Lecture 3: Transistors

 Now that we know about diodes, let's put two of them together, as follows:

- At first glance, this looks like an insulator
 - but the actual behavior is far more interesting, if we apply external voltages properly

• Let's apply the following voltages:

- First, assume v_{CE} is 0. Then, if v_{BE} is bigger than the diode drop, a current flows through the forward-biased diode from base to emitter
 - call this current the "base current", i_B

- Now let's start cranking up v_{CE}
 - this attracts more electrons from the base to the collector
 - "collector current" i_c increases
 - this is called the "saturation region" of the transistor
 - at relatively small v_{CE} , most the electrons coming in to the base get scooped up by the collector
 - when this happens we enter the "active region" of the transistor
- Let's follow an electron up from the emitter in the active region
 - first it enters the base, where it has two choices:
 - 1. drop into a hole in the p doped base. This is called "recombining", and electrons that do this will end up contributing to i_B
 - 2. drift across the junction to the collector. Electrons that do this will end up contributing to i_C

- But recall that we made the base thin, and lightly doped (not many holes available)
 - the chances of recombining are not good!
- If the recombination probability is 1- α , the ratio of base and collector currents will be:

$$\frac{i_C}{i_B} = \frac{\alpha}{1 - \alpha} \equiv \beta$$

$$i_C = \beta i_B$$

- Typically β is ~ 100
- Note what this means:
 - the transistor can control the (large) collector current by adjusting the (small) base current
 - the inverse is *not* true: the base current can't be changed much by adjusting v_{CE}

Transistor uses

• The type of transistor just described is a *npn bipolar junction* transistor

- One can also make pnp bipolar junction transistors
- Summary of i_c as a function of v_{CE} for a given i_B :

- If v_{CE} gets too big, the transistor breaks down
 - i_C becomes large
 - transistor might fry

- Transistor properties are useful for two reasons:
- 1. Can control large-power circuit with small-power input
- 2. Can isolate different regions of complex circuits
 - i.e., divide circuit into "input" section connected to base, and "output" section connected to collector
 - both input and outputs are connected to the emitter
 - This greatly simplifies the design of such circuits

Transistor rules

- In order to take advantage of the nice behavior we want in the transistor, we must keep in mind the following rules:
- 1. V_C must be greater than V_E
- 2. Base-collector and base-emitter act like diodes
 - Base-emitter is forward-biased, base-collector is reversebiased
- 3. $i_C \approx \beta i_B$
- 4. There are maximum values of i_B , i_C , and V_{CE} that can't be exceeded without destroying the transistor

Common emitter circuit

• One useful transistor circuit is the following:

- The input circuit can control what happens in the output circuit, but *not* vice-versa
- v_{CC} is a constant bias voltage
- want to see how v_{out} varies with v_{in}

- First analyze the input circuit
- If v_{in} is less than the diode drop in the transistor (~0.7V):

$$-i_B=0$$

$$-v_{BE} = v_{in}$$

- This is the *cutoff region* for the circuit
- For larger v_{in} , we have:

$$v_{BE} \approx \text{const} \approx 0.7 \text{V}$$

$$v_{in} - i_B R_B - v_{BE} = 0$$

$$i_B = \frac{v_{in} - v_{BE}}{R_B}$$

- Now look at the output circuit
- First consider just the "load" part

- This linear dependence of i_C on v_{out} is called the *load line* for the circuit
- But we also know that due to the transistor, i_C depends on i_B , which in turn depends on v_{in}

• For a given base current, we can find i_C and v_{CE} by plotting both the load line and the transistor response curve on the same graph:

• If v_{in} is less than the diode drop, so there's no base current, the plot becomes:

- The output voltage is near v_{CC} , independent of v_{in}
 - this is called the "cutoff region"

• Once v_{in} is large enough for the transistor to turn on, we enter the situation shown a couple of slides ago:

- In this region, v_{out} decreases Thearly as i_B increases
 - and i_B increases linearly with v_{in}
 - this is the "active region"

• If we keep increasing v_{in} , we enter the following situation:

- Now the output voltage is small, and nearly independent of i_B
 - this is the "saturated region"

• Putting all of this together, we find that:

- As one goes from the cutoff region to the saturated region, the output circuit goes from OFF (no current) to ON (large current)
 - The transistor is acting like a switch!
- Transistor switches form the basis of digital electronics

Small signal amplification

- Amplifying signals is another very common use for a transistor
- "Small" means that the variations in the signal do not move the transistor outside of the active region
- A small-signal amplifier might look like:

- C_1 is a blocking capacitor
 - Keeps transistor in active region regardless of DC input voltage
 - Has very small impedance for the signal we want to amplify

Analysis of our circuit

• We'll set the circuit parameters as:

$$-R_S=1\mathrm{k}\Omega, R_1=5.6\mathrm{k}\Omega, R_2=50\mathrm{k}\Omega, R_C=10\mathrm{k}\Omega, R_E=1\mathrm{k}\Omega$$

- $-V_{CC} = +10V$
- Transistor β = 100
- First assume the signal generator is off, so all voltages are derived from V_{CC}
- V_{CC} is divided by R_1 and R_2 to give a voltage at the transistor's base of:

$$V_{BB} = V_{CC} \cdot \frac{R_1}{R_1 + R_2} = 1.0 \text{V}$$

• This is greater than the 0.7V needed to start current flowing into the base

- To find the value of i_B , we divide the emitter voltage by the impedance given by R_1 and R_2 in parallel
 - good approximation since the internal impedance of the power supply is low, so both R_1 and R_2 can be considered as connected to ground

$$i_B = \frac{V_{BB} - 0.7}{R_1 \| R_2} = \frac{0.3 \text{V}}{5 \text{k} \Omega} = 60 \mu \text{A}$$

- This means that the collector current is:

$$i_C = \beta i_B = 6 \text{mA}$$

- At this point we should verify that the transistor is in its active region
 - It is! See text for details...

• Looking at the output circuit, we have:

$$V_{out} = V_C = V_{CC} - I_C R_C$$

(true because the capacitors look like short circuits for the signals we care about)

• So the change in the output signal voltage is:

$$\Delta V_{out} = -R_C \Delta I_C$$

• The currents in the emitter and collector are nearly the same, so:

$$\Delta V_{out} = -R_C \Delta I_E$$

• The change in I_E is related to the change in V_E by:

$$\Delta I_E = \frac{\Delta V_E}{R_E}$$

• We also know that the emitter voltage is the base voltage – the diode drop, so:

$$V_E = V_{BB} - 0.7V$$

$$\Delta V_E = \Delta V_{BB} = \Delta V_{in}$$

Which means that:

$$\Delta V_{out} = -R_C \frac{\Delta V_E}{R_E} = -\frac{R_C}{R_E} \Delta v_{in}$$

• For our example, this means that:

$$\Delta V_{out} = -R_C \frac{\Delta V_E}{R_E} = -10 \Delta v_{in}$$

- The signal is amplified by a factor of 10!
 - the minus sign means the signal is also inverted

• Some notes:

- The gain of the amplifier depends on the values of the resistors, *not* on the β of the transistor
- That's a good design, since β can very substantially from transistor to transistor (even of the same model)
- What if we want a gain so large that the small-signal circuit can't be used?
 - just use the output as the input to another small-signal amp,
 and repeat as needed
 - only problem is that one will also be repeatedly amplifying noise on the signal
 - that's solved by the use of feedback (next week's lecture)

Field-effect transistors

- Another type of transistor is the field-effect transistor (FET)
 - Comes in two varieties
 - 1. junction FET (JFET)
 - 2. metal oxide semiconductor FET (MOSFET)
- They behave similarly, so we'll look at the JFET in detail

- It's basically a reverse-biased *pn* junction
 - no current through depleted region
 - means gate current i_G is zero implies extremely large input impedance
- What happens as the gate voltage is increased?
 - The depleted region grows
 - The conduction channel gets smaller \rightarrow resistance increases:

JFET operating regions

- To see how the JFET works, let's fix v_{GS} (it must be negative to reverse-bias the diode) and see what happens to i_D as v_{DS} increases
 - at first, i_D increases due to the increasing voltage
 - this is called the ohmic region, since the JFET behaves much like a resistor
 - but increasing v_{DS} also enlarges the depleted region, restricting current flow. Eventually current becomes constant as v_{DS} increases
 - this is the saturation region
 - if v_{DS} becomes very large, the transistor breaks down
- Note also that v_{GS} can be made more negative until the entire JFET is depleted thus no current flows regardless of v_{DS}
 - this is the cutoff region of the transistor

JFET notes

- The "saturated" region of the JFET behaves similarly to the "active" region of the bipolar junction transistor
- FETs are useful because there is essentially no input current
 - Thus the output current can be controlled with nearly no input power
 - In this sense, FETs are more nearly ideal transistors than bipolar junctions are
- Integrated circuits ("chips") are made by forming many FET's on layers of silicon
- Main limitation of FETs is maximum current they can handle
 - For high-current applications the bipolar junction is a better choice