Lecture 3: Transistors Now that we know about diodes, let's put two of them together, as follows: - At first glance, this looks like an insulator - but the actual behavior is far more interesting, if we apply external voltages properly • Let's apply the following voltages: - First, assume v_{CE} is 0. Then, if v_{BE} is bigger than the diode drop, a current flows through the forward-biased diode from base to emitter - call this current the "base current", i_B - Now let's start cranking up v_{CE} - this attracts more electrons from the base to the collector - "collector current" i_c increases - this is called the "saturation region" of the transistor - at relatively small v_{CE} , most the electrons coming in to the base get scooped up by the collector - when this happens we enter the "active region" of the transistor - Let's follow an electron up from the emitter in the active region - first it enters the base, where it has two choices: - 1. drop into a hole in the p doped base. This is called "recombining", and electrons that do this will end up contributing to i_B - 2. drift across the junction to the collector. Electrons that do this will end up contributing to i_C - But recall that we made the base thin, and lightly doped (not many holes available) - the chances of recombining are not good! - If the recombination probability is 1- α , the ratio of base and collector currents will be: $$\frac{i_C}{i_B} = \frac{\alpha}{1 - \alpha} \equiv \beta$$ $$i_C = \beta i_B$$ - Typically β is ~ 100 - Note what this means: - the transistor can control the (large) collector current by adjusting the (small) base current - the inverse is *not* true: the base current can't be changed much by adjusting v_{CE} #### Transistor uses • The type of transistor just described is a *npn bipolar junction* transistor - One can also make pnp bipolar junction transistors - Summary of i_c as a function of v_{CE} for a given i_B : - If v_{CE} gets too big, the transistor breaks down - i_C becomes large - transistor might fry - Transistor properties are useful for two reasons: - 1. Can control large-power circuit with small-power input - 2. Can isolate different regions of complex circuits - i.e., divide circuit into "input" section connected to base, and "output" section connected to collector - both input and outputs are connected to the emitter - This greatly simplifies the design of such circuits ## Transistor rules - In order to take advantage of the nice behavior we want in the transistor, we must keep in mind the following rules: - 1. V_C must be greater than V_E - 2. Base-collector and base-emitter act like diodes - Base-emitter is forward-biased, base-collector is reversebiased - 3. $i_C \approx \beta i_B$ - 4. There are maximum values of i_B , i_C , and V_{CE} that can't be exceeded without destroying the transistor ## Common emitter circuit • One useful transistor circuit is the following: - The input circuit can control what happens in the output circuit, but *not* vice-versa - v_{CC} is a constant bias voltage - want to see how v_{out} varies with v_{in} - First analyze the input circuit - If v_{in} is less than the diode drop in the transistor (~0.7V): $$-i_B=0$$ $$-v_{BE} = v_{in}$$ - This is the *cutoff region* for the circuit - For larger v_{in} , we have: $$v_{BE} \approx \text{const} \approx 0.7 \text{V}$$ $$v_{in} - i_B R_B - v_{BE} = 0$$ $$i_B = \frac{v_{in} - v_{BE}}{R_B}$$ - Now look at the output circuit - First consider just the "load" part - This linear dependence of i_C on v_{out} is called the *load line* for the circuit - But we also know that due to the transistor, i_C depends on i_B , which in turn depends on v_{in} • For a given base current, we can find i_C and v_{CE} by plotting both the load line and the transistor response curve on the same graph: • If v_{in} is less than the diode drop, so there's no base current, the plot becomes: - The output voltage is near v_{CC} , independent of v_{in} - this is called the "cutoff region" • Once v_{in} is large enough for the transistor to turn on, we enter the situation shown a couple of slides ago: - In this region, v_{out} decreases Thearly as i_B increases - and i_B increases linearly with v_{in} - this is the "active region" • If we keep increasing v_{in} , we enter the following situation: - Now the output voltage is small, and nearly independent of i_B - this is the "saturated region" • Putting all of this together, we find that: - As one goes from the cutoff region to the saturated region, the output circuit goes from OFF (no current) to ON (large current) - The transistor is acting like a switch! - Transistor switches form the basis of digital electronics # Small signal amplification - Amplifying signals is another very common use for a transistor - "Small" means that the variations in the signal do not move the transistor outside of the active region - A small-signal amplifier might look like: - C_1 is a blocking capacitor - Keeps transistor in active region regardless of DC input voltage - Has very small impedance for the signal we want to amplify # Analysis of our circuit • We'll set the circuit parameters as: $$-R_S=1\mathrm{k}\Omega, R_1=5.6\mathrm{k}\Omega, R_2=50\mathrm{k}\Omega, R_C=10\mathrm{k}\Omega, R_E=1\mathrm{k}\Omega$$ - $-V_{CC} = +10V$ - Transistor β = 100 - First assume the signal generator is off, so all voltages are derived from V_{CC} - V_{CC} is divided by R_1 and R_2 to give a voltage at the transistor's base of: $$V_{BB} = V_{CC} \cdot \frac{R_1}{R_1 + R_2} = 1.0 \text{V}$$ • This is greater than the 0.7V needed to start current flowing into the base - To find the value of i_B , we divide the emitter voltage by the impedance given by R_1 and R_2 in parallel - good approximation since the internal impedance of the power supply is low, so both R_1 and R_2 can be considered as connected to ground $$i_B = \frac{V_{BB} - 0.7}{R_1 \| R_2} = \frac{0.3 \text{V}}{5 \text{k} \Omega} = 60 \mu \text{A}$$ - This means that the collector current is: $$i_C = \beta i_B = 6 \text{mA}$$ - At this point we should verify that the transistor is in its active region - It is! See text for details... • Looking at the output circuit, we have: $$V_{out} = V_C = V_{CC} - I_C R_C$$ (true because the capacitors look like short circuits for the signals we care about) • So the change in the output signal voltage is: $$\Delta V_{out} = -R_C \Delta I_C$$ • The currents in the emitter and collector are nearly the same, so: $$\Delta V_{out} = -R_C \Delta I_E$$ • The change in I_E is related to the change in V_E by: $$\Delta I_E = \frac{\Delta V_E}{R_E}$$ • We also know that the emitter voltage is the base voltage – the diode drop, so: $$V_E = V_{BB} - 0.7V$$ $$\Delta V_E = \Delta V_{BB} = \Delta V_{in}$$ Which means that: $$\Delta V_{out} = -R_C \frac{\Delta V_E}{R_E} = -\frac{R_C}{R_E} \Delta v_{in}$$ • For our example, this means that: $$\Delta V_{out} = -R_C \frac{\Delta V_E}{R_E} = -10 \Delta v_{in}$$ - The signal is amplified by a factor of 10! - the minus sign means the signal is also inverted #### • Some notes: - The gain of the amplifier depends on the values of the resistors, *not* on the β of the transistor - That's a good design, since β can very substantially from transistor to transistor (even of the same model) - What if we want a gain so large that the small-signal circuit can't be used? - just use the output as the input to another small-signal amp, and repeat as needed - only problem is that one will also be repeatedly amplifying noise on the signal - that's solved by the use of feedback (next week's lecture) ## Field-effect transistors - Another type of transistor is the field-effect transistor (FET) - Comes in two varieties - 1. junction FET (JFET) - 2. metal oxide semiconductor FET (MOSFET) - They behave similarly, so we'll look at the JFET in detail - It's basically a reverse-biased *pn* junction - no current through depleted region - means gate current i_G is zero implies extremely large input impedance - What happens as the gate voltage is increased? - The depleted region grows - The conduction channel gets smaller \rightarrow resistance increases: # JFET operating regions - To see how the JFET works, let's fix v_{GS} (it must be negative to reverse-bias the diode) and see what happens to i_D as v_{DS} increases - at first, i_D increases due to the increasing voltage - this is called the ohmic region, since the JFET behaves much like a resistor - but increasing v_{DS} also enlarges the depleted region, restricting current flow. Eventually current becomes constant as v_{DS} increases - this is the saturation region - if v_{DS} becomes very large, the transistor breaks down - Note also that v_{GS} can be made more negative until the entire JFET is depleted thus no current flows regardless of v_{DS} - this is the cutoff region of the transistor ### JFET notes - The "saturated" region of the JFET behaves similarly to the "active" region of the bipolar junction transistor - FETs are useful because there is essentially no input current - Thus the output current can be controlled with nearly no input power - In this sense, FETs are more nearly ideal transistors than bipolar junctions are - Integrated circuits ("chips") are made by forming many FET's on layers of silicon - Main limitation of FETs is maximum current they can handle - For high-current applications the bipolar junction is a better choice