L,=30 dB at F,=0.195.
Find N and, using the next higher integer, find the frequencies where L=3
dB. Solving {8.72) yields N=20.3. Using N=21 in (8.73) yields F, =0.1640.
Summarizing, for N=21 the frequency response curve is 15% wide at the
0.1-dB points, 16.4% wide at the 3 dB points, and 19.5% wide at the 30 dB
points. Note that the N=8 Chebyshev filter in Example 8.5 met the same
performance specifications.

The 2N zeros of the Butterworth function in (8.71) are shown on the circle
in Figure 8.23, where the dimensioning parameter is

cosh ™[ (sinh 0.88 14N /¢
b=cosh [( )/ ] .

(8.74)

N.
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Table 8.4. Maximally Flat Q, Values

N G Qu; Qus Qua Qus Que Q. Product FQune ™'/

Lossless Source

2 2 1.000 2.00 0.7071
3 3 2.667 1.600 8.00 0.500

4 4 4.121 2.828 1.000 46.63 0.3827
5 5 5.483 4.472 2.894 1.000 354.90 0.3090
6 6 6.797 6000 4.643 2928 1.000 3327.00 0.2588

Lossy Source

2 1 1.000 1.000 1.4140
3 1 2000 1.000 . 2.000 1.0000
4 1 2414 2414 1.000 5.8280 0.7654
5 1 2618 3236 2618 1.000 221800 0.6180
6 1 2732 3732 37320 2732 1000 104.0000 0.5176

The location r, +ji,, of the mth zero is
rm=Fpe"/Nsin{2mw 18, (8.75)
iy=Foe™'""Ncos(2m — 1)4. (8.76)
In these equations, m=1,2,...,N/2 when N is even, and m=1,2,...,
(N +1)/2 when N is odd. The recursive relationship for normalized loaded-Q
values is given in Appendix G.
Unlike the Chebyshev or undercoupled cases, the Butterworth passband

constant QyF, comes from a single, simple expression. The Butterworth Q
distributions and constants for values of N from 2 to 6 are given in Table 8.4.

8.4.3. The Fano Undercoupled Response Shape. The Fano response shape is
defined by

L(f)= IOIOgm[ 1+k2 sinhz(N sinh~ '?F—)] dB, (8.77)
d
where
-9
K= SRh(08814N) ®7%)
and
q=(10%/ 10— y'/? (8.79)

Normalizing bandwidth F, in (8.77) corresponds to loss Ly, the dB droop. It
has an upper bound:

L, < 10log,q[ 1 +sinh*(0.8814N} |. (8.80)
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Figure 8.26. Undercoupled breakpoint plot: N=4, L,=1, F,=0.1, L;=6 dB.

This is tabulated in Table 8.6 appearing later in this section. The droop
parameter is important in that it determines the shape, but some arbitrary L,
is usually of interest, as shown in Figure 8.26.

Undercoupled response (8.77) can be solved for the number of resonators
required for a given stopband loss (L,) at fractional frequency F, and compa-
rable values of Ly and Fy:

sinh~![ (sinh? 0.8814N)(10° 11~ 1) /(10> 1Le~ 1)/
B sinh ~'(F,/Fy)

This equation is implicit in variable N; however, its solution was the subject of
Example 5.6 in Section 5.3.4. It can usually be solved by elementary iterative
methods, such as a secant search. Since the decibel droop seldom defines the
desired passband edge, it is especially important to relate it to an arbitrary loss
and related fractional frequency:

N

(8.81)

FX
Fa= sinh[ (sinh~ (t/k) | /N (3:52)

Example 8.7. Suppose that the undercoupled shape has a 6-dB droop based
on Fy=0.15, and the stopband loss is L,=30 dB at F =0.195. Find N and,
using the next higher integer, find the frequencies where L, =0.1 dB. Figure
5.22 in Secticn 3.3.4 illustrates the solution: N =14.7538 for (8.81) in this case.
Using N=15 in (8.82), F,=0.1175. Summarizing, for N=15 there is an
11.75%, 0.1-dB bandwidth; a 15%, 6-dB bandwidth; and a 19.5%, 30-dB
bandwidth.
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The 2N zeros of the undercoupled function in (8.77) are shown on the
horizontal ellipse in Figure 8.23. The location r +ji,, of the mrh zero is

rn=F4Cysin(2m — 1), (8.83)

i, =F4yC&— I cos(2m ~ 1), (8-84)

cosh™ ! (sinh 0.8814N) /¢
N

In these equations, m=1,2,...,N/2 when N is even, and m=1,2,...,
(N +1)/2 when N is odd. The recursive relationship for normalized loaded-Q
values is given in Appendix G. The lossless-source case produces Q, distribu-
tions similar to those for the Chebyshev and Fano responses. However, for the
undercoupled, lossy-source case, there are multiple solutions. For even values
of N, there are N /2 distributions, and N /2 more using Q< 1/Q,. For odd
values of N, there is one distribution starting from Q,,=1, and (N—1)/2
distributions ending with Q< 1. There are (N—1)/2 more distributions

using 6LI<_1/6L1'

and

Cy=cosh (8.85)

Table 8.5. Undercoupled, Lossy-Source Q, Values for N=3

L @dB) QL Qu Qu;  QuProduct QyF,
0.1 0.4641 1.268 1.0000 0.5883 0.6668
0.1 1.0000 2.3090 1.0000 2.3090 0.4227
0.1 2.1550 2.7320 1.0000 5.8880 0.3094
1.0 03182 0.9656 1.0000 0.3073 1.2370
1.0 1.0600 2.7300 1.G000 2.7300 0.5972
1.0 3.1420 3.0340 1.0000 9.5350 0.3936
3.0 0.2395 0.7730 1.0000 0.1852 1.8330
3.0 1.0000 3.2070 1.0000 3.2070 0.4391
3.0 4.1750 3.2270 1.0000 13.470 0.4391
6.0 0.1813 0.6138 1.0000 0.1113 2.6080
6.0 1.0600 3.8490 1.0000 3.8490 0.8003
6.0 5.5170 3.3860 1.0000 18.680 0.4727
95 0.1360 0.4788 1.0000 0.0651 3.6690
9.5 1.0000 4.7450 1.0000 47450 0.8783
9.5 7.3550 3.521 1.0000 25900 0.4988

16.95 0.0720  0.2688 1.0000 0.0194 7.4350
16.95 1.0000  7.9750  1.0000 7.9750  0.9995
16.95 13.880 37310 1.0000 51.7800  0.5357
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Table 8.6. Fano Minimum Lowpass-Overshoot Droop Values

N 2 3 4 5 6 7 8

L, (dB) — 15.40 19.49 27.11 3476 42.41 50.07
MaxL, 9.54 16.99 24.61 32.26 39.91 47.57 55.22

A typical set of values for the undercoupled, lossy-source case is shown in
Table 8.5. Note the available arbitrary choices that do not affect the response
shape: not only resistance levels, but also distributions for a given decibel
droop. However, two of each set in Table 8.5 simply turn the network end for
end. An undercoupled example for N=4 and a 6=dB droop is worked in
complete detail in Section 8.6.

Fano examined the step response of his lowpass filters and recommended
certain decibel droop values versus N for minimum overshoot. Although the
frequency mapping in (6.83) causes some distortion of group delay, and the
inverters will cause more, Fano’s criterion for good transient response is a
useful guide. His equation for the recommended decibel droop applies for
N>2:

1+ (sinh*0.8814N)
328

Some of these values are tabulated in Table 8.6 along with the maximum
possible droop values from (8.80).

(8.86)

L,=10logy,

8.4.4. Comparison of Elliptic Family Responses. The defining response equa-
tions for the overcoupled, maximally flat, and undercoupled response shapes
may be compared to the ideal selectivity asymptote equation, represented in
(8.18), to identify the loaded-Q product (semilogarithmic breakpoint) in each
case. Ignoring the —6-dB term, the loaded-Q product for overcoupled filters is

201og TIQ, x = — N20log F,+20loge + 6(N — 1) dB. (8.87)
The loaded-Q product for maximally flat filters is
201og TIQ, x = —N20log F,+20loge dB. (8.88)

The loaded-Q product for undercoupled filters is
201og ITQ x = —N20log F;+20log q + 6{N — 1} — 20 log(sinh 0.88 14N} dB.
(8.89)

Table 8.7 compares the overcoupled and undercoupled cases to the But-
terworth case on the basis of (1) relative decibel selectivity for constant
passband width and (2} percentage of Butterworth passband width for a fixed
stopband selectivity (L,). It is noted that the defined Fano undercoupled
bandwidth is the decibel droop in Table 8.7. However, an arbitrary basis for
defining the undercoupled bandwidth is available using (8.82).
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Table 8.7. Comparisons Relative to Butterworth Passband and
Stopband Characteristics

Relative dB for % Butterworth PB
Same PB” Widths Width for Same L, dB
N Chebyshev Fano Chebyshev Fano
2 6 —3.03 4.3 —16.0
3 12 —4.90 58.5 —17.1
4 18 —6.59 67.9 -17.3
5 24 —8.26 73.8 —-173

9PB =passband.

8.4.5. The Minimum-Loss Response Shape. There is no simple expression

for the transfer function that results when all resonator loaded-Q values are
equal. However, there is a compact method for obtaining the ABCD chain
maltrix of a network consisting of iterated sections. It is important in its own
right and will be used again in Section 9.1. The strategy will be to cascade N
identicai subnetworks, each composed of a dissipative resonator followed by a
unit inverter. Multiplication of N such chain matrices amounts to raising the

typical chain matrix to the Nk power.

Storch (1954) showed that a real or complex 2 X2 matrix, T,

to power N by the following identity:
™= Po(y)T =Py _ (1)U

may be raised

(8.90)

U is the unit matrix; P, (y) is a Chebyshev polynomial of the second kind,
previously mentioned in Problem 2.16; and argument y=A+1D from matrix
T, assuming that T is the ABCD matrix. A recursion can be started with

P_,=—1and P;=0; then
Py=yPyx_—Px_,. K=12...,N.

Table 8.8 shows some of these polynomials.

(8.91)

It is seen from Figure 8.1 that a prototype network without a foad resistor is

Table 8.8. Chebyshev Polynomials of
the Second Kind

P;=

P=y

P3=y2—1

Pi=y'-2y

Ps=y'—3y*+1
5

a cascade of N resonator plus inverter subsections, which introduces a
superfluous inverter next to the output port. It is clear from (8.16) and (8.17)
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that the Z, values of the inverters do not affect selectivity, so that all of these
and the terminating resistance(s) may be set equal to unity without loss of
generality. The superfluous inverter next to the load will introduce a 90-degree
phase shift, but will have no other effect. Each typical subsection has a chain

maltrix defined by
1 0to 1] [0 ;1
[Y 1“3‘1 0} [jl jY]' (892)

The typical resonator is shown in Figure 8.18, where Gy is approximately
unity for low dissipation. To a good approximation under these assumptions,

Y=QL(QL +jF). (8.93)
Thus the argument of the Chebyshev polynomials of the second kind is
y=A+D=jY. Note that Y is complex, and so is JY. Thus (8.90) yields the
overall ABCD matrix of a somewhat dissipative, direct-coupled filter ending
in one superfluous inverter:

N _ =Py i(y) 1Pn(Y)
' L‘PN(y) .iYPNm—PN-.(y)}’ (®59

where the polynomial arghment is
y=jY (8.95)
for Y in (8.93).

The result in (8.94) may be used to obtain the frequency response of both
doubly and singly terminated minimum-loss filters. According to Beatty and
Kerns (1964) or (3.68), the transducer-gain scattering parameter normalized to
1 ohm may be expressed in terms of ABCD parameters:

=2
Su= ATB+CHD (8.96)

Therefore, the transducer gain for a doubly terminated network is

M 2
L=1010glol 4N| dB, (8.97)
where
MN=j(2+Y)PN(y)_2PN;I(y) (8.98)

using (8.94). This may be evaluated recursively using (8.91); however, the My
values in (8.98) may be expanded as polynomials in complex Y, as tabulated
in Table 8.9.

Figure 827 shows the N =4 response in the passband and stopband,
respectively. Note the Q, /Q, parameter. Two design graphs for four-
resonator, doubly terminated, minimume-loss filters are provided in Appendix
F. Note that it is convenient to use Q, F as the independent variable.
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Table 8.9. Doubly Terminated Minimum-Loss-
Filter Polynomials in Resonator
Admittance Y

M| =[2+Y]
M, =[242Y + Y?|

M| =[2+3Y +2Y2+ Y|

(Mgl =2+4Y +4Y2+2Y3+ YY)

[Ms|=12+5Y +6Y>+5Y>+2Y*+ Y|
[Mg|=[2+6Y +9Y2+8Y> +6Y*+2Y* + Y9

The stopband selectivity displayed in Figure 8.27 conforms to (8.18); for
this case it becomes:

L,=—6+N20logQ, + N20log|F| dB, L, > 20 dB. (8.99)

A useful second form of (8.99) expresses the required loaded Q given the
attenuation specification:

Q. =(F,) '100~+®/20N | 520 dB. (8.100)

A practical, well-known expression for the midband loss is available from

NS [[e.o -0
4
3
2

~6+20JogQ} | 50

L I |

3.23671 161877 1.0 1.618 3.236
f/f,

Figure 8.27. Doubly terminated, minimum-loss breakpoint plot: N=4, Lp= 1, Fp=0.l.
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the product of the resonator efficiencies, (8.37). In this case,

Q.

However, log,qx = (log,,e)(Inx), and Dwight (1961, p. 137) give the series

Liote — ( QL)”
{wg)=—10log,ol 1 — ==| dB. (8.101)

2 3

—xy=—x—X _X ... _
In(1—x) X—% =3 . (8.102)

In this case, x=0Q, /Q, is assumed to be small, so that
Lo=L{wg)= 4.3429N% dB. (8.103)

This valuable relationship is simple to compute and shows that the decibel
midband loss is inversely proportional to the resonator unloaded Q.
Furthermore, (8.99) may be solved for N,

6+1L,

N= BT OTS Tog(QuF)’ (8.104)
and (8.103) may be substituted to obtain
434L.+6 F
_ ( Ll )(QL s) (8105)

" (Q.F,)20log(Q,F,)

Differentiating (8.105) with respect to Q_F, and setting this to zero gives a
minimum midband-loss condition of

log,o(QLF,)=0.434. (8.106)
Putting this back into (8.104) yields
-8 8.107
°~ 8.686 (8.107)

This is the optimal number of resonators for a minimum midband loss when
the stopband attenuation (L.} is specified. The nearest integer value would be
used, of course.

The singly terminated response function can be obtained using (8.14); it
applies to Figure 8.1 and includes the load conductance. There is no source
conductance in the singly terminated case. The overalt ABCD matrix consists
of (8.94) for the resonators and inverters, but it must be postmultiplied by the
ABCD matrix for the unity-load conductance (see Section 4.2.1). The resulting
C element of the overall ABCD matrix for this case is

C@)=i(1+Y)Py(¥) ~ Py_1(y), (8.108)
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Table 8.10. Singly Terminated Minimum-Loss-
Filter Polynomials in Resonator
Admittance Y

ICi|=[1+Y]

[Cal=|1+Y+Y?

|C5l=1T+2Y +Y?*+ Y7

|Cal=[1+2Y +3Y°+ Y3+ Y?

[Cs|=|1+3Y +3YZ+4Y + Y4+ Y7
[Cel=1+3Y +6Y?+4Y3+5Y*+ Y+ Y9

where y=jY, and Y is in (8.93). Recall that this transfer function is exactly 90
degrees longer than the actual case, because of a superfluous output inverter.
The value of C(w) in (8.108) may be calculated recursively using (8.91), but it
is useful to expand (8.108) into polynomials in admittance Y. The magnitude
of (8.108) is tabulated in Table 8.10 using the polynomials from Table 8.8.

The singly terminated response function from (8.13) and (8.14) is

C(wo)

L{w)}=20log,, )

dB, (8.109)

where C is in (8.108). Usually, it is more practical to compute the term
L(w)=Ly—2010g,c/C(w)! dB, (8.110)

where L, is the approximate midband dissipative loss in (8.103).

Programs A8-2 and A8-3 in Appendix A compute the selectivity functions
described previously for the doubly and singly terminated minimum-loss
filters, respectively. The polynomial coefficients from Tables 8.8 or 8.10 are
stored in reverse order (as a string of integers in register 2) upon inputting the
desired value of N < 6. The coefficient of the highest-degree term is not stored;
also, 0.1 is added for convenience. The unload resonator Q, factor must be
manually stored in register 3. Then input of the loaded-Q value (Q,) initiates
the calculation of the approximate midband dissipative loss (L,) according to
(8.103). Key A is used to store the fractional frequency F. The approximate
stopband selectivity may then be computed according to (8.99); the —6
constant is omitted for the singly terminated case. Subroutine C (key C)
computes the approximate value of Ly —L_; this is valid only for values greater
than about 20 dB. It computes rapidly, compared to the exact calculation
(provided in subroutine E) programmed from the admittance polynomial
expressions. A means for systematically adding an arbitrary positive or nega-
tive increment to the loaded-Q (Qp) value is incorporated in the approximate
L,—L, calculation, so that a value of Q_ may be found for some desired
stopband attenuation relative to the midband loss. (The reader may wish to
add an automatic secant search for convergence.) The use of this program is
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easier to understand in the context of the selectivity curves in Appendix F.
The following example helps clarify the necessary design decisions.

Example 88. An N=4, doubly terminated minimum-loss filter has the
values Q, =100 and Q, =50 for unloaded and loaded Q’s, respectively. Find
the midband loss and the attenuation relative to the midband loss at a 10%
bandwidth. Also, find the fractional bandwidth for a 3-dB relative attenua-
tion. What must the loaded Q@ be to obtain a 45-dB attenuation at a 10%
fractional bandwidth? Solutions from Program AS8-2 can be located on the
selectivity curves in Appendix F. The midband loss is obtained by evaluating
(8.103). Entering N=4 by key D, storing Q,= 100 in register 3, entering
Q, =50, and pressing key B yields L,=8.6859 dB. Enter F=0.1 and press key
A. Key C promptly yields the approximate stopband attenuation 41.2317 dB
according to (8.99); key E requires more time to yield the exact value 41.0577
dB according to (8.97).

The 3-dB relative attenuation cannot be found by using key C, because this
attenuation is valid only in the stopband. By glancing at the first figure in
Appendix F or by trial and error, enter F=1.3333 /50=0.0267, and press key
A and then key E. The attenuation relative to L,=28.6859 dB is 2.9945 dB. So
Q_F=1.3333 on the first graph in Appendix F for a 2.67% bandwidth at the
relative 3-dB points. '

To increase the stopband loss requires a greater Q, . Program A8-2 includes
a feature to enable arbitrary incrementing of Q. Store F=0.1 by using key A
again, and store AQ = +0.5 in register 1. Pressing key C and then R/S shows
that a 41.2317-dB relative attenuation is obtained when Q, = 50. Pressing R /S
again shows a new L, and pressing keys C and R/S again yields 41.4906 dB
using Q =50.5 (the chosen increment was added automatically). Successive
cycles of keys C, R/S, and R/S lead to Q, =580, with a 44.9986-dB
approximate relative attenuation (44,9507 dB by exact subroutine E). Program
AB-3 for the singly terminated (lossless-source) case works in the same way.

84.6. Summary of Four Important Passband Shapes. There is a well-known
family of response shapes based on the root loci of orthogonal ellipses and
their common circle. This section included graphic and relational comparisons
of their selectivity characteristics. The Chebyshev overcoupled shape has equal
ripples and the steepest attenuation at the sides of the passband. 1t is affected
to a greater extend by moderate resonator dissipation and inverter Z, tilt than
are more rounded shapes. Equations for estimating the required number of
resonators for various selectivity requirements were provided. Design charts
and sets of various response curves (selectivity, time delay, etc.} are widely
available. A sample table of normalized, resonator loaded-Q values was
furnished (the generating equations are contained in Appendix G). Even-N
Chebyshev cases require an input mismatch at the tune frequency, causing a
slight alteration of the standard loaded-QQ filter design procedure (see Appen-
dix G).
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The Butterworth maximally flat shape is also well known but easier to
calculate, since it represents the common ground between the two sets of
ellipses. An included table of loaded-Q values for N <6 is adequate for all
Butterworth direct-coupled filter designs (the generating equations are also
included in Appendix G). Design charts and response curves are readily
available in the literature.

Fano's undercoupled response shape is not well known; it is a “droopy”
response with reduced selectivity but improved group time delay, Also, some
of the required loaded-Q distributions have high values for the input resonator
Q. ; this often enables the accommaodation of high-power vacuum tube ca-
pacitances. Since these devices are often operated in class C, the generated
pulses tend to have reduced overshoot. The equations for the undercoupled
response are somewhat more involved, but are still suitable for hand-held
calculators. This is especially convenient, because design charts and various
response curves are not ordinarily available, although it is easy to generate
them on automatic plotters. A sample table of loaded-Q distributions was
provided (the generating equations are provided in Appendix G).

The minimum-loss-filter response shape is not a member of the family; it is
obtained by making all loaded-Q values equal. It is fairly obvious that the
resulting equal resonator efficiencies maximize the overall efficiency, given a
certain loaded-Q product as a selectivity constraint. The asymptotic stopband
selectivity approximation is even more simple than when resonator loaded-Q
values are distinct. In many ways, the minimum-loss case serves as a
geometric-mean representative of all other filter response shapes. For example,
the approximate midband—dissipation loss expression shows that such loss in
decibels is inversely proportional to the unloaded resonator Q,. Therefore, in
nearly any bandpass filter, it is safe to estimate that the midband decibel loss
can be halved by doubling the Q, values of the unloaded resonators. An
approximate equation was derived for the optimal number of resonators that
minimizes midband loss for a specified stopband attenuation; this is also a
valuable rule of thumb for many bandpass-filter response shapes.

Minimum-loss selectivity shapes were described by fairly compact expres-
sions, which included resonator dissipation (unlike most other response
shapes). Therefore, the passband width can be estimated accurately for real
filter elements. Both doubly terminated (lossy-source) and singly terminated
(lossless-source) response shape equations were dertved, and two hand-held
calculator programs were furnished for generating and using attenuation (loss)
curves. Taub (1963) and Taub and Hindin (1964} have published selectivity,
time delay, and other graphs. These have a resemblance to Chebyshev
overcoupled responses, with small ripple values that increase with filter degree.

Storch’s method for raising second-order complex matrices to integer
powers was used 1o obtain the general response equations. It is an important
tool for filter designers, because it applies to any ABCD expression for a
subnetwork iterated N times.
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8.5. Comments on a Design Procedure

A complete design procedure will be described with the aid of a flowchart.
The 13 major steps will be described, especially several topics that have not
been discussed so far. These are design limitations, optimization of shunt
inductance values, sensitivities, and filter tuning.

8.5.1. Design Flowchart. A step-by-step design procedure suitable for man-
ual computation or computer programming is shown in Figure 8.28. The
design step numbers correspond to the numbers of the main section headings
in Appendix G and to the last number of the subsection headings in Section
8.6. The following discussion emphasizes each step as previously described or
currently introduced.

The choice of a passband shape in step | is really a choice of loaded-Q
distribution. Element constraints are sometimes sufficiently severe to dictate
the use of an arbitrary set of loaded-Q values; the passband shape then is
nameless and can be determined only by analysis. The stopband estimates are
still viable, but step 3 has been preempted. Otherwise, one of the four shapes
discussed in Section 8.4 is selected, or a new prototype shape is developed to
provide a (nermalized) loaded-Q distribution. Conventional shape specifica-
tions are: (1) the number of resonators (poles); (2) the passband parameter
(such as decibel ripple, droop, or Q, /Q,); (3) the fractional passband width
(F,) and loss (L,).

Step 2 in Figure 8.28 is to choose the configuration (e.g., Figure 8.2), the
midband frequency (e.g., Figure 8.3), and the allowable ranges of component
values (ie., L<L<L and C<C<C, where the underlines and overlines
indicate lower and upper bounds, respectively). Generally, the shunt inductor
Q, values are the resonator Q, values, because resonator capacitors usually
have relatively little loss and inverter dissipation has little effect.

A specific passband shape is obtained by a unique loaded-Q distribution
among the resonators in the absence of inverter frequency effects. The actual
level to which this distribution is scaled can be determined by knowledge of
the “Q,F,” product for the shape. These values are easily calculated and
tabulated, so that specification of F determines Q, . Thus, the N Q, values
normalized to Qy (also tabulated versus shape) can be unnormalized. Step 3
in Figure 8.28 concerns this calculation. The stopband specifications may
result in greater Q, values than those resulting from the passband specifica-
tion. Step 3 records the decision that the pass band may be more important,
because selectivity increases and passband width decreases with increasing
loaded Q (increased stored energy). Loss effects in the passband must also be
considered in step 3. Dissipation tends to mask ripples, especially at the
passband edges. However, the minimum-loss shape is known in the presence
of uniform resonator dissipation.

Step 4 is based on the fact that stopband selectivity is compietely specified
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by locating the Bode-plot breakpoint using the loaded-Q product and deter-
mining the asymptote tilt due to the surplus of inductive or capacitive
inverters, The asymptote slope is 6N dB/octave when inverters are ideal (see
Figures 8.11 and 8.17). End-coupling L sections affect stopband selectivity in
the same way as like-kind inverters when their loaded Q exceeds 3; otherwise,
there is an interpolating formula given in Appendix G. Trap inverter Z, and
the electrical length both depend on frequency. However, trap inverters give a
boost to the breakpoint when notch frequencies are between the passband
edge and the second (or half) harmonic. The specific steps to determine the
trap “shelf” attenuation levels are given in Appendix G. Step 4 in Figure 8.28
concerns the inverse calculation: if one or more selectivities are required at
given frequencies, then the corresponding loaded-Q products and Q;,, values
must be determined. The greatest Qp,, value thus found will satisfy all the
stopband specifications.

Step 5 in Figure 8.28 requires a choice of the output resonator (Q ) from
those calculated in step 3 (pass band) and step 4 (stop band). The greatest
value of Q is selected, unless the minimum passband width is most impor-
tant, in which case that Qy is selected. The normalized loaded-Q values are
then multiplied by the selected Q, value, and the midband loss is estimated
by using each resonator’s efficiency.

8.5.2. Design Limitations. Design siep 6 requires two tests to indicate
whether the specifications have resulted in a design potentially unsuited for
this narrow-band method. The first test is to see whether

TQ, x >3N, (8.111)

i.e., whether the geometric-mean, loaded-Q value exceeds 3. Excessively low
loaded-Q values may make it impossible to absorb the negative inverter shunt
branches into the adjacent resonator components of like kind. Also, the
breakpoint loaded-Q-product approximation may fail.

The second test concerns the approximate midband insertion loss:

L,<2N dB. (8.112)

This limitation results from the assumption that Q, /Q, is sufficiently small; it
was used in several parts of the analysis of dissipation effects.

There are many useful cases that do not pass either or both of these tests;
however, the designer should be alerted to potential difficulties.

8.5.3. Adjustment of Shunt-L Values. Design step 7 in Figure 8.28 sets
resonator inductances to their lower limit, and design step 8 uses the loaded-Q
values to determine paralle! resistances at each node. The end-coupling
configuration selected in step 2 will determine the resistance levels of the end
resonators. The resonator capacitances and inverter reactances are thus deter-
mined. The latter are often too high, Step 9 calls for an examination of these
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dependent values to see if any are out of bounds. A convenient and well-
conditioned measure of violations is the sum of squared differences between
squares of top-coupling reactance (in kilohms). The constraint on the vari-
ables, namely the shunt inductors, is on their net values after combination of
adjacent shunt inverter inductances and possibly a transformer or L-section
inductance.

It may be possible to improve the design by adjustment of the shunt-L
values if there are violations of element bounds. Step 10 in Figure 8.28
represents this process, which involves N variables in the usual situation.
Adjustment of a particular shunt L, therefore that node’s parallel resistance,
sometimes succeeds on a cut-and-iry basis because of the designer’s insight
into the seesaw impedance reaction of ideal (quarter-wave) inverters. Some-
times, it is useful to construct a constrained optimization (nonlinear-
programming) problem. This procedure can minimize the sum of squared
differences over the prototype shunt-L space with constraints on the final
shunt-L reactance values after combining adjacent inverters and, perhaps, an
L-section inductor. This may be accomplished by a conjugate gradient aigo-
rithm incorporating the nonlinear constraints by penalty functions, as de-
scribed in Chapter Five. A simple enumeration search scheme may suffice
when only discrete-vaiued sets of inductors are available,

8.54. Sensitivities. Design step 11 in Figure 8.28 requires design adjustment
for dissipative effects, as described in Section 8.3.3, The physical suitability of
the resulting filter should then be determined by computing performance and
sensitivities according to step 12. This will determine if the component and
load tolerances are compatible with the performance expectations. Some
important sensitivities of direct-coupled filters are remarkably simple.

To derive the sensitivity of filter input impedance with respect to resonator
capacitance, consider the lossless prototype network at the tune frequency.
For N=3,

ZZ
Z,= = =ZonYsuZy- (8.113)
22
Similarly, for N =4,
Zin =25, YorZgs YL =Z0Y .. (8.114)

Now consider a filter that has more than four resonators, but the interest is in
the fourth resonator (K =4). Suppose that there is a slight surplus of node
capacity, say 8Cy. Looking at the (8.114) result,

Y =Ggx +jwed Cx =Gk (1+i8Q k). (8.115)
Then the perturbed input impedance is
8Z, =jZiGxxdQ x - (8.116)

Therefore, (4.82) yields the direct-coupled-filter sensitivity of input impedance
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with respect Lo the synchronous capacitance of the K node:

Séﬁ =+)Qix > (8.117)
where the + sign is for even values of N. The * signs come from the identity
S&n=—Sg, (8.118)

which must be considered by comparing (8.113) and (8.114), It should now be
clear why minimume-loss filters also have minimum sensitivity.

Similar consideration of (8.113) with respect to any Z; yields the surprising
result

SZr=+2. (8.119)

u

Also, a detuning analysis of simple LC resonance shows that

Swy _ §L/L+8C/C (8.120)
Wy 2
for the small perturbation factor 8.
The effect of small changes in the load reflection coefficient I'; on transfer
function 8,, is often of interest, especially the effect of changes in the transfer
angle #,,. It can be shown that

AlS, | = £20log (1 +{Sy,||Ty[) dB, and (8.121)
Ay, = +573|8,,||T, | degrees, (8.122)

where S,, is the output scattering coefficient.

8.5.5. Tuming. Refer to Figure 8.1 and recall that an inverter changes a
short circuit to an open circuit, and vice versa, according to (8.7). A synchro-
nous filter—tuning procedure was described by Dishal (1951). Suppose that
there are no end couplings. The following procedure is then used:

1. Set trap frequencies with a grid-dip meter and verify all inverter
reaclances on an impedance bridge.

2, Short-circuit to ground (or severely detune) the second node, fightly
couple excitation to the first resonator with a small loop or small
capacitive coupling, and then tune the first resonator for maximum
voltage across it. Measure voltage V|, with a very high-impedance
voltmeter.

3. Remove the short circuit from node 2 and place it across node 3. Then
tune resonator 2 for minimum V, (yes, V1),

4. Continue moving the short circuit to nodes nearer the load, consecu-
tively tuning the newly unshorted odd (even) resonators for maximum
(minimum) voltage V| across the input node.
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5. Tune the output (load) node with the load resistance disconnected.

6. Connect the load resistance to the output port and a swept-frequency
generator having the correct source impedance to the input port.
Connect a synchronized oscilloscope to the filter output port, and fine
tune the first and last resonators for final response shape.

When end couplings are employed, the following procedure is used:

1. Connect the proper source and use this for excitation.

2. Complete the preceding procedure, except that the last node with end
coupling should be treated as an input node when it is adjusted (i.e.,
connect a matched generator to that end).

Voltage phases and magnitudes are easily confirmed at the tune frequency wy,

(a} {b)

(c) (d}

{e) 193]
Figure 8.29. Oscillograms of V| amplitude versus frequency during synchronous filter tuning. (a}
Resonator 2 is short-circuited, and resonator 1 is tuned for maximum voltage. (b) Only resonator
3 is short-circuited, and the second resonator is tuned for minimum V,. (¢), (d) The continued
procedure. (¢} Swept-frequency display when the unterminated cutput node is tuned. ( f) Final V|

Chebyshev response when the load resistance is reconnected. [From Dishal, M., Proc. IRE, Vol.
39, No. 11, p. 1451, November 1951. © 1951 IRE (now IEEE}.]
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using a high-impedance vector voltmeter:

1. Adjacent node voltages should differ in phase by =90 degrees.

2. Node voltage magnitudes are easily related to the node’s parallel
resistance, based on power,

3. The L-section end-coupling phase should agree with (6.7) or (6.8}, as
appropriate.

The swept-frequency display of input node voltage V, during the node-tuning
sequence should appear as in Figure 8.29. Waveguide and other distributed
filters are tuned according to the same principles, namely ideal resonator and
inverter behavior. However, slotted lines and lightly coupled probes are often
required. This is discussed by Matthaei et al. (1964, p. 668).

Dishal (1951) gives relationships that enable the calculation of coupling
coefficients as in (8.26), based on the frequencies of the response peaks in
Figure 8.29. These are often useful for evaluating aperture and other inaccessi-
ble coupling implementations.

8.5.6. Summary of Comments on a Design Procedure. A step-by-step design
procedure for narrow-band, direct-coupled filters has been discussed in terms
of the flowchart in Figure 8.28. The next section will proceed through almost
all of these steps to illustrate the procedure in terms of the tabulated equations
in Appendix G.

Design step 13 is the observation of filter behavior in the laboratory. The
intent of the design procedure is to produce a first-time design success. The
physical properties of many sophisticated filters, especially microwave filters,
make final tweaking in the laboratory very difficult and expensive. Besides the
analysis to determine proper coupling coefficients just suggested, an optimizer
used in conjunction with a network analysis program often can confirm the
presence and values of parasitic elements not previously considered. Such
optimization can then be used to predict new filter component values that
may offset the undesirable effects of the unexpected parasitic elements.

Finally, the great virtue of the loaded-Q filter design method should now be
apparent: it is a flexible procedure that accommodates component limitations
in nearly every stage of the design.

8.6. A Complete Design Example

The design steps in Figure 8.28 will be calculated for the network in Figure 8.2
using an undercoupled response shape with selectivity, as in Figure 8.3. The
step numbers appear after the last decimal in the following paragraph num-
bers. The equation numbers correspond to those in Appendix G.
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8.6.1. Response Shapes

Input: Undercoupled, N=4, L,=1 dB, F,=0.1, ;=6 dB.

#=22.5 degees. (%)

£=0.5088. (6)

maxL;=2461dB. - (18)

q=1.727. (19)

k=0.1017. (20)

F;=0.1637. (2hH

Cn=1.290. (23)

N L Q. Q. Q. Qu Q. Qu.Fq

4 6 0.1653 0.5281 0.9738 1. 0.0850 2.092

0.5424 1.824 3.246 L 3.211 0.8438*

1.844 5.985 3.363 1. 3711 0.4576

6.050 - 5.892 3.195 1. 113.9 0.3458

* Arbitrarily selected for this example.
8.6.2. Physical Data

Input: f;=100 MHz, 90<L <900 nH, Q, =200, 1<C< 100 pF.
)tl_ij =311 ohms, )A(c,»j =803 ohms. (32)

8.6.3. Pass Band

Input: See Section 8.6.1.
QL.=0.8438/0.1637=5.155. (34

8.6.4. Stopbands

Input: f,, =140 MHz, L(f,)=60 dB, f,=200 MHz, L(f,}=80 dB,
NLINV =1, Lsect_ions=l L, NTRAPS=2, NCINV=0.

1. f,=14<2, [=1704, a=.4854. (51)
m=6(4+3—1)=36 dB/octave. (50}
Lg =61.69 dB. (49)
DB5=9.408+8.743=18.16. (48)

DB4=4.629 dB, assuming Qg > 3. (47
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DB3=4.629 dB. (45)
DB2 =3.849. . (44)
DB1=36.40. (43)
I1Q, = 66.00. (42)
QL=2.129. (41)
2. f=222, =3  a=l (51)
m=6(4+2—2)=24 dB/octave. (50)
Ly=82.39dB. (4%)
DB5=1.779+ 14.64=16.43. (48)
DB4=9.54. (See comment in Section 8.6.12.) (47)
DB3= —9.54. (45)
DB2 =34.08. (44)
DB1=37.89. (43)
I1Q, =78.42. (42)
Qr,=2.223. (41)

8.6.5. Q Effects
Qus=max(2.129,2.223)=2.223;

also, 5.155>2.223 .". Q4 =2.223. (52)

QL =1206, Q_,=4.055, Q,=7.216, Qu,=2223. 3)

Y A

O, =6029E-3, Q,,=00203, Q.,=00361, Q,=00111. (53)
L,=0.323 dB. (54)

8.6.6. Design Limitations

[IQ, =784253'=81  Not quite. (55)

Ly=0323%2x4=8  Yes. (56)

8.6.7. Minimum Shunt Inductance
L,=%0 nH, K=123 (L, dependent). (57)
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8.6.8. Prototype Ohmic Values

R,,=68.19, R,,=22929, R,,=408.05,

Ry 2 50, Ly=35.79 nH. (58)
X,=12504, X,;=30588, X,,=142.83 ohms. (59)
X,;1=30.15 ohms (lossless network). (60)

8.6.9. Component Acceptability

E=0.1714. (64)

8.6.10. Shunt Inductance Adjustment. For possible optimization (not used):

K,=10""% (66)
aa_ff ~0.1419, (67)
aa_li = -0.2977, (68)
§_£= ~0.1976, (68)
g (69)

8.6.11. Final Component Values

R =0.9898. (70)
K Yy
1 1.
2 0.02027
3 1.0007
4 0.03139
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R, (lossy)=67.49. (72)
X,1=29.49. (73)
X, =114.83. (74)

L, =4693, C,=4201, L,=16431, L,,=9747,

C,,=1326, L,=24801, C,=28.14, L, =365.12, (IN-(79)
Cpy=1.734, C,=28.14, L,=21467, L, =227.34,

L,=42.49, C,=70.77 (in pF, nH).

8.6.12. Performance and Sensitivity Analysis. The preceding component val-
ues, applicable to Figure 8.2, were used to obtain an exact S,, frequency
response by analysis; the result is equivalent to the graph in Figure 8.3, except
that the midband loss was 0.400 dB and the minimum selectivity response
above f,=200 MHz was 83.75 dB instead of the specified L ,=80 dB. This
excess selectivity is partly attributable to the 9.54-dB contribution of (G.47), as
opposed to the more exact contribution of 3.54 dB of (G.46) using Q,=0.603.
(The value of Q, is known only near the end of the procedure.) This 6-dB
difference would give an estimate 2.25 dB low, which is attributable to the
marginal condition in (G.55) and the approximation in (G.49). As computed,
the selectivity slightly exceeded specifications, and the predicted midband loss
of 0.322 dB was slightly exceeded.

As indicated in (G.80)-(G.83), the important parameter in the sensitivity of
S, to load SWR is the value of [S,,|; the typical behavior of this value is
shown in Figure 8.30. These data, used in (G.81) and (G.82), indicate that in
the passband the transfer response can vary by as much as +0.8 dB, and the
transfer phase can vary by as much as + 1.2 degrees for a 1.2: 1 load SWR of
arbitrary reflection phase.

03—

0.2 |—

IS, |

01—

J

95 100 106
MHz

Figure 830, Typical behavior of the Sy, load sensitivity parameter.

0
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T
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ol /\_1
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8,; (degrees deviation from linear}

. .
Figure 8.31. Typical undercoupled deviation from linear phase.

Using a least-squares fitted line as a phase reference, a frequency analysis
provided the typical deviation from linear phase shown in Figure 8.31. The
gentle rate of change of the undercoupled response (Figure 8.26) is directly
related to good phase linearity. Its moderate selectivity has been supplemented
in the upper stop band, at the expense of the lower stopband in this case,
without seriously disturbing the passband.

The maximum sensitivity of input impedance with respect to capacitance
occurs at node 3 with Cyy; according to (G.85), it is £j7.216.

8.6.13. Design Adjustment. The exact analysis in the preceding section also
confirmed the phase angles between nodes at the midband frequency (f,= 100
MHz). As in (G.87) and Figure 8.2, angle 85, was 30.6 degrees, and the other
node voltage angles differed by the expected 90 degrees, according to the
prototype network (Figure 8.1).

Problems

8.1. Use ABCD parameters to prove that Z,,=Z3/Z, for an ideal inverter,

8.2. Consider the following network:

5
-
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For Z=0+3X, find (1) Z
ampere.

(2) Vi /1, and (3) I /V,,. Assume I =1

in?

8.3. Use ABCD parameters to show that a series impedance (Z) between
two unit inverters is equivalent to a shunt admittance (Y). In particular,
assume that Z=jw,LF; what is the equivalent Y?

8.4. A 12-clement lowpass network is composed of six identical subsections,
each as in Figure 4.6 (Chapter Four), with Z=)w and Y =j2w. The
overall network is terminated by 1-ochm resistors. Calculate the overall
ABCD matrix, S,;, and L= —20log|S,,| at w=1/y2, 1, and y2
radians,

8.5. Derive the C expression in the overall ABCD matrix of an N =3 ideal
prototype network. Compare your result to Equation (8.11).

8.6. Derive L(w) in Equation (8.14) in terms of the loaded Q values of an
N =3 ideal prototype network. Compare your result to Equation (8.16).

8.7. A lowpass pi network has an equivalent two-port network that contains
an inverter, as shown below.

L2 YOI 2

O— a4 —_0_‘
¢
[ T o] |

() For w=1 radian, find expressions for Yy,,, Y,, and Y,.
(b) ForR; =1,C/ =4, L,=], and C;=3, find Y, Y,, and Y.

8.8. Suppose that N=3, Q;,=Q,,=1, Q,,=2, f,=50 MHz, and 60 dB is
required at 90 MHz using a doubly terminated network. For R, =50
and R,;;=100 ohms, find the element reactances at f;, and the lumped-
element values using (1) L,,, L,3, and R,, =150 ohms; (2) L,,, C,,, and
R,;=75 ohms; and (3) C,,, C,3, and R,,=75 ohms. '

8.9. Design a direct-coupled filter that
(a) Uses only L and C components and no traps or end coupling.
(b) Has three resonators, and R,, =200 ohms.
(c) Is tuned to 100 MHz.
(d) Provides at least 60-dB attenuation at 150 MHz.
(¢) Provides at least 52-dB attenuation at 70 MHz.
(f) Operates between two 50-ohm terminations.

(g Has minimum midband loss for inductor Q,; =200 and lossless
capacitors.
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8.10.
8.11.

8.12.

8.13,

8.14.

8.15.
8.16.

8.17.

Direct-Coupled Filters

Find (1) the loaded-Q values, (2) element values for a lossless network,
and (3) the approximate dissipative loss in dB at 100 MHz. Describe
changes/additions that would raise the entire impedance level without
affecting the required selectivity. Could the number of resonators be
changed to reduce midband loss while meeting the same stopband loss?
If so, how many, and what is the midband loss?

Derive Equations (8.64) and (8.65).

Suppose that the filter in Figure 8.12 is to have an overcoupled,
0.5-dB-ripple passband and the original stopband selectivity. Find the
new Q, values and the 0.5-dB passband width. Ignoring inverter tilt,
what is the 3-dB bandwidth?

In Example 8.3, confirm the given values of C,; and L,, using Equa-
tion (8.29).

Replace the shunt inductors in the filter in Example 8.3 with capaci-
tively loaded, short-circuited transmission line (stub) resonators. Recall-
ing that the stub resonator reactance at tune frequency is X=Z,tan4,
find Z,,, Z,,, and Zy, for #=45 degrees, Qp,=Q,;=4.2229,
Q,=8.4458, and R,,=600 ohms.

Suppose that short-circuited, 30-degree stubs arc used in resonators.

(a) What increases or decreases in loaded Q, defined by Equation
(8.3), account for the changes in passband width or the attenua-
tion at f=1.8f,?

{(b) If the desired passband is at 100 MHz at what frequency is the
first spurious passband?

(c) If these stubs are also used as coupling elements between nodes,
how much will each one affect the attenuation at f=1.8f,?

Use Storch’s method to obtain the first three expressions for minimum-
loss, doubly terminated filters in Table 8.9.

Obtain an expression for the minimum possible loss by solving Equa-
tion (8.106) for Q; and putting this into Equation (8.103).

An rf transformer has primary and secondary reactances of 30 and 55
nH, respectively. What is its inverter Z, at 100 MHz when (coupling
coefficient) K=0.1?




Chapter Nine

Other Direct Filter
Design Methods

This chapter contains a variety of filter design methods that extend previous
methods in several ways. Equal-stub admittance filters introduce another
frequency transformation and apply the Storch method for replicating a
typical network section into the overall ABCD transfer function. The result is
a microwave filter that has important practical relationships to edge-coupled
filters, according to a recent article. 1t is a direct design method because the
synthesis techniques in Chapter Three are not required. A program for a
hand-held computer is furnished for evaluating the selectivity function.

The concept of traps that cause selectivity notches, introduced in the last
chapter, is formalized by considering classical elliptic (Cauer) filter theory. A
computer program and nomograph are provided to assist in estimating the
elliptic filter order required to meet design specifications. However, synthesis
is avoided by Amstutz’s spectacular direct design method for accurately
determining lowpass filter element values. The family of Butterworth and
Chebyshev functions is extended by addition of the inverse Chebyshev and
elliptic functions, The concept of double periodicity and equal ripple in both
passband and stopband is described in terms of polynomial roots and filter
specifications. The basis of Amstutz’s permuted-trap, equivalent two-port
networks is developed, and two Amstutz programs have been translated into
BASIC and included in this treatment.

Several useful transformations of lumped-element branches into other
lumped-element configurations are described, First-order (slope) approxima-
tions are included to elimmate the redundant traps which result from conven-
tional lowpass-to-bandpass reactance transformations. A compilation of exact
transformations from Zverev (and several more from Dishal) are included.

The geometric description of two-port network behavior, contained in
Chapter Seven, is applied to the passive network case, with special atiention to

335
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load effects on mapping and input standing-wave ratio. A theorem concerning
composite bilinear functions between different unit circles is provided as a
fundamental analysis toel for obtaining concise design results.

The load effect analysis is extended to derive a design basis for filters that
absorb rather than reflect energy. These may be viewed as frequency-selective
atienuators {pads). They are substantially less selective than reflection filters,
but there are many important applications for impedance control and damp-
ing of spurious oscillations in system stopbands. Design graphs for several of
these invulnerable (load-independent) filters will be provided.

9.1. Equal-Stub Admittance Filters

The direct-coupled filter design method in Chapter Eight provided a means
for designing transmission iine filters, as shown in Figure 9.1. For l-ohm
terminations, the shorted-circuited, quarter-wave transmission line resonators
have loaded Q values

QLK=YOK%7 (9'1)

according to (8.50). Note that the internal resonators in Figure 9.1¢ have been
divided inte two parallelled resonators so that each may have half the required
Y, (and to minimize the generation of extraneous electromagnetic modes).
Even so, the Q is too low and the bandwidth too wide for direct-coupled-filter
predictions to apply (see Section 8.5.2), since the transmission line normalized
admittance is within the range 0.1<Y,<5.1. The filter can still be con-
structed, however, and its periodic selectivity curve will appear as in Figure
9.2. The term “commensurate™ refers to distributed-element filters composed
of components that have the same electrical length.

This section will apply Storch’s result to raise a 2X2 complex ABCD
matrix to the Ntk power and thereby obtain the response of filters like those
in Figure 9.1c. A design basis will result through the choice of a few
parameters. In the process, a frequency transformation will be introduced; it is
typical of all commensurate-network selectivity functions. A program for the
HP-67 /97 hand-held calculator will be provided to evaluate the filter selectiv-
ity function. Also, the equivalent network for edge-coupled conductors on
planar dielectric sheeis (printed circuits) will be described. It is equivalent 1o
the dual of the network in Figure 9.l¢, using open-circuited stubs in series.
These developments can be applied to that case according to the treatment in
a very recent article, which circumvents some severe coupling restrictions.

9.1.1. Equal-Stub-Filter Development. According to Wenzel (1964), all com-
mensurate line networks have transducer gain functions in the form
P(a®)
S = ) 9.2
2 sintg (-2)
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Figure 9.1. A direct-coupled filter using physical quarter-wave resonators separated by physical
quarter-wave lines. (@) Prototype inverters between resonators; (b) coaxial transmission line
resonators and inverters; (c) open-wire transmission lines used as inverters and paralleled
resonators.

L |

2, 3f, 4f,

Figure 9.2. Quarter-wave commensurate filter periodic selectivity.

337




338 Other Direct Filter Design Methods

where P is a polynomial in variable g*:

g=cosf. (9.3)
Angle 8 is the filter component electrical length at any frequency f:
—zf
=T (9.4)
It is easy to show that such functions have arithmetic symmetry according to
£y F,
i 2— A (9.5)

between any two frequencies (f, and f,) having the same selectivity. The
polynomial P must be obtained for each particular case; it will be obtained
here for the network in Figure 9.1¢c.

Storch’s matrix result was applied to replicated filter subsections in Section
8.4.5. In the case shown in Figure 9.1¢, the typical section to be replicated is
shown in Figure 9.3. To find the ABCD matrix for the typical subnetwork,
consider the two cascade lines on both sides of the shunt resonator as three
cascaded sections. Because of their symmetry, the ABCD matrix of the
subsection in Figure 9.3 is:

A B A B)(l 0 (A B)
T.= = , 9.6
l(Ci Di) (BAYI)BA ©-6)
where
A=cosQ 9.7
2’ )
B=jsing, (9.8)
and
Y =—jKcoté. ‘ 9.9

K is the characteristic admittance of the shorted-stub resonator. Therefore, the
ABCD matrix of the ith subsection is

1 - |(ABY+ A’+B%)  (B’Y+2AB)

: (9.10)
(A’Y +2AB)  (ABY+A%+BY

Storch’s matrix result in (8.90) (Section 8.4.5) can be applied to obtain the
elements of the overall ABCD matrix Ty . For lossless, reciprocal, symmetric
networks, {8.96) reduces to

(Bx—Cp)?

|S21|2=1" 4

(9.11)
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Figure 9.3. A typical equal-admittance-stub replicated subnetwork.
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Figure 9.4. Equal-stub-filter selectivity curves for N=3 and N =4 stubs, [From Hindin, H. J,,
and Taub, J J. [EEE Trans. Microwave Theory Tech., Vol. MTT-15, No. 9, pp. 526-527,
September 1967, © 1967 [EEE.}
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Therefore, only two ABCD parameters are required; (8.90) yields

By= PN(Y)Bi (9.12)
Cy=PuC, ¥ (9.13)

and
y=A;+D;=2A,. (9.14)

Two double-angle trigonometric identities reduce (9.14) to

y=2(cos6‘)(l+%). (9.15)
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Figure 9.5. Equal-stub-filier selectivity curves for N=7. [From Hindin, H. J., and Taub, J. 1.
TEEE Trans. Microwave Theory Tech., Vol. MTT-15, No. 9, pp. 526-527, September 1367. ©® 1967
IEEE.]
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Another trigonometric identity can be applied to show that

By — Cu=Pu(¥)(B;,—C)=—YP(y) (9.16)
Therefore, (9.11) yields the transducer function
2.2
S, =1+ KicosBps [2 cos®) 1+ X J 9.17
[Saul?=1+ 2S8R 2(cos)(1+ 7 ) ©-17)

The desired result is obtained using frequency variable (9.3):

Klql K
L=10log,| 1+ —3 P2 [2 (1+—)] dB. 9.18
gm{ 4(l—q2) N <4 2 (918}
Selectivity curves for three and four stubs are shown in Figure 9.4. The
seven-stub selectivity curve is shown in Figure 9.5,

9.1.2. Equal-Stub-Filter Design Procedure. The frequency variable q is de-
fined in {9.3) and (9.4). Program A%-1 (Appendix A) for the HP-67/97
computer evaluates the Chebyshev polynomials of the second kind according
to (8.91) and computes the selectivity function described by (9.18). It also
implements the optional input of several equivalent bandwidth parameters,
Since there is arithmetic symmetry according to (9.5), the midband frequency
is

fi+f
fo= — > (9.19)
Therefore, selectivity may be evaluated using
= ~ Wy T
q—cos[( 3 ) 3 ],. (9.20)
where bandwidth w is
f—f
w=2_1 (9:21)
fo

Program A9-1 accommodates these various ways for describing the band-
width. Also, a useful relationship for wavelength in free space is

A=11802.8/MHz (in inches). (9.22)

Example 9.1. Design a bandpass filter with a minimum, 3-dB bandwidth of
630 MHz, a center frequency of 900 MHZ, and a minimum, 20-dB rejection
at 900+ 500 MHz. From {9.22), each stub must be 3.28 inches long in air and
separated by the same distance. The 3-dB, w=0.7 bandwidth (£2) corre-
sponds to q=10.522, according to (9.20) and (9.21). The 20-dB, w=1.11
bandwidth corresponds to q=0.766. The four-stub curves in Figure 9.4 show
that the normalized admittance K= 1.4 (35.7-ohm stubs in a 50-ohm system)
will be satisfactory. By the graph in Figure 9.4 or Program A9-1, the passband
ripple will not exceed 0.3 dB.
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Figure 9.6. Calculated and measured resuits for N=3, K=1. [From Hindin, H. I., and Taub, J.
). IEEE Trans. Microwave Theory Tech., Yol. MTT-15, No. 9, pp. 526527, September 1967. ©
1967 TEEE.]

Example 9.2. Design, analyze, and test a filter having three 50-ohm stubs in
a 50-ohm system by using a center frequency of 4700 MHz. Hindin and Taub
(1967) constructed this filter. The calculated and measured results are shown
in Figure 9.6, The midband loss is L;=0.2 dB.

9.1.3. Variations for Printed-Circuit Filters, The spaced-stub implementa-
tion shown in Figure 9.1¢ probably is not the main application of this filter
design method. Because of several important network equivalence relations,
the same response may be obtained in filters that are conveniently imple-
mented in stripline or microstrip configurations. Consider the network in
Figure 9.7, which is dual to that in Figure 9.1¢. Changing admittance K to
impedance Z in (9.9) adapts the entire development to open-circuited stubs,
instead of the original short-circuited stubs. Thus selectivity function (9.18)
and the selectivity graphs in Figures 9.4 and 9.5 apply when K is replaced

Zy

z? Z5 24 2,1 Z,
iy ’ L ‘ [' ‘l [——l

O SR S ————

Figure 9.7. Quarter-wave open-circuited stubs with quarter-wave spacing.
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Figure 9.8, Edge-coupled printed-circuit filter arrangement.

with Z. This dual case is considered because the edge-coupled filter in Figure
9.8 is exactly equivalent to the open-circuited stub filter in Figure 9.7. This
equivalence results from the more fundamental equivalence given by Matthaei
et al. (1964) and shown in Figure 9.9.

The two coupled bars in Figure 9.9 are over a ground plane (microstrip) or
between ground planes (stripline). They have a distributed per-unit capaci-
tance (and inductance) between them and Lo ground, as do all transverse
electromagnetic (TEM) systems. The distributed capacitance is exactly analo-
gous to the static capacitance. Because superposition applies to linear systems,
it is convenient to formulate the systermn description in terms of the even-mode
capacitance (when both bars are at the same potential) and the odd-mode
capacitance (when the bars have opposite potentials with respect to their
ground plane). The equivalent open-circuited stubs and the separating cascade
line in Figure 9.9 have wave impedances that are linear combinations of the
even- and odd-mode wave impedances.

The point is that an equivalent network does exist. The interested reader
may consult Matthaei et al. (1964) for the various means of calculating even-
and odd-mode capacitances of various structures. There is also a dual printed-
circuit, edge-coupled filter structure corresponding to the original shorted
stubs, but it requires parallel bars with ends short-circuited to the ground
plane. This is difficult to implement in practice.

Another difficulty that arises is due to a basic incompatibility between the
stub filters and the edge-coupled realization: the former is generally a wide
band filter, and the coupling between adjacent parallel bars in the latter is
often insufficient for this purpose. Minnis (1981) has employed a well-known
physical transformation to avoid this problem. There are many other varia-
tions of the stub design; for example, stub impedance may be varied to obtain

f—0— Za
}—0<—zl ﬂ/@/tezw’
e B
o H—BW—H 'e]

Figure 99, Schematic and equivalent circuit of two coupled bars, [From Matthaei et al., 1964}
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Chebyshev and Butterworth response shapes. (For the latter, see Mumford,
1965; also, see Minnis, 1981, and references therein.)

9.1.4. Summary of Equal-Stub Admittance Filters. Commensurate filters are
composed of distributed elements having equal electrical lengths. It has been
shown that there is a standard form for all commensurate-filter transducer
functions. Also, the frequency variable is a cosine function, and the resulting
frequency behavior has arithmetic symmetry. Commensurate filters composed
of quarter-wave, short-circuited shunt stubs separated by quarter-wave, cas-
caded lines were considered; the same development applied to their duals,
employing open-circuited stubs connected in series. The development was
based on a typical subsection consisting of one-eighth-wavelength, cascade-
connected lines on either side of the shunt stub resonator. Storch’s method
was used to exponentiate the ABCD matrix of the typical subsection, leading
10 a compact expression for the filter’s transducer gain function.

Typical selectivity curves were provided, and a hand-held computer pro-
gram enabled computation of the selectivity function. Two examples of the
shorted-stub realization were included. However, the filter is often imple-
mented in a printed-circuit form, which is made possible by an equivalence
between parallel-coupled bars and separated wireline stubs. In that case, the
physical parameters are the distributed even- and odd-mode capacitances or
equivalent impedances. This stub filter design is intrinsically wide band.
However, the edge-coupled bars are loosely coupled for even close spacing.
The introduction of redundant commensurate elements, as recently described
by Minnis (1981), solves this problem.

The limited range of characteristic impedances in transmission lines differs
drastically from the greater ranges of lumped-element component values that
are available. Microwave filter design generally is constrained by these limita-
tions, and an important part of these techniques involves means to circumvent
the physical limitations. ’

9.2. Introduction to Cauer Elliptic Filters

Filters having all poles of attenuation at infinite frequency are called “all-pole
filters.” Chebyshev all-pole filters were considered in Section 8.4.1. They had
ripples of equal magnitude in the passband and a monotonic stopband.
Elliptic filters exhibit equal-ripple behavior in both the passband and the
stopband. The finite frequencies of attenuation poles are of considerable
interest because they are crucial to selectivity relationships. It was shown by
(2.34) that the Chebyshev passband behavior may be described by trigonomet-
ric functions; these are periodic in one variable, of course. Elliptic filter design
requires functions that are doubly periodic; these are the Jacobian elliptic
functions.
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This section will introduce the background and identify the parameters
necessary to design Cauer elliptic filters. The progression of Butterworth,
Chebyshev, inverse Chebyshev (only stopband ripples), and Cauer elliptic
filter functions will be reviewed. The application of Jacobian elliptic functions
will be discussed. However, details of their origin and formulation would
obscure the important design resulis to follow, and are omitted. The tradi-
tional belaboring of this subject will be bypassed in the interest of clarity.

This section will deal with filter characteristics in an increasingly complex
manner, up to and including the five kinds of elliptic filters to be designed by
the computer programs described in Section 9.3.

9.2.1. From Butterworth to Elliptic Filter Functions. 1In order to conform to
practice in the elliptic filter field, certain redefinitions of familiar parameters
follow. For passband edge wg, the following lowpass filter functions are
expressed in terms of normalized frequency:

-
= (9.23)

Some familiar functions in this variable will be reviewed. For example, the
Butterworth function from (8.71) is

A(w)=10log(1 + ™) dB, (9.24)
where
e= (10" Am— 1y (9.25)
Apax (in dB) is defined as the passband-edge attenuation, as shown in Figure
9.10a. The Chebyshev function from (8.61) is
A(w)=10log[ 1 +&*T{(x) ] dB. (9.26)

Tx(x) is the Nth-degree Chebyshev polynomial of the first kind, described in
Section 2.4.1; it has equal-ripple unit amplitude in the range —1<x< +1.
This is the familiar response shape in Figure 9.105.

max A

wWg [ wr wg wy w

LN o s A
—

(a) (&)

Figure 9.10.  Attenuation characteristics of all-pole (a) Butterworth and (b) Chebyshev filters.
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Figure 9.11. Afttenuation characteristics of (a) inverse Chebyshev and (&) elliptic filters.

Two new response shapes are shown in Figure 9.11. The inverse Chebyshev
function is

N[ {(®n/wp)/x

This response is shown in Figure 9.11a; the passband edge is siill wy at
A, dB. Now there is a stop band beginning at wy with shelf attenuation
A dB:

| Tr(wy/wy 2
A(w)=1010gm[1+[s,r [ ( / ) ]]]dB. (9.27)

A,,=10log

! +(eTN:—:)T dB. . (9.28)

The name of this filter comes from the inverse structure of the response of its
argument in (9.27). It is not obvious, but the passband is maximally flat at the
origin. Furthermore, the filter degree relationship to A_;, and A_,, is exactly
the same as for the Chebyshev filter, namely (8.64). Also, the frequencies of
the stopband poles of attenuation are easily determined by (8.63) and inspec-
tion of (9.27).

The most complicated function to be considered is that of the elliptic filter,
also known by the names Cauer, Darlington, and Zolotarev. The elliptic filter
function is

A(w)=10log{ 1+ eRy(x, L)]z} dB, (9.29)
where Ry, is a ratio of even polynomials of degree N, and
_ Ioo.lAmm_l 1/2
—( 1001 Ana — ) . (930)

The elliptic filter response shape is shown in Figure 9.114. In contrast to the
familiar lowpass network structure (e.g., Figure 6.18 in Section 6.3), lowpass
elliptic filters take one of the three forms shown in Figure 9.12.
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Figure 9,12, Elliptic lowpass filter topologies. (@) Midseries; (&) midshunt; (¢) equivalent to
midseries using transformers, [From Amstutz, P, /EEE Trans. Circuits Syst., Vol. CAS-25, No,
12, p. 1002, December 1978. © 1978 [EEE).

The rational function in (9.29) can be expressed in its factored form in
terms of complex frequency variable s:

_ (52--:.0'{')(32 - w%)(szm wg) e .
(52 - mg)(s2 - wf)(sz—wé) e

The poles and zeros of (9.31) are computed by a simple calculation involving

R(s) (9.31)
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Figure 9.13. Low-order Chebyshev rational functions. [From Daniels, 1974. Copyright 1974 Bell
Telephone Laboratories. Reprinted by permission.]

the Jacobian elliptic sine function, which is doubly periodic and only slightly
harder to evaluate than the trigonometric sine function. This calculation is
included in BASIC Program B9-1. It requires less than 11 lines of code. The
rational functions so obtained behave as indicated in Figure 9.13. It is easy to
imagine how the square of these functions produces the frequency response in
Figure 9.115.

9.2.2, Elliptic Filter Degree, Attenuation, and Pole Frequencies. Zverev
(1967) published the well-known nomogram in Figure 9.14, which relates the
elliptic filter degree and attenuation to the bandwidth parameters. Figures
9.115 and 9.14 show that the passband ripple (A,,,=0.1 dB) and the
stopband shelf attenuation (A, =43 dB) require N=5 for a stopband/pass-
band transition ratio (w;,/wp) of 1.5. Program B9-1 has been translated to
BASIC from a program by Daniels (1974). Tt duplicates the calculations
illustrated in Figure 9.14 and computes the attenuation pole (trap) frequencies.
A word of caution: Program B9-1 is inaccurate for the solution in the
upper-left corner of Figure 9.14 because of the round-off error in the complete
elliptic integral calculation (another Jacobian function). A more accurate
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Figure 9.14. Nomogram of elliptic filter response. [From Zverev, 1967.]
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algorithm has been programmed by Murdock (1979). However, it is instruc-
tive to observe the operation of Program B9-1, especially the computation of
the poles and zeros of the rational elliptic function (9.31). Program B9-1 also
evaluates the attenuation at any frequency according to (9.29).

9.2.3. The Four Types of Elliptic Filters. FElliptic filter tables and literature
describe filter types a, b, ¢, and s, often without further elaboration on what
distinguishes these cases. Usually, remarks concerning symmetric (type s) and
antimetric filters are encountered. Probably the most dlsconcertmg problem is
that degree N is not a simple count of filter elements,

This can be put in order by noting that filter type s is symmetric and is the
odd-N case. The number of traps is (N~ 1)/2, and the filter must have equal
terminating resistances. Midshunt cases N=3 and N =35 are shown in Figure
9.15. Type s elliptic filters may also occur in the midseries forms shown in
Figure 9.124.

There are three types of antimetric filters, this class having only even-
degree N. Antimetric filters have N /2 traps. The type-a filter has the exact
elliptic response function defined by (9.29). However, the realization must
include the ideal transformers shown in Figure 9.16 or have at least one
negative element. Also, the type-a filter has unequal termination resistances, as
indicated.

R |

-{)

Figure 9.15. Symmetric (type-s) ellipti¢ filters showing transmission pole/zero locations and
count (in circles). [From Zverev, 1967]]
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Figure 9.16. Antimetric elliptic filters (types a, b, and ¢) showing transmission pole/zero
locations and count (in circles). [From Zverev, 1967.]

To eliminate the need for a negative element or ideal transformers, the
highest two finite-frequency stopband attenuation poles can be moved to
infinity. This causes w,,; to increase slightly, so that the type-b response does
not cut off quite as fast as the ideal elliptic response function (9.29).

The type-c elliptic filter is a further aberration of the type-b filter: the
lowest two passband attenuation zeros can be moved to the origin, so that the
termination resistances are equal. The filter cutoff rate is further degraded.
The nomogram in Figure 9.14 is only approximately correct for filter types b
and ¢; however, it is usually accurate enough, because the next-higher-integer
filter degree is required in any case.
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9.2.4. Summary of Introduction to Cauer Elljptic Filters. The lowpass re-
sponse functions of Butterworth, Chebyshev, inverse Chebyshev, and Cauer
elliptic filters have certain similarities and increasing complexity in the order
given. The rational elliptic function may be written as the ratio of two even
polynomials of the same even degree. Their roots are easily computed using
the doubly periodic Jacobian elliptic sine function. -

Selectivity estimates related to choice of filter degree can be accomplished
using a nomogram or a computer program. Program B9-1 does that; it also
computes the trap frequencies and the attenuation at any given frequency.

Symmetric elliptic filters have odd-degree N, have (N—1)/2 traps, and
have equal terminating resistances. Even-degree elliptic filters are called
antimetric (from synthesis terminology, which is irrelevant to these purposes).
They have N /2 traps, have unequal terminating resistances, and require either
ideal transformers or one negative element. The even-degree filter just de-
scribed has the exact response shape and is called a type-a filter, By arbitrarily
moving two traps to infinity, the negative element or the ideal transformers
are eliminated; this filter, with an approximate elliptic response, is called a
type-b filter. A further aberration moves two passband zeros to the origin, to
obtain equal terminating resistances; this is called a type-c filter. Both type-b
and type-c filters have slightly reduced selectivity cutoff rates, but usuaily this
is not a serious departure from predictions based on the nomogram.

9.3. Doubly Terminated Elliptic Filters

Amstutz (1978) published a procedure and two FORTRAN computer pro-
grams for calculating the elements of doubly terminated elliptic filters. The
basis of his method will be described, and BASIC language translations of his
programs, with examples, will be furnished. As seen in Program B9-1, there is
little difficulty in computing the doubly periodic Jacobian elliptic functions.
However, it was also noted that round-off error can be a problem. Another
Amstutz contribution was a more accurate computation of these functions,
especially the elliptic sine function; his method utilizes infinite products
instead of infinile summations,

The Amstutz method is quite straighiforward, although it incorporates one
subtle step. He computes the poles and zeros of elliptic filter transducer
function H and characteristic function K, as described in Section 3.2.4. As in
(3.52), he obtains the rational polynomial of the reflection coefficient in factor
form. Attention is then restricted to the trap frequencies. It is clear from
Figure 9.12 that the input coefficient magnitude at these frequencies must be
unity (complete reflection). Thus Amstutz finds very simple expressions for
both the input impedance and its derivative with respect to frequency Z, (i.e.,
group delay) at the trap frequencies. Again referring to Figure 9.124, the input
impedance at,the frequency where M, and K, are resonant is clearly Z,, =sL,.
Also, it can be shown that M, and K, can be found from Z{,.
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Amstutz’s subtle step depends on the equivalence of any two networks
having the same topology but permuted trap positions. The key to his method
is to permute each of the traps into the input position and apply a recursive
algorithm that yields all of the element values. An additional feature of his
type-s symmelric filter program is the calculation of the critical unloaded Q
{uniform in both inductors and capac1tors) that just erases the trap notch
nearest the passband,

This section begins with the application of the input impedance and its
derivative with respect to frequency. The basis of the trap permutation scheme
is then described. Finally, examples using the symmetric and the antimetric
programs are discussed.

9.3.1. Inpur Impedance Relationships. The analysis will employ the mid-
series topology in Figure 9.12a without loss of generality, It was remarked in
Section 8.1.1 that the impedance of a series LC branch resonant at w, is
simply jw,LF (for example, see the admittance case in (8.28), Section 8.3.2).
Suppose that the (M, K ) branch in Figure 9.124 is resonant at s, =Jw,. Then
the input impedance in the neighborhood of that frequency is

Zin(s)=sLl+M1(s—§§). (9.32)

Note that impedance Z, scen to the night of the (M,,K,) branch in Figure
9.124, is not zero in practical cases. Differentiating (9.32) with respect to
complex frequency s yields

2
z;n=L1+Ml(1+%). (9.33)
g

From (5.26), a Taylor series approximation valid in the neighborhood of trap
frequency s; must be

Z(s)=L;s, + (L +2M)(s--8)+ - +. (9.34)

Now it is possible to identify element values of the first three elements in

Figure 9.124 that cause the notch at w,. Seiting s equal to s, in (9.34) yields

L= Z‘“S(IS‘) . (9.35)
Setting s equal to s, in the derivative of (9.34) with respect 1o s yields

1= ﬂs—g’i - (9.36)
Since M, and K, are resonant at w,,

K,=—1_. (9.37)
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The significance of results {9.35)-(9.37) comes from the independent knowl-
edge of Z,(w,) and Z{(w,), as outlined in the previous section (ie., by
knowing the impedance function in pole/zero form, especially at the trap
{notch) frequencies).

9.3.2. The Permurtation Method to Calculate Trap-Section Elements, Amstutz
{1978) described the equivalence pictured in Figure 9.17: for any two-port
network having the structure in (&), there exists an equivalent two-port
network with the same structure, shown in (), but in which the places of the
three elements that produce attenuation peaks at w, and «, have been
permuted. This is the genius of his method, because it determines element
values without the loss of accuracy that plagues every other known method.
Although subtle, it is far easier to compute.

To develop this equivalence according to Lin and Tokad (1968), write the
continued fraction expansion for the network input impedance in Figure
9.17a:

1 + I

1
M s+——— L,s+
H K, s 2

1

]

1
M,.s+ Ko + .

It is convenient to form Z, /s by dividing every impedance phrase in (9.38) by
s. Also, define the inverse squared-frequency variables

==t (9.39)

b § 4

by=Ly w; Ly=Lly oy L, uw, Ly W,

K, = 1/B,, Ky = 1/By,
. T T

Z, Z;
(a) (b}
Figure 9.17. Equivalent two-port networks creating the same attenuation poles. (a) Pole order

wy, @y} () pole order wy, w,. [From Amstutz, P., JEEE Trans. Circuits Syst. Vol, CAS-25, No. 12,
p- 1003, December 1978. © 1978 IEEE.]
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and

h;= 1 = MiiKii (9-40)

for the ith trap. Then (9.38) takes the form

Ly, + 1 (9.41)
§ Ky + ]
h,—h Ly, + 1
Ky ¥
h,—h
A similar expression may be written for Z,/s in Figure 9.17b:
L+ ‘ 9.42
< ~La (942)
§ Ky +
h,—h

The claim is that Z,=Z, for all s. Choose s=s,, and equate (9.42) to (9.41):
1

LZI_L1]+-TH.—_:I. (9.43)
h,—h, L
Amstuiz (1978) defined the constant
U=L,,—L,. (9.44)
Manipulation of (9.43) results in the solution
Ly,=UV, (9.45)
where a second defined constant is
P  E— (9.46)

Vo (h,—h)B,,

One additional relationship is required; it comes from the equivalence of
the derivatives of (9.41) and (9.42) with respect to h in (9.39). The resulting
expressions will again be evaluated at h=h,. In this context, the network in
Figure 9.175 does not involve L,, and elements to its right, so that (9.42) is
truncated to yield the derivative

dZ/s)) -
’ = -1 (947)

Lo

h=h,

Similarly, the derivative of Z, /s with respect to h does not involve anything to
the right of trap 2 in Figure 9.17a. Therefore, (9.41) is truncated, and its
derivative is equated to (9.47). After some algebra, a solution for K,, results:

[l/K”+(L21—L“)/(h2—h|)]2

(9.48)

2 1/(K%1K21)_ ]/K:I[(Lzl“Lll)/(hz_hl)]z ,
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which further reduces to

|:(hz_hl)+(LZ|_LII)KH]2
(hy—h;)/Ky = (Ly — Ly YKy,

(9.49)

2=

Amstutz (1978) rearranges (9.49) into the last of four main expressions:
B, =VB, —(V+1)’B,. (9.50)

The calculation illustrated in Figure 9.17 proceeds as follows: obtain L,
and L,, according to (9.35) and then compute U from (9.44). Compute B,
and B, according to (9.37) and then compute V from (9.46). Thus L,, may be
obtained from (9.45), and B,, from (9.50). Repeating, the input trap-section
values in Figure 9.17 are determined from the known input impedances and
slopes at the trap frequencies. Then (9.44), (9.46), (9.45), and (9.50) are used,
in that order, to determine the three values of the second trap section in
Figure 9.174.

Example 9.3. The element values of a type-c (antimetric) filter are shown in
Figure 9.18. A ladder network analysis program similar to Program B4-1 was
used to compute the input impedance and its approximate frequency deriva-
tive (group delay) using 0.01% finite differences, as described in Section 4.7.2,
Table 9.1 shows these values at the three trap frequencies. To find L,, M,, and
C;, begin by using (9.35)-(9.37) and the w, data in Table 9.1 to compute
L,=1.0915, M,=0.118981, and C,=1/B,=1.377177. A similar calculation
using (9.35)-(9.37) and the w, data in Table 9.1 yields L,, =Z,/s,=0.842907,
M, =(Z|—L,))/2=0455362, and B,, =M, w,=0.990429. Therefore, with ap-
propriate changes in subscripts, (9.44) yields

U=L,—L, =0.248593. (9.51)
Then (9.46) yields

vie— U 1-0.156978, 9.52
(“’;2_“’2_2 B, &>

or V=6370313. Finally, (9.45) yields L,=UV=1.5836, and (9.50) yields

10015 1.5849 we 1.3973 ws 1.3500 w,
et ™YY Y /Y
Ly ,La Ly Ly
0.11900 0.34829 0.23101 1 '203U
c, 1: l%
13770 1.3200 15233
1" T T
O
wy = 2.4704 wy =1.4748 wy = 1.6858 wy 7

Figure 9.18. A type-c antimetric elliptic filter appearing in Example 9.3.




Doubly Terminated Elliptic Filters 357

Table 9.1. Input Impedance and Its Time
Delay at the Three Trap
Frequencies for the Eliptic
Filter in Figure 9.18

w Zin Z;n

W j2.69645206 1.329461
W, j1.58927603 1.553162
w, 3124311958 1.753632

B,,=0.748384, which produces C,=1/B_,=1.3362. The last value is compa-
rable to the 1.3200 value shown in Figure 9.18, the difference being attribut-
able to the approximate derivatives utilized in this example. (In practice, the
derivatives are known exactly from the pole/zero factors.)

9.3.3. The Complete Permutation Algorithm. The algorithm in Table 9.2

generates the elements for M traps. Then the actual element values are L;=L;,
K,=1/B;, and M;=B,/w? for i=1,2,...,M. The new element values L, and

Table 9.2. Array of Permutation Algorithm Coefficients for M =4 Traps

Input:
Trap k i=1 i=2 i=3 i=4
Wy Ly .Bp
w3 Lzsz2|§LzzaBn
Wy Lyy, By Ls;. By, Li;, B3y
0wy Lay . Bay Lay. By Lss, B43>L44 By

For i=1 (first column);
Fork=1,2,...,M:

Liy =X {wy}/wk where  Z,=R,+jX,
My =[Z(wy) = Lkl /2
BK|=MK1W12<

Fori=2,3,... . M:

For j=i,1+1,...,M:
U=Lj—1.i—J‘Lj,i—1
1/v=U/[(wj-z—wi:ﬁ)ai_,_i_,] -1
Li=Uv
B;=V’B,;_,~(V+1)’B,_,;_,
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B, require four parameters, computed in the previous i—lss step; only
L,_,;—; and B;_,;_, are actual element values. The other two parameters,
L;;_, and B;;_,, can be considered element values when w;_, is interchanged
with w; in the trap sequence. Of course, this process may be accomplished
from either end of the doubly terminated filter, especially to test accuracy.

It is well known that not every sequence of traps frequencies will yield
positive elements. Lin and Tokad (1968) describe the minor tests to be added
to the preceding algorithm so that all elements are positive.

9.3.4. Symmetric Type-s Filter Program. Symmetric filters have odd-degree
N, and the number of traps is M=(N —1)/2. Figure 9.19 shows the lowpass
and highpass midshunt and midseries topologies, respectively, that Program
B9-2 (Appendix B) designs. The program is a translation of Amstutz’ (1978)
FORTRAN into BASIC. The original program utilized double precision,
although most eight-bit-microprocessor personal computers should be able to
design elliptic filters with as many as seven traps without difficulty.

Two typical runs are illustrated by the computer output in Figures .20 and
9.21 for lowpass and highpass networks, respectively. The program discrimi-

L1 L3 L4 L2
Y YT YT Y Y YT rWY'YY\ (Y YT YY)

C, I C, r, Cs r, C, r, C,
O 14 _ 14 1 _ 1 It o
L J_ L J_ 1t l — T l L
F1 FE FA F2
O —
L1 I“S L4 LZ

Figure 9.19. Lowpass, midshunt and highpass, midseries topologies computed by Program B9-2
for symmetric type-s filters. [From Amsiutz, P., JEEE Trans. Circuits Syst., Vol. CAS-25, No. 12,
p. 1011, December 1978. © 1978 IEEE]
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SYMMETRICAL ELLIFTIC FLTR,C&S512/78,1009
STEND EDGE <(FHZIY= 1.414213&
FASSBAND EDGE (KHZ)= 1 .
NUMBER OF FEAEB(1-15)= 4
CRITICAL O= 346.9432738
STEND REJECTION (DB)= 946.%5
FSEND RIFFILLE (DR)= . 177265235
= bR (KHZ) ARDUT = 1.0223406
NOMINAL OHMS RESLISTANCE= 1000
X% LOW-FASS FILTER %%
KT FAaRkAaD HENREY
2.O06723216E-07
Z.S77A4A965S 1 9.26042224E-0F (21T 22BITY
2 iG0OR0083E-07
1.570951972 & S.4B128475E-08 187254436
Z.7RTIEZEIE~QT7
1.42945989 4 7.1BSZE913E-0B L 172523812
2.81714209E-07
20034475 T A.I36478462E-08 . 1875954319
1.895128739E-07
FRECISION TEST:—4.93031228E-04

Figure 9,20. Lowpass, midshunt, symmetric type-s filter design example.
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nates between these two cases by the relative values of the passband- and
stopband-edge frequencies in the input data. The number of peaks input by
the user is the number of trap notch frequencies. Note that the frequencies are
in Kilohertz. Program B9-2 computes the critical @, which is the uniform
unloaded-Q value at which the notch nearest the passband is erased. The
uniform, unioaded Q applies equally to all inductors and capacitors; it is

defined as

QLQc

Q=g +Qc’

SYMMETRICAL ELLIFTIC FLTR,C&512/78, 1009
STEND EDGE (kKHI)= 1
FPASSEAND EDBE(MHZ)= 1.414321348
NUMRER OF FEAKS(1-1T)= 4
CRITICAL B= 346.5432758
STEND REJECTION (DE)Y= 94.90
FSEND RIFFLE (DBEO= 1772635239
3 DB (KHMZ) ABOUT = 1,3B330963
NOMINAL DHMS RESISTANCE= 1000~
¥% HIGH-FPASS FILTER kX%
KHZ FARAD HENRY
0. 6643503BE-08
LEISE08117 1 1.934146923E~06 . 0B38058488
5. 7761 3563E-08
LQ00P27159 3 3.26770S4E-07 0956517997
&.5657B767E-08
LFE933T4217 4 2.4927457BE-07 . 10381885
4. 3S5794121E~-08
2 S5.32F1412TE-07 0994788627
F.A&TSOUFFE-08
FPRECISION TEST:—4.,93031228E-04

L 7050014

Figure 9.21. Highpass, midseries, symmetric type-s filter design example.

(9.53)
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The integers in the element data refer to the trap positions. Note that they
alternate from end to end in the filter so that only positive ¢lement values are
obtained, as mentioned in connection with the permutation algorithm (Section
9.3.3). The precision test number is the relative discrepancy between the values
of the central element calculated from either port.

9.3.5. Antimetric Type-a, Type-b, and Type-c Filter Program. Antimetric
filters have even-degree N, and the number of traps is M=N/2. Figure 9.22
shows the lowpass and highpass midshunt and midseries topologies, respec-
tively, that Program B9-3 (Appendix B) designs.

Typical outputs for antimetric type-a, type-b, and type-c filters are shown
in Figures 9.23, 9.24, and 9.25, respectively. Observe that the input data
include the “half degree”; this is also the number of traps. Frequencies are in
radians. The initial output from U through the last RF variable consists of
data concerning the natural frequencies; interested readers are referred to
Amstutz (1978). The trap sequence alternates from one end of the network to
the other, as seen by comparing the integers in the output data to Figure 9.22.

The first precision test number is the relative discrepancy between the

L, L Ls Ly L

1 R
TCZ TC; TCB TC1
O- -~
F. Fq Fs Fy
(Ly) (Lg) (L) (Ly)
(\’Wm (YT (YTYTYTY YT (Y TY YTV
)
| e e el B e B e I

T(CZ) ==(C.) =N ==ic,) ,[(cn
(}_

Fo Fy Fy 3

Figure 9.22. Lowpass, midshunt and highpass, midseries topologies computed by Program B9-3
for antimetric type-a, type-b, and type-c filters. [From Amstutz, P., IEEE Trans. Circuits Syst.,
Vol. CAS-25, No. 12, p. 1009, December 1978. © 1978 1EEE.]
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ANTIMET ELLIF FLTR.CTIZ/78,1008

REJECTION, RIFPLE (DR) , 1/2-DEG{(Z~-15) , TYPE(A,B,0OR C):
BI.J306B 17728747 4 A

U= , 392699047 AD= .2531468244 EF= ,414213539
E= (387100151

E= .293985074

E= , 159524088

RE=—.094146405422 SE= .44724%56164
RE=—,2327496%5 SE= .1876B0214

RF=-—., (386088741 SF= 1.01584498

RF=—. 12804916 BF= .709415907

RF=—, 2394604029 SF= ,&4417564B09

RF=~, 373472309 GF= [ Q248605749

LD RESIS= 1.30000003 [ . bbbbbLL5] ¥
L) cmw FERAEK
1 -,0294237911  .8763314629  6.18320915
2 1.2083977464 1.2296171 2.27723343
3 1.8230507 1.13816466 1.621043523
4  1.796444462 1.07285916 1.43359222
S 1.70%29984 STFBED EDGE= 1.41421359

TESTS~1.11149138E-04 -7.3083226E~08
Figure 9.23. Sample run for an antimetric type-a filter.

values of the central capacitor calculated from each port. The second test is
the difference between the sum of all series inductors and a theoretical value.
Most eight-bit-microprocessor personal computers should be accurate for
“half degrees” (number of traps) up to 8. Note the negative element value,
which will always appear in the type-a filter. The schematic representation of
the type-c filter, corresponding to the data in Figure 9.25, is shown in Fig-
ure 9.18.

ANTIMET ELLIF FLTR,CT12/78, 1008

REJECTION, RIPFLE (DB) , 1/2-DEG(2~-15) , TYFE(A,B,0OR C):
B83.3068 .17728767 4 B
U= . 392499047 AD= .253168744 EF= 414213539
E= .383100151
E= .293995073
E= . 159574088
RE~—. 0941605422 SE= ,44724561&
RE=-,232749495 SE= . 187680214
RFE=-.,03956957664 GF= 1,014621815
RF=—, 130545074 SF= .90b702149
RF=—, 240380105 SF= .&553146027
RF=—, 329399476 S5F= .J44461632
LD RESIS= 1.50000002 ( .b6b6666658 )
Lo oLy FEAK
1 L 900876092
2 1.23049445  1.25009281 2.41712146
3 1.B84099295 1.14996665 1.65747848
4 1.B2095152 1.08728732 1.45434413
5
E

1.72790256 STFED EDGE= 1.43359223

TESTS-7.8463F26FE-0T -5.0114467BE-0§

Figure 9.24. Sample run for an antimetric type-b filter.
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ANTIMET ELLIFP FLTR,.CT12/78, 1008

REJECTION,RIFFLE (DB}, 1 /2~-DEG (215 , TYPE(A,R,OR C):
BI.30468 17728767 4 C
U= | 3928990467 AD= 253168244 EF= .414213539
= .3B3100151
E= .2939B5074
E= .159524088
RE=—, 09418605422 SE= 4472454168
RE=—.23274%946%95 SE= .187680214
RF=-.0417718431 SF= 1.01712478
RF=~, 1382692146 8F= 9020358076
RF=-.260576346 SF= .&637014303
RF=-,3%0335577 SF= .Z21738535
LD RESIS= 1 1 )
L) cL) FEAK
1.20340853
1.091582826 1.37701951  2.470369B6
1.35003027 1.02326467 1.68577457
1.58486971 1.,32003532 1.474B0406
1.39727972 STFED EDGE=.1.45323639
STS 1.238146BE-05 1.28149986E-06

Figure 9.25. Sample run for an antimetric type-c filter.

M & K=

-

93.6. Swnmary of Doubly Terminated Elliptic Filters. The effect of trap
resonance on elliptic filter input impedance is such that it is easy to determine
the first lumped-element and the next trap-branch-element values, All that is
required is the input impedance and its time delay at that trap’s frequency;
both are available from the poles and zeros of the elliptic transfer function.
The computation is made easier by the fact that the input reflection coefficient
is necessarily unity at any trap frequency. The poles and zeros are Jacobian
elliptic functions that are easy to compute. Improved accuracy is obtained by
using the infinite-product formulation of Amstutz,

Amstutz’s remarkable permutation algorithm determines all element values
without the round-off error typical of all other realization methods. It is based
on the fact that two-port networks having the same geometry may have the
same response even when the three-element sets responsible for the notches
are permuted. This fact was developed by writing continued fraction expan-
sions for two such equivalent networks, each having a different trap subsec-
tion at their input port. By equating expressions for their impedances and for
their time delays at all frequencies, and at the second trap frequency in
particular, a method was determined for finding the element values of the trap
subsection that is once removed from the input port.

The development for permuting just two trap subsections enabled the
construction of a table and its generating algorithm to determine all element
vaiues in a network. Once again, the only required data are the input
impedance and time delay at each trap frequency.

Two Amstutz (1978) FORTRAN programs were translated into BASIC
and included for use on personal computers. Reasonably sized elliptic filters
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may be designed promptly and accurately using these programs for all types
of doubly terminated elliptic filters. The more precise, symmetric elliptic filter
program also included Amstutz’s calculation of the critical, uniform unloaded-
Q value that would just erase the notch adjacent to the passband. These are
extremely valuable tools to have for applied circuit design.

94. Some Lumped-Element Transformations

There are many situations in which the network topology obtained by network
synthesis or direct design is not satisfactory for practical applications. For
example, the lowpass eliiptic filters designed in Section 9.3 may be trans-
formed to their bandpass equivalent circuits by the reactance transformation
in Section 6.5.1. Each lowpass trap branch produces two bandpass traps, one
above and one below the pass band. The topology of the single bandpass
branch that produces these two attenuation notches may be altered by exact
transformation to another form. Also, one of the notches may not be required
at all. An element may be eliminated along with one notch that is approxi-
mately equivalent in a Taylor series sense to the transformed bandpass
network. This section reproduces some well-known equivalent branch relation-
ships and applies the Norton transformation to obtain several others. Approxi-
mate branch relationships that delete one element are derived.

9.4.1. Exact Transformations. Figure 9.26 shows four eqaivalent bandpass
networks that correspond to a lowpass elliptic filter. Figure 9.125 may be
transformed, as described in Section 6.5.1, into the network in Figure 9.264.
In this process, lowpass capacitors become bandpass parallel LC branches,
and lowpass inductors become series LC branches. The correspondence be-
tween Figure 9.12b and the network in Figure 9.26a can be recognized by
these transformations. It is not so obvious that the remaining networks in
Figure 9.26 are exactly equivalent at all frequencies.

Zverev (1967) has compiled a set of equivalent three- and four-element
networks that are cataloged according to pole-zero impedance characteristics.
These are valid at all frequencies. It is straightforward, but tedious, to verify
these by writing the branch impedances in complex frequency s. For example,
the network in Figure 9.26a may be converted into the topology shown in
Figure 9.26b by using transformation 12 in Appendix H. The type-1V imped-
ance characteristics graphed in Appendix H indicate that there are two
notches (poles) at w, and w, and one zero (corresponding to the band-center
frequency w,). These frequencies are related to element values as indicated in
the separate table in Appendix H for pole-zero frequencies, Note that parame-
ters W, X, Y, Z, Q, and S, which appear in the equivalence tables, are defined
in the last section of Appendix H.
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Figure 9.26. Node-type equivalent networks. (a) Paralleled, dual coupling branches; (&) coupling
branches composed of parallel LC traps in series; {c) bridged-T coupling; (¢} single parallel LC
trap coupling branches. [From Dishal, M., IRE Trans. Veh. Commun., Vol. PGVC-3, No. 1, p.

115, June 1953. ® 1953 IRE (now IEEE)]
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92/Far 92
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Figure 9.27. A bandpass prototype network.
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1 L1z C,
o YL (L
it

—

Zin = ' g
t+jon TG L L2 3 =
o
3

F r rF -
C = Fgl L= 82 Lip=—2— L,= Ez = —r
A 8182_(\[;_1)Ff2\r VrFa, (‘JF_I)V’FFM &

Figure 9.28. Two-pole bandpass equivalent network using L,,.

Another useful set of equivalent networks is available by using the Norton
transformations described in Section 6.5.3. Consider the bandpass prototype
network in Figure 9.27. Parameter F,_ is the passband fractional frequency,
and the g are the corresponding lowpass prototype element values for a
l-ohm source resistance. An inductive Norton transformer replacement pro-
duces the network in Figure 9.28, which is equivalent at all frequencies. Note
that the impedance-scaling parameter r must be greater than unity. A capaci-
tive Norton transformer replacement produces the network in Figure 9.29.

A more flexible transformation applies to a three-pole bandpass prototype
network that is modified by an inductive and a capacitive Norton transforma-
tion, The results appear to be direct-coupled filters, but they are not, because
all the L’s and C’s touching each node are not resonant. Two possible
topologies appear in Figures 9.30 and 9.31. Now there are two impedance
scaling parameters, N, and r; their ranges and relationships may be seen in
the equations included in the figures. Various combinations of Figures 9.28
through 9.31 may be employed to obtain suitable element values,

Lo Ly
o H* —_—TYY Om
Z.=1+j0%2
— 93
¢ Ly Gy T

o

o g1~ (1 —1)F, [ _Fa LTV N Vo (i —1)Fs,

l Faga e . 22 PR, P B

Figure 9.29. Two-pole bandpass equivalent network using C,,.
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I
Lqy R - Ry, Cas
Y [ U .
s | ELD
Zin = |
1+j0 2
1
<, Ly :l: C, L2 }J-: Cy Ly " g
O | e e
& BoF A £2 _ N“(N“—W)Fm
C=g. LN MetwEL T
Ar gig— (N, — DF;, N Far 2
L -5 c N,/rFa, L I c B2B3— (Na/‘/f_ - I)FZM
-_— =2 A - =r
NAN-DF., 2 g Ty 7 £2FAr

Figure 930. Three-pole bandpass equivalent network using L;, and Cy;.

Ciz L2z
o -~ — Y D
Zin = 1
1+08 2
¢, L, :flr: c, Ly =+ Cs Ls 1%

O " S
C = 18— (Na— I)F%\r L = FAr C.= NaFAr C2= Na(Na— ])FAr

: £2F 4 T " gz g2

Fa/T rg
LB e B BT W
N, (N~ ¥ )Fa N,Vr Fa, g8y~ (No/r —1)FS, Ar

Figure 9.31. Three-pole bandpass equivalent network using C,, and L,;.

94.2. Trap Approximations. Taylor series were described in Section 5.1.4. A
first-order approximation of susceptance by value and slope at a frequency
was employed for resonators in Section 8.3.4. The difference here is that the
susceptance at the frequency of interest will not be zero. In the following, it
will be assumed that trap notch frequencies are greater than any reference
frequency. Pole-zero branches having two, three, or four elements, similar to
those discussed earlier in Section 9.4.1, will be considered.

It is informative to note that two elements cannot replace one in a
first-order equivalence. Consider the two branches shown in Figure 9.32. The
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Ly

Figure 9.32. An example of two elements that cannot be replaced
by one element by use of a first-order approximation.

susceptance of the single capacitor is

B-=uC, (9.54)
and its slope with respect to radian frequency is
: dB
=2 = 9.55
BC de ( )

The susceptance for the trap in Figure 932 is

-1
= . 6

oLr(w/ @y =wa]) (-39)
where the trap resonance frequency is w,. Its slope with respect to radian
frequency is

. w/w,+w, /w
° oo / /@) . (9.57)
wwn“"l‘(“’/wn—wn/m)

Equating susceptances (9.54) and (9.56), the trap slope must be

By

(wn/w)2+ 1

S .U S
T (/@) -1

> Be for w,>w. (9.58)

This shows that if the susceptances are equal, the slopes cannot be equal.

B.B
EL, c < L
Ly

Figure 933, First-order equivalence of a two-element branch to a three-clement branch,
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Equating slopes (9.55) and (9.57), the trap susceptance must be

(wo/w)*—1

B,=B. (w,/w)+1

<Be. (9.59)

This shows the converse limitation. Therefore, two elements cannot replace
one.

Three elements can seplace two elements using a first-order approximation.
Figure 9.33 illustrates the replacement of two elements by three, introducing a
notch in the process. The relationship among element values may be obtained
by writing relationships for the susceptance and its frequency slope, as
follows:

WiLT

- L
=i (0*/R)LC (460)
- i , 9.6
br WC(w/w,— w0, /w) ©eh
Cr=——. (9.62)

o

Three elements can replace four elements using a first-order approximation.
Figure 9.34 illustrates the replacement of four elements by three, removing a
notch in the process. The relationship among element values may be obtained
by writing relationships for the susceptance and its frequency slope, as

Ly c,

l

Figure 9.34. First-order equivalence of a four-element branch to a three-element branch.




Load Effects on Passive Networks 369

follows:
2
Ly=— o (9.63)
w, \*
La=Lb[(;£) —IJ, {5.64)
]
C. = . 9.65
b wﬁLb ( )

9.4.3. Summary of Some Lumped-Element Transformations. There is a large
collection of lumped-element equivalent branch topologies; a set by Zverev
{1967) is contained in Appendix H. In addition, Norton transformations may
be used to produce two- and three-pole equivalent bandpass networks that can
radically alter topologies and element values without changing frequency
response,

A first-order equivalence based on Taylor series provided several approxi-
mate transformations involving traps that produced attenuation poles
(notches). It was shown that two elements cannot replace one on the basis of
equal susceptance and equal slope at a frequency. This amounts to a state-
ment of Foster’s reactance theorem (see Van Valkenburg, 1960, p. 123).
However, element values were given for (1) replacing two elements by three
and adding a notch, and (2) replacing four elements by three and removing a
notch.

9.5. Load Effects on Passive Networks

The image of the right-half load plane as seen at the input terminals of a
linear, active two-port network was the circle described in Section 7.3.2. The
Y, plane appeared as a Smith chart with complex normalization in the Y,
plane. Filters usually have a high efficiency in the pass band and thus do not
shrink the load-plane image in the input plane at these frequencies. However,
the input image of a more limited load-plane neighborhood, typicaily a
constant SWR circle, is still of interest. This case occurs in such questions as
the effect of a spacecraft antenna SWR on transmitter output in the passband.

Another important question arises at filter stopband frequencies. The load
impedance often is specified at passband frequencies. However, both filter and
system designers make the assumption that the load impedance in the stop-
band is either 50-ohms or is so reactive that the filter selectivity will be
increased if changed at all. The fact is that an antenna SWR in the stopband
is uvsually very large, and it is equally likely that filter selectivity will be
seriously degraded at certain stopband frequencies. Complaints about trans-
mitter excessive harmonic output in the field are common.
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Img

g Plane

ImZ Z Plane

lZ‘

Re 2

Figure 9.35. A composite bilinear transformation between unit circles and a cartesian plane.

This section applies the impedance-mapping results from Chapter Seven to
passive, reciprocal networks. The results are somewhat more compact than if
applied to linear active networks; they will be useful in Section 9.6 as well.
Parts of Chapter Seven will be recalled, and a new unit-circle to unit-circle
bilinear transformation will be described. Tt will be applied to obtain a simple
analytic solution to the power transfer example (Example 7.1 in Section 7.1.2).
The maximum efficiency is the key parameter in predicting bounds on
impedance and efficiency behavior. Practical bounds will be obtained, and a
basis for invulnerable filter design will be developed for use in the next
section.

9.5.1.. Unit-Circle to Unit-Circle Bilinear Mapping. The generalized Smith
chart was described in Section 7.1.2 as the bilinear function that mapped the
right-half cartesian plane onte a unit circle. Problem 6.7 showed that concen-
tric circles inside the unit circle were SWR circles in the conventional sense
when the unit-circle Smith chart was normalized to a real transmission line
characteristic impedance. Otherwise, the generalized Smith chart development
showed that concentric Smith chart circles appear as “SWR™ circles geometri-
cally centered on the normalizing constant in the Z plane (see Figure 9.35).
The “SWR? circle has reflection magnitude R in the f plane; its image in the
Z plane is centered on Z}. The F(Z) transformation has been described in
(7.16); in terms of Figure 9.35 it is
Z-ZF A
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This form is unique for any bilinear transformation that maps the right-half
plane onto a unit circle. Another such form shown in Figure 9.35 is

— T *

g=G(Z)= =7 Z’: . (9.67)

The purpose of this section is to introduce the fact that bilinear transforma-
tions that map unit circles onto unit circles have certain elementary properties.
For instance, they must have the form

g=H(f)= e”f (9.68)

—ff}’
where |fy| <1 (see Cuthbert, 1980). According to (9.67), the g-plane origin is
the image of Z=Z}. But (9.68) shows that it also corresponds to f=f,.
Therefore,
* Z*_Z* A J¢’

o=F(Z} )— Zi77, = Me (9.69)
Cuthbert (1980} shows that, for a fixed R in (9.66) and Figure 9,35, the
constant-|f|-circle image in the g plane has a maximum radius, defined by

[ehnax= Taer,  Risfined, (9.70)
Img
G{Zs) g Plane
Max Min (E+g+m)

Imz Z Plane

G[F{f]

LZ forifl=R

Re i

f Plane

Figure 936. Some details of the iransformation between unit circles.
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and a minimum radius, defined by

M R
|Ig,11.11]'l MR
The image encircles the origin when M < R. This is illustrated in Figures 9.35

and 9.36. Although it is incidental to the following application, angle § in
Figure 9.36 is

R is fixed. (3.7hH

§=2arg(Z*+ Z,). (9.72)

9.5.2. Power Bounds Between a Complex Source and Loads. Figure 3.3 in
Section 3.2.3 illustrated the connection of a fixed, complex source to an
arbitrary load impedance. Example 7.1 in Section 7.1.2 illustrated the calcula-
tion of power transferred to load impedances contained within and on a 2: 1
SWR circle. The solution was based on the generalized Smith chart situation
shown in Figure 7.2. The circuit is reproduced in Figure 9.37.

Compact expressions bounding the power delivered may be obtained by
applying the bilinear mapping result in Section 9.5.1. Suppose that both the
source and load standing-wave ratios S, and §, , respectively, are defined with
respect to resistance R,. Then the [ plane in Figure 9.35 becomes the load
Smith chart when Z=2Z,, Z;=R,, and Z,=Z,. The reflection magnitude is
related to the standing-wave ratio S by

S—1
= s+1 (9.73)
A_pplying (9.66) to this case yields
S.—1
== 55 (9.74)
and (9.69) yields
' 5,—1
=|T|=2 51 (9.75)

According to (9.67) and (3.47), when |g| is maximum, load power is
minimum, and vice versa. So (9.70) yields
P 45,8,

L s
m—=— . 9.76
Pas (SsSL+ 1)2 ( )

i —_—
— Z,=R+jX, —o—
L
+
E, Q v Zy=RU+X,

Figure 9.37. A fixed complex source connected to arbitrary complex loads.
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5, —

-15 1 L 1 1 '
1 2 4 8 16 32 64 128

Figure 9.38. Power from a complex source to a complex load relative to the 1:1 SWR load
power,

Reference the load power to that delivered to the normalizing resistance R,.
Call this P, and set §; equal to 1 in (9.76); this yields

P, 48
=" 9.77
Pa  (S,41)° -7

Therefore, dividing (9.76) by {9.77) vields the minimum relative power:
P, S/ (S,+1)
min—t = --'"(—)2 . (9.78)
P (88.+1)

Note that (9.73) is a strictly increasing function of S. By (9.74) and (9.75),
8,<S, impiies that M <R, so that |g|=0 and P, =P, (because of encircle-
ment of the origin). Otherwise, (9.71) yields

Py 48, S,

max—=————, S.>8§; . 9.79
P, (S.+S.) - e

Normalizing to (9.77), the last result is:

(S,+ 1)
| & -
max—= .
Py | Su(S,+ 1Y (-80)
———=-, 8. <5,
(SS+SL)

A graph of (9.78), (9.79), and (9.80) is shown in Figure 9.38.

Example 9.4. A transmitter is connected to an antenna as shown in Figure
9.39. The second-harmonic power into a 50-ohm resistive test antenna (load) is
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Zantunna

™ Tansmiter
constant, |, - 2 3
Bandpass filter

l

i

|

| Transmission
dB I line Z, any

|

|

length

b I

Figure 9.39. A transmitter connected to a narrow-band antenna,

60 dB below the fundamental power. Also, at the second-harmonic frequency,
SWR §,,=32 is measured with the power off, and the antenna SWR is
S, =16. Assuming 8, =1 at the fundamental power, what is the possible range
of the second-harmonic, spurious cutput power? According to (9.80) and
(9.78), the second-harmonic power can increase by 8.8 dB and decrease by
11.8 dB, respectively. Therefore, the second-harmonic output power can range
between 51.8 and 71.8 dB below the fundamental power.

9.5.3. Bounds on Input Impedance and SWR. Maximum efficiency will be
the primary parameter for the analysis of bounds on input impedance and
_SWR, and it is convenient to simplify its expression for passive reciprocal
networks. Maximum efficiency (7.64) was derived in terms of admittance
parameters in Section 7.3.3. Its definition was in terms of Rollett’s stability
factor K in (7.57). A different constant is defined here:

_Bufn— gi,
|y21|2

This constant is always positive because its numerator is the real-part require-
ment for passive networks (according to Van Valkenburg, 1960, p. 312). It is
easily related to the stability factor:

K=2R+1. (9.82)

The maximum-efficiency expression in (7.64) may then be formulated for the
passive reciprocal network:

A= (T TV& ) (9.83)

This is a2 monotonic function of & ; therefore, many aspects of »,, may be
analyzed in terms of & instead. The corresponding choices of + / — signs will
be useful in Section 9.6.

It will now be shown thaf maximum efficiency is the single parameter that
controls the relative size of the input-plane image of the load plane. Consider
Figure 7.13 in Section 7.3.2. The ratio of image-circle diameter to the distance

K (9.81)
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1Bin Right-half load-plane image
o

MinG,, MaxG,,

Constant-efficiency loci

Figure 9.40, The relative size of the load-plane image.

of its center from the imaginary axis is

D _2
. X (9-84)
This is equivalent to the desired expression
4
D _ fmax (9.85)

Gcen 1 +n§1ax '

which may be reduced to (9.84) by using y,, =¥, in (7.64). This is illustrated
in Figure 9.40. The important result in (9.85) states that the relative size of the
load-plane image in the input plane is a function only of n,,,. In the extreme,
a lossless network maps the right-half plane onto the right-half plane. Bounds
on input admittance may be obtained only by bounds on 7,,, i.e., on & in
(9.81).

Some results from Cuthbert (1980) are stated. The exact bounds on the
input SWR for any load impedance in the right-half plane are

Sin,max = Sclsmax (986)
Sei
£ L S £
Sin,min = Smax ol > Smax (987)
15 . Scl < Smax »

where S,, is the SWR of Y, in (7.78) with respect to the nominal resistance,

and
= l + nmax

Sax= 7 (9.88)

- Tl'max

The bounds of S, are easy to measure: use a lossless LC resonator as the load
admittance and tune it over its entire range while observing the input SWR.
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1 2
——C
Linear

Lossless passive SWR
transmission bilateral Sk = max { wrt

line *"I network Roz

liding shart circuit |
rk- Sliding 2, z,

Figure 9.41. The measurement of Si, the maximum SWR of the input-plane image.

Usually, load admittances are limited to small regions of the right-half
plane. A useful upper bound on input SWR can be stated for a given load
SWR region:

S5.8¢+1
. S
in inQ SL+SK

where §, , is S,, when load §; =1, and Sy is the maximum SWR observed by
looking into the output terminals for all values of pure resistance connected to
the input terminals. Except for turning the network end for end, the latter is
the same as (9.86), i.e.,

S (9.89)

Sk =5,8 (9.90)

where S, is the SWR of Y, in (7.79) with respect to the nominal resistance,
and S_,, was defined in (9.88). S may easily be measured, instead of being
calculated (see Figure 9.41). The value of $; is found by connecting all
possible reactance values to the input port. This may be done, as illustrated,
with a sliding short circuit on a transmission line or by a lossless LC resonator
tuned over an infinite range. Either way, Sg is the greatest SWR value
observed at the output port.

max ?

9.5.4. Summary of Load Effects on Passive Networks. The geometric models
of linear two-port-network impedance and power behavior were recalled from
Chapter Seven. Bilinear mapping was extended by considering the form and
particular constants that map unit circles onto unit circles. The reflection-
plane bounds of a concentric image from another reflection plane were given.
One application was an analytic solution for the range of power delivered
from a fixed complex source to an arbitrary complex load.

Passive reciprocal networks were shown to have a simplified expression for
maximum efficiency in terms of the real-part parameter ®. It was also shown
that the relative size of the load-plane image in the input plane is a function
only of the maximum efficiency. Also, expressions for the exact SWR. extreme
values of that load-plane image were stated. More often, the load-plane region
is limited to a stated SWR value. An upper bound for the input SWR of that
image was stated. Measurement methods were described for obtaining these
bounds.
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9,6. Invulnerable Filters

Microwave literature contains descriptions of a number of waveguide and
other devices connected to a dissipative medium by frequency-selective
means. One implementation is to have side-coupling holes that excite cham-
bers containing resistance sheets, These devices usually are designed to absorb
unwanted stopband energy, especially in high-power circuits, where the source
cannot tolerate unwanted reflected energy. At frequencies above 400 MHz, it
is common practice to use three-port circulators to dissipate the reflected
energy in a load attached 1o the extra port. Another application occurs in
oscillators when stopband reactive terminations cause unwanted oscillations.
Circulators are too large at low frequencies, and many dissipative designs have
been ad hoc and difficult to model and adapt.

This section describes an organized approach to the design of filters that
absorb energy rather than reflect it; i.e., the reflection basis described in
Section 3.2.3 is not employed, Instead, the concept of designing a filter having
a limited maximum efficiency is exploited by direct design techniques. Two
specific filters will be described, and the basis for designing other absorptive
filters will be evident. The invulnerable part of the filter capability comes from
the fact that maximum efficiency may be achieved for only one unique load
impedance; any other load impedance will result in lower efficiency. In this
sense, the designer need not have any information whatever about the load
impedance; indeed, this is precisely the case in power lines and many other
environments.

The only additional development is the expression of the minimum loss
associated with the maximum efficiency. This is

L, = 10log——dB. (9.91)

Using (9.83) and Equation (G.4) in Appendix G, a surprisingly simple expres-
sion for L_; may be obtained:

L, =8.6858 sinh~'Y& dB, (9.92)

where & is defined by (9.81). Open-circuit impedance parameters can also be
used by replacing y, g, and b with z, r, and x, respectively, in these equations.

9.6.1, Invuinerable Bridged-T Network. Consider the network in Figure 9.42
and the following general definitions:

1
W =— 9.93
el (33)
- W
o= (9.94)

d=ReC. (9.95)
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— 1 i

Figure 9.42, A lowpass bridged-T network.

The normalizing frequency «; and the decrement d are the main design
parameters. No resistive termination values need be specified for the invulner-
able filter in Figure 9.42 because L, is not a function of the source or load
impedance or of the impedance scale.

It can be shown (Guillemin, 1957) that the z parameters of the bridged-T
network are

-2d2+a2 .52(1—d2)+4d2-

z;=R
TN adv e Y ad(ad+ oY)
] (9.96)
242 52(] +d2)+4d2
=Rl 5~ 2, - |
4d+@* © Bd(4d’+?)
where z,,=2z,, by symmetry. Substitution into
@ = rnrzz_zrgl ’ (9.97)
|221]
analogous to (9.81), yields
—4
= (9.98)

=L
B(L/d+dy’ +4

for the bridged-T network. From (9.83), small 5, or large L, values
validate the approximation

. 0.25
Mmax = T . - (9.99)

Therefore, (9.98) shows that L, increases at a rate of only 6 dB/octave for
large w.

Also note that L, is a strictly increasing function of #.. So, equating the
derivative of @ with respect to d to zero shows that d=1 produces the
maximum possible value of L, for any given w. It also can be shown that the
condition d=1 causes the conjugate match terminations to equal R for all w.
This constant-resistance condition may also be confirmed by employing
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Figure 9.43. Selectivity curves for the invulnerable bridged-T network.

Bartlett’s bisection theorem to convert the bridged-T network in Figure 9.41 to
a symmetric lattice, which is a constant resistance when d=1 (see Guillemin,
1957). When d=1, implying that R=yL/C, bridged-T networks may be
cascaded so that the overall L_,_ is just the sum of the individual L, values.

Equations (9.92) and (9.98) provided the design curves in Figure 9.43. Note
that (9.98) gives the same result for d and 1/d; the curves in Figure 9.43 are

Figure 9.44. Maximum possible SWR for bridged-T invulnerable filters.
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marked accordingly. Of course, the lowpass network may be transformed into
bandpass networks, as discussed in Section 6.5,

The maximum possible input SWR, S., may be defined with respect to
Ry=R, the value of the resistors in Figure 9.42. Then (9.86) yields the
maximum possible input SWR. This is plotted in Figure 9.44.

9.6,2, Three-Pole Invulnerable Filter. 'The invulnerable filter in Figure 9.45
1s considered because it is easily compared to a classical design when R=0.
The parameters defined in (9.93)-(9.95) also apply for this network. The
development is accomplished using y parameters:

ok 2]
y21=%(j%), (9.101)

where y;,=Y,, by symmetry. Then the real-part parameter is
@b=(%;’zd2)z. _ O (9.102)

Again, the minimum attenuation of this invulnerable filter, according to
(9.92), increases at a rate of only 6 dB/octave for large w. Proceeding as
before for the derivative of & with respect to decrement d, yields the
condition for maximizing L_; at a given w. The resuit is d=1/&, a function
of frequency. According to Guillemin (1957, p. 196), the symmetric lattice for
the network in Figure 9.45 is not reciprocal under any conditions. Therefore,
this three-pole network cannot have the constant-resistance property; this will
complicate the calculation of L, for cascaded sections.

The selectivity response according to (9.92) and (9.102) is shown in Figure
9.46. The dashed line bounds the family of decrement curves according to the
requirement of maximum L, namely d=1/a.

— T T |

Figure 945. A three-pole lowpass invulnerable filter.
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o

Figure 9.46. Three-pole invulnerable filter selectivity.

Example 9.5. A conventional, doubly terminated bandpass filter tuned to 1
MHz and having a 10% Butterworth passband width will be compared to its
invulnerable counterpart. For the conventional Butterworth filter, the lowpass,
lossless protolype network, normalized to 1-chm terminations and a 3-dB
passband edge of 1 radian, has element values C=1F and L=2H. This leads
to the network in Figure 9.47 when R=0. The values indicated were obtained
by frequency and impedance scaling and resonating each lowpass prototype
element according to Section 6.5.1. The Butterworth response is obtained
between 30-ohm terminations. The second harmonic on the prototype fre-
quency scale is w=15 radians; selectivity curves or (9.24) show that the
second-harmonic (2-MHz) attenuation is 71 dB.

The value of R must be selected to design the invulnerable filter with the L
and C values fixed as above. One choice is to obtain the maximum possible
value of L, at the second harmonic. For the invulnerable lowpass network,
(9.93) yields the normalizing frequency w,=1/ v2 . The optimum decrement
was shown to be d=1/. Using the calculated w, value and w=15 in (9.94)
and (9.95), it is found that R=1/15 in the lowpass network. Therefore,

169.16 #H 159.16 pF

Figure 9.47. Three-pole Butterworth /invulnerable filter in Example 9.5.
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100 -
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R’'=3.33
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f/f,—>
Figure 9.48. Three-pole Butterworth /invulnerable filter computed selectivity.

R’'=50/15 in the scaled bandpass filter in Figure 9.47. Setting d=1/% and
using = 15y2 in (9.102) and (9.92), the invulnerable attenuation at 2 MHz
will be L_;,=53 dB. Note that this attenuation exists without regard to the
values of Z,, Z,, or the impedance-scaling factor utilized.

The network of Figure 9.46 was analyzed with unloaded-Q values assigned
to each inductor to provide a realistic comparison between the conventional
{(R’=0) and invulnerable (R’=3.33) filters. The results are shown in Figure
9.48, where only the upper-half passband is pictured relative to tune frequency
fo=1 MHz. The worst-case (conjugate-image match) curves are shown for
L. i.; they will be better than that for most loads. Both filters had a trans-
ducer loss of 0.8682 dB at 1 MHz. At the second harmonic, the Butterworth
filter (R"=0) had an insertion loss of 70.57 dB, and the invulnerable filter
(R’=3.33) had an insertion loss of 65.65 dB. If conjugate-image matches had
occurred at the second harmonic, the invulnerable filter would deliver a load
power 53.06 dB below the available source power; the Butterworth filter load
power would be only 6.067 dB down. Of course, such an exact combination of
both terminal impedances is unlikely, but L_, does constitute an invulnerable
lower limit to the infinite set of degrading terminations that are as likely as not
to occur in practice,

As developed in Section 9.5.3, significant differences in the maximum input
SWR of the two filter types may be expected when Z, may assume any value
in the right-half plane. At f=1.05f, in the passband, the maximum SWR (S,)
was 23.10 for the conventional filter and 10.49 for the invulnerable filter. The
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corresponding numbers at f=2f, were 8922.0 and 14.98, The 3-dB bandwidths
were about equal.

9.6.3. Summary of Invulnerable Filters. Lowpass bridged-T and three-pole:
invulnerable filters were described, selectivity curves were derived, and: a
design example with analysis was provided. Both open-circuit z and’ short-
circuit y parameters were utilized when convenient, because maximum-
efficiency relationships are valid under a simple change of nomenclature.

These invulnerable filters were shown to have a minimum-possible attenua-
tion rate of only 6 dB/octave at high frequency. In effect, they are selective:
“pads” that absorb energy on a frequency-selective basis. Like resistive pads,
they reduce the load SWR that appears at the input port, a valuable property
in many critical applications. They may be used in conjunction with reflection
filters to obtain the best characteristics of the two techniques.

Problems

9.1. Since commensurate-network selectivity is a function of q*=cos¥, use
c0s = cos’(w — #) to show that any two frequencies having the same
selectivity are related by Equation (9.5): f,/f,=2—{,/{,).

9.2, Which types of elliptic filters have
(a) The exact elliptic filter response?

(b} A negative element or perfect transformers?
(c) Equal terminating resistances?

(d) (N—1)/2 traps, where N is the filter degree?
(e) N/2 traps?

9.3.  An elliptic filter of what degree is required to produce a 0.3-dB-ripple
pass band to 1.2 MHz and a 53-dB stopband shelf starting at 2.4 MHz?

9.4. The circuit below has Z,,=0+j6 ohms and dZ,,/dw=4 at w=2. M,
and K, are resonant at 2 radians. Find L,, M,, and K.




9.6.
9.7.

9.8.

9.9.

9.10,

Other Direct Filter Design Methods

In the permuted circuit below, L, =2, K, =1, and M,, and K,, are
resonant at =2 radians. Find L,, M,, and K, in the figure in Problem
94.

Tem T

Use Equations (9.67)—(9.69) to find & in Equation (9.68),

A variable-length transmission line having Z,=R, has input SWR S
with respect to (wrt) R,. The line is terminated by an impedance that
produces an SWR S, wrt Ry, as pictured below. Set |g| equal to
(5—1)/(5+1) and use Equations {9.70)-(9.71) to show that the maxi-
mum S 15 S=8, XS, where S, is the SWR of R, wrt Ry, i.e., (R, —Rg)
/(R +Ry)=(8,—1)/(S,+1). Also, find the minimum 8§, including any
special conditions.

—— g e

g —= Sy wrt Ry

J

Work Example 7.1 in Chapter Seven using formulas from Chapter
Nine.

Derive K =2% + 1 from Equation (9.82) and 7. =& + 1 —y& from
Equation (9.83) using Equations (7.57), (7.64), and (3.81).

At a stopband frequency, an invulnerable fiiter has short-circuit param-
eters y,, =y, =(13.68+j5.883) X107 and y,, =y,,=(—0.02+j3.333)
% 1073 mhos. )

(a) What is the relative size of the load-plane image in the input
plane?

(b} What is the value of L

(¢) How many different load admittances can produce this L,
value? .

the minimum possible loss?

'min?
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9.11. A passive network has open-circuit z parameters z,,=4+j25, z, =
1—j15, and z,, =2+j37 ohms. Find
(a) The relative size of the load-plane image in the input plane.
(b) The value of the minimum possible loss (L_;,) by two different
equations.

min

9.12. Derive Equation (9.92): L, ~8.68sinh="V& .




Appendix A

HP-67/97 Programs

Program A2-1. Polar Complex Four Functions

Label: XZY + 1/Z *
Key: A B C D

Examples: Let Z,=5 /53.1°=3+jd and Z,=2 /30=+y3 +jl in degrec
mode.

1. Z,+Z,=688 /46.58°;53.13,4,5,1,30,7,2, B.
2. Z,-Z,=326 /67.09°;53.13,1,5,1,30,1,2, CHS, B.
3. 1/Z,=020 /—53.13°;53.13,1,5,C.
4. Z,+Z,=1000 /83.13°;53.13,1,5,1,30,7,2,D.
5. Z,/Z,=2.50 /23.13°;53.13,1,5,1,30,1,2,C. D.
@@; LELC Starc cmplx 1/Z
8 1%
863 X2y
eod LCHE
aps wlLBLES Start swap RX,RY

aac Xy
Ba> FTH End 1/Z & swap
BRS  #lPLD Start cmplx mult

T ER Y
a1 Fi
G1] x
81z R
613 +
a14 F1

15 RTN End cmplx mult
@i¢ #LELE Start cmplx add

arm kR
1e Rt
#re Kt
828 +F
4] ¥y
ez Fi
Biz +

8:z4 ki
azy +

(43 F1
627 +F

a:s FIH Fnd cmplx add




Program A3-1.

Swain’s Surface

See Equaiions (5.1)-(5.5).

Label:
Key:

Examples:

as!
aaz
aez
64
ees
a6
ez
a#8s
aas
g18
arl
a1z
813
814
815
a1¢
a1z
818
819
aze
a1
822
823
az4
823
B2¢
827
8zs
629
a3e
a3l
832
933
834
833
a83¢
837
818
838
b48
a4l
842
843
844
845
846
847
84¢g
849
a8

X\— X,—
A B

See Table 5.2.

Process X1}
Xl into R1

Sqrd into R2Z2
End process X1

Process X2
X2 into R3

Sqrd into R4
End process X2
Start Q calce
Calec P2

Temp S§TO
Cale Q2

RCL Temp

End Q2 calc
Cale VIF
Cale P2

Temp STO
Cale Q2

RCL Temp

End VIiF Calc

V1¥ Calc
Cale P2

v, F

D

RTN

v,F
E

Temp S5STO
Cale Q2

RCL Temp

End V2F Cale
Start P2 Calc

End P2 cCalce
Start Q2 Calc

End Q2 Calc




Program AS5-2. Central Quadratic Function

See Equations (5.8), (5.15), and (5.16).

Label:

Key:

Example:

aa!l
88z
bRz
aa4
a3
aac
o’
L
882
a1
g1
812
a1z
a1
a13

a1e.

617
Blé
&18
B2
824
[k
823
#z4
25
R
az7
a2g
29
aie
4 83t
8iz
837
@34
833
B3E
837
83%
@#3n
Bap
841
842
842
a44

X,— X,—

A B

F
C

v,F v,F

D

X,=10, X,=10, F=292, ¥V F=100,

¥LBLC
keLz
RCL4

RTH
*LBLD
RCLI

RTN

Start F Calce
(5.8)

End F Calc
Start VIF Calc
(5.15)

End V1F Calce

845

846
a47
#48
842
asa
831

852
853
854
853
56
as7
asg
a59
(1

BEl

a5z
863
B6s
8635
866
867
68
)
aze
871

E

v,F=28.

Start V2ZF cCalc
(5.16)

. End V2F {Calc

Process X1
X1 inte R1

Sqrd into R2
End Process X1

Process X2
X2 into R3

S5qrd into R4

End Process X2




Program AS-3. Calculate Quadratic-Form Level Curves

See Equation (5.23).

Label: XX,

Key: A

b, k,a— Q-
B C

Example: b=13=a, k=-35 Q=292, X,=5; then, X,=3 and 0.8462
in RX and RY, respectively.

Cale X2 from X1 per (5.23)
X1l into R6 )

a

Q

b

k

X1

Temp k-X1
Arg radical

Temp STOQ radical
kX1

Soln with "-

RCL radical
k-X1

slgns

28D soln

End calec X2 from X1
Process b,k,a:RZ,ZY¥,RX
STO a

STO k

STO b

End process b,k,a

Process Q

Q into R4 P
End process {




‘Program A5-4. Linear Search, Inner Products, and Conjugate Forms

‘See 'Bquations (5.39), (4.92), and (5.52).

Input
RT: 8
RZ: 55 a Input o
RY: X k X\ ()
RX: X3 b x5+ (a) x"s x"As
Key: A B C D E
Exampie: sj=1.1, si=-1.2, x\=-1.3, xy=14, a=4.1, k=52,
b=6.3; then x'+l=(—0,4750,0.50)T for a=0.75, and sz=~3.1100,
xTAs=—0.3270.
AN
" 883 #LBLE Starr Conlg. Form B33 ABLE cale x(i+l) from «
#8z  RCLI 834 STO8 o into RS
aaz RCL4 835 RCLI o1
e84 x #3c X
B85  RCL3 837  ROL3 1
886 RCL? 838 +ox1(i+1)
aa7 X gis RCLZ g7
8es + 848 RCLE o
aag RCLE 841 X
a1e x B42  RCL4 %2
' @11 RCLS 843 + x2(i+1)
812 RCLI 844 RTH End calc x(i+1)
| 913 x 845 #LBLE Process a,k,b
#14 RCL3 B4  STOF b into R7
a1s x a47 Ri
| (-} + 848 STd6 k into R6
617  RCL7 842 R
| gi1e  RCL? 858 5705 a into RS
’ 619 X ast R
#zp  RCL4 852 R+
| 821 X 853 RTH End process a,k,b
822 + 854 LBLA Process ? points
‘ 822  RTH End Conjg. Form 855 ST04 x2 into R4
. 824 #BLI Start Inner Prod. 856 Ri
825 RCL1 857 5T03 x1 into R3
‘ 826 RCL3 858 |43
- 827 X 859 5702 82 inte R2
828  RCLZ 86@ Ri
828 RCL4 . L34 STQf s! into RI
asig X a52 R}
831 + w63 RTH End process 2 points
83z RTH Enf Inner Prod.
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Program A6-1. 1+ Q7 Series-Parallel and Parallel Reactances

See Equations {(6.16), (6.17), (6.20), and (6.21),
Input convention:

RY: X, X, X, X
or or or
RX: R, R, X; X,
.
Z-Z, 7,-Z, XX, X(X,X) XZY
Key: A B C D E
Qutput convention:
RY: X, X,
or or or
RX: R, R, X X,
881 #LBLE  Calc Zs(Zp) 838 #lBL] Start a stack shuffle
862 (56! 1,1 stack shuffle g-;l g:;:
802 €SB 10 scack shuffle 32
804 %37 Ser wup for Rs 837 Pt See shuffle table
865 B Calc Rs 834 RTH End shuffle L1
#86 €SB L1 stack shuffle 33§ #LBLB Start a stack shuffle
[L:ig X Q:.Rs=Xs 3¢ =
868 €T0E To swap Rshis 837 ENTt
88 lBLA Calc Zp(Zs) B35 ENTt See shuffle table
618 E581 L1 scack shuffle 839 x
el XY Swap Rs & Xs a4a 1
812 6SBF 1.0 scack shuffle 4! +
a13 x  Get Rp 842 Rt
814 BS5RS L) stack shuffle 843 RTN End shuffle LD
813 + Getr Xp
#16 SLBLE Swap RX & RY
817 2y Stack Starg L3L0O LBL1

are ETH End Zs or Zp or swap

819 #BLD cale X2(%X,X1) i ! ¢ ?

828 LHS per (6.21) RZ 3 v/a a
21 #BLL Cale (6.20) ¥ 2,

822 688! L1 stack shuffle R o (b/a)™+1 2
823 :  XZ/X1 or XL/X2 RX a c b
824 1

825 +

826 X=B? 1§ X1=-X2, don't div

8z’ RIH

828 :

azs RI¥ End calc (6.20)




Program A6-2, Transmission Line Matching

See Equations (6.27), (6.28), (6.32)-{6.34), (6.41), and (6.42).
Stack and key identification:

RT: CX, X,
RZ. R, K,
RY: §-X, X, ¢ R,
RX: Z,~R, R,>Z, Ry’ R,->4 XY
Key: A B C D E
8l #LBLE Swap X & Y 831 RCL! RI
[ pray a3z x
&0z RTH End Swap a3z R4
B#3  ®LBLC Srart roll down twice 834 +P
865 R+ a15 ¥z [z1]?
BiEe 4 #3c Kt
Ba7 FTN End roll down [l 44
668 LBLE 70,8 from Zl & Z2 838  RCLZ Rz
882  ST01 Rl into regl 839 X
616 R #4d - uym of (6.34)
i1 Ri @41 RCLE
g12  STO02 R2 into regl @42 RCLI
813 R f:E k] -
3R] x 844  STo! R2-R1
815 ST0@ %2.R1 into regd B45 z
Ble CLY 945 % Z0
€17 RCLL Rl 847  STO2 into reg?
gis  LSTH 848 EEX
819 £ 844 CHE
gza R 858 [
a2 x "53] ST+8 50 can't be O
£2 8T+8 R1.-X2+R2.X1 a5z
9zl Ly 853 .8
824 RCLE R2 g54 2]
B25  LSTY a3 RCLL
B3¢ R 856 CHS RI-R2
27 F @37  R(LP
82§ xe jz2|* ase : q
azs 4 859 RLLZ 20
X1 CLX 134 x
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:13) TaH" ¢ 831  G5B& add jy
- RE

852 ¥<{B? if negative 89z
8e3 + add 180° 893 + add angles
864 RCLE g0 694 RCLé 92
BES RTN £nd 20, 6 a9s -
@65 #LBLA Cale Zin per (6.27) 88 Rt
‘@67 §T03 70 into reg3 #9r  ROLS |Z2|
Bed R4 858 %
@69 EEX B93  REL3
78 CHE 1ae X sgeale
a7l 8 181 S
§72 - maybe 8=00° 182 RTH End Zin
873 TAK 165 #LBL@ Add jy to a given polar 2
@74 §T04 y into regd 1ed +E
. 875 Ri 185 xzvy
#7e P 72 186 ROL4
' 77  RLLI Zo 187 +
7 : 188 x2v
672 ST0S  |z2|/z0=|Z2| 189 +F
aee 1ok 138 RIN End add jy
851 X2y 62 11! *LBLD Start 8 per (6.41)
gez  STOE into regh 117 + R per (6.42)
883 [HS _ 1% ENTt
24 Y2 114 145
685  ©5B6 add jy 115 +
86¢5 8123 zo/(denom) 116 1
gar X2y 137 +
686  CHS 118 1Y ’
682  RCLe 02 118 %
goe  RCLS 1Z2) 126 TaN-

121 KTH End (6.41) for B

_ ZpZptiy)

Note: rewrite (6.27) for LBLA: Z =———
Z,(¥y+iy)

R ZZ=ZZIZO, ¥=1/Z
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Program A6-3. Min SWR, . and Lowpass-to-Bandpass Transformations

See Equations (6.51), (6.85), (6.86), (6.88), and (6.89).

Stack and key identification:

RZ:
RY: Q.
‘ RX:  %BW-SWR R
Key: A
Note: Record with DSP 4 ENG,

@81 #LBLE Swap X & Y
882 XY
883 RTH End swap
B84 aLBLE Start £0 cale
onc §T03 Rnorm into R3
#ac ki
887 ST]8 £1 into RO
a#e XY
#89 - fi-f2
818  LSTX g2
Bl RCLE £
812 X
a13 I8 0
at4 ST0L €2 into R1
1) T iw
816 ABS
@17 STDA w into RO
8is z
819 Fi
g2é x
B2 RCLY £O
azz X
823 LSTY fp
B:4 X2y
825 $T@! w0 into Rl
azé K
827  5T02 w0® into R2
826 R £f0

| B2g RTH End f0 cale

|

|

|

|

|

|

|
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f,Hz
leZ _)Cser —)Lsh
norm_)fO gi_) Lser gi_)csh XCY
B C D E
838 MBLC Start series cale
831  ROLI  Rnorm
a3z X  Z-scaled gi
833 #LBL® sSrart common calc
834 RiLE
835 ¥ scaled gifw
836  RCLI o
837 = Lser or Csh
638 RCLZ wo?
a3s yey
B X
841 LETX Rcl Lser or Csh
842 X&Y
a3 1% Cser or Lsh
844 X2y
845 RTN End LBL C or LBL D calcs
846 #(BLD Start parallel calce
847  RCLZ  Rnorm
845 £ Y-scaled gi
848  ET0E To common calce
858 ¥BLA Start cale (6.51)
as5! X
852 EEX
as3 2 100 removes the %
as4 ¥ 1/8 as in (6.49)
@55 £i
ase XV
[ L
858 e*
859 1
ace L14%
¥ + qnumerator of (6.51)
BE2  LSTR  exp(8m)
663 H
1] - denominator of (6.51)
T3] E
ace RTH End eale (6.51)




Program A6-4. Norton Transformations

See equations in Table 6.4.
Stack and key identification:

| RY: )(p
| RX: X, LB-Pi LB->T
Key: A B C

Procedure: Put X, (=L or 1/C) and X, into RY and RX. Press key A to
initialize. Press key B or C or D or E. Display will then show the n
extreme fartherest from unity. Enter your choice of n? in the open range
and press R/S. Display is X, (=L, or 1/C,). Roll down, see X,; roll

down, see X,.

681 aLBLA Store & Process Xs & X
862 ST0l Xs into Rl P

803 X2y
G@d  STO2 ¥p ineo B2
85 +
B6r !
aar +
&ac  ENTT
64z ¥ (1+Xs/Xp)?

6@ SF1 taitialize

811 sta Flags (see table)
612 FTN End store Xs & Xp
813 #LBLE Start LB to Pi Cale
a14 CFl See flag table
81% #BLC Starr Lb to T

816 LFE See flag table
817  14%¥ Min possible n®
&1e k<& BStop for user's n
819 5T0& n® into R

aze 17K

621 ST03 1/n? yneo R3

822 ET0f Ta commen calculation
623 #LBLD srare 1A to PL Cale
824 EF1 see flag table

825 #LBLE starr 1A to T Cale

2

826 Rff Step for user's n?
827 STO3 .2 4,00 33
828 sLBLE caleulaci

838  ST04 1 {nto R4

831 RCLL! Xs
a3z X
837 STOS L.xg
834  RCL4 o
835 I
83 -
837 ST0F n-1 into R7
B38 RCL4 n
93.9 RCL.E XP
B4 X
FLAG TABLE

Key: B C D E
FLGP CLR CLR SET SET
FLG1 CLR SET CLR SET

841
842
843
B4
843
846
847
B4E
849
#30
851
852
853
854
835
B5E
857
852
N
239
86!
(1
853
6
B6ES
[
667
133
663
a7
a7t
av2
B3
674
ars
o7e
(-2
ers
87 s
212

D

sT08

Fi?
ETD9
ET04
LB 2
RCL7

RCLE
RCLY
RCLZ

+
RCLE
ETDS

sLPL4
RCLS

RELY
RCLT
ReLE

ECLE
RELS
RCL?

LELT
Far
Rs8

RCLE
X

Rt
RCLE

Rt
RCLE

n2y
g

LA—P1 LA-T

E

n-Xp into R6

Te the T case
To the Pi case
T Case

n-1

Xc

n-Xp

Xs

ip

n-Xp

Xa

To final transformation
Pi Case

nXs

Xs

n-1
xp

n*Xs

n-1

Ans's now in stack
Final Transformations

LA case COK as is
2
n

Stop with LB ans's.

2
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Program A7-1. Bilinear Coefficients From Arbitrary Triples

See Section 7.1.1.

Stack input:
RT: w, degrees
RZ: w, magnitude
RY: Z degrees
RX: Z, magnitude

Keys:
See a, .
XZY + 1/2 * Load and Go
A B C D E

Procedure: Press key E. When | appears, fill the stack as indicated above for
i=1, and press R/S. Do similarly when 2 and 3 appear. Calculator will
stop in about 3 minutes. Then press 1, fa, and see a, magnitude; press A
to see a, degrees, etc.

Example:

w,=0.1732 /—7.8675°,  Z,=0. /30°. a,=0.6 /75°.
w,=0.4473 /129,5050°,  Z,=05 /60°. a,=0.18 /=23°.
w,=0.5099 /—303244°, Z,=11 /—10°. a,=14 /130°.

241 #Ble See given ith coefficient §31 53

862 3 B3z & w3

ba3 + @33 8 Rr8

884 5T0! Store indirect address 834 I z2

885 €705 Rcl cmplx polar data 835 STOD Sto sequence in RD
et WHME Input wi & Zi on cue 835 (5B4 Add 22-D31 dinto RO
#67  CLRE (see table 7-2) 837 « Det M opns sequence 3:
aag F2g B35 3 22

B89  CLRE 835 4 w2

big i éa@ & RB

a1t ESB! Cue & Sto lst input data 84! 1 z1

61z Z 842 Z wl

813 ESBI Cue & Sto 2nd input data g43 8 RS

814 3 #ad 5 23

8i5 E5E] Cue & Sto 3rd input data §45 STOE Sto sequence in RE
Blé {F8 Don't perferm step 113 846 G584 Add Z3-DI? into RO

817 - Det M opns sequence L: 847 ESBEC Polar dinvert

618 ? Z3 848 6588 Sto inverse Det M in RO

Gi:‘. & w3 843 SF8 To modify al sequences

28 & R8 858  RCLC Rel sequence 1

8.?! 3 z2 851  ESB4 wI-p23 al cale in
#z2 ¢ w2 852 RCLD Rel sequence 2 steps 049-077
#23 & RS 855 6584 yp.p31

824 t Z] 854  RCOLE ge1 sequence 3

825 STOC Store sequence into RC 855  6SB4 w3 pl2

626 €584 Sto 21-D23in RO 856  65B3 Mult by inverse det M

8z7 . |Det M opns sequence Z: 857  §SBS Sto al in R7?

BZE izl as58 = al) sequence 1:

#29 g wl 859 6 w3

026 g rp See table 7-2. ace 4 w2

Inverse Det M calc
in steps 016-048,
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85!
862
863
ac4
885
(113
g7
858
865
678
871
arz
Br3
a4
ars
a7
877
8rd
873
a80
a8l
a2
a83
@8
a5
Bee
[0
20
g9
a5
83]
a82
as3
434
ass
89¢
#ay
asg
495
186

181.

182
183
1a4

s
ESB3

RO Gy Ty

L]
n
xr

My oen o ot

6585
£SR3
ESBS

B O Gl = 08 D e Dy e

o

s181
ESBE
GSBO
CSBD
ESke
€860
ESp7
ESRa
Esee
ESRO

CHS
E5pé
E5BE
£Seo
GSRE
&SB7

RTK

Zl

Re

Partial a3 intc R9

a3 sequence 2:

wl

w3

z2

Rr9

More a3 into R9

al sequence 3

w2

wl

Z3

B9

Last of a3 into R9
Myltiply by inverse det M
Sto a3 in R9

Entire aZ sequence:

2
w2
al
R8
al
Z2
R8
w2
RB
Sto sequence in RI
Rel Z2

Rel w2

P2

Rel a3

P2:aj3

S5to in R§

Rel al

Rel 22

Polar multiply

Set up subtraction
Rcl RE

Polar addition

Rel w2

Polar addition

S5to a2 in RS

End program

Cale a2 in steps
078104

i85
186
187
gk
189
118
111
112
113
114
113
116
17
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
138
137
138
139
14¢
14]
142
142
144
145
i4¢
147
142
149
156

#LBL4

EEX
CHS

Xy
Fa?

§T01
G5RP
(4451
ESBN
G5BT
c5ge
£SR3
&68eD
¥LELE
[34:1]
CHE
ESBE
ESPR
ESED
EsBa
ESER
GSEE
PTN
¥LRLS
8TOI
LSRR
ETOE
*LBLC
148
Xy
CHS
sLBLA
X2y
RIN
¥LBLD
Xy

[
Fi

Ft
2L}

Start det M or al opns

Only for al opns; see 049
Add to RX

Sto R¥ in RI

Rel digit 1 data

Rcl digit 2 data
Polar multiply

Sto 1in digit 3 reg
Recl digit 4 data

Rel digit 5 data
Polar multiply
Re-entry frem LBLS
Rcl next digit data
Set up subtraction
Polar addition

Rel next digit data
Polar multiply

Rel mext digit data
Polar addition

S5to in last digit reg
End sequence of opns
Start a3 opns

S5to RX in RI

Rel digir 1 dara

Go use common opns
Polar cmplx inverc

Swap X & Y

End iavert and swap
Polar cmplx multiply

End emplx multiply
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13!

152
133
154
155
15¢
157
158
159
og
el

12
1632
164
3
1E6
167
16&
169
17e
171

172
173
174
175
I7e
177
175
188
181

182
1683
184
185
18€
187
188
189
138
151

182
183
124
185

L 188

197
188
1585
z8e
201
282
ze3
264
20T
Z8¢

tLBLR
+F
R?
R1
K
hrdy
K4

+
ki

+4
ET
- F
RTH
#LELO
[S:7:4
*LELY
PR
RCL
Fzs
RCL#
RTN
¥LELT
ESEL:
SLELE
ST
28
X
570§
P2z
Xy
RTH
*BLZ
RCL
FRC
!
a

x
ST0
Ré
RTN
¥LBLI
25
RCLe
Ps
POLE
ESED
RTH
*LEL!
1821
[ 23
GSBR
1

2]

Is:
ESRZ
RTH

Polar cmplx addition

End cmplx addition
Get ith digitc
Decode for digit
Rcl cmplx data pailr

End cumplx data rcl
Ger ith digit
Decode for digit
Sto cmplx data

End cmplx data sto

Decode next digit in sequence
Rel sequence

Take fractional part

Move decimal one to right
5to next digic and fraction
Flush BX from stack

End digit decode
Rel inverse det M and multiply

End mult by inverse det M
Cue and sto input data pairs

RT: w deg
RZ: |w|
RY: Z deg
’X: |z}
End input




Program A7-2. Three-Port to Two-Port Conversion

See Equation (7.29) and Example 7.2.

Keys:
S;— + 1/Z * I's(Z°) Z7(T's)
a b c d e RTN R/S
5> S Sy Si3 S33
A B C D E

Note: Key e and RTN R/S are inverse functions.

Input: Press CLRG, PZS, CLRG; then press fa. When 11 appears, key in
8%, 1 8., R/S; do the same for 21, etc. After all nine complex
parameters are entered, save on a data card. Then input Z; in polar form:
8,, 1, |2Z,], and press key A.

Output: Press key B; see 8, and |S,,| two-port parameters. Keys B, C, D,
and E may be used in any order.

881 # Start Zp{(T50) Calculation 83! 25
2 ENTt 832 RCLS |s22|
883 1 833 CHS Ser up subtraction
884 ESBL T+l 834 65Bb Cmplx addition
#85 STOD Sto magnitude 835 ESBc Tnvert
885 X2y 835 ST08 |(1/T2-s22)7}|
7 STOE Sto degrees a3r &5
888 &Y B38 Y
a CHS Set up subtraction 839 ST0A (1/T2-s22)"! degrees
818 ] 848 P25
@11  ENTT 94! fod g
alz 2 842 RTH End calc with Z2
a3 658k 1-T 847 w8BLZ2 Start stnd sequence calc
814  65Bc Invert 844  STQI Store sequence
815 RCLE 945 P2S
@16 RCLD 14T 846 RCLB See step 039
817 E£5Bd Cmplx multiplication 847 P2s
e18 5 @48 RCLB See step 036
a19 [:] 049 (SRR Rcl digit 1 data |
aze x Z scale 858 £5Pd Polar multiply
821 RS End Zp(T) Calculation @51 ESB8 Rel digit 2 data
822 «lBLA Start Cale with 22 852 6SBd Polar multiply
823  €SBe Calc T2 from 22 853 6588 Rcl digit 3 data
824  EEX @54 ©5Be Polar addition |
B2S CHS 855 X2y
825 s @3¢ PRTX Print degrees
827 + Avoid divide by zero 57 XY ‘
828 65Bc L/T2 B58 PRTX Print magnitude
823 <5 853 RTH End standard calculation

B39 RCLLS s22 degrees



868 sl ple

8s] RCLI
862 FRC
863 1
864 2]
965 X

#66  8TOI
867 R
858 P28
86%  RCL:
are P2S
871 RCLi
872 RTH
873 slBtc
874 1%
873 Xy
876 CHS
ar? (Y
878 RTH
873 #lLBLd
ase r4s
a8t Ri
B8z X

883 Ri
884 +

885 Rt
[:1:3 RTH
887 wiBlb
88 R
888 Rt
B48 Rt
851 +k
83z X2y
893 R4
894 +

895 R
8% +

837 Rt
898 +F
839 RTN

Decode next digit & rel
Rel remaining sequence
Take fractional part

Move decimal 1 right
Sto digit and fraction
Flush stack RX

Rcl degrees
Rcl magnitude

End decode and tcl
Start polar cmplx invert

End invert
Start plor cmplx mult

End mult
Start polar cmplx add

End add

188
161
ie2
183
184
183
185
187
18g
189
ii8
11!
1i2
113
il4
115
118
itz
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
1332
134
135
13¢
137
138
139
148
141
142
143
144
145
146
147
14g
i48

ENT?
{
£SBE

ESBc
2

x
CHS
a
ENTt
1
£58b
RTH
#LBla
a
§T01
1
1
6581
2
1
6SB1i
3
1
ESB1
1
2
£5B1
2
&
€581
3
2

ESB1 532

i
3
6581
2

3

6581 523
3

3

GSB1 533

Xy
D5P4

RTH End 3x3

Start['50{Zp) Calc

Zp/30

Cmplx addition
Cmplx invert

Similar to method
in eqn (2.2): -2/(z+1)

1-2/(2+1)
End T(Z) calc
Input 3x3 S Matrix

Initialize RI

sll inte R1

s21 into R2

531 into R3

812 into R4

822 into

into R6

s13 into RY

into R8
into R%

S Matrix Input




I58 #LBLI Cue & Sto 3x3 Elements
151 ISZ21 Increment pointer

152 DSPa

153 Rs5 Display cue 11, 12, ete.
1534  STOi Indirect store magnitude

155 Pes
156 Xy
137  870; Tndirect store degrees
158 5

139 RTN End cue & store
168 eLBLB Calc 2x2 Sl1

161 » 511 opns sequence
162 Z 521
163 4 512
i64 1 s11

165 E£T02 To do this sequence
166 #LBLC Calc 2x2 §31

167 + S31 opns sequence
168 2 s21
169 6 s32
178 3 s31

171 €702 To do this sequence
172 eLBLD Calc 2x2 S31

173 . 531 opns sequence
174 g 323
175 4 sl2
176 7 s13

177 ET02 To do this sequence
178 #LBLE Calc 2x2 S33

179 » 533 sequence
188 § s23
18! 6 s32
182 % 533

183 £T02 To do this sequence

Primary (magnitude) and secondary (degrees) register assignments;

RO Rl R2 R3 R4 R5 Rb R7 RS R9
See steps sll s2l s31 si2 822 832 s13 s23 s33
036 & 039




Program A7-3. Impedance Mapping for a Scattering Two-Port Network

See Equations (7.36) and (7.40)-(7.42); sec Example 7.4.

Keys:
8,—
a
T,R.Z, + 1/Z * p(ZR . ZR)
A B C D E

Input: CLRG, PZS, then press fa. When 11 appears, key in 8,,, T, [S;\},
R/S, etc., until all four two-port scattering parameters have been entered.
Output: DSP4, press key A, and see 81, |T|, 63, |R|, X,, and R_. To calculate
p (since X_and R, are already in the RY and RX registers, respectively),
key in normalized load x and r, then press key E. The result is in polar

form.
88! #LBLA Start T,R,Zc Calculation @31 2y
ag2 P2S 832 STOS A degrees
883 RCLI S11 degrees 833 RCL4 S22 degrees
484 25 . 834 P3S
@85 RCL! |s11] 835 RCL4 |s22|
s P2S 836 ]
887 RCL4 S22 degrees 837 ENTt
@88  P2S 83g 1
889 RCL4 |s22] 835 6SBE 14522
818 58D Cmplx polar multiply 848 GSBC Coplx invert
811 sT05 |sll.s22] 841  STO6 |1+s22(~}
p12 ) 842 25
013 X2y 843 r41
814 5T05 S11-522 degrees 844  STOE  (14522)"' degrees
815 RCL2 521 degrees 845 RCLS A degrees
eié 25 846 P35
817 geLz |s21i 847 RCLI A
818 25 848 CHS  Set up subtraction
819 RCLI S12 degrees #49  £58B2 cCalc al
028 P35 858  ST0? jai|
821 RCLI |s12] 851 Xy
822 6580 Cmplx multiply @52 P25
823 CHS Set up subtraction 853 5T07 al degrees
824 28 854 RCLS A degrees
825 RCLS S11°S22 degrees 855 PS5
#26 P25 856 RCL5 |4
827 RCLS |s1l1-522| #57 6582 calc a2
828 ESBB Cmplx polar addition 858 ST08 |a2|
g29  §T05 |4 @59 X2y

83e &5 L PS




261
862
963
864

866

868
865
are
871
87z
873
874
875
87%
877
875
a7a
aga
gl
ag2
883
98¢
885
886
x4
888
889
898
891
892
893
a94
895
896
897
838
895
168
iet
182
182
184
185
186
187
188
189
118
i1
112
113
114

STOR a2 degrees
RCL4 522 degrees
P2s
REL4 |s22§
EHS Set up subtraction
]
ENTt
1
6SBB 1-522
P25
RCLESee step 044
pzs
RCLS See step 041
6SBD Cmplx multiplication
5709 |a3]
=Y
pzs
5709 a3 degrees
Y
25
R
2
x
§T00
Pes
RCLY
CHS
25
RCLY
prs
RCLE
25
RCLS
6580
P25
RCL?
p2s
RCL?
&SBB
RCLO

2fle (a3)

a3 degrees
Conjugate a3

{a3|

a2 degrees

|az]
aZ-a3®

al degrees

Jay|

Cmplx addition

2Re(al)

+  Equation (7.42)
25
=Y

STo08

PRTX
r43
Y

PRTX Print

SToP |T

P2s

RCL?

28

RCL7
Pz§

T degrees
Print

al degrees

|al]

115
116
1z
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
158
15¢
152
153
154
155
156
157
158
159
168
161
162
163
164
163
166
167

RCLS
ps
RCLI
6SBC
58D
P2S
RCLE
25
RCLO
CHS
GSBR
X2y
PRTX
&Y
PRTX
PS
RCL2
CHS
25
RCL2
65SBC
R
2Y
PRTX
X2y
PRTX
RTH
sLBL2
P2S
RCLI
25
RCL!
6588
P25
PCLE
P25
RCLE
658D
RTH
*LBLC
14X
jrad
CHS
Xy
RTH
#LBLD
Xy
Ré
x
Ré
+
Rt
RTN

al degrees

ja3|
Invert

alfal

T degrees

T

éei up subtraction
Equation (7.41)

R degrees

Print

|®|

Print

a3 degrees
GConjugate al

Ja3]
Invert
To rectangular

Xg

rc

End program
Calec 5114

511 degrees

|s11]
Cmplx addition

(1+522)"" degrees
jl+s22|-!
Cmplx multiplicaticn

End S11*A
Cmplx invert

End invert
Cmplx multiplication

End multiplication

403



168
169
ive
171
172
173
174
175
176
177
178
172
i8e
181
182
183
184
185
186
187
188
189
198
151
152
183
194
195
195
197
158
135
208
281
282
283
204
285
286
287
288
zae
21e
211
212
213
z14
219
216
217
218
219
228
221
222
223
224

v

$LBLB
+R
Rt
Rt
+R
5y
ki

+
R4

+
Rt
+P
RTH
*LBlLa
CLRE

Cmplx addition

End addition

Input 2x2 5 Matrix Register Assignments
Primary - magnitude

Secondary - degrees

811 inte RL RO: 2Me(23) & T
R1: S11
S21 into R? R2: 521
R3: §12
512 into R3 R&: 822
R5: A
522 into R& RE6: (14522)7!
End 2x2 input R7: a
Cue & store 2x2 elements Tl
Increment peinter R8: a,
bisplay cue 11, 12, etc. R9: a3

Indirect store magnitude

Indirect store degrees

End cue and store
Start Calc Gen Refl Ceoeff. (7.16)
Convert Z ta polar

Conjugate Zc

Re

Zc to pelar

Polar addition: Z.*+2
Invert

Rc

Set up subtraction
p=1-2+Ref (ZH+25)

Polar addition
End gen refl. coeff. calc.




Program A7-4. Maximally Efficient Gain Design

See Section 7.3.5 and Example 7.8.

Keys:
Y-
a
Ans’s + I/Z * Lol ZP)
A B C D E

Input: Enter 8,,, % |yy|. T, 11, fa {and 12, 21, and 22 entries similarly).
Output: Answers appear in the following order:

K (unloaded stability factor).

Gy dB (maximally efficient gain).
#, degrees (load refiection angle).
|T'| (load reflection magnitude).

f, degrees (source refiection angle).

*

iT4| (source reflection magnitude).
K’ (overall or loaded stability factor).

88 ¥LBL: Input Y Parameters 831 ST0S  gll into RS

aaz ENE  Set mho display 32 RCLE

863  GSEP  Cale regf from ij 233 ROLD Tfrgz?egrees
[:1:3) R+ R34 *F To rectangular
805 $T0i Indirect sto [yij] @35  STOE  g22 into R6
#8s 1821 Increment regf 83¢  RCLE gl1

[lip i 837  ESBI  Stab. factor K from (7.57)
463  ST0P  Indirect sto yij deg @38 PRTH

Bas RTH  End input yij @39 RCLE vzl

@iff $LBLE Calc Regff from ij @4@  RCLZ ’yui

11 2 a41 %

a1z X CL¥ X :

813 2 See B47  LSTH Calc (7.83) in
814 1 register 44 5E steps 039-052
815 - assignment 845 1

are 5701 table 64¢ -

a7 RTN End a4r K2y

818 MLBLA  Start Main Program 438 1

818 FIs 842 -

28 RCL4 ylZ degrees @58 2

821 RS |y12| 5] x

822 RCLL y2]1 degrees as2 z

823 ROLE  |yz21| 852 LO& C

624 €SB0 Cmplx polar multiply  gey p g 1o 48
825 SToE  |y1z-y12| @55 a

2E +F  To rectangular 856 X

827 STE7  Re(y12.y21) a57  PRTX dB

628 RCLZ yll degrees @58  RCLC  y21 degrees

629  RCLI |y11] 858 RCLE  |y21]

a3e +f To rectangular @sh  RCL4 yi2 degrees




861
862
863
864
863
133
a6;7
868
865
a7e
671
@7z
873
874
a5
are
ar7
e
79
88a
6t
a8z
a83
B854
885
Bae
&y
113
a8
B3
LN
B2
833
884
ask
BS%
Lo
83
899
184
161
iez
162
184
185
lag
lav
188
188
i1e
111
112
113
114

RCLC
RCLE
&580
RCLE
RCLD
CHS
6588
§To0@
frag
STQS
X2y
ESEC
ESEBE
X2Y
PRTY
Xy
PRTX
RLLO
RCLE
ESBL
STOA
X2¥
CHE
eTe?
2y
ESEC
E5SBE
Xy
FRTY
hrad
PRTX
RLLS
RCLE
*K
RCLE
+
RCLY
REL&
+R
ey
CLy
RCLS
+
ESE1
PRTX
RTN

Conjugate yl2
Iv1z]

Calc (7.82) in
steps 058-079

[y22]
Set up subtractiom

Croplx addition
yL|

YL degrees

ZL
L

Print TL degrees

[TL|

YL degrees

v

Calc related Yin
|vs|

Conjugate Yin
Ys degrees

2s
T's

Print I's degrees

Print \Fs\

YL, degrees
2

To rectangular
g22

GLtg22

¥s degrees

¥s

To rectangular

gll
Gs+gll
Stab. factor X',

End main program

(7-87)

118
116
117
118
112
128

122
123
174
125
126
127
128
128
138
131
13z
133
134
138
13¢
137
138
138
148

147
148
143
154
151
152
154
155
156
157
158
159
i
le}
162
6z
164
l1e3
S
167
168

RTH
tLELE
.

‘Q
4
ARy

£
e

Rt

+F
KTH
*LELE

ENTT

ESEE
ESEC

Calc Yin by (7.49)
y22Z degrees

(v22]

Cmplx additien
Cmplx invert

y21 degrees

vzl

Cmplx multiplication
21 degrees

{v21]

Coplx multiplication
Set up subtraction

v1l degrees

| y11]

Cpnlx addition

End Yin calc

Coplx Invert

End invert
Cmplx Multiplication

End maltiply
Cmplx Addition

End addition
Calc I'50(Zp)

2=2/50

14z
Cmplx invert



1%
178
171
17z
73
Ird
175
17¢
177
irg
ire
188
181
182
183

CHS
ENT?
E5BE

fTH
*LBL1

RELF
RECLE

RTH

r=1-2/(1+z)
End calc T(2)
Start Calc K or K'

End calc X

Register Assignments:
RO: |YL|

Ri:  |yli}

R2: yll degrees
R3:  |y21]

Ri: y21 degrees
R5: gll

Ré g22

R7: &Re(ylZ-y2I)
R8: |yi2-yz2t]
R%: YL degrees

RA=R20: |Ys!
RB=R21: |y21]
RC=R22: w2l degrees
RD=R23: |y22]|

RE=R24: y22 degrees
RI=R25: Index & Ys degreea.




Program A8-1. Bede Breakpoint Selectivity Estimate

See Equation (8.27).

Keys:
Singly Doubly Q. F rNQ]\c/III
a b < d e
N
N I]I Q~ nQ, f/f, dB
A B C D E

Input: Input N and press key A. Press fa or fb, Put NMI in RY and NMC
in RX, and press fe. Press B and respond to prompts 1,2,...,N with Qy,,
Q.- etc.; or, input IIQ, or mean Q, and press C or fe. Input F or f/f
and press fd or D, respectively. Press E and see dB attenuation for
dB>20. F>0 and f/f,>1 are required. Any of these can be changed
individually. Registers A—E are unused.

Note: uses explicit arrangement, as in HP Keynotes, January, 1977, pp. 4-5.
Keys A, C, D*, E, ¢, and d* solve for quantities if keyboard numbers are
not pressed before the function key is pressed; otherwise, the function
keys act as input. Keys B, a, b, and e are only single-purpose (input)
function keys.

Example: See Example 8.1, Section 8.2.3.

Note: If A, C, D, E, ¢, or d don’t run to completion when there was no
input, just press again. Also, don’t stop the program with R/S, because
PZ S is used.

*Iterates untl round-off displayed is reached.

88f »LBlA Input/Calc W 621 #LBLY FEntry from LBLs 2 or 9
882 ST2! N inte R1 822  GSB7  dB+K
o83 F3% 1If data was entered 823 R(Lz F
884 RS then stop 824 €588 20Log(-)
gas  E5E7  Db+K 825 RCLl N
#8e  RCLe TIQL a82é x
B8@7  G5B8 20Log(-) kr -
aag - 828 E&5B8 TInverter dB
@83 €568 Inverter dB 29 -
@18 - @36 RCLT 20

@1l RCLZ F 831 3

*?  B8E® 20Log(*) 83z g

at3 + 833 STGe IIQL into R6
a4 STal N XL F2? If wvia LBL C
815 KTH End calc N B3 RTN then return
816 #LBLC Input/Calc TIQL 43¢ PCL1 N

a17 9FZ See step 034 837 15

g1&  ST06 Sto JIQL into R6 838 y¥ Geo. mean QL
813 £37 Lf data was entered 839 RTH End calc IQL

ale [ the stop




840
841
842
843
644
a45
946
847
848
849
ase
831
as2
a53
a54
855
a5s
857
a58
859
868
861
Bs2
863
864
88>
866
867
a6t
869
are
871
@2
ar3
674
ars
ars
a7y
675
879
ade
288!
862
883
884
885
(113
a6v
a8
ase
a8
a8
a3z
893

$LBLE
ST04
F3?
RAS
£5B&
RCLZ
G5BA
RCLI

RCLE
G5B8

RCLD

ST04
RTH
*¥LBL8
Loc
RCLF

RTH
$LBL7
RCL4
RCLS

RTH
*LBLB
RCLE
8701

OsPe
$T06

ST08
eLBLI
RCLE
RCLT

RS
5Txé
DSZI
ET0!
RCLe
0sP2

RTH

sLBLD

SFz
sTDS
6585
5702
RCLT

F32

k-3

Input/Cale dB

dB into R4

If data was entered
then stop

Inverter dB

F
20Log(*)
N

QL
20Log(+)

1.4

dB
End cale dB
Start Calc 20Log{-)

20

End 20Log
Sum dB+K
dB

K

End sum

Input All QL's
N

Store index

1 into R6

N+l into RO

Loop re-entry point
N+1

Index

Stop for QL1 input
Form NIQL in Ré
Decrement /test index
Loop if not done

QL

End QL input

Input/Calc £/£0

See step 152

£/£0 into R3

F

Sto in R2

£/£0

I1f data was entered
then stop

a%4
895
a5
a97
LT
#33
18@
161
182
163
184
185
188
167
185
185
e
111
112
113
114
115
136
1z
118
119
128
121
182
127
124
125
i26
27
128
129
i3@
131
132
137
134
i35
136
137
138
139
148
ia}
142
143
144
145
146

Entry from LBL d
dB+K
20Log(-)

QL

Call this M: see note 1
Start secant search

E~4 into S3

1.2 into 81
Calc error function (note 1)
Error Iinto 54

1.2001
Cale error functlom

Compare
E~4

Skip on first time
Re-enter search loop
Trial £/£0

Calc error

Entry from step 123

This is a secant
search similar to
HP-67 Standard Pac
p.11-3 & p. L11-03.

Loop if not converged




147
148
149
158
151
152
153
154
133
15€
157
158
159
le@
161
162
163
164
165
168
167
168
169
178
171
172
173
17
173
178
177
178
172
186
181
182
183
184
185
186
187
188
18%
188
1581
192

410

RCLI
43
5703
[ )
£T0:
Fan
RCL3
RTH
¥LBL2
Fes
STOI
GERS
LOE
RFCL1

RCLI
LOE
E5k%

gcLE

28
RTH
*LEBLT
ENTY
17X

RTH
L BLE
RCLI
E562
¥LBLS
RCLE
RCLE

RTN
L BLc
s§T08
RELY
v
STOR
RCLA
F3?
R85
ET0%

Final £/£0

£/£0
F

If via LBL D
then recall f/f0
End £/f0Q calec

Calc Error Function See

Note 1

Save last f/f0
F

N
NlogF
Trial £/f0

See step 178
Estimated inverter dB
M

Switch to S registers
End errcr cale
Calc F

T=£/€0-£0/ €

End F calc

Calc Inverter dB

£/ £0

20Log()

Local LBL, not as at Q21
NMI

NCI

{NMI-NCI)20Log(f/£0)
End inverter 4B
Input/Calc Geo. Mean QL

N
lIQL if data was entered

If data was entered
then stop
To geo. mean QL calc

183 #LBLd Input/Calc F

184 ST0Z § {ato B2

193 Xz

198 4 cale £/£0

127 * as in (6.87)

i58 o vhere w=F,

183 RCLZ

288 +

2al i

28z E

283 5763 Sto f/£0 in R3

264 RCLZ F

285 F37 1f data was entered

2ec k-5  then stop

287 0103 Lteratively calc f/f0 & F
285 wLBlLa Singly-Terminated Selection
268 # k=0 438 -
218 5705 into RS

zil ETH End

212 #LBLL Doubly-Terminated Selection
213 5 K=6 dB

214  S8T05 into RS

213 RTH End

216 #lBle Input Inverters Totals
217 2

218 6

219 STO7 Multiplier 20 into RY

z2a R4 £lush 20

221 STO% WCI

Z2e2 K

222 STO& WML

224 RTN End

Note 1 Error function for secant search

for £/£0 is

Error = NLogF + (NMI-NCI)Log(f/f0)

-(dB+K) /20 + LogllQL

Reglster Assignment:

RO:
Rl:
R2:
R3:
Ra:
R5:

Seratch R6: TIQL

N R7: 20

F & scratch RE8: WML

£/£0 R9: NCIL

dB RI: Indices, scratch
K



Program A8-2. Doubly Terminated Minimum-Loss Filters

See Section 8.4.5.
Keys:

STOF L,dB =L,-L, STO N L-L,
A B C D E

Input: Input N <6 and press key D. Store unloaded Q, in register 3. Input
fractional frequency F and press key A. Input loaded Q, and press key
B; see L, dB. Press key C and see approximate relative dB loss (valid if
greater than about 20 dB). Press key E and get exact relative loss (takes
longer). To search for an approximate stopband loss, store a *+ AQy value
in register I. Press key C and see approximate L,; press R/S and see the
Q, that was just used. Press R/S again to increment the current Q; value
by the AQ, stored in register 1. Then recycle through keys C, R/S, and
R/S to search for the desired L,. A new AQ, may be stored in RI at any
time.

Example I: Q, =25, F=03, Q_ =5

N 1 2 3 4 5 6
L-L, 1.6173 3.3804 3.4884 3.0701 3.5506 4.4478
Example 2: N=4, Q, =100, F=0.1:
Q. =50, L,=8.6859dB, L,—L;=412317dB, L ,—L,=41.0577dB.

Note:  The midband-insertion-loss calculation assumes that the inverter(s) are
adjusted for matched input resistance at the tune frequency.

8t #LBLR Input F 816 PLi4 QL {afrer press'g R/S)
@82  $T0S into RS 817 k<5 Stop to see QL
pE3 RN Fnd 818 FRCLI User's AQL
464 ¥LBLC Calc Rel. 4B Loss 618 +  Increment QL
aes  RCL4 QL 828 #LBLE Calc LO dB per (8.103)
685  RCLS F 821 S5TH4 QL into R4
987« 822 RIL3 qQu
B3  GSRkd 20Log(-) Bi3 =
o8 RiL1 N @74 5706 QL/Qu into R6
&18 X g5 Rfll N
o1 g. BIe x
812 - dB per {B.99) Bz7 .
813 RCLF LO dB Rl 5
814 - Bz3 e*
T @ls RTN End rel. dB loss w38 GSEd  4.3429

411




a3l x
32 5707 LO dB into K7 Gog wehLh Topuc @
833 RTN End LO dB CB].C 856 STUI Store index
gg; 'LE'E': Calc 20Log(") @87 ESRi  Sto table 8-9 coefficients
35 888 RCL! N
Sé‘; g 889  RIN End input N
35 x 838 xLBL! N=] Coefficients
a5] 2

a3s RTH End 20Log

w48 RLBLE Exact Cale Ls-10 o
@41  RCLI N 633 !
g42  5TDI Sto coefficient index 054 §102
843 8 885 RTH End
ass  ENTH B96 #LBLZ N=2 Coefficlents
845 1 Imitlalize upper stack ggz g
846 3LBLB Nesting re-entry a;q
847  RCL4 QL 18a i
B RusT 161 §702
858  RCLE QL/Om lgz  RIN End
851 3P Polar (8.93) ;g: *LBLE =3 Coefficients
852 R Rectangular to 185 3
853 Ré rectangular ecmplx 166 2
B854 +F multiply in steps w‘;
855 XY 051-061, 188 1
856 Ré
as7 x 189 Stoz
858 Ks 118 RTN End
5@ + 111 iLBLi N=4 Coefficients
be1 R i14 4
862 RCLI # places dec shift 115 2
863 RCLZ Coefficient string 116
664 FRC !
853 e 17 i
M 118 sT0Z
867 RCL2 115 RN End
858 o 1_49 #LBLS N=5 Coefficients
869  FRC s 2
878 RCLZ2 1%} g
671 FRC
a72 = 1?4 f:
a73 INT Table 8-9 ith coefficient l‘fs, <
874+ Add like fn eqn (3.25) 148 :
875 p52] Decrement decimal shift lé‘e STUi
876 £T0@ Loop if not done 129 RT;i End
677 +p To polar 7 .
a7 ? l.;:ﬁ SLBLE N=6 Coefficients
879 & See equation (8.97) 15 <
988 6584 20Log (") e 8
281 RCL7 LO dB
062 - FEAR
g3 RTN End exact rel dB 136 2
137 N
13& 1
139 8702
148 RTN  End

412




Program A8-3. Singly Terminated Minimum-Loss Filters
Keys:

STOF L,dB =L, -1, STON L,—L,

5

A B C D E

Input: Input N <6 and press key D. Store unloaded Q, in register 3, Input
fractional frequency F and press key A. Input Q, and press key B; see L
dB. Press key C and see approximate relative dB loss (valid if greater than
about 20 dB}. Press key E and get exact relative loss (takes longer). To
search for and approximate stopband loss, store 2 + AQy value in register
L. Press key C and see approximate L,. Press R/S and see the Q; that was
Jjust used. Press R /S again to increment the current Q, value by the AQ,
stored in register I. Then recycle through keys C, R /S8, and R /S to search
for the desired L,. A new AQ, may be stored in RI a1 any time.

Example 1: Q,=25, F=03, Q_=5:

N 1 2 3 4 5 6
L-L, 48017 56109 40202 37603 53208  6.2320

Example 2: N=4, Q,=100, F=0.1,
Q,.=50, L,=8.6859dB, L,-L,=472317dB, L,—L,=46.7122dB.

Note:  'The midband-insertion-loss calculation assumes that the inverter(s) are
" adjusted for nominal input resistance at the tune frequency.

@il wlELA Input F #16  RCLI User's AQL

882  STDS into RS a17 + Increment QL
ea3 ETN End @18 +*LBLE Calc LO dB per (8.103
#B4 kLBLL Calc Rel. dB Loss 818 S§T04 gl into R4

885 RCL4 QL 8z@  RCLI Qu

865 ROLSF 71 B

a7 x 827  5TDE QL/Qu into R6
688  §584 20Log(-) 23 RCLI N

pES  RCLI N 824 x

e18 ¥ Similar to (8.99) 825 .

#11 RCLV LO dB . BFE 5

012 - , 627 e

413 RTH End rei, dB loss 828  G5B4 4.3429

@14 RCL4 QL (after press'g R/S) $29 x

e!f  Rs§ Stop to see QL @38 §TD? Store LO into R7

413




831
832
833
834
83z
X123
B3?
838
83s
48
841
042
843
844
845
gdé
847
848
849
a5e
B5!
as2
853
854
@55
856
as7
858
85e
11
B6l
B62
63
854
853
acs
L
868
863
HC
a7l
ars
873
674
475
a7¢
o7y
ars
673
B8RG
B8
86z
883
884
B85

414

RTH
¥LBLd
LOE
z2

8
X

kTR
*LBLE
k(L2
8101

ENTT

¥ B8
RCL4
RCLS

RCLS
+P

Ré
P

Ri
Ri

Rt
R
RCLI
RCL2Z
FRC
el

RCLZ
FRL
RCLZ
FRL
INT

psz1

kTog-

4
£5E6d
RCLT

KTH

*LBLD
8TD)
8T01
E5B
RCLY

KTN

End 1.0 dB cale
Calc 20Log({-)

End 20Log

Exact Calc Ls-LG

N

Sto coefficient index

Initialize upper stack
Nesting re-entry

QL

T

QL/Qu
Polar (8.93)

Rectangular to
recrangular cmplx
multiply in steps
049-059.

# places dec shift
Coefficient string

Table B-10 ith coefficient.

Add like in eqn (3.25)

Decrement decimal shift

Loop if not done

Ta pelar

20Log(-)

Lo dB

See equation (B8.109)
Fnd exact rel. dB
Input N

into R1

Store index

886 #LBL1 N=1 Coefficients

#ar 1
B&E .
8es 1
B%  STO:

891 RTH-pog

832 ¥LBiZ N=2 Coefficients

883 1
@94 !
ass .
#9¢ 1
ear  §To2

a9 RTH End

188

181 2

182 1

163 .

184 1

183 5TB2
186 RTH End
187 $LBL4 W=4 Coefficients
188 I

189 3
118 2

111 !
112 .

113 1
134 STOZ

113 RTN End

116 #¥LBLSN=5 Coefficients

117
118
118
128
izl
122
123
124 &rez

125 RTN End

ol P S N NN

126  #LBLE W=6 Coefficients

127
128
12¢
138
131
132
133
134
135 §T02

13¢ RTN End

ot e g b O e

gtote table B-10 coefficients

End input N

699 #LBLI N=3 Coefficlents
!




Program A9-1. Equal-Admittance-Stub Fifters

See Section 9.1.1.

Keys:
Pu(N, ) LdB
a b
N,K— - .6~ f,,6,— w—> i/t~
See f, See w See q See q
A B C D E

Example: Input 4, 1, 1.4, and press key A. Input 400, 1, 1400, and press key
B; see f,=900. Press R/S; see 20.376 dB. Or, after key A, input 400, 1,
1400, and press key C; see w=1.111. Press R/S and see 20.376 dB. Or,
after key A, input I.111 and press key D; see q=0.766. Press R/S and
see 20.372 dB. Or, after key A, input 14G0, 4, 900, +, and press key E;
see q=0.766. Press R/S and see 20.376 dB.

881 ¥LBLA Input N, K 31 #LE

a2 ST0 gz stor oo frem
a83 X2y a3z 2

884 5701 N @34 B

885 XY A35 !

ass RIN End 835 B2y

8;?‘ ﬂEEILll? Calc f0 & Qther Params gir - £/f0=1-w/2
#ag 38! Calculate parameters :

pa0  ROLE oo P ggg‘ tLE'Lg Calc q from £/f0
816 k-8 Stop (restart with R/S) a4d &

81t ETOk To calc L dB B4 X

812 #LlBLC Calc w & Other Params g4 Cas

813 £581 Calculate parameters 843 ABS

814  RCL7 w B44  ST0F g

Bis RS Stop (restart with R/S) 945 RTN End

BIE ET0b To calc L dB 846 ¢LBLb Calculate L 4B from (9.18)
817 #LBL1 Cale All Parameters P47 RLLZK

818 STOS £2 a48 2

a1s Ry 842 =

28 ST £ 258 :

az1 + a5 +

63-:: _2 852 PRCLIq

az: £ as3 x

824  £T06 Store £0 1in R6 854 2

625 RCOLS £2 855 X

626 RCL4 £1 855 RELIN

gg:&' H;S o =

829 RCLE EO ggg gng EN

838 T w [:19:] X
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861
862
853
b5 4
ecs
866
857

868

869

e7e
871

a7z
&3
874
o)
876
677
878
8re
8sf
881

882
883
884

885
886
8ev
888
#es
#9@
aaf
832
293
894
B35
3¢
a97
a9a
839
188
181

isz
182

184

185
186
iar

416

RCL2 K
X2

ENT?
RCL3 q

Xx L dB
RTH

End
$LBlLa PN(y) Cheby Polynomial

5108 ¥
XY N
1
X=y% If N=1
RTIN P=1
)
2
X=ye If N=2
crg2 P=y

S$T0] W-2
RCLE P2=y
! Pl=1

L BLE Loop Re-entry for eqn (B8.91)

2Y Py
S
RCLE ¥
X
X2y Pg-2
- Py
RCLE PR-1
SZI 1f nat done
ET08  1oop back
X2y Py
" RTN End
*LBLZ N=2 Case
RCLE P=y
RTH End

Register Assignments:

RI:
RO:
R1:
R2:
R3:
R4:
E5:
RE:
-
R3:

Index
Yy
N
K
q
£
f
£
o

Scratch




Appendix B

PET BASIC Programs

Program B2-14. Gauss-Jordan Solution of Real Equations with Screen Input

10 REM GAUSS-JORDAN,LEY P.302.TRC/7%.

9010 DIM A{10,11)
9020 EP=1E-6
9040 PRINT"NUMBER OF ERUATIONS=";3:INPUT N
9060 M=N+1
9070 FOR J=1 TO N
9072 PRINT™INPUT COL";J;"REAL COEFS:*
9074 FOR I=1 TO N
9076 PRINT"  ROW";I;:INPUT A(I,J)
9078 NEXT I
9080 NEXT J
9082 PRINT"INPUT REAL INDEP VARIABLES:”
9084 FOR I=1 TO N
9086 PRINT" ROW";I;:INPUT ACI,M)
9088 NEXT 1
9110 KK=0
9120 JJ=0 :
9130 FOR K=1 TO N
140 JI=KK+1
9150 LL=JJ
9160 KK=KK+1

, 9170 IF ABS(A(JI,KK))—-EP >0 THEN GOTO 9200
9180 JJ=JJ+1 '
9190 BOTOF170
9200 IF LL-JJ=0 THEN BOTO 9250
9210 FOR MM=1 TO M
9220 AT=A(LL,MM)
9230 ALL, MM =A (3, D
9240 ALJII, MM} =ATzNEXT MM
9245 REM FORCE EQUA’S INTO DIAGONAL FORM
9250 FOR LJ=1 TO ™
9260 J=M+1-LJ
9270 ALK, J)=A(K,J) /ALK, K) s NEXT LJ
%280 FOR I=1 TD N
9300 FOR LI=1 TO M
9310 J=M+1-L3
9320 IF(I-K)=0 THEN GOTD 9340
9330 AT, D =AU, JI~ALT,K)BAK,T)
9340 NEXT LJ
9342 NEXT I
934% NEXT K
9345 PRINT“$¥% THE VARIABLES FROM 1 TO N ARE:"
9350 FOR I=1 TO N
9370 PRINT*  #"3;I1;A(I,M):NEXT I
9400 END




Program B2-1B. Gauss-Jordan Solution of Real Equations with DATA Input

10
15
21
22

REM GAUSS-JORDAN ,LEY P.302.TRC%/79.
PRINT"GAUSS-JORDAN EXAMPLE,LEY PP293&303"
DATA 1,0,-1,0,0,0,0,0,-1,0

pATA 1,0,0,0,0,0,0,2,2,0

23 DATA 1,0,0,-1,0,0,0,-3,0, o
24 DATA 0,0,1,0,0,0,0,0, -4,

2% DATA 0,0,0,1,0,0,-5,-5, o 0
26 DATA 0,0,-1,0,1,0,0,0,0,-6
27 DATA 0,0,0,0,1,-7,0,0,0,7
28 DATA 0,1,0,0,0,8,8,0,0,0

29 DATA (¢,1,0,~1,0,0,-9,0,0,0
30 DATA 0,1,0,0,-1,-10,0,0,0,0
31 DATA 1,2,0,0,0,0,0,0,0,0
9010 DIM A{10,11)

020 EP=1E-6&

030 N=10

9040 PRINT“NUMBER OF EQUATIONS="3;N
060 M=N+i

Q070 FOR J=1 TO N
2074 FOR I=1 TO N
Q076 READ A(L, )
078 NEXT I
080 NEXT J
084 FOR I=1 TaO N
9086 READ A(I, M}
2088 NEXT I
110 KK=0
?120 JI=0
9130 FOR K=1 TO N
F140 JI=KK+1
F150 LL=JJ
1650 KK=KK+1
9170 IF ABS(A(JJI,KK))~EF >0 THEN GOTO 9200
F180 JI=JI+1
9190 GOTOF170
9200 IF LL—JJ=0 THEN GOTO 9250
9210 FOR MM=1 TO M
R220 AT=A (L, MM)
9230 ALL,MM)=A(JJ,MM)
240 A(II MMI=ATiNEXT MM
9245 REM FORCE EQUA’S INTO DIAGONAL FORM
250 FOR LJ=1 TO M
9260 J=M+1i-LJ
F270 AK, Fr=AK,J) /A(K,K)zNEXT LJ
280 FOR I=1 TO N
9300 FOR LJ=1 TO M
310 J=M+1—-1LJ
9320 IF{I¥K»=0 THEN GOTD 9340
FII0 AL I)=AT,J)-A(I,K) 2aK,d)
FI40 NEXT LJ
F342 NEXT I
9343 NEXT K
| ?345 PRINT"$3¥ THE VARIABLES FROM 1 TO N ARE: "
9350 FOR I=1 TO N
| FI70 PRINT™ # 3 I;A(I,MY:NEXT I
2400 END
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Program B2-24. Gauss-Jordan Solution of Complex Equations with Screen
Input

5 REM LEY P314 CMPLX-TO-REAL MATRICES.TRCY/79
15 DIM A{20,21),B(10,22}

40 PRINT"# OF COMPLEX ERQUATIONS="j:INPUT NC
50 N=ZENG

70 FOR J=1 TO NC

71 K=28J-1

72 PRINT“INPUT COL“;J;"COMPLEX COEFS:"

74 FOR I=1 TO NC

7& PRINT®  ROW®;1;"REAL, IMAG="3: INPUT B(I,K),B{I,K+1}
78 NEXT I

BO NEXT J

82 PRINT“INPUT COMPLEX IMDEP VARIABLES:"
84 FOR I=1 TO NC

86 PRINT®  ROW“;1;"REAL, IMAG="j: INPUT B(I,N+1),B{I,N+2}
88 NEXT I

100 MA=N-1

110 MB=N+1

120 MC=N

130 MD=N+2

135 REM SET UP ODD ROWS

140 IN=~1

150 FOR 1=1 TO MA STEP 2

140 IM=IK+1

176 FDR J=1 TO MB STEP 2

180 LI=I-IK

190 AL, D) =BILJ, )

200 ACE,J+1)=~B{LJI,J+1)

210 NEXT J

220 NEXT I

225 REM SET UP EVEN ROWS

230 FOR I=2 TO MC STEP 2

240 FOR J=1 TO MB STEP 2

250 LJI=INT(1/2)

260 AL, J)=B(LJ,d+1}

270 AL, I+1)=B{LI, )

280 NEXT J

290 NEXT I

300 PRINT"3¥% SDLN VARS BY REAL THEN IMAG PARTS."
9000 REM GAUSS-JORDAN,LEY P.302.TRCF/79.
90206 EP=1E-&

060 M=N+1

PL10 KK=O

9120 J3=0

9130 FOR k=1 TG0 N

9140 JI=KK+1

9150 LL=JJ

F160 KK=KK+1

9170 IF ABS(ACJIJ,KK))—EP >0 THEN BOTG 9200
2180 JJ=3J+1 .
9190 GOTOY170

9200 IF LL—JJ=0 THEN GDTO 9250

9210 FOR MM=1 TD M

9220 AT=A{LL,MM}

9230 A(LL,MM)=A1JJ, MM}

9240 A(JT,MM)=ATzNEXT MM

9245 REM FORCE EQUA’S INTO DIAGONAL FORM
9250 FOR LJ=1 TO M

9260 J=M1-LJ

9270 ALK, 3 =ALK,J) /ALK, K} 2 NEXT LJ

9280 FOR 1=1 TO N

9300 FOR Ld=1 TO M

9310 J=M+1-L3

9320 IF(I-K)=0 THEN BOTD 9340

9330 AL, =A(L,J)=A(I,K)ZAK, )

9340 NEXT LJ

9342 NEXT I

9343 NEXT K

9345 PRINT*$%% THE VARIABLES FROM 1 TO N ARE:™
9350 FOR I=1 TG N

9370 PRINT®  @+3I;A8(I,M)zNEXT I

9400 END
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Program B2-28. Gauss-Jordan Solution of Complex Equations with DATA
Input

S REM LEY P314 CMPLX~TO-REAL MATRICES.TRC9/79
10 PRINTUCHPLY-TO-REAL NTWK MATRIX EX,LEY P314"
15 DIM A(20,21),8(10,22)
20 NC=& :
21 DATA L.25,1, 0,-5, 0,0, 0,0, 0,0, 0,0
22 DATA 0,.5, 2.5,4.2, -1,-2,2, 0,0, 0,0, 0,0
23 DATA 0,0, -1,-2.2, 3.4,5.3, -1.2,-1.6, 0,0, 0,0
24 DATA 0,0, 0,0, -1.2,~1,6, 1.7,2.27, 0,.8, —.5,-1.47
25 DATA 0,0, 0,0, 0,0, 0,.8, 2.7,1.5, ¢,~2.3
24 DATA 0,0, 0,0, 0,0, —.5,-1.47, 0,~2,3, .5,1.27
27 DATA 30,86.6, 0,0, 0,0, 0,0, 0,0, 0,0
40 PRINT"® OF COMPLEX ERUATIONS=*3;NC
S0 N=2RNC
76 FOR J=1 TO NC
71 K=28J-1
74 FOR 1=1 TO NC
76 READ B(1,K),B(1,K+1)
78 NEXT 1
80 NEXT J
84 FOR I=1 TO NC
B4 READ B(I,N+1},B(I,N+2)
88 NEXYT 1
100 MA=N-1
110 MB=M+4
120 MC=N
130 MD=N+2
135 REH SET UP ODD ROWS
150 IK=~1
130 FOR I=1 7D MA STEP 2
160 TK=T1K+1
170 FOR J=1 TO MB STEP Z
180 LI=1-IK
190 AT, J)=B(LJ,J)
| 200 AT, d+1y=-BiLI,d*1)
210 NEXT J
220 NEXT 1
| 225 REM SET UP EVEN ROWS
230 FOR I=2 TO MC &TEP 2
| 240 FOR J=1 TD WB STEP Z
250 LI=INT(1/2)
260 AL, J)=PCLJ,J+1}
| 276 A1, J+1)=B(J, 0
2B0 NEXT J
| 290 NEXT 1
300 PRINT"SK% SOLN VARS BY REAL THEN IMGG PARTS. "
9000 REM GAUSS-JORDAN,LEY P.302.TRCI/79.
| 9020 EP=1E-&
FOL0 M=N+1
| 110 KK=0
9120 JJ=0
2130 FOR K=1 TO N
| 9140 JI=KK+1
9150 LL=dJ
9160 KK=KK+i
‘ 9170 IF ABS(A(II,KK) }~EP >0 THEN GDTO 9200
180 J3=3J+1
| 9190 GOTOY170
9200 IF LL-JJ=0 THEN GOTO 9250
210 FOR MM=1 TO M
‘ 9220 AT=A(LL,MH)
9230 AL, M) =ALLT, M)
‘ 9240 A(JI,MM)=ATZNEXT MM
%245 REM FORCE EQUA’S INTO DIAGDNAL FORM
4250 FOGR LJ=1 TO M :
‘ 9260 I=M+1-LJ
270 ALK, II=AK, I3 FAGK, K s NEXT LJ
9280 FOR I=1 TO N
’ 2300 FOR LJ=1 TO M
P31Q J=M+E-LJ
9320 IF(I-K)=0 THEN GOTO 9340
IITIC AT, BI=ACI,FI-ATL K LA(K, I}
9340 NEXT LJ
9342 NEXT I
9343 NEXT K
9345 PRINT"%13% THE VARIABLES FROM 1 TO N ARE: ™
9350 FOR 1=1 TO N
9370 PRINT*  #"; [;A(I, M) INEXT I
F400 END
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Program B2-3. Romberg Integration

2000
2010
7020
9022
025
040
FOS0
2060
7070
2080
P09G
9100
7110
7120
?130
9140
2150
F16G
2170
7180
FLI0
200
9210
9220
9230
9240
250
9260
FZ7Q
280
290
300
?310
9320
9330
F340
F350
93535
9350
370
P380
9390
9400
410
420
430
7440
445
450
F460
470
2480

REM ROMBERG, IBM SCI3,P298.TRC10/79
EP=1E-3

ND=11

DIM AU(ND)

PRINT"LOMWER, UPPER LIMITS =";: INPUT XL, XU

XX=XL3:GOSUB10000: FL=FC

X X=XUs GOSUE1 0000 : FU=FC
ALY =(FL+FU) /2

H=XU—-XL

IF {ND-1)<=0 THEN GOTO9420
IF H=0 THEN GOT0OY430

HH=H :
E=EP/ABS (H)

D2=0

P=1

JJ=1

FOR I=2 TO ND

Y=Ali(1)

D1=D2

HD=HH

HH=HH/2

P=P/2

A=XL+HH

SM=0

FOR J=1 Ta JJ

XX=X:GOSUR 10000

SM=SM+FC

X=X+HD

NEXT J
AULIY=.53AU(I-1)+PISM

=1

J1=1-1

FOR Jd=1 T J1

Ii=Y—-J

B=0+6

a=Q+a
AUIDI=AU(IE+1)+(AUCII+1)—-PAUCILY) / (B~1)
NEXT J

D2=ABS{Y-AU(1})

IF {I-5)<0 THEN BOTO9400

IF (R2-E)<=0 THEN GOTOP430
IF (D2-D1)>=0 THEN GOTO?4&50
JI=JJ+JJ

NEXT 1

PRINT“CAN'T BET < 1E-S ERROR IN “;ND—1;“BISECTIONS®
Y=HEAU (1)}

PRINT" VALUE OF INTEGRAL =";Y
PRINT

GOTOF025

PRINT"ERROR > 1E-S DUE TO ROUNDING”
Y=HAY

G0TO440

10000 REM INTEGRAND. FC(XX).
13010 FC=1/XX

10020 RETURN

15000 END
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Program B2-44. Polynomial Minimax Approximation of General Piecewise
Linear Functions

10 REM VLACH P.232

20 DIM K{1%),¥{(15),BL {14},5¢15),0(i5)

22 0IM FULS),C41T, 13, ACLS: 8010, 1)

24 DIM QUIS) ,GE1%)

27 PI=3. 1413926

20 B, 1=t

40 D1, 2iw0

= B2,

60 FOR I=3 TO 13

70 B(1,{)=-B(1,1-2)

B0 Km]-2

90 IF K-1 <= 0 BOTO 116

93 FOR J=2 TO &

100 B{j, 1= ~B(J,I-2) +2¢B(J-1,1-1}

110 HEXT 3

116 BAI-1, 1) = 2#B41-2,1-1}

120 BAI, }3 = ZaB(I-1,1-1)

130 HEXT I

140 PRINT"8 OF QIVEN FUNCTION FOINTS =“j1INPUT M
150 PRINT-INPUT X{1),¥{I} FOR —1<K<+1z2"

160 FOR I=1 TO M

L70 PRIMT®  L=n(I; o INPUT XOT3,Y<¢1)

180 NEXT I

190 PRINT"MIM, MAX POLY DEGREES="j:INPUT N1,N2
200 FOR i=1 TO M

210 I=K{li+lE-13

232 F11y=ATRISGM 21 SSRORLABS L1/ 12621 -1) 1)
218 IF FAT1<0 THEN FIT1=F (1) +P1

214 IF r=-1 THEN F(li=PL

220 MEXTI

230 SLiM+1)=0

240 BL(1}=0

Z3Q (e} e0

260 B =0

270 Leb—1

280 FORI=1 TOD L

R0 SLOEHLIm Y OI+1)~Y LI A {NE1+1) =X 4I})
SO0 A1) =YLy -BL(I+1)0X (1)

310 SU1}=(BL{I+1)-8L (1)} /P

320 @IT1=28 (RICI+11-QUII) b /P

I3 MEXY

340 F(M)# (BL (M+11-6L (M)} /PL

©EM) =28 QU (M+1) QU (M3 ) /P

L2+l

370 FOR J=1 TO L

390 FOR 1=1 TO M
I90 Cid, IV =BINGIEF 1) }/T

A00 MEXT L

403 MEXT J

410 Su=0

420 FOR I={ TO N

430 SURBLHS(IIFCAL, 1I+RCIIEF LN /2
4TS MEXT 1

480 A1) =SU

SU=0

FPRI=1 TG M

SBUAB (IR ICL2, I +F (1) ¥R(IIACLE, 1)
MEXT I

hLZ2y=5U

FOR J=3 Y0

BU=0

-
3
=

$343

10 FORI=1 TO M

BU=SU+S (11 8(CEI, 1) +0(J-2, ) p+Q (I3 RCCI~1,1)
MEXT I

By =sh

NEXT J

PRINT
PRINT“CHEBYCHEY COEFFICIENTS:
FOR J=1 TO L

PRINTJ, AL}

NEXT J

[t Y

NA=ND4 t

FOR JO=NI TO N4
FRINT
PRINT“POLYCDEFFS: *
FODR J=1 TO JO

BU=0

FOR I=~J TQ JO
SU=StHA{I}AB(J, 1)
NEXT I

addi=5u

PRINTY,B(J}

MEXT J

PRINT

PRINT* X ¥ APPROK ERROR™
L=JC—i

FORJ=1 TO M

BU=8 (IO}

FORK=1 TO L

T 41—

BU=90X (J)+B{1)

NEXT K

DI=gl-Y (1)
PRINTE (I} 3¥(J) ;BUz DI
NEXT J

sTOP

HEXY 30

eo0T0180

END

£h48aY

PE A A b

IEPFENIER

§8id

g83
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Program B2-4B. Polynomial Minimax Approximation of Even Piecewise
Linear Functions

10
20
22
24
27
30
49
50
| &0
70
| 80
90
5

REM VLACH P, 232

0IM X (L%, Y (15,50 (16),S{15),U(15})
BIM Fei%r,£415, 19, A(15),B115, 15}
BIM QUilAY,BI1%)

PI=3. 1815926

B, 1)=1

Bil1,2)=0

B(2.2)=1

FOR 1=3 10 15

B, ) =-B{1,1-2)

K=1-2

IF k-1 <= O BOTO 116

FOR J=2 TO K

106 B3, It= ~B{J, I-2r+28801-1,I~17

110 NEXT J

114 P(I-1,3) = Z¥p1Y-2,I~1}

120 BII,EY = 2#BUI-1,]1-1}

130 NEXT I

140 PRINT"# OF GIVEN FUNCTION POLINTS=";:INPUT R
130 PRINT"INPUT X{1),Y(F)» FOR QX<+ ™

140 FOR T={ TO H

170 PRENT" I="3E3: INPUT XCEY,¥AD)

180 MEXT 1

190 PRINT"HMIN,MAX POLY DEGREES=*;:1NFUY N1,N2
200 FOR I=i TO M

210 I=x(L}+1E-15

D47 Fi}r=hTNISGN{Z}4SDRIABS(H/(ZRTI-133)
214 IF F1)<O THEN F(L)=F (1} +P1

214 IF I=-1 THEN F(I)=PI

22O NEXTI

23Q SL(M+1}=0

240 Sl {11=0

250 AUiM*1>=0

240 QUL =0

270 L=M-1

280 FORI=1 TG L

290 SLAIFLYSAY (T4 =Y (I A I =X (I
360 QUIE+E» =Y LT -SLIT+1}3X (1)

310 S(II=(SL{l+1)-SL(I)/PI

320 @) =22 QUIT+1)-QUCI )} /PT

330 NEXT 1

340 S = (5L (M+1) 8L (M) } 7PI
INO DM =28 00U (R+ 13 -G iR} /P T
JI&0 LaN2+i

370 FOR J=1 TO L

380 FOR 1=1 TO M

370 Cof, [I=SINGI#F LI AT

400 NEXT E

A% NEXT J

406 FOR 1=1 TO L

407

ACIY=0
NEXT I

410 SU=0

FOR I=1 TO H

ATC SURSU+S (D AC{L, 1H+R(I) BF (13 42

NEXT E

440 A1) =5U87Z

FOR Jg=3 10 L STEF 2

300 SH=0

J1o FORI~! TO R
520
B30 NEXT 1
H40
550 MNEXT
55
S&0 PRINT“CHEBYCHEY COEFFICIENTS:*
570 FOR J=f Td L

SU=SUHS{I AL, 1+C0(3-2, [} +R([}0C{I-1,1}
ALY =Sue2

PRINT

S5E0 PRINT.J, A)
8583 NEXT &

590

NI=N1+]

SO0 NS=HZ 1] ®
&10 FOR JD&N3I TO N4

613 PRINT

&20 PRINT"POLYCOEFFS: ™

&30 FOR I=1 TO 10

540 SU=~0

445 FOR 1=2 TO JO

=)

SU~sSU+a([)3B(I, I}

H60 NEXT 1

&7G G40 r=5u

&80 PRINTJ, G2}

590 NEXT J

&9% PRINT

79O PRINT" X ¥ APPROX ERROR™
710 L=Jo-1

720 FORJ=1 TO M

T30 BlU=8(100 -
740 FORK=1 7O L

THO I=L+E-K

760 SU=SUNX(J}+3{T)

T7O NEXT K

780 DI=SU~Y(J}

790 PRINTX (I} ;Y {03 By DT
BOO NEXT J

803 STOP

810 NEXT J0
820 BOTC140

a3o

ENDG
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Program B2-4C. Polynomial Minimax Approximation of Odd Piecewise
Linear Functions

10 REM VLACH P.232

2¢ DIA XA1S) Y419, BL4i6r, B340, 8115

22 DIM FULS),CO13,15),A5) ,BI15,15)

24 DIM QUCIAY,GLT

27 P1=3. 141353924

30 Bi1,1)=1

40 BiL,2) =0

50 Bi2,2)=1

40 FOR 1=35 TD 135

70 B, D==B(i,1-2)

80 K=1-2

20 IF K-1 <= ¢ GOTD tis

95 FOR J=2 TD K

100 B(J, [1= —B(d, [-Z}+20B 101, I~1}

110 NEXT J

116 BI-1, 1) = 29B11-2,1-17

120 B(I,1} = ZLB([—-1,]1-1}

130 NEXT L

E40 PRINT"N OF OIVEN FUNCTION POINTS =) INPUT N

1350 PRINT“INPUT X(I},¥(1) FOR O<X<+11"

140 FOR I=1 TO M

170 PRINT® 1= X3:INPUT X4D),Y(I}
R L8O NEXT 1

190 PRINT"MIN,HAX POLY BEBREES="§3s INPUT NI,N2

200 FOR k=1 TO M

210 I=X(1)+1E-15

212 F(])=ATMASGN{I? WSAR (ABS (1/{ZAZ1-111)

218 IF F(I2<0O THEN F(I)=F{I}+F]

214 IF I=—1 THEN £{I}=PT

220 NEXTI

230 SL(M+1) =0

240 SLcl)=0

250 GU(M+ir=0

240 QU{l)I=0

270 L=p-1

280 FORI=1 7O L .

290 BLOIREr= YTl =Y iE D FUX{I 1 R 10D

300 QUIT+1r=Y (D) ~BL(I+1) RN (D)

J1¢ S(I)={SL(I+1)-8L(1)}/PI

320 QCIY=28 (QUCE+1I-QU(II)/PT

330 NEXT T

340 S(M)=(SL (M+1}-5L (M)} /P]

330 QM) =23 (QU(M+L )} —DUM) ) 7P

360 LaNZrL

370 FOR Jd=t 7D L

38¢ FOR F=1 TO o

390 G(J, DX=BINCIRF (L1314

400 MNEXT I

405 NEXT 3

40¢ FOR I=1 TO L

407 ALTY=D

408 NEXT 1

AS0 Su=g

460 FORI=1 TO M

A0 SU=SLHS(IIE(CIZ, I)+F{Ir)+a(Itncil, I}

A7S MEXT [

480 A(2)=SUS2

A%0 FOR J=& TO L STEP 2

B[00 SU=0

10 FORI=1 TO H

T20 SU=BIHS (I RCH), DI+ (-2, DI 1+Q(I)eC(d-1, 1)

530 NEXT I

B40 AL))=BUER

33O NEXT J

553 PRIMT

560 PRINT“CHEBYCHEY COEFFICIENTS:™

370 FOR J=1 TO L

580 PRINTJ, AT}

SB3 NEXT J

S0 NI=NLrL

&00 NA=NZ+1

410 FOR JO=NZ TO N4

&15 PRINT

620 PRINT"POLYCOEFFSs “

&30 FOR J=1 TO Jo

&40 SU=0

o4% FOR 1=J TO JD

&30 SU=SU+A(T) BB, 1)

5560 MEXT I

&TC GJruwBl

&80 PRINTJ,B(J)

&0 NEXT J

495 PRINT

FOO PRINTY X ¥ APPROX ERROR*

716 L=JO-1

720 FORJ=1 TQ M

730 SU=G (D}

740 FOR¥K=1 TO L

750 I=L+1-K

TH0 BU=SUEN{J)+B(L}

FT7O MEXY K

780 DI=BU-Y(J}

790 PRINTX ¢Sy Y (1 58U50DT

800 MEXT J

8058 BTOP

B10 NEXT JO

820 sOTOl40

B30 END
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Program B2-5. Levy’s Matrix Coefficients*

10 REM LEVY FITT G EQS 153-1B.TRC?/79.

100
110
115
120
130
150
140
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

DIM OK(15) ,RK(15), IK(15), ZK{15}

PRINT*# OF FREGQUENCIES ="j: INPUT-MN

MM=N—1

FGR I=C TO MM

PRINT"SAMPLES"s I: PRINT"  OMEGA,REAL, IMAG="3: INPUT DK(I},RK(I}, 1K)
ZK(T)=RK (1) SRK (11 +TK(EH 8IK (L)

NEXT 1

LA=0: SA=0: TA=03: LA=0

PRINT“H="; : INPUT HH

FOR K=0 TO MM

OH=0K (KK} “HH

LA=LA+OH
SA=SA+OHERK (K)
TA=TA+OHIIK (K)
LA=UIA+OHEZK (K}

NEXT K

FRINT™  LAMBDA"jHH; "=";LA
PRINT"  S"gHH;"=";5A
PRINT" T iHH;"=";TA
PRINTY  U";HH; “="3UA
sOTO170

END

*See Equation (2.57).
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Program B3-1.

426

Moore’s Root Finder

10 REM MUORE ROOT FINDER, TRC, 7/7%.
100 DIM A(35),B(35),X(35),Y(35)

200 REM INPUT POLY DEG % CMPLY COEFS
210 PRINT"N=";1 INPUT N

220 1F N>35 GOTO210

230 FOR K=0 TO N

240 PRINT"EXPONENT=":K3;* INPUT COEFFICIENT:™
250 PRINT" REAL. PART=";: INPUT ALK

260 PRINT" IMAG PART=";  INPUT B{K)

270 NEXT K

1000 REM REDUCED PILY RE-ENTRY

1010 IF W=t GOTOS300

1020 ¥8=1:5(0)=1:2¥11)=1

1030 AS=_1:¥(11=.1

1040 ¥ (0)=01L=0

1050 GOSUB3000

2000 REM NEW X,Y CORNER {LINEAR SEARCH!
2010 FS=F

2020 L=l +1

2030 M=OrUX=0:VX=x0

2040 FOR K=1 TO N

2050 UX=UX+KR (A (K) X (K—13-B(K} Y (K—1}}
2060 VX=UX+KE (A AV (K- 1)1 +B U 1X¢K-111
2070 NEXT K

2080 PM=UXIUX+VXEVX

209¢ DXa— (USUX+VAVY) /PH

2100 DY=(ULVX-VEUX) /PR

2190 REM POST GRTRG CUTBACK RE-ENTRY
2195 M=M+1

220¢ X 11)=XSADX

2210 Y (1r=YS5+DY

2220 GOSUB3000

2230 IF F>=FS GOTG4000

2240 1F ABS(DX) >1E-T GOTO2Z460

2250 IF ABPS (DY) {=1E-5 BOTO4500

2240 IF L>50 GOTOS20Q

2270 XS=A{111VS=Y 11}

2280 GOTOZ000

3000 REM CALC X(.3,¥0,y,U,V, & F

3010 X2=X(1}32

3020 XyaX(1)EX(1b+v{lpmY(l)

3030 FOR K=2 TO N

3040 X (K) =XZ2RX (K~1)~XYRX (K~2}

3050 YK =X20¥ {(K~1) ~XYRY (K~2}

3060 NEXT K

IOTO U=n V=0

3080 FOR k=0 TO N

090 U=U+A LK BX (K —BUKY 1Y (KD

3100 VaU+AIKIEY (KF+B{K) 81X (K}

3110 NEXT K

3120 FaUpU+vay

3130 RETURN

4000 REM FNCN INCRSD SO CUT BACK THE STEP
4010 IF M>10 GOTO4GA0

4020 DX=DX%/41DYaDYs4

4030 GOTOZ19¢

4040 REM TEST FOR COMVERG > 10O CUTBACKS
4050 1IF ABS (W) >1E-4 GOTR4070 )
4040 IF ABS(V)<=1E-4 SOTC4500

4070 PRINT"STEP SIZE TOD SMALL"

4080 STOP

430G REM CONVERGED. PRNT ROOT, REMOVE FACTOR.
4510 GOSUBS00O

420 HEM REMOVE LINEAR FACTOR

4530 K=N-1

4540 AU =AKI+A(K+L) KX (1) —BIK+1) 0¥ {1}
4550 B(K)=B (K} +A(K+1)}8Y (1) +BK+L 0K (1)
4560 K=K-1

4570 IF ¥>=0 GOT04A%40

4580 FOR K=1TON

ABF0 AK-1 I =AKY

4600 B(K-1}=B{K}

4410 NEXT K

4420 N=N-1

4630 GOTOL000

5000 REM PRNT ROOT

3010 PRINT"A ROOT HAs™

S020 PRINT®  REAL PART=“3;X{1}

5030 PRINT™ IMAG PART=";Y (1}

B040 RETURN

5200 PRINT"NG ROOT FOUND*®

5210 STOP

S500 REM CALC DEG=1 EQUATION RODY
3510 Xy=A{IIEA1)+B LrEB(1)

5320 X (1) =—(BIOYEBCI)I+A(O) DAL} ) /XY
U530 Y(1)={A(0I MBI} -A{1)$BLO} 2 /XY
5540 GOSUBBOOQ

S540 END




Flowchart for PET ngi-am Roots

e [put M.

GT.35

Prompt for and input
all a; and b;.

5500

Calculate and print
linear-factor root.

{nitialize
Y, = X{0) =1,
X, =01,
x=X(1} =01,

¥Yi{0)=0= 1L, Lisiteratiocn counter.

Calculate initia F and
X(2) = %[N}, ¥{2) = Y{N},
v and v by GOSUB3000.

2000
FS=F, Save F at last corner.
L=L+1, Incrementinteration #.
M=0 Initialize quartaring counter.
Calculate .
du v (QL .
ax * oax ‘' tdel ! ax, ay.

e

427



5200 o

Appendix B

X =+ Ax
¥ =yt Ay

Calcutate
X{(2) — X{N), Y{2} — Y(N),
then u, v, and F by GOSUB3000.

&

M=M+1

Print root by
i x GOSUBSO0A,
Print X 5
“Noraot”, O i lin Y, ¢ 4520
Givide out
STOP @ linear factor.
4580
Relocate
caefficients
N=N—1

(o)

Store in X{1).
Stare in Y(1).

Print
“'Step size
too small”.

SYOP

Calculate X, and Y,
by (3.28) fork = 2to N,

!

Calculate u and v by
{3.29) and (3.30).

Calculate F = u? + v2,



Program B3-2. Polynomials From Complex Zeros

10 REM POLYS FROM COMPLEX ZEROS.VLACH P214.TRCB/79-
100 PRINT*NUMBER OF ZERDS=";:INPUT N

110 Ni=N+1

120 DIM A(N1),B{N1),G{N1),HINL)

130 PRINT"INPUT THE ZEROS:*

140 FOR I=1 TO N

150 PRINT"ZERO®";T;"  REAL PART="3;1 INPUT A(D
160 PRINT" IMAG PART="33; INPUT B(I)
165 NEXT I

170 G(1I=1:6(2)=0:H(1)=0:H(2?=0
180 FOR J=1 TO N

190 B(J+1)=6G(J)

200 H(J+1)y=H(J)

210 IF(J-1)<=0 THEN GOTO2%0

220 FOR L=2 TO J

230 K=J-L+2

240 X=6{(K-1)~-A(J)IG{K)+B (I} IH (K}
250 Y=H(K-1)-A{J) IH(K)—B{J)26(K)
260 G{(K)=X

270 HK) =Y

280 NEXT L

290 X=—B(1)EA(I}+H(1y$B(J) .

300 H{1)=—H{1)2A(J}-G(1)3B{(I)
310 &(1)=X

320 NEXT J

330 N=N+1

335 PRINT"POLYNOMIAL COEFFICIENTS ARE:"
340 FOR I=1 TO N

350 PRINT"EXPONENT=";f-1"z"

360 PRINT" REAL. PART =";B(I}
370 PRINT" IMAS PART ="3H(I)
380 NEXT I

390 END
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Program B3-3. Polynemial Multiplication

10 REM POLYNOMIAL MULT.VLACH P.216,TRCE/79.
100 DIM A(21),B(21),G(41)

1iG PRINT"PGLY#1 DEGREE=";: INPUT NI

120 PRINT"INPUT REAL. COEFFICIENTS:"

130 FOR J=1 TO Ni+1

140 PRINT" EXPONENT="3;.J-1; "COEF="3: INPUT A(J>
130 NEXT J

160 PRINT"POLY®2? DEGREE="3:INPUT N2

170G PRINT"INPUT REAL COEFFICIENTS:“

180 FOR J=1 TO MN2+1

190 PRINT™ EXPONENT="3;J-1; "COEF="35: INPUT B(J)
200 NEXT J

210 M=N1+NZ+1

220 FOR I=1 TOH

230 6(I)=0

240 NEXT 1

250 FOR J=1 TO N2+1

260 FOR I=1 TO Ni+1

270 JT=I+J-1

280 S8(ITY=6(IT)+A(I1) BT}

290 NEXT 1

300 NEXT J

310 PRINT“PRODUCT POLYNOMIAL IS:*

320 FOR J=1 TO M

330 PRINT™ EXPONENT="3J-1; "COEF="36G(J}
340 NEXT J

330 IF M>20 THEN GOTO0400

360 FOR J=t TO ™

370 A =B (S

380 NEXT J

385 Ni=M-—1

390 6070140

400 END



Program B3-4, Polynomial Addition and Subtraction of Even, Odd, or All

Parts

10 REM POLY ADD/SUB OF EV/0DD/ALL PARTS. TRCB/79.
90 DIM R(45)

100
105
110
120
130
140
150
155
140
165
170
180
190
200
210
220
230
240
250
252
254
240
270

PRINTYPOLY#1 DEGREE=7"j;: INPUT N1

R{17=Ni+1

PRINT"INPUT REAL COEFFICIENTS:“

FOR I=1 TO Ni+i

PRINT" EXPONENT="35 I—1; "COEF="73: INFUT R(I+4)
NEXT I

PRINT"POLY#Z DEGREE=";: INPUT N2

R{2)Y=N2+1

PRINT"INPUT REAL COEFFICIENTS:™
IB=R(1)+4

FOR I=1 TO N2+i

PRINT™ EXPONENT="3 I—13 ¢ INPUT R(IB+I)
NEXT I

MX=N1

IF NZ>MX THEN MX=N2

R{4)=MX+1

FRINT"ADD OR SUBTRACT (1 DR -1)";:=:INPUT RI

PRINT"ODD, EVEN,OR ALL (-1,1,0R Q) “;: INPUT RJ
PRINT"RESULT POLY [S:*"

Ia=RJ

RE=1

LM=R(4)

FOR I=1 TD LM

8SM=0

RE=—-RE

IF 1A=0 THEN GOTO320

IF RE¥RJ>0 THEN BOTO370

IF IXR(1) THEN GOTD340

SM=EM+R (4+])

IF I>R(2) THEN GOTO360
SM=SM+RIXR(IB+I)

PRINT" EXPONENT="3 I—1; "COEF=";SM
NEXT 1

BOTO230

END
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| Program B3-5. Continued Fraction Expansion

10 REM CONTIN FRAC EXPAN.VLACH,F.222.TREB/79.
100 PRINT"INPUT DEGREE N=3:INPUT NN

110 N=NN+1

120 K=N+1

130 DIM ALK),@(K)

140 ALK} =0

145 PRINT"1S 1ST ELEMENT CSH DR LSER (Y/N)";:INPUT As
150 PRINT* INPUT RATIONAL POLY COEFFEICIENTS:™
140 FOR I=1 TO N

162 K=I-1

164 IF A$="Y" THEN K=N-1

170 PRINT"EXPONENT=";K; s INPUT A(I}

180 NEXT 1

200 PRINT"ELEMENT VALUES ARE: "

210 K=1 ,

220 GO =AK) /AK+L)

230 IF A$="Y" THEN PRINTK;":";D0O

240 I=K+2

250 IF (I-N)<=0 GOTD300

260 BOTD400

300 FOR L=I TO N STEP 2

310 AL =AL)I—QCKISAL+1)

320 NEXT L

330 K=K+1

340 GOTO220

400 IF A$="Y" THEN 80TOS00

420 FOR K=1 TG NN

430 PRINTK;":";1/Q(K)

440 NEXT K

SO0 END

Program B3-6. Long Division

10 REM LONG DIVISION,VLACH,P218.TRCB/79
100 DIM A{25),B(25),6(2%)

110 FOR K=1 TO 25

120 A{K)=0

130 NEXT K

140 PRINT"NUMERATOR DEGREE="j;: INPUT N1
150 PRINT"INPUT REAL NUMERATDR COEFFICIENTS:"
160 FOR I=1 TO N1+l

170 PRINT" COEF#”; I5:2 INPUT ACI)

180 NEXT I

190 PRINT"DENOMINATOR DEGREE="3: INPUT N2
200 PRINT"INPUT REAL DENOMINATOR COEFFICIENTS:"
210 FOR I=1 TO NZ+1

220 PRINT™ COEF#"; I3: INPUT BL(I)

230 NEXT I

240 PRINT"QUOTIENT IS:z"

250 #=N1+1

260 FOR J=1 TO K

270 BWIr=A(J)Y/B(1)

280 PRINT® COEF#"; J; “COEFFICIENT=";G(J}
290 IF (K—J)<=0 THEN GOTD999

300 FOR I=1 TO N2

310 AGI+DI=AJ+I)-G(I)EB(I+]1)

320 NEXT 1

330 NEXT J

P9% END
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Program B3-7. Partial Fraction Expansion
10 REM PARTIAL FRAC EXPAN,CT1/77P44.TRCE/79

100
110
120
130
1430
150
160
170
180
190
200
210
220
230
240
250
300
310
320
330
340
350
3460
400
410
420
430
440
350
4460
470
480
490
500
510
315
520
530
540
350
D&O
570
&00
610
620
5630
&35
&40
650
&40

PRINT"DENDMINATOR DEGREE=";: INPUT N

DIM AR(N) , AL (N} ,PR(N} ,PI (N}

PRINT"INPUT REAL NUMERATOR COEFFICIENTS:™

FOR I=1 TD N

K=N+1-1

PRINT“EXPONENT="5I-1;: INPUT AR(K)

AL (K)=0

NEXT I

PRINT"INPUT DENOMINATOR RODTS IN ORDER OF"
PRINT"ASCENDING MAGNITUDES:"

FOR I=1 TO N

PRINT*ROQT #“;1

PRINT" REAL PART=";: INPUT PR(I}

PRINT" IMAG PART=";: INPUT PI(I)

NEXT I

EP=1.E-10

FOR I=1 TO N

Ti=N—-1+1

IF 11=1 BOTD400

FOR J=2 70 I1

AR =AR(J)+PR (1) 3AR(I-1}~PI (1) A (J-1)

AL =AT (N +PI(DY AR (I-1I+PRIDI IAT (J—1)

NEXT J

FOR J=1 TD 1

J1=N-J+1

IF J=1 GOTDA&O
IF(PR{J)Y-PR(J-1)) "2+ (PI(J}-PI(J-1))"2<=EP GOTOS30
AR(I1)=AR(I1)-AR(J1+1}

ATLILY=AT(I1)-A1(J1+1)
IF(PR{J)=~PR{I)) 2+ (PI(J}~-PI(I))~2<{=EP GOTOA00
YR=PR(J)-PR(I)
¥YI=PL{(I)—PI(I}
Y2=YR3YR+YISYI
AS=(AR(J1)IYR+AI (J1)8YI} /Y2
AI(IIy= (AT CJI)EYR-AR(J1)BYI)} /Y2
AR(J1)=AS

GOTOS70

DR=AR(J1)~-AR(J1+1)

DI=AT (J1Y-AIJ1+]1)
AR(J1)=(DREYR+DIXYI) /Y2
AI(J1)=(DILYR-DRXYI) /Y2
NEXT J

NEXTI

PRINT"THE (REAL, IMAG) POLE RESIDUES IN"
PRINT* INPUT ORDER AND DESCENDING MULTIPLICITY:"
FOR I=1 TO N

K=N+1-1

PRINT“#"3; I; AR (K) , Al (K}

NEXT 1

END
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Program B4-1. Level-0 Ladder Network Analysis

1010 PRINT"FRER, INDUC,CAPAL UNITS=";: INPUT FU,LU,CU
1020 PRINT"LOAD RESISTANCE,REACTANCE=";: INPUT RL, XL
1030 PRINT"WATTS IN LOAD=";:INPUT WL

1040 DIM M156),X018) ,P(36&)

10435 PI=3. 1415926

1050 PRINT”INPUT RLC COMPONENTS AS TYPES

1060 PRINT" 1-RESISTODR, 2-INDUCTDR, 3-CAPACITOR.“
1070 PRINT" NEGATIVE 1,2, OR I MEANS"

1080 PRINT" NULL. PRIOR BRANCH."
1090 PRINT"LIST FROM LDAD END: TYPE,VALUE,Q"
1100 PRINT" (TERMINATE WITH 0,0, "

1110 FOR N=1 TD 16
1120 PRINT*  “pN;

1130 INPUT MIND , X (N} ,P(N)

1140 IF P(N)=0 THEN P(N)=1E10
1150 P (N)=1/P (N)

1160 IF M(N)=0 GOTO1200

1170 NEXT N

1180 PRINT“MORE THAN 15 VALUES. »; BOTO9999
1200 PRINT"FRE@=*;: INPUT OM

1210 OM=23P1$OMRFU

1220 BR=S@R(WL/RL}:B1=0:DR=0:DI=0
1230 CR=RL1CI=XL.

1240 PRINT'BR# REAL IMABINARY "
1250 REM K=BRANCH #, N=COMPONENT POINTER
1260 K=01N=0:F1x0

1300 K=K+1:N=N+1

1310 MIK=M{N)

1315 IF FL>0 THEN MK=—MK

1317 F1=0

1370 GOSUBFF00

1380 PRINT K;AR, Al

1381 IF MK=0 GOTO99SS

1382 IF MK<0 GOTOF000

1385 ON MK GDSUB 9100, 7200, 9300
1390 GATO1300

9000 REM NULL BRANCH

9010 CR=0:CI=0:N=N-1}

9020 Fi=i

9030 GOTO1300

9100 REM RESISTOR

9110 -CR=X (N} :CI=0

9120 IF K=INT(K/2)#2 THEN RETURN
9130 CR=1/CR:zRETURN

9200 REM INDUCTOR

9210 CI=OMAX (N) LU

9220 CR=CIaP (N)

9230 IF K=INT(K/2)%2 THEN RETURN
9240 DD=P (N} $P (N} +1

9250 CR=P(N)/DD/CI

9250 Ci=—1/DD/CI

9270 RETURN

9300 REM CAPACITOR

9310 CI=OMaX (N)3CU

9320 CR=CI4P (N)

9330 IF K=INT(K/2)#2 GOTO9240
9340 RETURN

9900 REM COMPLEX LINEAR UPDATE
9910 AR=BRYCR-BISCI+DR

F720 AI<BIECR+BRACI+DI

9930 DR=BR:D1=B}

9940 BR=AR:Bl=AI

9950 RETURN

9955 REM CALC/PRINT ZIN=RIN+JXIN
9960 IF K=INT{K/2) 82 GOTO9970
9965 AR=BR:Al=B]:BR=2DR:BI=DI:DR=AR:DI=AL
95970 AI=BRBR+BI{BI

9975 AR=(DREBR+DISBI) /Al

9980 AI=(DIEBR-DREBI) /Al

9985 PRINT"RIN=";AR; "XIN=";AI
9990 BOTN1200

9999 END
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Flowchart for Ladder Analysis Program B4-1

START B4-1

Input
Frequency, L, and C units,
RL, XL, and PL.

Dimension-3 arrays.
Print topology instructions.
Input topology with
Q=0implies Q = co
and 15 BR limit.

&—|

Input frequency.

Calc w and 1101,
Initialize cmpix update variables.
Print “BR# real image”” HDR,
Init list and BR pointers N=0= K.
Clear null-BR flag F1=10.

1300 l

tncrement Hst and BR pointers by 1.

: : Change type sign.

Clear null- BR flag F1=0,
GoSub complex update,
Print BR#, AR, Al.

Null BR
2000

LT.0 EQ.0 ZIN

tmmittance = 0.
Decrement list pointer by 1.
Set null flag F1=1.

Even

GoSub type #. Swap B and D.
| 9970+——
ZIN = D/B.
Print RIN, XIN.

S
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Program B4-2. Discrete Fourier Transform and Convolution

100
103
110
113
120
125
130
132
135
140
145
150
160
170
180
183
120
200
210
220
230
240
242
245
230
260
270
280
290
300
310
320
323
330
340
350
400
410
420
430
432
434
440
430
460
470
480
490
500
S10
520
530
540
550
540
70
580
590
&S00
610
620
&30

REM F-T & CONVO. LEYP249. TRC11/79.
PI=3.1415&626

NE=27:NT=51

DEF FNT{(X)=TAN{(ATN{(TAN (ATN (TAN(ATN{(X)})}))
DIM RE(NF) ,W{(NF) ,HINT},FI(NT),HF (NT}
NU=23

PRINT"CALC RE PT H{(S)=1/(S5+1} VS ODD# FREGS: "
PRINT
TT=FNT{1):TT=FNT (1) : TT=FNT (1} : TT=FNT (1)
W=—.3

PRINT“RADIANS RE H{JW) "

FOR I=1 TO NU -

W=+ . T W(])=H

RE (1) =1/ (1+WaW)

PRINTW (1) ,RE(I}

TT=FNT( (12 TT=FNT{1):TT=FNT (1} FT=FNT (1)
NEXT 1

REM CALC IMPULSE RESPONSE

DT=. 1: TM=5

T=—DT

WI=W(NL) 7 (NL-1)

Li=INT(TM/DT+1)}

TT=FNT (1) 2 TT=FNT{1) s TT=FNT (1) TT=FNT (1)
PRINT

PRINT"SECONDS IMPULSE RESP"

FOR I=1 TO L1

T=T+DT

Su=0

L2=NU-~2

FOR J=1 TO L2 STEP 2

XX=W{araT

SU=SU+RE (J) 2COS (W{(J ) 2T +ARRE(J+1 ) 2COS (W{(I+1) AT} +RE (J+21 ACOS(WET+2) 2T
NEXT J

H{I)=(2/PI)fW1SU/3

PRINT T,H(D

NEXT I

REM INPUT A UNIT STEP & CONVOLVE

FOR I=1 TO L1

Fl1{l)=1

NEXT I

PRINT

TT=FNT (1) s TT=FNT (1)t TT=FNT (1) : TT=FNT (1}

PRINT"FOR UNIT STEP EXCITATION -
PRINT"SECONDS ouTPuUT”
T=0 .

L3=INT (TH/DT+2)

FOR 1=4 TO L3 STEP 2

L4=1-1

FOR J=1 TOD L4

K=1-J

HF (I)=H (K} 3FI (J)

NEXT J

L3=L4-2

SU=0

FDR M=3 TD LS STEP 2
SU=SH+HF (M) +4 8HF (M+1) +HF (M+2)
NEXT M

Y=DTRSU/S

T=T+28DT

PRINT T,V

NEXT I

END




Program B5-1. The Fletcher-Reeves Optimizer*

S5 REM 329%% APPENDIX PROGRAM BS5-1 23832

10 REM HARMELL VAQO8A FLETCHER-REEVES

20 REM DPTIMIZER. SEE A.E.R.E. REPORT R-707X (1972)

30 REM USER MUST FURNISH SUBROUTINE

40 REM FOR DOBJ FNCN. BEGIN AT STMNT 10006,

S50 REM IF ¥%=0 RETURN F. IF Y%=1 RETURN F9%.

&0 REM UNUSED NAMES BEGIN WITH: BCHJLOPERTLV

70 PRINT"# VARIABLES,N=";: INPUT N%

739 PRINT

20 DIM X(N%),G(N%L},S(NL)

100 PRINT"INPUT STARTING VARIABLES X(I>: " 0

110 FOR I=1 TO N% INPUT N,x

120 PRINT*" L ]

130 INPUT X(I)

140 NEXT 1

143 PRINT

150 ML=100 Set max IFN=100, ITN=0, epsilon = 1.E-5,

160 E=.00001 and expect F decrease on first iteration

170 D9==_1 to be 0.1*F

180 19%=0

190 Y%i=0

200 GOSUB1000 Calculate F, ¥F, and set IFN=1

210 I7%=y

215 D9=ABS (DI9%F) Expected change in F on iter#l is 0.1*F
——3= 220 REM Reentry point for resetting to 5.0. 1st move

230 FOR I=1 TD N%Z

235 S{I)=0

240 NEXT 1

250 G9=1 Set last gradient sqd norm to 1

264G FOR IS=1 TO N% Loop to 850 for N search directions

265 PRINT

270 PRINT"ITN=";19%, "IFN="517%

280 PRINT“F="3F

285
290
295
300
310
320

PRINT" 1

FOR K=1 TO N%Z
PRINT K; X (K} ;G{K)
NEXT K

REM

I9%=19%+1

X(1Y

G(I)" Print ITN,TFR .F L'LF

Increment iteration #, (ITN)

330
340
350
3450
70

87=0

FOR k=1 TO N%
B7=67+6(K) 35 (K)
NEXT K

I=G7/G9

1 . 1
Ca1cu]ategi="g‘||/"g“’ﬂ and STOP if =0

380 IF I=0 GOTOT00

390 FOR K=1 TO N% New search direction:

395 S{K)=225{K) -6 (K} si = i=1 i

400 NEXT K S GBS -

410 B3=0 )

420 FOR k=1 TO NX Compute slope in s' direction

430
440

B3=05+E (K} 85 (K}
NEXT K

. {directional derivative)

450

IF G3>=0Q 60TO220

If slope is positive, reset to S.D.

440 B3=G5 Starting slope = last slape.

470 A=-23DT/G3 Calculate initial = for current iteration.
480 DY=F Temperary save; see line 840

490 REM Reentry after cubic interpolation or extraploation on A,
500 IF 17%=M% GOTD900Q [f have calc'd F& F 100 times, then STOP.

*See flowchart in Appendix D.
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Appendix B

510 13%=0 Set “converged” flag
520 FOR I=1 TO N% [t change in any variable exceeds
330 IF ABS(ARS(I))>=E THEN I3%=i tolerance epsilon, then lower flag.
S35 X(Ir=X(1Y+Ax5(]1) Move to new X values.
540 NEXT | N
545 Y%=1
550 GOSUB1000 Caitculate Fy ¥Fa, & increment IFN count.
560 I7%=17%+1 _
570 G1=0
580 FOR K=1 TQ N%
590 G1=61+G(K) S (K
600 MEXT K o . -
610 IF ABS(GL/G3r<=_1 GOTOBOL If slope mag decr'd by 10, then «a UK.
&£20 IF F9>=F BOTO710 If F increased, cubic interp on o.
630 IF Gi13>0 BOTO710 [f pos slope, do cubic interp cna,
&40 1=4
&50 IF BS5<B61 THEN I=G1/(G3-G1)
&60 IF 734 THEN I=4 Extrapolate «.
670 A=AxZ
&80 F=F9 .
890 GS=G1 Save F and slope values in "last value" bins,
700 GOTO490 and go take next step in i(_
710 REM
720 FOR K=1 TO N%
7E5 X (KI=X (K) -A2S LK) Back up to last x location, and
gig ':EXIS;::O GOTOa70 If converged flag is set, go to termination,
790 I=3% (F-F7) /A+G1+65 do cubic interpolation ona.
760 W=SOR(1-G5/I%G1/2)%ABS (L)

=1 — — - -
;;g ‘Z:R;*Z(Giﬂd 21/ (Z¥NrB1-G3) Then change « to that new value.
790 GOTO490 Now go take that step in x.
800 REM Branch point from Tine 620 when o is OK.
B10 F=F9 Save current F in "last F" bin.
820 IF I3%=0 gOTORQ0lf converged ﬂag set, go print out and STOP.
a30 G9=G67 Save current {|g)c in "last norm sqd" bin.
840 D9=p9-F Save F change over lasl iteration for next start'gacalc.
850 NEXT IS End the loop for N search directions.
8&0 GOTOZZ0 + Go to the "reset for S,D." branch point above.
870 REM Calc F & g with present o; then print and STOP.
875 Y¥=0 -
880 GOSUBR1000
890 I7%=I7%+1
00 REM Branch point from 380,820, or 890, Print results & STOP.
905 PRINT
?i0 PRINT"ITN="; I9%. “IFN="317%
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920 PRINT"F=";F

225 PRINT" I X1 GlIr"

330 FOR K=1 TO N%

935 PRINT K:X (K):G(K)

940 NEXT K

999 _GOTO925% STOP

1000 REM SAMPLE OBJ FNCN Rosenbrock's Banana Function
1010 G=100K(X(2)—X (1) ¥X (1) "2+ (1-X (1)) "2

1G20 IF Y%i=0 THEN f=@

1030

IF Y¥i=1 THEN F9=Q

1040 G1I=—A00F (X {1} EX(2)-X(13"3)—2xL1—-X(1})

1050

G(2Y=200% (X (2)-X (122X (1))

10460 RETURM

P9

END



Program B5-2. L-Section Optimization*

10 REM L-SECTION OPTIMIZATION.

15 REM  BY TOM CUTHBERT

20 PRINT"# OF SWR GOAL VALUES="j;:INPUT MZ

30 DIM FR(MZY,RL(MZ}, XL (MZ)

40 PRINT*INPUT THOSE:*“

50 FOR I=t TO M2

55 PRINT"FRE@("5I3"),RL,X1="3: INPUT FR(1),RL(I},XL (D)
&0 NEXT 1

72 Nz=2

90 DIM X{N%),8(N%),S(NL)

100 PRINT"INPUT STARTING L VALUE";: INPUT X(1)
110 PRINT"INFUT STARTING C VALUE";: INPUT X(2)
120 PRINT"PTH DIFFERENCE: P=";:INPUT P

USE L INES 150-940 FROM PRODGRAM B5-1 OPTIMIZER

999 60T0O120

1000 REM SWR-TYPE SBRD-ERROR OBJ FNEN
1003 C=0

1010 GOSUB2100

1015 UN=ER

1020 IF Y%4=0 THEN F=ER

1030 IF Y%=1 THEN F?=ER

1040 FOR E=1 TO NZ

1050 X(C)=X(C)x1.Q001

10460 GOSUB21060

1070 X (C)r=X(C)/1.0001

1080 G(C)=(ER-UN) / (1E—42X{(C))

1090 NEXT C

1100 RETURN

2100 REM &UM OF SERD-SWR ERROR OVER FREGS
2103 ER=0

2110 FOR U=1 TO MZ

2120 OM=FR (U}

2140 RL=RL{U)

2150 XL=XL (W)

2160 GOSUB300O

2165 IF £<1 THEN PRINT" SHR{";U;") = “;5W
2170 ER=ER+SW"P

2180 NEXT U

2190 RETURN

3000 REM CALC L-SECTION INPUT SWR

3010 VA=1~OMEX (2) 2 (OMEX (1)+XL)

3020 VB=0M&X{2) xRL

303C¢ VC=RL

J040 VD=0M2X (1} +XL

3050 VR=SER { ( (VC-VA)} "2+ (VD-VB}~2) / ({(VC+VA) "2+ (VD+VB} ~2) )
3070 SW=(1+VR) 7/ (1-VR)

3080 RETURN

3299 END

jee flowchart in Figure 5.28.
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Program B6-1. L, T, and Pi Matching

150 REM BY TOM CUTHBERT

160 PRINTYR1<R2 R2<{R1 [~1BC<DEGREES<1801]
1000 REM CALCULATION:

1010 PF=180/3.14159245

1020 PRINT

10235 X3=1

1030 PRINT"OHMS R1,R2=";:INPUT R1,R2
1031 R3=R12R2:R5=50R(R3)

1040 PRINT*L,T, OR PI:"j;:INPUT N%
1050 IF Ns="L" S0TO2170C

1060 PRINT"PHASE BETWEEN +/-180 DEGREES=";
1043 INPUTB: B=B/PF

1070 IF Ns$="T" GOTD2070

1080 R7=R3I35IN(B)

1085 RE8=COS(B)

1090 X1=R7/(R24R8-RS)

2000 PRINT"X1="3X1

2010 X2=R7/RS

2020 PRINT"X2="; X2

2030 IF X3=0 GOTD249%9

2040 X3=R7/ (R1¥RB-RS5)

2050 PRINT"X3="3X3

20460 BOTO2499

2070 R7=SIN(B)

2075 RB8=COS (B}

2080 X1=(RS-R11R8)/R7

2100 PRINT"X1=";Xx1

2110 X2=—RS/R7

2120 PRINT"X2="3;X2

2130 IF X3=0 GOTOZ49%9

2140 X3=(R5-R2%R8) /R7

2150 PRINT"“X3="3 X3

2160 GOTO24399

2170 X3=0

2172 B=R1/R2

2174 1IF B<1 THEN B=1/B

2176 B=ATN(SGR(B—-1))

2180 PRINT"DEGREES =";BiIPF; :PRINT", 1S IT + OR — “;:INPUT N3
2190 IF N$="-" THEN B=-B

2200 IF R1<R2 G0TO2230

2210 PRINT"L SECTION B:"“

2220 G0TO1080

2230 PRINT"L SECTIDN A:"

2240 GOTOZ2070

2499 END



Flowchart for Matching Program B6-1

X3=1.
fnput R1, R2.
Calculate R1 + R2 and SQR.
input N$.
2170
Input phase, X3=0.

Calculate/print degrees.
Input/affix sign.

LT.R2
Calculate/print X1 and X2. Caleulate/print X1 and X2.
EQ.0 Print “‘LB". Print “LA",
X3
@y
Calculate/print X3. Calculate/prlnt X3.
{ 2499
STOP
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Program B6-2. Fano, Newton—Raphson Solution

100 DEF FNS(X)=(EXP (X} ~EXP(-X)}/2
110 DEF FNC(X)= (EXP (X} +EXP(=X)) /2

120 DEF FNIC(X)={O0G(X+SER(XEX+1))

130 DEF FNG (X)=FNS (N$X) /FNC (NEX) /FNC (X)
140 DEF FNP (X)= (N~ (FNS (N£X} BFNC (NEX) XFNS (X) } /FNC (X} ) / (FNC (NRX) ~2} FFNC (X0
150 DEF FNVIX)={1+X}/(1~X}

160 PI=3.14159254

200 PRINT“N,OL,%BW=";: INFUT N,Q,BW

210 AL=GLBW/ 100

300 REM: CALC INIT A,B BY CUTHBERT -

310 A=FNI{(1.78AL~.6+1) 3 (SIN(PI/2/N)} /AL)
320 BeFNIC((1.78AL~ . 4—1) B (SINIPI/2/N) ) 7AL)
330 IF B<O THEN B=.001

350 IT=0

400 REM: CALC FUNC, DELTA & NEW A,B

410 F1=FNS(A)-FNS(B)—(2/AL) kSIN(PI1/2/N)
420 FZ=FNB (A} ~FNG (B}

430 J1=FNC(A)

440 JZ=FNP{A)

450 J3=—FNC (B)

440 J4=—FNP (B)

470 JD=J1xJA-JZ8I3

480 DA=—(J4RF1-J3%F2} /3D

490 DB=—~ (-J28F1+J18F2) /2D

500 FVY=F13F1+F2%F2 '
510 PRINT"ITER#,FUNC,A,B=";1T,FV,A,B

S20 IF FV<i.E-9 GOTO&00

S30 IT=IT+t

S40 A=A+DA

550 B=B+DB

S&0 80TD400

&00 PRINTYCONVERGED™

610 RH=FNC (N2B) /FNC (NBA)

&20 RL=FNS (N%B) /FNS (N1A)

630 SH=FNV (RH)

440 SLeFNV (RL)

&30 PRINT”SWR FROM“;StL;"TO";SH

B80 GOYTOZ0O

890 END
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Program B6-3. Levy Matching to Resistive Source with g, Prototype Values

10 REM LEVY RS WITH G(N+1) MODIFICATION.
20 REM B1011&. TRC.

100 DEF FNS{X)=(EXP (X} —EXP{-X}}/2

110 DEF FNC(X)=(EXF (X)+EXP (—X11/2 :
120 DEF FNI (X)=LOB{(X+SQR (X2X+1}}

130 DEF FNG(X)=FNS(NXX) /FNC (NXX) /FNC (X
140 DEF FNP (X} =(N-(FNS(NEX) SFNC (NBX) 8FNS (X} ) /FNC (X} } / (FNC (NBX) ~2} /FNC (X}
150 DEF FNV(X)=(1+X}/(1~X}

160 DEF FNN(R)=43SIN{(R~.5) 2PN) #SIN{ (R+,5) $PN)
165 DEF FND{R)=XEX+YRY+SIN(REPN) ~2—28XEYECOS (REPN)
170 DIM B{10)

180 P1=3.1415924

200 PRINT

205 PRINT"N,OL,%ZBW="3: INPUT N,Q,Bu

210 AL=QXBW/100

300 REM: CALC IMIT A,B BY CUTHBERT -

310 A=FNT((1.7B8AL~,&5+1) 8 (SIN(PI/2/NY) /ALY
320 B=ENI((i.78AL~.&-1) K(SIN(PI/2/N)}/AL)
330 IF B<O THEN B=_001

350 [T=0

360 PN=PI/N

400 REM: CALC FUNC, DELTA & NEW A,B

810 F1=FNS (A ~FNS(B) —(2/AL) SSINCPI/2/N)
420 F2=FNB(A)—FNB (B}

430 J1=FNC(A)

340 J2=FNP (A)

450 J3=-FNC(B)

460 J4=—FNP (B}

470 JID=J43J4-J2833

480 DA=— (JARF1-J38F2) /ID

490 DB=—(-JZ3F1+J1aF2) /JID

500 FV=FisF1+F24F2

520 IF FV<1.E-9 GOTD&OO

530 IT=IT+1

540 A=A+DA

550 B=B+DB

540 GOYTOA00

600 REM:CALC REFILECTION & SWR EXTREMES
602 X=FNS(A)

604 Y=FNS (B}

510 RH=FNC (N2B) /FNC (NEA}

620 RL=FNE (NXB) /FNS (NSA)

&30 SH=FNV (RH)

640 SL=FNV{RL}

650 PRINT“SWR FROM";SL;"TO";SH

720 IF N»10 BOTOZ00

800 REM:CALC ELEMENT VALUES

810 Gi1)w=AL

820 FOR R=1 TO N-1

830 B(R+1)=FNN (R} /FND(R) /G (R)

840 NEXT R

850 FOR R=1 TO &

860 PRINT"G("jR;")="3G(R)

870 NEXT R

B74 GS=2/6 (N} ESIN(PIS2Z/N) / (X+Y}

B76 PRINT"G(“;N+1;%)=";G5

880 GOTOZ00

890 END
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Program B6-4. Romberg Integration of Two Fano Gain-Bandwidth Integrals

10 REM LP PB MATCH"G.CASS/79P31F. TRCLO/7%.
20 ND=11

22 DIM AU(ND}

B0 PI=X_ 1415924

PO DEF FNE(X)=—-ATN(X/SER(-XEX+1})+PL/2

100
110
120
130
130
150
155
180
170
igo
190
200
210
220
230
250
240

DEF FNC(X)=(EXP(X)+EXP{-X))/2

DEF FNI{X)}n| DG{X+SQR(Xx%-1}))
PRINT“#L&C (EVEN#)=";: INPUT N
PRINT"OMEGA LOW,HIBGH=";: INPUT WA,WB
PRINT"RESISTANCE RATID (>1)=";:INPUT R
PRINT“# REACTANCES IN LOAD (1 OR 2)=";: INPUT NR
PRINT

PRINT“MAX PB DB=";:INPUT LA
SU=EXP(LA/10RLOG (10} )

A= (WBIWB-WALWA) /2

WO=50R ( (WARWA+WBIWD) /2)
EC={FNC{N/2% (FNI {WORWD/A)) 3} "2
DC=(R+1!)%{(R+1) /R/&

EE=(SU-DC} s {1-EC)

DL=SU-EE-1

AU=WO+ (WB—WA) 12~ (10/N)

XL=0

F000 REM ROMBERG, IBM SCII,P298. TRC10/79
2010 EP=1E-3

040 XX=XL:GOSUBLOO0O:FL=FC

FOS0 XX=XU: GOSUB10000: FU=FC

FO60 ALY (1)Y= (FL+FU) /2

G070 H=XU-XL

o080

IF(ND-1) <=0 THEN GOTO9420

9090 IF H=0 THEN GOTO9430

100

HH=H

2110 E=EP/ABS (H)
2120 D2=0

9130
140

P=1
JJ=1

?150 FOR I=2 TO ND

F1&0

Y=aUt1}

9170 B1=D2

2180
9190
2200

HO=HM
HH=HH/ 2
P=P/2

7210 X=mXL+HH
9220 SM=0
9230 FOR J=1 TO JJ

9240

XX=)1GOSUB1 0000

250 SM=SH+FC

F260

X=X +HD

9270 NEXT J

280

AU =.SEALU(I-1) +PISM

F29C G=1

300
9310

JI=I-1
FOR J=1 To a1

P320 II=1-J
IIC Q=R+R
9340 G=+Q

F3I50

ALID=AUCII+D +AUII+1) ~AU(II ) 7 (G-1)

9355 NEXT &

#3460

D2=ABS{Y—-AU{1))

9370 IF (1-5)<0 THEN GOTO9400

9380
FIF0
F400

IF {D2-E)<=0 THEN GODTO7430C
IF (0B2-D1) >=0 THEN GOTOF450
JI=JJ+3Id

$410 NEXT I

F420

PRINT"CAN'T GET < 1E-3 ERROR IN “j;ND-1; "BISECTIDNS*

PA3I0 Y=HZAU(1)

F440
9445
9450
450
9470
480

PRINT" VALUE OF INTEGRAL =";Y
PRINT

GOTO160

PRINT*ERROR > 1E-5 DUE TO RDUNDING*
Ye=HRY

BOTOT440

10000 REM GAIN-BW INTEGRANDS

10010 WP=ABS{ (XXEXA-WOXWO) /A) .
10020 IF XX<WA DR XX>WB THEN GOTO10050
10030 AG=EE# (COS (N/Z2IFNE(WP} ) 1 2

10040 GOTO10040

10050 AG=EEX (FNC (N/28FNT (WP1) 32

10060 FC=LDG (SER ( {1+DL+AG) / (DL+AG)})
10070 IF NR=2 THEN FC=FLRXX¥XX

10080 RETURN

15000 END




Program B6-5. Hilbert Minimum Reactance Calculated From Piecewise

Linear Resistance

S0 REM: HILBERT IMPEDANCE CALCULATION
70 PRINT"# BREAKPOINTS";:INPUT L%

72 Nr=L¥%—1

75 PRINT

90 DIM X(L#%),OK (L%} ,ATELEY , B (LX)

%1 PI=3.1415926

92 PRINT*1ST BREAK FREQ MUST BE 0.

94 PRINT“INPUT ANY # FOR LAST EXCURSION"
96 PRINT" (PROBRAM RECOMPUTES IT)."

100

PRINT" INPUT EXCURSIONS & BREAK FREGS: ™

110 FOR I=% TO L%

120 PRINT"R(“3I;"),W{"3I;")=)"5: INPUT X(I),0K(I}
130 NEXT I

140 OK(1)=0

150 PRINTFREQUENCY="¢ ¢ INPUT OM

160

GOSUB3000

170 PRINT® (R, XQ}=";R0, X0
180 PRINT
190 BOTO150

3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
140
3150
3160
3170
3175
3180
3190
J200
3210
3220
3230
3240
3250
3260
3299

REM: CALC Z8=(RG&, XQ}

X{LA)=0

FOR J=1 TO N%

XILKY=X (LAY -X(J)

NEXT J

AJ(1)=1

FOR J=2 7O L%

AJ (J)=0

IF DM<=0K(J-t) BDTO3130

1IF BM>=0K (J) GOTD3120

AJ (I )=(0OM—0K (J—1) ) 7 (DK {J)-0K (J-1) )
B80TO3130

AJ (1) =1

NEXT J

BI(1)=0

DEF FNB(WB)=WBX ( (V+1)$L06 (V+1}+(V=1)3L0OG (ABS{(V-1) )} -2aVELOG (V) )
FOR J=2 TO L%

V=DM/OK (J} +1E-7

BJ (J)=FNB(OK (J)}

IF OK{J-1)>0 THEN V=0M/0x{J—1}+1E-9
BJ(J)=(BJ(J)—FNB(OK (J~1))) /PI/ (DK (J)-0OKI-1))
NEXT J

RA=1E-%: X@=0

FOR J=1 TO L%

RE=RE+X (J} *AJ (I}

XE=X0+X (J$BJ {J)

NEXT J

RETURN

END
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Program B6-6. Carlin Resistance Excursion Optimization with Independent

Source Resistance

7 REM CARMINNORN

10
12
15
20
30
s
40
S0
55
&0
7O
72
Ll
92
94
F&

REM CARLIN RESISTANCE EXCURSION OPTIMIZATION WITH DERIVATIVES
REM EXCUR RN IS DEPENDENT & RO INDEP HERE.

REM BY TOM CUTHBERT 801209.

PRINT"# OF MEASURED 7L VALUES=";3: INPUT MZ

DIM FR{MZ},RL (MZ}, XL (M2) ,BO(MZ)

PI1=3, 1415926

PRINT " INPUT FREQ, ZL, %GAINS=1;"

FOR I=1 TO M2

PRINT"FREQ{";T;%},RL, XL, GAIN="; s INPUT FR(I},RL{I), XL{1),B0(I)
NEXT I

PRINT"# BREAKPDINTS INCLUDING O RADIANS";: INPUT L%

NY=L%—1

DIM XALYY DK OLY) , AT (LYY, BI(LYEY , GINL) , S(N%Y
FPRINT" FIRST BREAK FREGUENCY MUST BE ZERQD."
PRINT™ USE ANY NUMBER FOR LAST EXCURSION. "
PRINT™ (PROGRAM RECOMPUTES IT)."

100 PRINT“INPUT EXCURSIONS & BREAK FRE@S:™

110 FOR 1=1 TO L%

126 PRINT"EXCUR(“;13") OMEGA ("5 I3 ")="3: INPUT X(I},0K<I)
E30 NEXT I

140 OK(1) =0

USE LINES 150-940 FROM PROGRAM BI-1 OPTIMIZER

%99 GOTO92
1000 REM $ERD ERROR OBJ FNUN & GRADIENT
1010 ER=0

1020 FOR J=1 TO N%

1030 B (J)=0

1040 NEXY J

1050 REM SAMPLE FRER LODOP

(050 FOR U =1 TO MZ

1070 OM=FR ()

10B0 GOSUB3I00O

1090 RL=RL (L}

1100 Xt.=XL (U}

£110 LA=(RL+RE} 1 (RL+RE) + (XL+ X&) & (XL+ X))
1120 TX=48RL/LA

1130 GA=6O (LY

1135 ES=TX#RE/BA—1

1140 ER=ER+ESIES

1150 E2=22ES

1150 TX=Tx/LA

1170 TR=(LA-2¢ROS (RL+REI I ATX

1180 TX=-28RRL (XL+XQ} 4TX

1120 REM GRADIENT LODP AT EACH FRER

1200 FOR J=1 TO N&

1210 G(I)=G(IJI4EZE CTRECAT (I —AT (L} S+ TXR (GBI (JI—BJ (LX) } } /BA
1220 NEXT J

1230 NEXT U

1240 IFY%=0 THEN F=ER

1250 IFY%=1 THEN F9=ER

1260 RETURM

3000 REM CALC I8=(R@,XE) BY LIN INTERF & HILBERT
3010 X {LX)=0

3020 FOR J=1 TD N%

J030 X (LK) =K LA -X (I

3040 NEXT J

3030 AJ ()=l

3060 FOR J=2 TO L%

3070 AJ (Ji=0

I080 IF OM<=0K(J-1) GOTOI130

30%0 IF OM>=0K{(J) GOTO3120

3100 AJII)=(OM-OK (I—1 3 / {OKED) —OK £0-11)
3110 GOTO3130

3120 AJ(Ir=1

3130 NEXTF 3

3140 BJI(1)=0

3150 DEF FNB(WB) =WBR { (V+1}$LOG(V+11+ (V-1) $L0G (ABS (V-1 } —Z8VELDOG (V] )
3160 FOR I=2 TO L%

3170 V=0M/OK D) +1E-9

3175 BJIAJ)=FNBR (O ()}

3180 IF DK{J-1)>0 THEN V=0W/OK(J-1)+1E-%
3190 BJI (J3)={E) (J)—FNB (DK (J-1) 1) /PI/{0KA(J) —OKAI 1)}
3200 NEXT J

3210 RE=1E-9: X@=0

3220 FOR 3=t Ta L%

3230 RE=RR+X (I eAI )

3280 X@=XE+%(J) $BI (D)

3250 NEXT J

3260 RETURN

3299 END



Program B9-1. Elliptic Filter Pole /Zero and Loss Calculations.

1000
1050
1080
1100
1110
1130
1140
1160
1170
i410Q
1420
1430
1340
1450
1440
1470
1480
1500
1600
1700
1800
1900
3000
3100
3200
3300
3400
3500
3600
5000
S100
5200
5300
3400
5300
5400
3700
3800
3900
H5000
6100
4200
&300
6400
6500
4600
7000
7100
7200
7300
7400
8000
8001

8002
BOO3
8004
80035
8004
8007
8008
8009
8010
BO11

8012
8013
500
FA400
2500
REO0
999

PRINT*ELLIP LF FLTR LOS5. DANIELS P.79"

DIM X(25),XZ(25),A(250),D0(250)
P1=3.1415924:Cl=P[/2

PRINT"AMAX DB, AMIN DB,FB,FH=": INPUT AX,AN,FB,FH
EE=10"(AX/10)—1:L=5GR{ (10~ (AN/10)~1) /EE) : XL=FH/FB
K=1 /L = BOSUBS000

KL=KK
K=8GR{1-1/L /L) : BOSUBS000
Li=KK

K=8@R (1—1/XL/¥L} : GOSUBS000
K1i=kKK

K=1 /XL : BOSUBSQ00

N=TNT (L1 /KLEKK /K1Y +1
PRINTYDEGREE="3;N

NI=C:RN=1

IFN=2%INT{(N/2) THENNI=1
PRINT"LOSS POLE FREQUENCIES:”
FOR I=1 TO INT(N/2):GOSUB7000:NEXT I

X=1:608UBY300

C=1/RN

PRINT"F="; : INPUT F:GOSUB&OOO

GOTO1800

REM CALCSMY, K}

G=EXP (-P Itk /KK)

V=PI /28U/KK:5N=0: J=0

W=@™ (J+.5) : SN=SN+REISINC (28T +1 1 3V) / (1—WEW) s T=3+1
IFW>1E~7 GDTO3300

SN=SNEZRP I /K/KK

RETURN

REM CALC COMPLETE ELLIFP INTEGRAL

¥Y=K1: XX=S0R { 1-K&K) : GOSUBBO00: AL0) =211 0 (O =PL /2t P=1: [=0
X=2/ (1+SIN(AII}) ) -1t Y=SIN(ACI) ) ESIN(O(I})

YY=SER (1-XEX) : XX=X: B0SUBBOOO:A(I+1) =77
¥Y=YzXX=SOR({i-YEY}:;BOSUBBOC0:0(I+1}=(0{1}+IZ) /2
E=1-A(I+1)k2/PI:I=1+1

IFE>1E-7 B0TO5200

FOR J=1 TO I:P=PR{1+COS{A(J))I)INEXT J
X=PRI1/4+0(I) /21 KK=L OG(SIMN(X) /COB(X) AP

RETURN .
REM CALC LOSS

X=F/FB

RN=CEX~{1~NI}

GOSUB?300

A=103L0G (1+EE*RN&RN) /1LLOG(10)

PRINT" DB LOSS="3A

RETURN

REM CALC POLES AND ZEROS i
U= {28 I-NI} 2KK/N: GOSUB3000
XZTL{1)=SN:2 X (I)=XL/SN
F(IY=FBEX(I):PRINT F(I)
RETURN

REM ATANZ

S=SR(XXEXX+YYEYY)

IF xx<0 GUTAB00?

IF XX>Q GOTOBOOE

IF YY=0 80TO8012

IF YY>0 GOTOBOOT b
Yy=—-Ci1:G0TO8013
Y¥=C1:G0TOBO13
Yy=ATN(YY/XX) : GOTOBO1S

IF YY>=0 GOTDE011
YY=ATN(YY/XX}—PI:60T08013
YY=ATN(YY/XX)+PI1:G0TOB013
YY=0

ZZ=YY:RETURN

FOR I=1 TO INT(N/2)

RN=RNB (XBX-XZ (I}"2) 7/ (X¥X-X(I)~2)
NEXT 1

RETURN

END
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Program B9-2. Symmetﬁc Elliptic Filters

10 PRINT"SYMMETRICAL ELLIPTIC FLTR,C&S12/78,1009"

1010
1020
20190
2020
2030
2040
2050
20460
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
ZZ210
2220
2230
2230
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
. 2370
2390
2400
2410
2420
2430
2440
2430
2460
2470
2480
2490
2300
2510
2520
2530
2540
2350
3010
I020
3030
3040
3050
3060
3070
4010
4020
4030
4040
40350
5010

DiM B(1&),C(1&),D(14) ,E(15) ,F (30}
PN=LOG(10) /10:PI=3. 1415926
PRINT"STBND EDGE (KHZ)=*;: INPUT FS
PRINT"PSBND EDGE (KHZ)=";: INPUT FP
IF ABS(FS-FP)<=0 GOTO2010
PRINT“NUMBER OF PEAKS{1-1S5)=";: INPUT N
IF N<=0 GOTO2610
M=2%N+1
FC=8QR (FS1FP)
R=FC+FC
FOR K=1TD2
=FG+FP
FOR J=1T0&
P=SER {SAR)
S=(5+R} /2
IFLEBR (S—P)<S GOTD2170
R=P:NEXT J
IF K>=2 GOTD2200
0=t/5
R=ABS (FS—FP) iNEXT K
Q=QEs
S=EXP(-PL/Q}
Y=g
PRINT"CRITICAL G=";&/ (4% (1-51 85°N}
PRINT"STBND REJECTION (DB)=*;:INPUT S
IF S<{=0 BDTO2010
S=EXP (S3DN/2)
R=EXP (PT3f})
P=(LOG(1+(5325-1)/ (R/4+1/R)~2)) /DN
PRINT"PSBND RIPPLE (DB)=";P
R=R/ (2% (S+5QR (S$8~-1)))
R=LOG (R+SER{RAR+1) ) 7 (203)
R=SINCR) /COS(R)
W=R
PRINT"I DB (KHZ) ABQUT =";FP+(FS—EP)/ (1+FC/ (FPIRIR) )
PRINT"NOMINAL OHMS RESISTANCE=";: INPUTR
IF R<=0 $QT02040
I=YE (M) =l WeWEW
FOR J=1TOM-1
F(Jr=1:NEXT J
K=1
FOR J=1TD1024
FIK)=F(K)R(1-Z} 7 (1+2Z)
IF K<M-1 GOTOZS00
I=ZRY )
A=C(1=Z} /(142D )2
EAN)=E (N} & (W+X) 7 (1 +W8X)
K=0
I=Z8Y
IF I<.2S5E-18 GDTOZS30
KeK+1:NEXT J
FOR J=1TON
FLIY=F (J) AF (M-J}
F(M~J}=F (J):NEXT J
FOR J=1TON
BT =F (2871 £ C1—F (F) 4} /F (I}
B(J)=E (N} 8F {J) : NEXT J
Ci{1)=1/BIN?
FOR J=1TON—1
CAI+1)=(T(I)—BIN-J)> 7 (1+C(I)AB(N-F} )
E(N-J)=E (N+1-J}+E (N) AD(J) # (1+B{J) 3B (I} ) s NEXT J
FDR J=1TON
B(I)=({(1+C(JI R (T ) RECT) /DUII-CAI) /F () ) /2
CI =CLIIIF (D)
D(JI)=F(I)BF(JI=NEXT J
BN+1)=B (N} :C{N+1)=C (N} : D (N+1}=D (N}
IF N=1 GDTO&OZ20 :




5020
5030
5040
S5050
S060
5070
5080
5081

5082
5083
6010
6020
&030
&HO4/O
SHO&0
HO70
SH080
&090
5100
4110
6120
6130
&£150
&160
6170
&180
&190
&£200
6210
&£230
&£240

| &230

&2560
6270
4280
&290
&300
&310
6320
&330
&H340
7020

L=1
FOR K=L+2TON+1 STEPZ

FOR J=LTOK-2 STEP2
Y=C1(J)-C K>

I=1 4/ MBI DK -DIIII I ~1)
B =(B(K)—B(J} ) #Z¥Z-B(J) N (1+Z+Z}
C(K)=YSZiNEXTJ

NEXT &

IFL=260T04010

L=2: BOTOSO30

S=B (N} /B (N+1) —1

O=. 0005/ (P1$FC)

P=23R:0=0/R

IF FSCFP GOTO&1S50

PRINT™ 1t LOW-PASS FILTER $3"
FOR J=1TON

C(II=QEC(I)

D(J)=Q2B(I) £D (J)

BLIY=F/B(}}

F(J)=FC/F{J}zNEXT J
C{N+1)=REC (N+1)

GOT0&230

PRINT* *t HIGH-PASS FILTER s3"
FOR J=1TON

C(J) =R/C(I)

D{J)=0/ (B(IIAD (T )
B(J)=PRB(J}

F(J)=FCRF (1) tNEXT J
C{N+1)=Q/C(N+1)

PRINT" KHZ FARAD
FOR J=1TONSTEP2

PRINTTAB(12) 3C(J)

PRINTF (J) § 33 D(3) 3 B{J) sNEXT J
PRINTTAB(12) ;T (N+1) .
IF N=1 THEN STOP

L=CINT ((N+1) /2)) 82 Kmt=1~1_
FOR J=L+2TOM-1STEP2
PRINTF (K} ; K3 D (K) ; B{i)
PRINTTAB(12) ;C{K}

K=K—~2z NEXT J

PRINT"PRECISION TEST:";S

STOP

HENRY "
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Program B9-3. Antimetric Eiptic Filters

20 PRINT"ANTIMET ELLIP FLTR,CT12/78, 1008"

1030
1040
1050
1060
1070
1080
1090
2010
2020
2030
2040
2030
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2145
2170
2175
2180
2190
2200
2210
2220
2230
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
3010
3020
3030
3040
3050
IO&0
3065
3070
3080
3100
3110
3120
3130
3140
3150
3160
3170
3180
3200
3210
3220
3230
3240
325¢

430

DIM B(1&),C{1&),D(14&),E(30),F(14),R(15),5(15),DB(14),TB(14)
DN=LOG(10) /10: P1=3. 1415926

PRINT
PRINT"REJECTION, RIPPLE (DB}, 1/2-DEG (2—-15) , TYPE(A,B,0R €)1 "
INPUT AS,AP,M, TS

If AS{=nP THEN STOP -
N=2¥M

ES=EXP (DNXAS) -1

EP=EXP (DNSAP) -1
V=GQR{ES/EP) +GOR (ES/EP~1)

U=PIEPI/ {28L06 (V+V) )

VeV (SOR (ES) +SER (ES+1))
W=U3L0G (V+SER (VIV+1) ) /PI

W=SIN (W) /COS (W) : AD=Nz W=WIW
Y=EXP{-U) : Z=Y: KaM~1

FOR J=1TON

E(I)=1:NEXT J

FORJ=1T01024

IF K<>M GOTO2150

X={(1-Z) / (142} ) "2
AD=ADS (W+X) 7 (1+WEX)

E(K)=E (K)RE1=2} / (1+Z)

Z=2¥Y: IF 2<.25E-18 GOTOZ180

K=k-1

IFK=0 THEN K=N

NEXTJ

E (M)=032E (N) =E (N} ¥E (N>

PRINT "U="; Uiz "AD="; AD; "EP="3E (N}

FOR J=1TOM-1

E(J)=—E (J) 8E (N-J)

PRINT"E=";-E(J}

E(N—J}=~E (J) sNEXT J

X=S0R (ADLADT1 / (ADXAD) +E (N} KE (N) +1/ (E (M) XE (N) 3 )

FOR J=1TOM-I1STEPZ2: K={J+1) /2

YoAORE(J) :¥Y=Y+1/Y

I=EI(NYRE (D)
RAKY=E(M—J} 8 (1 /2T /7¥:sS{KY=—X/Y
PRINT“RE="3;R (K} "SE="3S(K)
RM-K+1) =R (K)

S(M—K+1) =—S(K) :NEXT J

IF K+K=M GDTO3010
RIK+1}=—A0:S(K+1)=0
FRINT"RE="3-AD

I1T=2:IF T$="A" THEN I1T=1i
E8=—E{1): [F T$="A" THEN EG=E (N}
EO=E(N): IF Te$="C" THENEO=—E{1i)
FP=SER{{(E(NY+EQ) 7 (1+E(N)3ED})
FS=SOR ¢ { 1+E (N) $E0) 7 (E (M) +£8) )
D(1)=0

FOR J=ITTOM
DCII=(E(2¥J—1)Y+EB)} F (1+E(2¥7-1)ED)
FI)=SER(1/D(J}) :NEXT J

SR=0: T@=0: TO=0: B (1) =0z I=1

FOR J=1TOM

W={(A0"2+E (28.J-1)"2) / (1+ (AQRE(Z2XJ-1) 2} ~2)
X={1+EQ08ER) ¥S (T} +EQJ+ESEW
Y=EO"2+23EDES{(J) +W

1=1+2XEBAS (J}+EB~22W
U=SaRIY/ZI):V=X/Z

R(J)=SER ( (U-V) 7/2) 1 5{J) =SER { (U+V) /2)
PRINT"RF="3 ~R(J) /FP; "SF="38(J) /FP
SR=SR+R (J) /U

I=—T:W=I2R(J}/5(J)
TO=(TQ+W}) / (1-TQa W)

IF T#<>"A" BOTO3I270

U=(F (2)-S(J) I /R (J) V= (F (2} +8(J) } /R
W=I8 (V-UJ 7 (1+URY)



3260
3270
4010
4020
4030
4040
84030
4070
4080
w5010
5020
3030
J040
8050
5060
&010
6020
5030
5040
&050
&0OL0
&070
7010
7020
7030
7040
70350
7070
7083
7090
7100
7110
7130
7140
7150

TO={TO+W) 7/ {1-TOSW}

B(1)=B{1)+R(J)z:NEXT J

IF Te="A" THEN TO=TQ/{(I+5BR(1+TQETO})}

FOR K=ITTOM

DB =0: TRIKY=TO: I=1

FOR J=1T0M

DB (K)=DB (K} +1/ (R{II+ (F(KI-S(J))~2/R(JN+1/ (R H(F(K}+5(J) »"2/R(J))
T=—TaWl=(F (K115 (3} ) /R{I}

TBO) = (T +W) 7 (1-TB{K) #W) s NEXT J3NEXT K
D{M+1)=D (M) sF (M+1)=F (M) : DB (M+1)=DB (M} : TB(M+1)=TB(M}:C{1}=0
FOR J=1TOM+1-1IT STEPZ2

TR (M+1-J =1 /TBIM+1=T) s NEXT J

FOR J=ITTOM+1
B{J)={1+TB(J}"2)XDB(J} /(43D (J))—TB(J)$F (I} /2
C(Iy=TB(J} /F(J):NEXT J

FOR L=1TO02

FOR KL +2TOM+1 STEP2

FOR JI=LTOK-25TEFZ2

U=C(J}—-C )

V=1/(U/(B(2)B(D(K)-D(J})))~-1)
BIK}=m(B(K}~B(I) ) EVEV-B (I L (Ve L)

EAK) =2V NEXTI; NEXTK:NEXTL.

W=1: IFT$<>"C" THEN W=((1-TQETO) /{TRA+TO) )} "2
FORJ=1TOM+1 STEPZ:B(J}=B(J) W

C(Jy=C(J) XWNEXT J

PRINT"LD RESIS=";W;" ("sirswz;" 1"

PRINT® L(C) cqu) PEAK™
IF T&<>"AY THENPRINT" 1 "sFP/B(1)
V=0

FOR J=ITTOM:z V=V+C (J)
PRINTI;FPEC L) sFP/BUIy 3F 13 FFPINEATS
PRINTM+13 FPRC (M+1); "STPBD EDGE=";FS/FP
PRINTYTESTS;B(M) /B(M+1)—1; (W+1) ISR-V-C(M+1)}
STOP

END
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Appendix C

Derivation of the Fletcher-
Reeves Scalar Multiplier

Given Equation (5.54) and 8,=0, find 8,,1=2,3,...,n. By (5.52),
0=(s) A~ '=(—gi+Bs ') As ™!

- iTAsi—l+ﬁi(si71)TAsi-—1‘

(gi)TAsi—l
(Si—I)TASi-l )
From (5.48),
Asi-1=gi_gihl
o
T . . T
_ (@)Y @E-g") (g) g'—0*
T e ] : e
(S' I) (gl_g 1) (51—1)Tg1 _(51—1)Tg1—|
e —t
0 by tangency
_ (gi)Tgi
(gifl)Tgi-l
since

(Si—l)Tgi—I=(_gi#[+ﬁimlsi—~2)Tgi—l

-y T i -2y T i—
=—(g"") g '+B-, (5 Heg!
——

0 by orthogonality

*It turns out in conjugate direction line searches to successive line minima that all g' are
orthogonal {see Acki, 1971, p. 121).
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Appendix D

Linear Search Flowchart*

START

Input x4,
Calculate Fy, gy.
IFN =1,

her = Fo.

Print IFN, Fy, 94.

G1 = current stope. =0
G3 = starting slope.

G5 = last slope,

hia) = Fix +as),

o s _ dh $=—gg.
hitad = o - G5 = hj = ~gd.
G3 - Gb.

—0.21F, — 0l
=% 0 -
Gb >0

490 ‘
=100
800

ICON = 0 {converged}.
Ax = as.

2 0.00001

ICON =t [not converged}.

X =%+ 4Ax
Calculae F_, g, .
IFN=I1FN+1.

Gt =y'la) = —g,9,.

©

*For one variable.

453




454

Current slope
Starting slope

2h
CelcF . g,
710 IEN =TFN +1
Extrapolation ——~
Z=4,
- <G1
X=X — Ax G5
__ Gt
2 G-61-
@
2 =min {4,2}.
Calculate 2 a=a- 2 Print IFN, F
PErcubic fit. hrsf=Fu' e
a=n* Z. G5=G1.
L STOP
490



Appendix E

Defined Complex
Constants for Amplitier
Scattering Analysis*

The scattering-parameter determinant is
8=81S3—58;5)5, (E.T)

The stability factor is
_ L+]AP 8, S,

E.2
ToSid 9
Two arbitrary constants are
B, =1+8,,[> 18~ [AF =L max + D1, (E3)
By= 1+, —|8,,{* — AP =g nax + D2, (E4)
where the unilateral input and output gain factors are
1
Bsmax=™ T o 3 (E.5)
1-18,,[?
1
BL max = . (E6)
E= 185’
Four other commeonly recurring constants are
D1=|S|112_|A|2’ (E.7)
D,= |Szz|2_ |A|2= (E.8)
C,=5,,— A8, (E.9)
C2=822_ASTI . (EIO)

*See Sections 7.4 and 7.5.
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456 Appendix E

The maximum possible efficiency (see note below) is
S
nmax=H(Ki\/K2—l ) (E.11}
12

The source and load conjugate-image reflection coefficients (see note below)

arc
[ B,+yB2-4|C,[? |
- | 141G , (E.12)
2|C,f?
B,+/Bi—4|C,?
L =C? . (E.13)
2|G,f?
The maximum 50-ohm transducer gain is
g0=S 2 (E.14)
The center of the input-plane stability circle is at
Ct
IhZ= ﬁl . (E] 5)
The center of the output-plane stability circle is at
&)
ro= D, (E.16)
The radius of the input-plane stability circle is
|SI2S21|
Py =—. E.17
] Dl ( )
The radius of the output-plane stability circle is
ISIZSZI|
2= Tz . (E.]S)
The unilateral figure of merit is
5,18,5;,8
0= 1811 ;2 2152 _. (E.19)
[(1=18:,%) (1= S22l
The maximum unilateral transducer gain is
iSail £20
(E.20)

G umax= .
T (1= 1S, A)(1 = [S5P)|

Note: Use a plus sign when B, <0, and similarly for B, in (E.13).




Appendix F

Doubly Terminated
Minimum-Loss
Selectivity

Doubly Terminated Minimum-Loss Passband Selectivity for N=4

10

LdB—»

— (8] (A o L&) o -~ o 0

o

0 01 02 03 04 05 06 07 08 09 1.0 11 12 13 14 15 16 1.7 1,
Q F—~




Daoubly Terminated Minimum-Loss Stopband Selectivity for N=4

TG

80

50

40

Ldf—>

30
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Appendix G

Direct-Coupled
Filter Design
Equations

These equations are grouped according to the design steps indicated in the
flowchart in Figure 8.28 (Chapter Eight).

G.1. Response Shapes

i, £, f,—
F=_b__0=_b_fa_i2(fh_1) if F<0l; B=ff. (G
fO l:b tl(} 1]
'_f_ F:I/Z E
f——E—[]+(—2—)] £3- (G.2)
R, vA &5 _Qu
== = s K=],2,...,N. G-3
QL o W QLK QLN ( )

sinh“x=ln[x+(x2+l)]/2], cosh“x=ln[x+(x2—l)]/2], x> 1.

(G4)
=55, ¢=2N-n-1,  ¥=2N-n+l, ¢{=N-r, G5)
A,=sin’(§8),  A;=cos’($4), r=N-1LN-2,..,L
0, G,=0,
e=(10%/°—1)"2 4 Qua={_L G. 0. (G.6)
QLI
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460 Appendix G -

G.1.1. Overcoupled Shape

cos(N cos™ 'x), [x[ <1,
Tu(x)= ¢ (G.7)
cosh(N cosh ™ 'x), x| > 1.
L(f)= lOlogm(I + ezT{i,Tf») dB. (G.8)
|4
[sinh_l(]/e)] Sx 2
SN =Slnh-'—N— . 1= l—m] - (G.9)
l, odd N,
= In[ coth(L_/17.37 G.10
B coth? [ (;/ )] even N. ( )
Qui=8n+1 Qun=1. (G.11)
QuuF,=Sn8. (G.12)
VB,
_ = (sin o8 )(sin 8 )B, /sin’f
Q. Qi+ = > ] . (G.13)
[As+(diQun)"A; |Bi+AA;
G.1.2. Maximally Flat Shape
o F 2N ‘
L(f)=10log,q l+£(F—p) }dB. (G.14)
6Ll=]=6LN‘ (G.15)
- — (sin ¢ )sin Y4
QL= . G.16
Qi [As+(d,Quy)’A, Jsin® (G:16)
QunFoe ™ N =(1+d,Q )sind. (G.17)
G.1.3. Undercoupled Shape
L, < 10log,q[ 1 +sinh’(0.8814N) . (G.18)
q=(10%/10—1y'"2, (G.19)
_ q
K= Sh(08ET4N) (G-20)
F
Fy= : (G21)

® sinh{[sinh~'(e/K) | /N}
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L{f)= IOIogm[ 1 +kzsinh2(N sinh"FL) ] (G.22)
d

cosh ™' {[sinh(0.8814N) ] /q}
C,,=cosh N . (G.23)
Error=Q, y— | =function of Q. (G.24)

P T G.25

la(1+deLN). (G.23)

_ (sin g8 )(siny# A, /sin%
QLrQL(r+1) = : (026)

[As + (deLN)ZAZ]AI —AyA, .

Note: For even N, find N /2 error roots yielding Q. <. Then there are N /2
roots using Q< 1/Qy,. For odd N, use one error root Q. =1, then find
(N—1)/2 roots vielding Q,, < 1. Then there are (N—1)/2 roots using Q.

(_I/QFLI'

QuuF, =528, (G.27)

VAl
G.1.4, Doubly Terminated Minimum-Loss Shape
y=(= "X, x=QL(QL +jF). (G.28)
Pr(¥)=YPk - «(¥)—Px-2(¥), P,=1, P,=yv, K=3,....N. (G.29)

L(f) = 101og,o](X +2)Pu(X)+ (— 1)*Py_,(X) —6.0206 dB.  (G.30)

Qx=1, K=I...N (G.31)
G.2. Physical Data
- L, (Ll (C+C)
L<L<L, C<C<C, X;=uw, or —~, (G32)
2 2w,CC
or, for traps, X;=wol(Ly+ Li)/21 —(wo/w,)ll-
L.
23 (G.33)

QuK = wLKG

u

R,
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G.3. Passband

Quw F, 7 d,  undercoupled.

_ {QunFo) . { P, not undercoupled,

G.3.1. Narrow-Band Approximation

Z;=(R;R))'?,  j=i+1,  i=1,..,N-1 (prototype).

Ywoly  forinverter L,
W

wp/ w
wpCy

(woliy )@/ wo)
1-—- ((..u/f..:n)2
1

g a0
wnLij

for inverter C,

Z,-j(w) =

»

LCtrap at w=w, .

G.3.2.  Loss Effects

Note: For overcoupled, even N, add
. L,=10log,o(1+€%)dB.

G.3.3. Stopbands
R i T P
f_(), s~ s 5 K™= f() -

L(f}= —6.+ DBl + DB2+ DB3+ DB4+ DB5 > 204d8B.

=

Note: For overcoupled, even N, add 10log,ogn ., ;.

(G.34)

(G.35)

(G.36)

(G37)

(G.38)

(G.39)

Calculate each of the following subheadings in reverse order, starting with
G.4.4 and working backward through (G.4.1. Repeat for each L(f,), but use

L (fy) for each trap.
G.d.1. Loaded-Q Product

A
QL =Qr Q2 Qun-
Q. )I/N
Q, ~

HQ, =antilog,,

QLN=(
DB1

20

DBl1=L, +6—DB2—DB3 - DB4-DBS5.

Note: For overcoupled, even N, subtract 10log ogn . -

(G.40)

(G.41)

(G.42)
(G.43)
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G.4.2. Resonator Asymptote Slopes
DB2=N20log,,F. (G.44)

G.4.3. L- and C-Inverter and L-Section Slopes
DB3 = (NLINV-~NCINV)20 logmf’s , (G.45)

where NLINYV is the number of L inverters including traps resonant at higher
frequencies, and NCINV is the number of C inverters including traps resonant
at lower frequencies.

(A—eCDy’ +(C?

DB4=101o G .46a

2o A(l + B2) ( )

for each terminal L section, where
ez T I for top-coupl%ng L, (G.46b)

-1 for top-coupling C,
and
A=1+Q}, (G.46¢)
B=QF,. (G.46d)
C=B+eQ, ", (G.46e)
D=Q,f¢, (GA46f)
_{Ru " _{Rux \”2

QO-(RS—»I) or QD-—(RL_I) . (G.46g)
DB4 =20 log,of, if Q3. (G.47)

Note: Sum this expression for each L-section, since Q, is unknown beforehand
{a conservative estimate},

G.4.4.  Trap-Inverter Effects

NTRAPS 2 _ i
n=t I- (fn/fl()

Note: The term f represents the null resonance frequency of each trap. For
traps where f <f,, use (G.48) as stated. For traps where f, > fy, use inverted

variables in (G.48): | «1/f , f «1/T.

n* °'n

LK*%{LS"‘ [L§+4(O.585 ma)"‘]l/z}, (G.49)

where

m 2 6(N + NLINV —NCINV), (G.50)
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Nate: See nomenclature in ((G.45) and count L sections as inverters. Classify
traps at a frequency just beyond null resonance away from the passband.

If [ a
f,<2 =(f)!# =3.322log,,f,
f>2 = |.5f, =1

G.5. Q Effects
QN =max(stopband Q, \’s), except
if F, 1s more important and

passband Q, y, is greater than the stopband Q_ s,
then Q, =passband Q, y [see (G.34) and (G.41))].

A~ AQx
Qg = , . K=1,...,N.
X QuK
N -~
_ | —10log,e 1T (1-Qk)dB, except that
Ly= K=1

4.34NQLdB for minimum-loss shape.
Note: For overcoupled, even N, add L.
G.6. Design Limitations
Q. = 3™

L,<2NdB.

G.7. Minimum Shunt Inductances

|
|
| LK=_I:K5 K=l,...,N.
|

G.8. Prototype Ohmic Values

RKK:QLK"OOLK’ K=]!"';N:

(G5

(G.52)

(G.53)

(G.54)

(G.55)
(G.56)

(G.57)

(G.58)
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except for overcoupled even N, design to Ryn=0Qw,Ln/Eno 1, but use
Run=Qneoly as medified in Section G.11.
Nore: R, and/or Ry may be dependent.

X, =(RR)'2  j=i+1,  i=1.. N-1L (G.59)
1 2
Xp= [Rg(R“ ‘"Rg)] /2, XnL= [RL(RNN—RL)T/ s (G.60)
or, for N>>2 and inductive X, and X, and L;—o00,
X =Q.R = BEQ R, =R (1+Q G.61
gl T Msgihgo sg'—g Rg, Ll | g( sg)‘ ( - )
For N> 2 and inductive X, and X _, and Ly— oo,

Ry in-
X =Qs Ry, er_:g(_%_i , QLN)’ RNN=RL(] +Q§L)’

(G.62)

where

Alxy—[x(y*+1)—1[7?
g(x,y) = (xz_ 1) . (G.63)

G.9. Component Acceptability

2

min E 2 [(R=XG) + (R 1= X pa) o+ +()‘(2NLr—X§]L)2] 10712,

(G.64)
s0 that finaily
Li<L<L, i=1..N. (G.65)
Note:

1. See (G.32) and (G.59)(G.62).

2. 1<k<(N-1),

3. Adjust prototype shunt-L values for minimization; constraint is on
shunt-L values after combining with inverters and, perhaps, an L
section.
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G.10, Shunt Inductance Adjustment

Ky = Ly units (example: 10~° for nH). (G.66)
0 if X,=0 or Lo,
= 2K 10 %qQui{ Ry(X2, = X2 ) + Ryp(X - X)) |-

oE _

i~ (G.67)

3E _ 0 if Li2o and N=2,

aLj 2K 10 (‘JDQLJ[ =L ji- l( - I_’ J ]_])+ J+]J+l( AN X_jz.j+l)]’
2<3<(N—1). (G.68)

5B {0 if Xy =0 or L,—ooo,

8Ly |~ 2K 10 w0oQun[ Ruv oy o (R m i ~ X o n) + Ry (R~ X ) -
(G.69)
(.11, Final Component Values
. Ry (loss Yut+Y
e o) Yyt Vyor (G.70)
R /(lossless) X+ Xy_|
K Y« Xk
1 1. Qu;
2 Qu, Qi+ 1
3 N
. Ye=QukYx-1+ ¥k
N X = QuXi -1+ Xk -2 (G.7D)
Note: For overcoupled, even N, use Qu{ in reverse order.
N R,,(lossy) Ryyn(lossy)
Even =R'R, (lossless) = R'/?R (lossless)*
Odd =R!/2R, (lossless) =Ry(lossless)/R'2  (G.72)

*For overcoupled, even N, divide by gy, ;.
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Note: If only one or no end coupling is employed, apply (G.70) directly in the
end coupling or an inverter, respectively,

R, ~2R, R, —2R,\*]"”
i =( 2Q, ) + R _Rg)+( 2Q, ) ’
Q. >1. {(G.73
| R
| X, = 1 77 parallels C,. (G.74)
| [Rll/(Rg+Xgl/Qu)“‘l]
| Ryy~2R Ry —2R \2]7
X =__N_"£_t__£)+RR -R +(_,M.’;,_.E) .
NL ( 2Qu L( NN L) 2Qu
Q,»L. (G.75)
Run
Xpn= 77 parallels Cy, . (G.76)
[RNN/(RL+XNL/Qu) - l]
B XL i
C= —(.\T , = —w— f C= ZOI (fOT TESOHanCﬁ). (G’}'?)
_ 2
1~ (1/1,) |
LU = X”T (fO[' traps). (G.?S)
1 1 -1
C,+C,=C, —t = G.79
? C[‘ La Lb Ll' ( )
G.12. Performance and Sensitivity Analysis
G.12.1.  Transfer Sensitivities to Load SWR
Su(f) =Su(O[1+8,0) 1], [Tl (G.80)
AlSy )= 2 20log o1 +S,,| -{T' |} dB maximum. (G.81)
Ap, = +£57.2958|S,,|- 1T, | degrees maximum. (G.82)
SWR, —1
IT'l= SWR, 1" (G.83)
T
S@é@l.l’.;'ﬁ /T (G.84)
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G.12.2. Sensitivities to Resonators
S&==iQu, Shi==z2.

dfo_ I(QL+(_1,9)

T, 2\L 7 °C

G.13. Design Adjustment

v c:ii?.=20]0gXl = 1010g—R—”—
! Ve R,

R\ IR,
B =cos ’(-i;]—) B =cos I(RNN

)'/2.

(G 85)

(G56)

(G.87)

(G.88)
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Zverev’s Tables
' of Equivalent
Three- and Four-Element
Networks

e e

.1_7

g

g 1(a) (4

s C,+C

= P

S L=L L,=

N ' 1(C3+C4) " ( G, )
C,=C,1 & Crm?
= ( *E) EIFEC,
C,=C,+C Cpm
=G+ G CIRC/C,

o

2 2a) Ab)

&

g L= B . ]=LZ(J+E')

3 1+L,/L, L

E L,= e L,=L,+L,

1+ L, /L;

ConC L,+1L, Comc Ly A2
~e{55) ame(ct)

From Zverev (1967
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=
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=
L
g
1]
2
3]
=
g
N
Co
—
=
=
[ 5]
5=
]
£
W
g
[
-
&
o
=
N
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(+]
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5
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o3
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9
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L, G
Go -’WY\I ol
3{a) 3y
Lo=L; L,=L,
C2c3
=" C,=C,+C,
() C2+C3 2 1 0
L LlCJzL—L ¢y
V= .1( +€2] 1= t(m)
C, 1+C,
=2 __ =
“ 1+G /G : 0( G )
b € Ly
""2 C?
Lo I €
4{a} 4(b}
LILO
Lo=L,+ =
o= Latls L FL,
L2
L, =L, +2 =2
: Lﬁ(] L3) L AL
Co=C, C,=C,
Coc L, \? cooc L+l
15 %3 m shag| o
L, Ly C,
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Y —
S(a) 55
|
L=W L,=X Ly= +L,
1
L2C, + L2C,)°
C,=Y =7 L3=—~—~———~—~———( G+ 12C) -
(L|+L2)(L|C1"L2C2)
CGL 4+ L)Y
A=L,L,C,C Cp= ————+13C
i At At 4 L%C] 2%-2
L,C, = L,Cy)?
B=L,C,+L,Ci+L,C;, Ci= (’—'2C—2—’— +1iC,
it

E=L,C,C,
D=C,+C,
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Z-Charactenstic 111

-
Z-Characteristic I1I

Ly
C. L
L, €, &, ‘

6(a) 6(b)
: LC - LG
L=W L,=X Lym G LG .
(L, +L){C +Cy)
C=Y Cy=Z L= L,
v 2= T L L,
C,C4{C, +CHL, +Ly)*
A=LLCyC, Cy= 1CaCy ) 12 2)
(LICI_L2C2)

B=1,C,+L,C+1L;,C, C=C+C,
E=L,(,C, D=C,

L, C, Ly Cy
/e
s R T
T(a) ()
L=W L,=X Lom LiL,(L,CI+L,CH)
Ci=Y C,~Z L, - LG
A=L,L,CC, L,=(L,CI+L,C3/(C +Cy)?
B=L,Cyt Lyt LGy C=C+C,
E=C;Cy(Ls+Ly) Cum CiCHC+CHLCy LGy
D=C, ’ LG+ LCY)’
L & L, C,
Lo Cs
Co - Ly
8(a) B(b)
Lo{Cy+ Co)?
_ Lls Ly=L| 1+ o(Cy+ C)
L,+L, L1CZ|

C, L 7 of )2
= Ly=Lo+L| =—
“o 1+C;/C:[(L1+L3)] VTG G
2
L [CoLo+ L'+ LIG ]
‘ (L, + Ly)LiCE

Gy Ly+1y\ Co= LiCICHC+ Co)
1+C,/C,y L,

C3=C| +C°

G

-
[Lo(C+ CP+L, G’
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Ly+L,\?
C,=G, Ci= 3( 3L 4)
4
C, L,
IL c
L, W [« | ‘2
__IMYW - — » ‘_l_
—— oA~ —AAA_~
10(a) 10(b)
Li=1, L =L,lC /(¢ ‘*’Cd)]l
L=Li(C+Cp/CF Ly=L, .
G,
C3—1—+—'c—‘7'(—:;- C|= 4(]+C4/C3)
Cpm 22 C,=C
=13 G,/C, =G+ G
L\
C;
c, b
I"2
AAAS
11(a) HI(b)
(L,+ L4)(LJL3C‘2!) _ L
= .=
(Ca(_L3+L4)2+ L,%Cd]z 1+(L,/12XC + G /Cy)°
L,
Ly=L;+L,

Cy fLy+ L\
CI=C3[1+—C~;( L‘,' )

C L, \’
[
C\L+1,

L= o ,
14+(Ly /LG /(C+Cy)

C=CG/(C+Cy)

2
[Li(C+ € +1,03)
Cy=

L3C3C,+Cy)




Ly L, C,
It
GC
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o AA A
2 Ly
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c GG,
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L L,
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Z
(2]
2 13(a) 13(h)
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= L=Y L,=2 LG+ LG
& 2
? L Ly(C,+Cy)
- N 1ok 2
A=LGLC [,=_ 2T
Aglogiog 4 L,Cl+1.C]
2
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D=L,+L, C,=C G/ (C,+Cy)
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g 4
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i
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Impedance Characteristics

]
1/
z
Wy Wz
—0 i
| 1 " v
Impedance Resonance Frequencies
Z-Char Fig. w? w? w? w?
I la /LC,+Cy 1/L,C,
I 15 1/L,Cs {C,+C,y)/L,GC,
It 2a I/LIC] (L! + Lz)/L]IQC;
11 2b [/(Ly+ L), 1 /LG,
111 Sa 1/1L,C, (C,+Cy) /(L +L)C,C, 1/L,C,
i 6b 2/Q 1/L,GCs Q/2L,L,CC,
1411 b 2/8 1/(Ly+ LG, S/2L,L4CyC,
It 5b 2/8 (Cy+C,)/LsCCy S/21,L,CyC,
v 124 1/L,C, (L +L}/LiLyC, +Cy) 1/L,C,
v 1256 2/5 1/L4Cy S/2L,C,L,C,
v 134 2/8 L+ L)/ Cilaly 5/2L,CLG
v 145 2/8 1/E4(C3+Cy) §/2L,C,L,C,
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Simplified Notations

The equations describing the element values of some of the networks can be
clarified by the use of more simplified notations. This has been done in the
charts by substitution of symbols for some of the more compiicated relation-
ships. These symbols represent the following expressions:

1. The coefficients A, B, D, and E represent various combinations of L
and C. They can be determined from the applicable gquations on the
chart.

2. W=A(A—P?)/P(AD~PE),

X=(A~P)/(E—PD),
Y =(AD-PE)/(A—PD),
Z=PE-PD)/(A-P),

where P=(B+ yB*—4A)/2.
3. Q=L,C,+L,C,+L,Cy+ ﬁch;‘ + LG+ L,Cy) —41,L,CiCy

4. S=L,C,+L,C+LCy+ \ﬂlﬂc3 +L,Cy+1L,Cy) —4L,L,CiC, .
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equal-stub-admittance filter, 338
L-section equivalent, 78
matrix multiplication, 79
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resonator, 277
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shunt admittance, 79
singly terminated minimum loss filter, 317
transmission line, 82
Accuracy parameter, 17
A-conjugate, 169
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Amplifier design:
development, 230
equations, 453
overview, 5
Analytic continuation, 24, 47
Antimetric elliptic filter, 350, 360
Approximation:
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Fourier series, 24
least-squared error (LSE), 22, 26
minimax, 19, 33
piccewise linear example, 23
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rational complex example, 29
rational function, 24
resonalor first order, 297
A-quadratic forms, 134
Arithmetic frequency scale, 222
Attenuation peaks, 354

Bandwidth, fractional, 193, 205
Bartfert's bisection theorem, 379

Bilinear function:
definition, 8
derivative of, 104
Bilinear transformations;
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introduction, 231
Bode's method, 58, 68
Breakpoint plot, 306, 309, 311, 316
Bridged subnetwork, 90
Bridged-T equalizer, 78, 86
Bridged-T network:
constant resistance, 378
invulnerable, 377
Broadband matching:
complex source, 201
gain-bandwidth limitations, 189, 191, 192,
214
pseudobandpass, 212, 216
resistive source, 200, 207
reactive source, 203
Butterworth fitter, 381
Butterworth function, 345

Capacitance:

distributed, 343

even and odd mode wave, 343
Cascade connection. 78, 79, 86
Cauchy-Riemann principle, 35, 36, 85
Cauchy search, 129
Chain parameters, see ABCD parameters
Chain rule, 107, 160, 223
Characteristic impedance:

inverter, 283

transmission line, 82, B4, 300
Chebyshev expansions, 20
Chebyshev function, 345
Chebyshev polynomials;

first kind. 19, 32, 305
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second kind, 32, 314, 341
Chebyshev response, 67, 458
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bilateral gain, 264

concentric, 264

eccentric, 253

unilateral gain, 269
Circulator, three-port, 78
Coefficients:

bilinear, 232, 241, 261

complex, 11. 35

Levy's, 27

mapping, 242, 245, 249

normalization, 10

pivot, 10

power series, 20, 22

real linear equations, 8

reflection, generalized, 46

scaling, 21

weighting, 22
Combline filter, 301
Commensurate filters, 336
Complex four functions, 7. 386
Complex linear update, 73, 80, 92
Complex variables:

polar format, 7

polar-to-rectanguiar conversion, 82

rectangular format, 71
Computer program features, 2, 46
Computing. art of, 1
Conditioning, numerical, 21, 26, 64, 232
Conig, 121
Conjugate gradient:

algorithm, 134

directions, 450
Conjugate match, 173
Conjugate pairs, 38, 45, 64
Conjugate terminations, 252
Conjugate vectors, 134, 135
Constraints:

active, 157

binding. 157

equality, 157

feasible, 165

implicit, 157

inequality, 157

linear, 162

mixed, 165

satisfied-when-exceeded, 157, 165

transformations for variables, 161

upper and lower bounds, 157, 159
Continued fraction expansion:

examples, 52

Hurwitz test using, 54

input resistance, 296

lowpass and highpass, 52

of reactance functions, 51

shorthand notation for, 52

Convergence, 136, 145
Conversion, three-port to two-port, 238
Convolution integral, 97
Coupling:
between bars, 343
coefficient, 285, 302
edge, 336
end, 302
mutual magnetic, 284
selectivity effects, 303
Cramer’s rule, 233
Current division, 87
Currents in shunt branches, 70
Curve fitting. complex, 26

Damping, serminating conductance, 255
Data:
discrete, 25
noisy. 25, 234
transistor, 252, 255, 265, 270, 272
triples, 27, 232
DATA statement, |1
Decrement, 74, 88, 112, 193, 198, 201, 378,
380
Derivative:
by Cauchy-Riemann principle, 35
directional, 137, 138, 168
exact panial, 104, 141, 112
by finite differences, 103, 111, 112, 144
normalized partial, 102
by numerical differentiation, 97
of objective funciion, 116
operator notation, 101, 105
partial. 26, 33, 36, 65, 103
programming of, 126
scaling, 101
second, 124
Design steps, 113
Determinant, 233
Direct-coupled filters:
equivalent network at tune frequency. 296
design example, 327
design flowchart, 321
design limitations, 323
equal-stub realization, 337
equations, 457
origins, 273
overview, §
prototype network, 273, 276, 278, 337
selectivity, 275
sensitivities, 324
shunt-L adjustimenss, 323
transfer function, 279
tuning rule, 288
Direct filter design overview, 6
Dissipation effect on:
input resistance, 295
inverters, 297
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resonators, 295, 297
stopband selectivity, 297
Diivide by zero, 8, ™4
Droop parameter:
definition. 310
maximum, 310, 313
Dumamy:
branch elements, 77
load, 24, 57

Edge-coupled filters, 343
Efficiency:

circle, 264

definition, 92

of direct-coupled filters, 295

loci of constant, 253

maximum, 250, 264, 374, 377

resonator, 295

from scattering parameters, 263
Eigenvalue:

definition, 122

example, 132, 168
Eigenvector:

in ellipsoid, 122

in orthogonal matrix, 132
Electromagnetic modes, extraneous, 336
Element:

commensurate, 336

negative, 284, 351, 361

subroutines, 73

type numbers, 72

units, 73

unscaled value of, 78
Ellipse:

rotation, 120

translation, 120
Elliptic filter:

input impedance relationships, 353

permutation algorithm, 354, 357

precision tesis, 360

selectivity family, 345

selectivity function, 346

types, 350
ERiptic integral, 348
Equalization, time delay, 152, 219
Equal-stub admittance filters, 336
Equations:

complex linear, 11

matrix, 9, 11, 27, 31

nonlinear simultaneous, 26

real jinear, 9, 59
Equipment costs, ]
Error:

integral function, 150

feast prh, 114

minimum, 27

overflow, 159
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round-off, 348

Simpson's rule, 18

surface, 36, 115

trapezoidal rule, {5
Evaluation:

of partial derivatives, 39, 40

of polynomials with complex

coefficients, 39, 40, 43

Extrapolation:

linear, i5

Richardson, 16, 153, 165

Romberg, 16

slope, 139, 141

Feedback, transistor, 78, 241
Fetdkeller energy equation, 47
Fiiter, invulnerable;
bridged-T, 377
definition, 377
three-pole, 380
Finite differences, 223
Flag, 73, 82, 155
Fletcher-Powell search, 134
Fletcher-Reeves search, 134, 136, 450
Fourier integral;
fast transform, 101
graphic interpretation, 99
for real causal functions, 98
Frequency, fractional, 287
Function:
analytic, 35
barrier, 163, [69
bilinear, 232, 242
Butterworth, 308
characteristic, 48, 50, 55
Chebyshev, 305
composite bilinear, 240
compound, for constraints, 165
cross terms in, 121, 131, 133
cubic, in extrapolation, 140
curved valley, 146
discontinuous, 144, 152
error, 26, 36
even, 23, 24, 26, 47, 48, 51
Fano, 310
fitting, 140, 152
global minimum, 135
impulse, 62
inflection point, 119
input impedance, 58, 82
mapping, 133
maximum, 1[5
minimum, 119, 120
bounded, 140
minimum phase, 222
objective, 116, 145, 151
odd, 23, 26, 47, 48, 5]
piecewise linear, 219, 226
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proper, 62

quadratic, 118, 127, 131
rational, 24, 48

reactance, 58, 220
resistance, 58

similarity, 82

squared magnitude, 36, 47
target, 26

transducer, 47, 50, 55, 67
urtit step, 62

Gain:
available power, 264
bilateral, 257, 263
maximally efficient, 254
maximum transducer, 253
maximum unilateral, 268
reverse transducer, 241
transducer, in ABCD terms, 315
unilateral, 267
Gauss-Jordan method, 9, 11, 13
Gewertz’ method, 58, 224
Goals:
definition, 15]
floated, 152
target, 223
Gradient, 37, 120, 161, 224
Group delay, see Time delay

Handheld calculator programming, 77, 82
Hessian matrix, 124, 125, 132, 134
Hilbert transform, 219, 221, 224
Horner’s nesting method, 32, 35, 39
Hyperbolic functions:

complex, 82

tangent approximation, §3
Hyperplanes, 9

Identities:

complex variable, 30, 94, 102

for partial derivatives, 102

residues, 64

among two-port parameters, 55
Image, load plane, 372, 375
Immittance:

definition, 55

of lumped elements, 70
Impedance:

antenna, 24

characteristic, 82, 84, {85

conjugate image, 259

derivative of input, 355

even and odd mode wave, 343

input function, 67, 68

input synthesis from real part, 57

input from two-port parameters, 60

interface, lossless network, 173

load, 46
iooking back, 61
matching, 94, 110, 170
node bridging, 89
open-circttit input, 55
ocutput, 272
parallel chms form, 92, 255
port normalizing, 93, 94, 257
short-circuit input, 56, 58
source, 46
transfer function, 57
two-port input, 50, 52
Impedance matching overview, 4
Inner product, 144
infimty, 232
Integration:
Romberg, 13, 152
Simpson’s rule. 18
trapezoidal, 14
Interpolation:
cubic, 137
linear, 15
Inverse Chebyshev function, 346
Inverters:
in admittance parameters, 290
characteristic impedance, 283
ideal, 277
designing with L and C, 283
magnetically coupled, 284
physical transmission line, 337
trap, 292
Iteration, 138, 146

Jacobian elliptic sine, 348, 352
Jacobian matrix, 196

Kirchhoff equations, 11, 12

Ladder network:

ABCD analysis, 78

analysis, 70

including three-ports, 240

examples, 75

nomenclature, 70

nuli branches, 73, 76
Lagrange multiplier, 195
Laplace:

complex frequency, 24, 62

transforms, 62, 65, 98
Lefi-half plane, 45, 59, 195
Legendre polynomials, 68
Length, electrical, 84, 185, 338
Level curves, 117
Linear equations:

complex coefficients, 11

real coefficients, 8
Linear phase, deviation from, 332




Linear search:
direction, 127, 144, 450
exact on quadratic surface, 128
example, 142
first step magnitude, {38
flowchart, 451
in gradient optimization, 137
profile, 137, 142
turning point, 126, 136
Loaded Q:
definition, 277
distribuwion, 305, 308, 310, 312, 328, 458,
459
effective, 300-302
normalized, 281
product, 281, 285, 293
Load effects, 369
Load impedance:
current from power, 71
nonzero real part, 70
reactance, 73
resistance, 73
very large, 70, 79
very smalit, 79
Loading, capacitive on stub, 299
Load power:
as independent parameter, 71
program input, 73
for transducer loss calculation, 96, 111
Long division, 62
Loss:
flat, 194, 213, 215
midband, approximate, 317
minimum, 377
mismatch, 94
poles, transmission, 48, 86
return, 94
transducer, 95
transmission line, §2
zero-loss frequencies, 48
Lossless source, 96
Lowpass prototype network, 189, 191, 206
L section:
ABCD equivalent, 78, 80, 81, 83
configuration, 173
lassy, 302
matching, 179
Norton equivalent, 209
optimization, 153
reactance equations, 174

Mapping:
coefficients, 242, 245, 261
decomposition, 242
image, 242, 243, 372
impedance, 238, 241, 260
input admitiance plane, 248
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outside unit ¢ircle, 237

plane onto circle, 235
Matching:

complex source and load, 178

conjugate image, 253, 263, 264

infinite network, 197

using transmission lines, 185, 187
Mathematical overview, 6
Matrix:

addition, 87

algebra terminology, 117

augmented, 9

diagonal, 132, 169

exponentiation, }i4

Hessian, 124, 125

indefinite, 122

inverse, 54, 66, 120

Jacobian, 125

multiplication, 79

notation, 9, 54

orthogonal, 132

pariitioning, 29

positive definite, 121, 168

row interchange, 10

scattering, 238

symmetric, 118, 12}

transformation, 258

transpose operator, 103

unit, 120, 134
Maximally flat function, 308. 458
Metric, 134, 168
Microstrip transmission line, 342
Midseries elliptic filter, 350, 358
Midshunt elliptic filter, 350, 358
Minimum, global, 135
Minimum-loss filters:

dowbly terminated, 315, 455, 459

singly terminated, 317
Mitrovic method, 31, 39, 65
Modeling, 24
Models, two-port:

admittance parameter, 247

impedance and power, 246

input power, 249

transistor ports, 256

unilaterat gain, 268
Moore's root finder, 35
Multiplication:

of linear factors with zeros, 44

matrix, 9, 29

polynomial, 45

Neighborhood, 123

Network: .
adjoint, 105, 106
doubly terminated, 47




490 Subject Index

equivalent:
bandpass, 365, 366
LC, 467
node-type, 364
lossless, 47, 52, 57
lowpass, 51
minimum phase, 57, 58
singly terminated, 57, 96
synthesis realization, 56
terminated, 59
Network analysis averview, 4
Network synthesis aids overview, 3
Neutralization, 241
Newton's method, 35, 125, 126, 133, 167, 169,
196, 201 |
Nodal analysis, 69, 86
Node bridging, nonadjacent:
current interpolation, 89
example, 90, 110, 111
using bridged-T chain parameters, 86
Noise, numerical, 144
Noise figure calculations, 79
Nonlinear programming overview, 4
Norm, 37
Norton source, 247
Norton transformation, 172, 209, 210, 290,
365, 369
Numerical analysis tools. 3
MNumerica) instability, 13
Numerical integration, 13
Numerical noise. 14
Numerical overflow, 41

Objective function:
gradient of, 153
minimax, 152
pth difference, 151
satisfted-when-exceeded, 151
squared-error, 223
Open-circuit parameters;
ABCD parameters relationship, 55
of bridged-T invulperable network, 378
Optimization:
blind man analogy, 116, 124
constrained, 158
flowchart, 115
linear search, 127
network, flowchart, 154
overview, 4
Oscillator frequency stability, 96
Overshoot, 313

Paraboloid, output power, 247

Paralleled reactances, 178, 277

Parallel resistance, 276

Parametes, two-pott:
conversion, 78

normalization, 80
open-circuit, 209
scattering. 92
Partial fraction expansion:
algorithm, 63
definition, 62
Passband, recurring, 299
Passband shapes:
Butterworth {maximally flat). 308
Chebyshev (overcoupled), 305
comparison, 313
Fano (undercoupled), 310
minimum loss, 314
Pessimization, 162
Phase compensation, 86
Piccewise linear function, 19, 21
Pi network:
configuration, 173
mapping, 245
reactance equations, 174
Pole at origin, 60
Polynomial:
ABCD, 50
addition and subtraction of parts, 49, 50
complex, 34
creation from zeros, 44
for doubly terminated minimum loss fitters,
316
evaluation, 31
even and odd, 60
fundamental synthesis relationship, 48
Hurwitz test, 54
Legendre, 68
multiplication, 45
network synthesis, 47
rational, 52, 59
for singly terminated minimum loss filters,
318
Polynomial approximation:
example of piecewise linear. 23
minimax, 19
piecewise linear functions, 19
rational, 24
Power:
available at two-port output, 247, 272
bounds on transfer, 372
efficiency, 92
input, 92
load, 46
maximum added. 254, 272
maximum available, 46, 173, 203
reaclive, 277
real incident, 93
transfer, 46, 94, 235
transmitter harmonic, 373
waves, 93
Power series, 20, 32




Prediction, first-order, 102

Prinied circuit:

edpe coupling. 336
filters, 342
microstrip, 342
stripline, 342

Product form, 35, 37, 38

Programming techniques, 233

Programs:

desktop computer:

B2-1 Gauss-Jordan solution of real
equations, 10, 59, 226, 417

B2-2 Gauss-Jordan solution of complex
equations, 12, 419

B2.3 Romberg integration, 17, 215, 421

B2-4 Polynomial approximation of
piecewise linear functions, 22, 422

B2-5 Levy's matrix coefficients, 27, 425

B3-1 Moore's root finder. 40, 426

B3-2 Polynomials from complex zeros,
44, 429

B3-3 Polynomial multiplication. 45, 430

B3-4 Polynomial addition and subtraction
of even. odd, or alf parts, 49, 431

B3-5 Continued fraction expansion, 52,
432

B3-6 Long division. 62, 432

B3-7 Partial fraction expansion, 64, 433

B4-1 Level -0 ladder network analysis,
73, 74, 155, 221, 245, 289, 356, 434

B4-2 Discrete Fourier transform and
convolution, 98, 436

B5-1 The Fletcher-Reeves optimizer,
141-143, 153, 159, 224, 437

B5-2 L-section optimization, 153, 155,
439

B6-1 L. T. and pi matching, 175, 177, 440

B6-2 Fano, Newton-Raphsen solution,
197. 442

B6-3 Levy matching 10 tesistive source
with g; protolype values, 201, 203, 207,
208, 443

B6-4 Romberg imegration of two Fano
gain-bandwidth integrals, 215, 244

B6-5 Hilbert minimum reactance
calculated from piecewise linear
resistance, 221, 224, 445

B6-6 Carlin resistance excursion
optimization with independent sovrce
resistance, 224, 225, 446

B9-1 Elliptic filter pole/zero and loss
calculations, 348, 350, 352, 447

B9-2 Symmetric elliptic {ilters, 358, 448

B9-3 Antimetric elliptic filters, 360, 449

hand-held computer:

A2-1 Polar complex four functions, 7,

233, 386

Subject Index 491

AS5-1 Swain’s surface, 116, 123, 127, 387

AS5-2 Central quadratic function, 120,
121, 128, 136, 168, 388

A35-3 Calculate guadratic-form level
curves, 121, 189

AS5-4 Linear search, inner products, and
conjugate forms, 128, 168, 390

A6-1 1+Q? series-parallel and parallel
reactances, 288, 291, 391

A6-2 Transmission line matching. 185,
198, 291, 392

A6-3 Min SWRma and lowpass-to-
bandpass transformation, 193, 198, 394

A6-4 Norton transformations, 211, 395

A7-1 Bilinear coefficients from arbltrary
triples, 233, 396

A7-2 Three-port 10 two-port conversion,
239, 241, 399

A7-3 impedance mapping for a scattering
two-port network, 243, 402

AT-4 Maximally efficient gain design,
255, 267, 405

AB-1 Bode breakpoint selectivity
estimate, 285-287, 408

A8-2 Doubly terminated minimum loss
filters. 318, 411

AB-3 Singly terminated minimum loss
filters, 319, 413

A9-1 Equal-admittance-stub filters, 341,
415

Proper rational functions, 62
Prototype network:
bandpass, 164
direct coupled, 273, 278

Q parameter:

bandwidth, 193

in decrement, 74

lpaded, 277

in resistance matching, 177

resonator loaded, 277

sensitivity, 112

singly terminated, 277

unloaded, 295
Quadratic:

form, [21

function, 118, 131

termination, 135
Quadratic factor, 38, 45, 66
Quadrature, 13
Quasi-Newton search, 135

READ commands, 11

Reciprocity, 51, 87

Recursion, tadder network analysis, 71, 89
Reference phase, 95
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Reflection:
coefficient, 66, 94, 111, 235
generalized, 46, 174, 235, 243
zeros, 48, 195
Register:
arithmetic, 81
packing, 74, 77, 84, 234
primary/secondary pairing, 77, 89, 233
Relaxation search, 127, 129
Repeated linear interpolation, 14, 15
Residual, 223
Residues, 64
Resistance:
direct-coupled Filter input, 296
mapping of negative, 237
source, 279
Resistance excursion, 220, 224
Resistance function:
from impedance functions, 60
input function:
Butterworth, 68
Chebyshev, 67
ratiopal, 59
Resonance, repeated, 299
Resonators:
helical, 298
model, 276
number required, 306, 309, 311
stope equivalent, 297
stub, 298
Responses, network:
band limited. 98, 100
tmpedance, 91
impulse, 98
input, 91
lossless source, 96
phase jumps in, 97
power. 91
time from frequency, 97
transfer, 9!
Restart policy, 136, 145
Right-half plane. 235
Romberg example, 17
Romberg integration, 13, 153, 215
Root finder, 125
Roots:
conjugate pairs, 38
multiple, 41, 65
quad, 45
Rosenbrock banana function, 145

Saddle point, 116, 123
Samples, 23, 27, 100, 223, 224
Scaling:
frequency, 208
impedance, 208
polynomial;
examples, 42, 43

by root factor, 42
by root shifting, 42
variables, 149
Scattering parameters:
definition, 93
port normalizing impedance, 93
power waves, 93
renormalized, 259
Search:
direct, 167
hewristic algorithms, 167
steps, 37
stopping criteria, 145
trajectory, 149
Selectivity:
commensurate network, 283
direct-coupled prototype network, 279, 280
doubly terminated minimum loss filter, 315
equal-stub-admistance filter, 34!
estimate for direct-coupled filters, 285
periodic, 336 ‘
singly terminzted minimum loss filter, 318
Sensitivity:
approximate, 103
complex, 102
definition, 101
direct-coupled filter, 324
LC resonance, 325, 466
load parameter, 331, 465
unit-source, 107, 103, 112

Series:
Fourier, 24
power, 20

Taylor, 123, 124, 13§
Series-parallel conversion, 176
Short-circuit parameters:

ABCD parameter relationship, 55

bridged-T equalizer, §6

for paralleling two-port networks, 86

three-pole invulnerable filter, 380
Signal parh, 57
Stmpson’s integration, 18, 98, 100
Slope:

directional, 37, 137. 138

trap susceplance, 367
Sruith chart:

generalized, 46, 235, 236

mapping, 181

transmission line matching, 184, 186
Source, current, 203
Stability:

bilateral, 257

boundaries, 260

in cascaded amplifiers, 260

circles, 261

factor, 249, 251, 374

overall, 255

unconditional, 25%




Stack, RPN calculator, 7
Stack XYZT registers, 7
Standing-wave ratic (SWR):
bounds on input, 374
bounds when matching, 177
cirele, 233
definition, 95
maximum for invulnerable bridged-T, 379
measurement of maximum, 376
passband ripple, 197
Steepest descent search, 129, 145, 148
Stripline, 342
Stubs:
capacitive loading, 299
short circuited, 337
transmission line, 82, §5
Subroutine:
argument list, 72
element type, 73
integrand, 17
Subspace, 119
SUMT algerithm, 164
Surface:
curved valleys in, 131
nonguadratic, 127
Symmetric elliptic filter, 350, 358
Synchronous filter:
definition, 207
resonator reactance, 289
tuning method, 325
tuning sule, 288
Synthesis:
examples, 48
finding LC element values, 54
input impedance example, 59
input impedance from real part, §7
number of elements, 56
polynomials, 48
pseudobandpass network, 216
terminating resistances, 57, 67
Synthetic division:
linear factors, 37, 43
quadratic factors, 38
System transfer function, 62

Taylor series:
examples, 167-169
finite, 16
Tellegen's theorem:
adjoint network, 105
definition, 104
example, 105, 106
excitation patterns, 107, 108
inner product form of, 105
for gradients, 153
Termination resistance, 57, 67, 95
Terminations:
for bilateral gain, 263

Subject Index 493

complex, 257
Test problems, optimization, 145
Thevenin equivalent source, 173
Time delay:
definition, 96
degrees per MHz, 96
equalizer, 86, 88
by frequency perturbation, 97
units, 97
T networks:
configuration, 173
Nortan equivalent, 209
reactance equations, 174
Topology code, ladder network:
branch number, 73
bridged-T subnetwork, 89
combline filter, 301
component number, 73
component type, 72
degenerate branches, 77
dummy elements, 77
examples, 72, 75, 76, 84, 89, 90
levels, 72-74
menu, 72
nuall prior branch, 73, 76
pointer, 72, 85, 88
paired data for, 72
transmission line, 83
Total differential, 102
Trajectory of successive minima, 164
Transducer function, 50, 67, 94, 245, 253
Transducer functions:
commensurate filter, 336
equal-stub-admittance filter, 341
lossless reciprocal symmetric network, 338
Transformation:
bilinear (linear fractional), 231, 235
frequency. 213
inversion, 241
LC, exact, 363
linear, 241
lowpass-to-bandpass, 205, 206
node-type, 364
nonlinear, of variables, 158
ratation, 243
of scattering normalization, 258
Transformer:
coupling coefficient, 302
ideal, 209, 351
reactance, 302
rf, 334
Translation, linear, 21
Transmission line:
ABCD parameters, §2
in cascade, 83
input impedance, 183
input reflection coefficient, 183
characteristic impedance, 82, 84, 300
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length, electrical, 84
lossless, 182
L-section equivalent, 83
open wire, 337
as paralleled resonators, 337
stubs, 82, 83, BS
as two-post network, 81
uniform, 81
Trap:
approximations, 366
in direct-coupled filters, 292
inverter effects, 461
loaded Q product effect, 295
permutation algorithm, 354, 357, 384
Trapezoidal intergration, 13, 14
Tuning:
direct-coupted filter, 325
end coupling, 325
Turning point, 138
Two-port input impedance, 60
Two-port networks:
embedded in ladder, 78
series impedance, 79
shunt admittance, 79
Two-port parameters:
chain {ABCD), 49, 50, 78
open-circuit, definition, 54
open-circuit determinant, 60
short-circuit, definition, 54

Unilaterial figure of merit, 268
Unit-source sensitivity, 107, 108, 112
Univariant search, 129

Unloaded Q:
definition, 295
effect on minimum loss, 382
uniform, 359

Vector:
cotumn, definition, 103
inner product, 144
single-subscript array, 17
squared norm, 144
Voltage between nodes, 70

Waves:
emerging, 93
incident, 93
traveling, 94
Weddle's rule, 18
Weighted sum, 2]
Weighting value, 26, 27, 151
Word length:
filter degree limitation, 56
finite, 16, 21, 149

Zeros:
Butterworth function, 309
Chebyshev function, 307
of complex polynomials, 34
Fano function, 312
reflection, 48
transmtission, 45, 48

Zigzagging, 129

ZLC, 58

ZRLC, 58, 60
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